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S U M M A R Y
The number of successes and the space–time alarm rate are commonly used to characterize
the strength of an earthquake prediction method and the significance of prediction results.
It has been recently suggested to use a new characteristic to evaluate the forecaster’s skill,
the gambling score (GS), which incorporates the difficulty of guessing each target event by
using different weights for different alarms. We expand parametrization of the GS and use
the M8 prediction algorithm to illustrate difficulties of the new approach in the analysis of
the prediction significance. We show that the level of significance strongly depends (1) on the
choice of alarm weights, (2) on the partitioning of the entire alarm volume into component
parts and (3) on the accuracy of the spatial rate measure of target events. These tools are at the
disposal of the researcher and can affect the significance estimate. Formally, all reasonable GSs
discussed here corroborate that the M8 method is non-trivial in the prediction of 8.0 ≤ M < 8.5
events because the point estimates of the significance are in the range 0.5–5 per cent. However,
the conservative estimate 3.7 per cent based on the number of successes seems preferable
owing to two circumstances: (1) it is based on relative values of the spatial rate and hence
is more stable and (2) the statistic of successes enables us to construct analytically an upper
estimate of the significance taking into account the uncertainty of the spatial rate measure.

Key words: Earthquake interaction, forecasting and prediction; Seismicity and tectonics;
Statistical seismology.

1 I N T RO D U C T I O N

Earthquake prediction of the yes/no type usually deals with two
characteristics: the rate of failures-to-predict, n, and the normalized
measure of space–time alarm, τ (see e.g. Molchan 2003). In these
terms one can characterize the strength of a prediction method and
the significance of prediction results. In particular, the quantity H =
1−(n+τ ) is the expected fraction of non-randomly predicted target
events and therefore is a good candidate to characterize the strength
of any prediction method at the research stage. The (n, τ ) vector
as an integral characteristic may mask inefficiency of a method in
some parts of the space–time monitoring area. This weakness is
somewhat compensated by relaxed requirements on the accuracy of
the rate measure of target events in a subarea dg, λ(dg), as well as
by the ease with which the uncertainty of λ(dg) can be incorporated
in significance estimation (Molchan 2010; Molchan & Romashkova
2010).

The problem of choosing a suitable quantity (score) to charac-
terize the strength of a prediction method is treated in an extensive
literature (see e.g. Molchan 1997; Joliffe & Stephenson 2003). This
is quite natural, because the choice of the score depends on the ap-
plications and prediction goals in mind. Even the simplest models
of the score, R = 1−n − cτ , interesting as these are at the research

stage with any positive c, lead to an infinity of optimal prediction
strategies (Molchan 1997).

Recently Zhuang (2010) and Zechar & Zhuang (2010) suggested
the so-called gambling score (GS), in which the forecaster is re-
warded or punished for success or failure in prediction according
to the risks that he has taken. In contrast to the other scores, the GS
takes into account the predictions of two types: appearance and non-
appearance of target events in a time–space subvolume of interest.
Two types of alarms take place, for example, in the prediction of a
subsequent strong earthquake (Vorobieva 1999). Usually forecaster
suggests the prediction of target event. However in case the moni-
toring zone is fixed, the alarm zone complement can be considered
by researcher as alarm of the alternative type.

Zhuang (2010) discussed a theoretical possibility of using the
GS for comparison of any two forecasts. At present there is only
one application of the GS approach to practical problems. This is
an analysis of the Reverse Tracing of Precursors (RTP) prediction
method (see e.g. Keilis-Borok et al. 2004) by Zechar & Zhuang
(2010). This analysis includes (1) a quite uncommon methodology
of comparison of the prediction results with the random guessing;
(2) an example of GS parametrization: all RTP alarms are weighted
differently so that the alarms with smaller prior probabilities of tar-
get events are considered more valuable. Under these conditions
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the requirement on the local accuracy of λ(dg) becomes more strin-
gent. Because the weighting of alarms is not unique and may be
arranged in a variety of ways, any parametrization of the GS needs
a justification.

In this study we discuss the GS approach as applied to the RTP
method and consider a new application of the GS, namely, the sig-
nificance estimation of prediction results. To illustrate how the GS
works in a significance problem we use the M8 algorithm by Keilis-
Borok & Kossobokov (1990), which is designed for the prediction
of M ≥ 8.0 events worldwide. The M8 algorithm was examined
recently in our paper (Molchan & Romashkova 2010). This con-
siderably simplifies our task of a preliminary analysis of data and
predictions, so that we can concentrate on the methodology of the
GS approach. In addition, we are in a position to compare the
significance estimates based on the GS with those based on the con-
ventional (n, τ ) approach. To make reading more convenient, we
give a list of essential notation in the Appendix.

2 T H E G S A P P ROA C H

2.1 The GS R

Let Y = (y1, . . . , yN ) be a random binary sequence with the prob-
abilities of outcome of the i-th component equal to

P (yi = 1) = pi , P (yi = 0) = 1 − pi . (1)

Here, yi = 1 may be interpreted as the occurrence of at least one
target event in a space–time domain Ai = Gi × Ti , and yi = 0 as
no event in Ai .

Let X = (x1, . . . , xN ) be another binary vector to be treated as
a prediction of Y : xi = 1 means an alarm, that is, the ‘positive
prediction’ of a target event in Ai , while xi = 0 means no alarm,
that is, the ‘negative prediction’ of a target event in Ai .

To be able to specify the quality of a prediction or the proximity
of X and Y , an appropriate measure (score) R(X, Y ) is used. The
choice of R may depend on a variety of factors like research and
applied goals in the study of a prediction method, the requirements
on the stability of the distribution of R given a reference seismicity
model, etc.

The GS approach is of interest as being a tool for constructing
meaningful models of R. This approach treats R as the net gain of
the forecaster in a sequence of N trials. In the i-th trial the forecaster
may stake b+(pi ) on the outcome yi = 1 or b−(pi ) on the outcome
yi = 0. In the case of success the forecaster gets a+(pi ) or a−(pi ),
respectively. The net gain is

R (X, Y ) =
∑
i≥1

[a+ (pi ) xi yi − b+ (pi ) xi ȳi − b− (pi ) x̄i yi

+ a− (pi ) x̄i ȳi ] , (2)

where we denoted c̄ = 1− c. To realize a fair game we suppose that
the forecaster’s expected gain under (1) in each trial is zero, that is,

EY [a+ (pi ) yi − b+ (pi ) ȳi ] = 0 = EY [a− (pi ) ȳi − b− (pi ) yi ] ,

where EY denotes the expectation with respect to the distribution
of Y . This assumption restricts the number of unknown functions
{a±, b±} to two, because it requires

a+(p)/b+(p) = p̄/p, a−(p)/b−(p) = p/ p̄. (3)

As a result, R transforms to

R (X, Y ) =
∑
i≥1

w (pi ) (xi − pi ) (yi − pi ) +
∑
i≥1

v (pi ) (yi − pi ),

where

w (p) = b+ (p)/p + b− (p)/ p̄, v (p) = b+ (p) − b− (p) .

To further restrict the number of unknown functions, we shall inter-
pret a+(p) and a−(p) as one and the same measure of the complexity
in guessing the random events {y = 1} and {y = 0}, respectively.
If the measure depends on the probability of the event only, then
according to (1) we have

a− (p) = a+ (1 − p) . (4)

By (3) and (4), we get an analogous relation for b+ and b−:

b− (p) = b+ (1 − p) . (5)

The corollary is that w(p) is symmetric: w(p) = w (1 − p), while
v is antisymmetric: v(p) = −v (1 − p).

When dealing with the prediction of large events, the typical
situation involves a small p, p < 1/.2. To stimulate the prediction
of rare events (p < 1/.2), the natural requirement is b+(p) ≤ b− (p)
for the stakes and a+(p) ≥ a− (p) for the gains. The simplest choice

b+ (p) = b− (p) , 0 < p ≤ 1/2 (6)

is sufficient to satisfy the requirement on the gains. By (3) and (6),
one has

a+ (p)
/

a− (p) = (p−1 − 1)2 ≥ 1, p ≤ 1/2.

If a+(p) as a measure of complexity decreases on (0, 1), it follows
that the requirement on the gains is satisfied without (6): a+(p) ≥
a+ (1 − p) = a− (p) when p ≤ 1/.2.

The requirement (6) is convenient, because v(p) = 0, so R is

R (X, Y ) =
∑
i≥1

wi (xi − pi ) (yi − pi ), wi = w(pi ), (7)

where w(p) specifies all basis functions {a±, b±}:
w(p) = b±(p) [p(1 − p)]−1 = a+(p)(1 − p)−2 = a−(p)p−2. (8)

Zechar & Zhuang (2010) use the score (2, 3) with b±(p) = 1. In
virtue of (8) the score is consistent with (7) when

w(p) = [p(1 − p)]−1 . (9)

The representation (7) is of interest since it can be treated in purely
geometric terms, that is, as a weighted correlation of the vectors
X − P and Y − P , where P = (p1, . . . , pN ) is the mean of Y
assuming (1). The weight wi may reflect the degree of importance
of the i-th prediction or the complexity involved in guessing the
result yi = 1 when p ≤ 1/.2. Indeed, using (8) one has

a+(p) ≤ w(p) ≤ 4a+(p), 0 ≤ p ≤ 1/2,

that is, a+(p) and w(p) are roughly equivalent. Note that the terms
in R have a twofold representation:

wi (xi − pi ) (yi − pi ) = wi (x̄i − p̄i ) (ȳi − p̄i ) .

Consequently, the {wi } in (7) should be interpreted in the same
manner with respect to the prediction of the sequences {yi } and
{ȳi }.

2.2 Models of the GS R

The weight (9) too heavily emphasizes the complexity of guessing
rare events. An alternative is the following parametric family of
w(p):

wβ (p) = [4p(1 − p)]−β , β ≥ 0, (10)

C© 2011 The Authors, GJI, 184, 1445–1454

Geophysical Journal International C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/184/3/1445/629177 by guest on 21 August 2022



Earthquake prediction analysis 1447

which includes (9) (β = 1) and w(p) = 1 (β = 0). The family
is normalized by the requirement wβ (1/2) = 1; it possesses the
monotone property

wβ (p) ≤ wβ′(p), 0 ≤ β ≤ β′.
Due to (8), this monotone property holds true for the bets b±(p)
and for the return functions a±(p).

The weight

w̃β (p) = 1 − β ln [4p(1 − p)] (11)

for any β ≥ 0 lies between wβ (p) and w0(p), that is, w0 ≤ w̃β ≤
wβ .

When p is small, the dominant part of w̃β is proportional to
ln(1/p), that is, to the Shannon information, which resides in an
event occurring with probability p. This is the reason why (11) may
be interesting for the analysis of prediction results as well.

For the family (10) one has

a+(p) = cp−β (1 − p)2−β, b+(p) = c [p(1 − p)]1−β .

The function a+(p) as a complexity measure must decrease on (0,1);
therefore one has 0 ≤ β ≤ 2. The behaviour of the bet functions
b+(p), 0 < p < 1/2 is twofold: b+(p) increases for 0 ≤ β < 1 and
decreases for 1 < β < 2. In the first case we stimulate the prediction
of rare events, while in the second we realize the following game
principle: the higher the return ratio [see (3)] the higher the bets.
We will show that the models wβ (p) with small β lead to a more
stable statistical analysis of predictions.

Note that Rw with w = w1/.2(p) and w = w1(p) admits of another
statistical treatment. When β = 1/2, the weights wi normalize the
stochastic terms (yi − pi ) of R because the quantities

wi (yi − pi ) = (yi − pi )/
√

pi (1 − pi ) := ynorm
i

have zero means and unit variances under condition (1). For the
same reason, when β = 1 and X , Y have the distribution (1), the
score R(X, Y ) is the correlation of the normalized vectors {xnorm

i }
and {ynorm

i }, where xnorm
i = (xi − pi )/.

√
pi (1 − pi ). More generally,

by (8) one has

Rw(x, y) =
∑
i≥1

b(pi )x
norm
i ynorm

i , b(p) = b±(p). (12)

The representations (7) and (12) are of interest as regards the ques-
tion of which model of w(p) should be considered ‘natural’. Ac-
cording to the information arguments, this may be w̃β (p), while
the statistical interpretation of (12) leads to the w1(p) for which
b(p) = 1 in (12). This indeterminacy cannot be removed without
additional argumentation.

The GS approach is far from being the only method for choosing
the appropriate measure to assess the performance of a prediction
algorithm. As an illustration we consider an example that is con-
ceptually similar to the ‘entropy score’ (see Vere-Jones 1998).

The likelihood of yi , as well as that of ȳi = 1 − yi , has the form

li = yi log pi + (1 − yi ) log(1 − pi ).

The quantity (−li ) has the meaning of the amount of information the
observer gets from the i-th prediction experiment. The goal of the
forecaster may be formulated as follows: the sum

∑
i

(−li ) should

be maximized for those alarm zones where target events are to be
expected and minimized where such events are not expected. Hence
the goal function may be defined as

RL H (X, Y ) =
∑
i≥1

(xi − x̄i )(−li ) =
∑
i≥1

(xi − 1/2)(yi − 1/2)

× 2 ln
(

p−1
i − 1

) + c,

(13)

where c is independent of {yi }. Comparison of (7) with the right-
hand side of (13) reveals differences in the centring of the X vector
and in the evenness of the weight functions. Nevertheless, both of
these goal functions can be used in prediction analysis. To make
this clear, suppose that pi = p < 1/2 for alarms of both types.
This case corresponds to the H0 hypothesis in the prediction of a
subsequent strong earthquake by the SSE method (Vorobieva 1999).
One has

RL H = (ν++ − 0.5Ny) × 2 ln(p−1 − 1) + c

and

Rw = (ν++ − pNy)w(p) + c1,

where ν++ is the number of successful positive alarms, Ny = #{yi =
1} is the total number of alarm zones with target events, and c, c1

are functions of {xi }. Now the structural similarity of the scores is
obvious.

If Ny and {xi } are fixed, the scores depend on ν++ only. Therefore
the analysis of prediction results in the conditional situation will rely
on the conventional statistic of successes. Note that in this case the
distribution of ν++ does not depend on p and is the hypergeometric
distribution with the parameters (N+, Ny).

P(ν++ = k) = Ck
N+C

Ny−k
N−N+/C

Ny
N ,

where N+ is total number of positive alarms and Cb
a are the binomial

coefficients. It is an ideal situation for analysis of the prediction
results when distribution of the key statistic does not depend on
unknown parameters. This is not the case in the generic situation.

2.3 The GS and the significance of prediction results

Let X̂ and Ŷ be samples of X and Y , respectively. The quantity
R(X̂ , Ŷ ) can be used to estimate the significance of prediction re-
sults. First, one has to specify the distribution of Y . We assume that
the components of Y are independent and their distribution follows
(1) (the H0 hypothesis). The greater the value of R(X, Y ), the better
is the prediction method. Therefore, the probability

αy = Py(R(X̂ , Y ) ≥ R(X̂ , Ŷ )), (14)

where Py is the distribution of Y under H0, provides the observed
significance level for the prediction results.

Obviously, one has

αy = P{ξR ≥ ξ̂R},
where ξR is a linear function of {yi }, while ξ̂R is the observed value
of ξR .

To be more specific,

ξR =
∑
i≥1

ci yi , (15)

where ci = (x̂i − pi )w(pi ) for R = Rw , and ci = (2x̂i −
1) ln[(1 − pi )/pi ] for R = RL H . The significance level αy can be
found from the distribution of ξR . Under H0 this is the convolution
of distributions {Fi } of the type

Ḟi (u) = δ(u)(1 − pi ) + δ(u − ci )pi ,

where δ(·) is the delta function. The convolution operation is con-
venient for numerical computations and for checking the accuracy
of the distribution.

If the scatter of the {ci } is not too large (the case of Rw with
pi > p0 > 0), the significance of the R statistic can be roughly
inferred from large values of the normalized quantity ξR , i.e.

ξ norm
R = (ξR − m R)/σR, (16)
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where m R and σ 2
R are the mean and variance of ξR .

m R =
∑
i≥1

ci pi , σ 2
R =

∑
i≥1

c2
i pi (1 − pi ). (17)

The estimation of αy based on R needs two general comments.

(1) αy may strongly depend on the choice of the {wi }. Therefore
a serious argumentation for the choice of R and, in particular, of
{wi }, is required.

(2) Usually the parameters {pi } for large events are small and
their estimates are inaccurate, hence interval estimates of αy are
required. The problem is difficult for analytical solution, because
the {pi } are involved in the distribution of ξR (see 15) both through
the distribution of Y and through the coefficients {ci } .

3 T H E G S A N D C O M PA R I S O N O F
P R E D I C T I O N M E T H O D S

Zechar & Zhuang (2010), to be referred hereinafter as [ZZ], use the
GS R to compare a prediction method of interest X with the random
guessing Z . This point should be discussed.

Let Ai = Gi × Ti , i = 1, . . . , N be alarms of X . If the target
events occurrence is Poissonian and stationary, the p parameters of
the H0 hypothesis can be specified as follows:

pi = P {yi = 1} = 1 − exp(−λi Ti ), (18)

where λi is the rate of target events in Gi . In what follows the quan-
tities (18) are referred as ‘reference probabilities’. By definition, the
distribution Pz of a random strategy Z is identical with the distri-
bution of Y given by (18). To analyse the prediction performance,
[ZZ] consider the random variable Rw(Z , Ŷ ) instead of the R(X̂ , Y )
discussed above. The analogue of the significance (14) in this case
is the following quantity:

αz = Pz{Rw(Z , Ŷ ) ≥ Rw(X̂ , Ŷ )}. (19)

If αz exceeds a nominal level α0, a practical conclusion may sound
as follows: the method X looks no better than random guessing, that
is, X ≺R Z or, which is more accurate, the GS R does not detect
the preference of X̂ compared with its randomized version Z (recall
that Z and X̂ have the same alarm zones). The conclusion is related
to the observed seismicity Ŷ only. This point is quite unusual for
statistical analysis.

If we cancel the condition Y = Ŷ , then we arrive to a new
characteristic of significance type.

αzy = Pzy{Rw(Z , Y ) ≥ Rw(X̂ , Ŷ )}. (20)

Here Z and Y under H0 are random and independent, that is, their
probability measure Pzy is the product measure of Pz and Py . By
(12), Rw(Z , Y ) under H0 has zero mean and the variance σ 2

zy =∑
i≥1

b2
i . Hence, a rough conclusion like X ≺R Z which is related now

to an arbitrary sample of Y may follow from the simple relation

Rw(X̂ , Ŷ ) < kσzy,

where k ≈ 2. For the [ZZ] model of R one has bi = 1, therefore σ 2
zy

is equal to the total number of alarms N .
It is important that the quantities αy , αz and αzy are not necessarily

correlated when different models of Rw are considered.
Indeed, let S be the space of vectors (Z , Y ) with the product

measure Pzy = Pz ◦ Py . Suppose Rw(X̂ , Ŷ ) = c and denote by Uc

the subset of S where Rw ≥ c. Then αzy is the Pzy measure of S,
while αy and αz are the conditional measures of sections of S given

Figure 1. Example illustrating the relationship between αzy , αy and αz (see
Section 3 for details).

by the relations Z = X̂ and Y = Ŷ , respectively. We illustrate our
statement by an example of this construction.

Let S = [0, 1]2 be a square with the uniform measure. Suppose
that Uc is a cross-like centrally symmetric figure as that shown in
Fig. 1. The set Uc depends on two parameters, ε and a, where ε

is small and ε < a < 1. Then one has αzy = a2 + 2(1 − a)ε and
αy can assume the values 1, a or ε. Due to the symmetry of Uc

the same is valid for αz . It is clear that the parameters (ε, a) allow
us to generate a vector (αz,y, αy, αz) in which any pre-assigned
components are small while the others are not. Fig. 1 shows an
example with αy = ε, αz = 1, and therefore αy < αzy < αz .

Thus in the general situation, ‘the conclusion like X ≺R Z does
not mean that the method X is trivial’, because αy may be small.

[ZZ] apply their method of the comparison to the RTP algorithm
(Shebalin et al. 2004, 2006). In this application

(i) the positive RTP alarms Ai = Gi × Ti are considered only,
therefore X̂ = (1, . . . , 1);

(ii) the space–time alarm zones of the random strategy Z =
(z1, . . . , zN ) coincide with the RTP alarms: Ti ≈ 9 months, the
areas Gi do not have regular shapes, they represent the union of
standard local areas determined by current and past seismicity, that
is, the alarm zones of Z are fixed and not involved in the simulation.
Therefore the solution zi = 1 means only that the i-th RTP alarm
Ai remains in force, while the solution zi = 0 converts the positive
i-th alarm into a negative one.

As a result, αz shows how efficient the random mechanism of
the alarm cancellation could be: it is ineffective if αz < α0 and
non-trivial otherwise. According to [ZZ], the RTP alarms admit of
different options and interpretations. The so-called ‘loose’ interpre-
tation involves six successful alarms and gives αz ≈ 0.0001 for the
Rw model (9). In contrast to this, the more ‘strict’ option involving
two successes only gives αz ≈ 0.94. Unfortunately, so divergent es-
timates of αz can tell us nothing about the expediency of the random
cancellation of positive RTP alarms. On the other hand, either of the
αz estimates is irrelevant to the significance of the RTP prediction
results.
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It is our opinion that the statistical analysis of any prediction
method with few target events and a short monitoring period is
premature (this is the case of RTP). For this reason we will analyse
the significance αy for the M8 algorithm prediction results. For the
sake of simplicity we use the notation α for the quantity αy .

4 S I G N I F I C A N C E A NA LY S I S O F T H E
M 8 : T H E C O N V E N T I O NA L A P P ROA C H

Descriptions of the M8 prediction algorithm can be found in
Keilis-Borok & Kossobokov (1990), Kossobokov et al. (1999),
Kossobokov & Shebalin (2003). A statistical analysis of the M8 pre-
diction results was considered recently by Molchan & Romashkova
(2010) using conventional methods. This enables us to provide a
comparative analysis of the GS and conventional approaches based
on a standardized use of earthquake catalogues.

We consider the M8 prediction results for M ≥ 8.0 events. This
prediction has been conducted since 1985, but we will only discuss
the period of forward testing of the M8 algorithm, that is, 1992–2009
(see http://www.mitp.ru/en/predlist.html). The monitoring space G
consists of a set of overlapping circles BR of radius R = 668 km
located along the Circum–Pacific and Alpine–Himalayan belts. Any
circle is permanently in an alarm/non-alarm state. The states are
revised for all circles simultaneously at intervals of 6 months, �t =
0.5 yr. The union of the circles that have been in a state of alarm
during 6 months �ti will be treated (in the GS approach) as a
single domain of positive alarm, A+

i = Gi × �ti ; the domain
A−

i = Gc
i × �ti where Gc

i is the complement of Gi in G will be
considered as a negative alarm.

Table 1 summarizes some results from our analysis of the
M8 algorithm for predicting M ≥ 8.0 events (see Molchan &
Romashkova 2010). Some comment is in order.

The similarity principle, which is the basis of the M8 algorithm,
requires specifying the magnitude range of the target M ≥ 8.0
events. We consider two options: 8.0 ≤ M < 8.5 and 8.0 ≤ M <

8.7; of these two, the former is the more logical, since there is a
special version of the M8 algorithm for predicting the 7.5 ≤ M <

8.0 events and this version uses the same similarity principle.
The prediction results for the monitoring period T = 1992−2009

involve the following:

(i) The number of target events Ne and the number of predicted
events ν+

e . For the option 8.0 ≤ M < 8.5 one has ν+
e /Ne = 10/18;

(ii) A normalized measure of space–time alarm τ ,

τ = λ(A+)/λ(G × T ), (21)

where λ(A) is the expected number of target events in the space–time
domain A, A+ is the union of all positive alarms {A+

i }, and G ×T is
the entire space–time prediction volume. We discuss two estimates
for τ : τ̂ = 32.5 per cent and τ̃ = 35.4 per cent.

Because the target events are few, the estimate of λ(·) is based on
the hypothesis that the M ≥ M− seismicity is stationary and on the
regional Gutenberg–Richter (G–R) relations for M− ≤ M ≤ 8.0

(see for details Molchan & Romashkova 2010). As a result, we find
for τ a point estimate τ̂ and an upper estimate τ̃ with confidence
level 99 per cent. Both of these estimates are stable with respect to
magnitude type (Mw or Ms) and to the threshold M−above which
all events are reported completely.

The choice of M− is influenced by two opposite tendencies: with
increasing M− the G–R law hypothesis becomes more likely; at
the same time the amount of available data Nλ = #{M ≥ M−}
decreases, thereby making the uncertainty of τ larger. Our analy-
sis (see Molchan & Romashkova 2010) shows that the following
restriction on Nλ is reasonable:

Nλ/area G >100/area BR, (22)

where BR is the space unit of M8 alarms, that is, a circle of radius
R.

We use Mw as the magnitude most consistent with the G–R law for
the range (M−, 8.0). The resulting estimates τ̂ = 32.5 per cent and
τ̃ = 35.4 per cent are obtained with M− = 5.5 and Nλ = 8500. The
data are from the Centroid Moment Tensor catalogue, 1977–2004
(Ekstrom et al. 2005).

The significance of prediction results is based on the conditional
distribution of ν+

e given Ne. Under the Poisson hypothesis for the tar-
get events, ν+

e has the binomial distribution with parameters (Ne, τ ),
which gives the significance level

α = P
{
ν+

e ≥ ν̂+
e |Ne = N̂e

}
,

where ν̂+
e , N̂e are samples of ν+

e , Ne. The estimate τ = τ̂ leads
to the point estimate α = α̂, while τ̃ leads to the upper estimate
α ≤ α̃. For the [8.0, 8.5) option one has α̂ = 3.7 per cent and
α̃ = 6.4 per cent.

Since ν̂+
e and N̂e are small for the forward M8 monitoring, the

upper estimate α̃ is unstable over time. In fact, a next target event
in the monitoring zone will modify the pair (ν̂+

e , N̂e) to become
(ν̂+

e , N̂e + 1) or (ν̂+
e + 1, N̂e + 1). As a result, the estimate α̃ =

6.4 per cent will become 9.4 per cent or 3.8 per cent, respectively.
More information on the issues here discussed can be found in

Molchan & Romashkova (2010).

5 S I G N I F I C A N C E A NA LY S I S
O F T H E M 8 : G S A P P ROA C H

5.1 General remarks

For the monitoring period T = 1992 − 2009 we have N+ = 36
positive alarms {A+

i } and the same number N− = 36 of negative
ones {A−

i }, each lasting 6 months. Almost all alarms are not simply
connected in space; this circumstance will be discussed later. A
positive alarm A+

i is treated as successful if it contains at least one
target event; a negative alarm A−

i is treated as successful if it does
not contain target events. For this reason in the GS approach the
number of successful positive alarms ν++ and the total number of
alarms that cover target events, Ny , are not necessarily equal to the

Table 1. Significance level α for M8 prediction results based on the number of predicted events ν+
e .

Period, T Target events ν+
e /.Ne τ̂ α̂ · 100 per cent τ̃ α̃ · 100 per cent α̂P S · 100 per cent

1992–2009 8.0 ≤ M < 8.5 10/.18 0.325 3.7 0.354 6.4 3.2
1992–2009 8.0 ≤ M < 8.7 11/.21 0.325 4.7 0.354 8.3 4.0

Notes: Ne is the number of target events; τ̂ and τ̃ are a point estimate and an upper estimate, respectively, for the
normalized measure of space–time alarm τ ; α̂ and α̃ are a point estimate and an upper estimate of α, respectively; α̂P S is a
point estimate of α based on Ms ≥ 8.0 earthquakes from the catalogue by Pacheco and Sykes (1992), #{Ms ≥ 8.0} = 63.
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1450 G. Molchan and L. Romashkova

Figure 2. The reference probability of target event for time sequences of 6-month M8 alarms ordered in time: positive alarms (p+, diamonds), and negative
alarms (p−, squares). Notation: Alarms that have covered target events are marked on the upper horizontal axis: successful positive alarms (triangles) and false
negative alarms (circles).

number of predicted events ν+
e and the number of all target events

Ne, respectively. In particular, for the option 8.0 ≤ M < 8.5 we
have ν+

e /Ne = 10/18 and ν++/Ny = 10/17.
The reference probabilities p±

i for the alarms A±
i are found from

(18) using the rates of target events. The method for estimating the
rates has been explained above. The alarms A±

i are ordered in time,
so the plots i → p±

i are shown as functions of time in Fig. 2.
Histograms for {p+

i } and {p−
i } (Fig. 3a) give an idea of the ranges

of p±: (0.1, 0.25) for p+ and (0.26, 0.39) for p−, as well as demon-
strate typical values of these quantities. It is important for the sub-
sequent argument that the reference probabilities for positive M8
alarms are bounded away from zero: p+

i ≥ 0.1 for all alarms, and
p+

i ≥ 0.15 for successful ones.
We use the GSs RL H and Rw with the following models of w:

w0 ≤ w̃1/2 ≤ w1/2 ≤ w1 ≤ w3/2, (23)

see (10) and (11). According to Section 2.3, the significance level
α based on the GS statistic is

α = P(ξR ≥ ξ̂R), (24)

where ξ̂R is an observed value of ξR . Now ξR is ξ+
R − ξ−

R , ξ+
R or –ξ−

R

if all, positive or negative alarms are considered, respectively. Here

ξ±
R =

∑
i≥1

c±(p±
i )y±

i , (25)

where y±
i = 1, if A±

i contains a target event and y±
i = 0 otherwise.

The functions c±(p) are

Rw : c+(p) = w(p)(1 − p), c−(p) = w(p)p (26)

and

RL H : c+(p) = c−(p) = ln[(1 − p)/p]. (27)

5.2 The relationship between α and w( p):
a theoretical analysis

The functions c±(p) for weights (23) are shown in Fig. 4. The
c−(p) vary slowly for β ≤ 1 or β ≤ 3/2, p− ≥ 0.05, and are
little sensitive to the model of w, especially in the range of {p−

i } for
the M8 alarms. It follows that the statistic ξ−

Rw
must be little sensitive

to the choice of w.
The behaviour of c+(p) is essentially different. Near p = 0 we

have a rapid decrease of c+(p) like O(p−β ) for w = wβ . Far away

from p = 0 both the decrease of c+ and its dependence on the w

model are substantially weaker. Therefore the estimates of α may
depend on the behaviour of w and on the distribution of {p+

i } in
the range (0, 1/2). The following model situation illustrates this
statement.

We begin by considering the case of positive alarms. For the
monotone family of weights wβ (p) the functions c+(p) increase
with β (see Fig. 4). Hence the statistic ξ+

Rw
= ∑

c+(p+
i )y+

i increases

with β as well because yi are non-negative. Suppose there exist two
non-intersecting intervals I = (0, a) and J = (b, 1) which cover
the set {p+

i }, and c+(b) << c+(a) when the parameter β is close to
β0, say 1. Consider two possibilities. The first: the observed values
are ŷ+

i = 0 for all p+
i from the interval I . Then the observed statistic

{ξ̂+
Rw

} as the function of the parameter β is almost constant for all

β nearby β0 and therefore the probability of the event {ξ+
Rw

≥ ξ̂+
Rw

}
must increase with increasing β. Consequently, the significance
of prediction results will be the worst for the model wβ with the
greatest β.

The second possibility: ŷ+
i0 
= 0 for some p+

i0 < a. For the sake of
simplicity we assume that the interval I contains a single point, p+

i0.
Due to c+(b) � c+(a), the event {ξ+

Rw
≥ ξ̂+

Rw
} when the parameter

β is close to β0 can only occur if y+
i0 = 1. In other words, the

probability of this event will be

α ≈ P
{
c+(p+

i0
)y+

i0
≥ c+(p+

i0
)
} = pi0 ,

that is, when β is large, the significance of the R statistic is controlled
by a single successful alarm with a very small p.

By Fig. 4, ξ−
Rw

is weakly dependent on w for β ≤ 1 or β ≤ 3/.2,
p− ≥ 0.05. Therefore, under these conditions all considerations
outlined earlier remain valid for the statistic ξ+

Rw
− ξ−

Rw
as well. It

remains to verify our heuristic arguments by estimating α.

5.3 α estimates for M8 alarms

A rough idea of α is provided by the normalized quantity ξR , that
is, ξ norm

R (see 16). For example, the inequality ξ norm
R > 2 argues

in favour of the prediction results being significant. The exact sig-
nificance estimates are based on the distribution of ξR under H0

(see Section 2.3). The estimates of α and ξ norm
R are summarized in

Table 2. They are given for different options: two magnitude ranges
of target events; three types of alarms: positive (+), negative (–)
and all (+/–); six models of the GS, namely, RL H and five models
of Rw with w given by (23).
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Figure 3. The normalized histograms of the reference probabilities {pi } for
M8 alarms: positive alarms (diamonds) and negative alarms (squares). The
estimates of {pi } are related to (a) 72 alarms and Mw ≥ 5.5 (see Fig. 2),
(b) 72 alarms and Ms ≥ 8.0 events from the catalogue by Pacheco & Sykes
(1992) and (c) 328 alarms and Mw ≥ 5.5. Notation: the upper horizontal
axes mark the reference probabilities for the alarms that cover target events:
successful positive alarms (triangles) and false negative alarms (circles).

Conclusions from Table 2 are as follows:

(1) Like-sign M8 alarms are not significant: for the 8.0 ≤ M <

8.5 option and for any model of R, the (+) and (–) alarms give
ξ norm

R < 2; α = 7 − 14 per cent for positive M8 alarms. As was
to be expected, ξ norm

Rw
for negative alarms is nearly independent of

w(p), ξ norm
Rw

≈ 1.8.
(2) For all types of alarm, (+), (–) and (+/–), the significance

of prediction results grows as wβ varies from w3/2 to w0, that is,
ξ norm

R increases while α decreases. This is in agreement with our
theoretical analysis of the case where the positive alarm with the
smallest reference probability p is false (see 5.2).

Figure 4. Functions c+(p) (top panel) and −c−(p) (bottom panel) for
different models of the alarm weight function w(p). Vertical dotted lines
mark the range of the reference probabilities for M8 alarms: negative alarms
(p−, N− = 36) and positive alarms (p+, N+ = 36).

(3) Of the two �M options, the lowest values of α are obtained
for 8.0 ≤ M < 8.5. This fact supports the preliminary arguments
in favour of the [8.0,8.5) option (see 5.1) and is in agreement with a
similar conclusion in (Molchan & Romashkova 2010) based on the
observed total number of M8 successes (see Table 1).

(4) The α for the 8.0 ≤ M < 8.5 option and β ≤ 1 varies
between 1.6 per cent (w = w0) and 4.8 per cent (w = w1), thus
confirming that the M8 algorithm is non-trivial; the simple statistic
ν+

e gives a similar point estimate, α = 3.7 per cent (see Table 1).

5.3.1 Rapidly changing weights w(p)

We can see (Table 2) that the use of w(p) rapidly changing near
p = 0 leads to less favourable estimates of α. This can be explained
by the loss of information when the weights of the alarms are
essentially different in size, for example, the sequence of weights
(1, 0, 0. . .) takes into account the first alarm only. Such effect we
can observe for β > 1: the w3/.2 model results in α ≥ 7.9 per cent
and thus casts doubt on the M8 method. However, for large β the
relation between α and wβ (p) is unstable. Consider the following
numerical experiment.

Suppose i0 is the ordinal number of the M8 positive success-
ful alarm having the smallest reference probability p+ among all
successful ones. It is the alarm for the first 6 months of 2000,
p+

i0
= 0.15 (see Fig. 2). Suppose the parameter has been revised to

make p+
i0

= 0.05. This uniquely specifies p−
i0

, since for any i

(1 − p+
i )(1 − p−

i ) = exp(−� · Ti ),
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Table 2. Significance level α for M8 prediction results based on the gambling score: Rw and RLH .

8.0 ≤ M < 8.7,
Score 8.0 ≤ M < 8.5, ν++/Ny = 10/17 ν++/Ny = 10/19

ξnorm
R α̂ · 100 per cent α̂P S · 100 per cent α̂ · 100 per cent

(–) (+) (+/–) (+) (+/–) (+) (+/–) (+/–)

(Rw, w0) 1.85 1.60 2.26 7.3 1.6 0.3 0.2 3.3
(Rw, w̃1/2) 1.82 1.49 2.08 7.6 2.4 0.3 0.3 4.3
(Rw, w1/2) 1.81 1.46 2.02 8.0 2.7 0.4 0.4 4.7
(Rw, w1) 1.78 1.29 1.75 10.5 4.8 0.9 0.8 7.0
(Rw, w3/2) 1.74 1.10 1.47 13.9 7.9 2.1 1.9 10.3
RL H 1.37 1.41 1.90 8.7 3.4 0.4 0.6 5.9

Notes: Alarms: positive (+), negative (–) and all (+/–); ν++/Ny is the number of successful positive alarms versus the total number of alarms that cover
target events; α̂ is a point estimate of α; α̂P S is a point estimate of α based on the Ms ≥ 8.0 earthquakes from the catalogue by Pacheco & Sykes (1992);
ξnorm

R is a normalized statistic related to α (see 16 and 17 in the text).

Table 3. Significance level α for the M8 predictions of 8.0 ≤ M < 8.5
events (72 alarms) depending on the reference probability p+

i0
for a particular

positive alarm, i0.

Score (Rw, w0) RL H (Rw, w1) (Rw,w3/2)

α̂ · 100 per cent p+
i0

= 0.15 1.6 3.4 4.8 7.9
p+

i0
= 0.05 1.2 1.8 1.0 0.8

where � = λ(G) is the rate of target events in G. Suppose
the other reference probabilities remain unchanged. Then one has
p+

i0
= mini p+

i . This case has been considered in Section 5.2 theo-
retically. As was to be expected, the α estimate based on wβ , is the
smallest now for the model w = w3/.2, namely 0.8 per cent instead
of the former 7.9 per cent (see Table 3). In other words, the original
conclusion that the prediction results are not significant becomes its
opposite.

At the same time, the α estimates based on wβ with small β or
on the information type scores look stable, for example, for the case
w = w0 one has α = 1.2 per cent (the hypothetical p+

i0
) as against

α = 1.6 per cent (the original p+
i0

).

5.3.2 Simply connected M8 alarms

We have considered one of the possible variants of subdivision of
the M8 alarm volume into isolated parts using the half-year layers of
the volume. In this case the numbers of positive and negative alarms
are the same and equal to 36. Taking into account that these alarms
are not simply connected in space, we can improve the situation
considering the following alternative subdivision: it consists of all
the half-year simply connected positive subalarms (N+ = 292) plus
the previous set of negative alarms (N− = 36).

The additional splitting of the alarms can cause the following
difficulties:

(1) The greater the number of alarms the more often the property
of independence of target events in the alarm zones (H0hypothesis)
is used to estimate the significance of predictions. A substantial
increase in the number of alarms can have a negative influence on
the validity of the α. In our case we have 328 alarms versus 72 in
the previous variant.

(2) The numbers Nλ(Ai ) of {M ≥ M−} events used for estimat-
ing the reference probabilities have changed considerably: for the
positive alarms one has Nλ(Ai ) = 15−1433 versus 2412−4156 in
the previous variant. The diminution of Nλ(Ai ) affects the accuracy
and values of the reference probabilities.

(3) The values of the reference probabilities has been displaced
towards 0: the range of p for the positive alarms is 0.001–0.1
(Fig. 3c) versus the previous 0.1–0.3. (Fig. 3a). The same holds
for the reference probabilities for successful positive alarms; the
range of p is 0.001–0.08 versus the previous 0.15–0.25. For such a
case our previous analysis predicts a possible instability of α.

Table 4 compares the α estimates for the cases of 72 and 328
alarms in the prediction of 8.0 ≤ M < 8.5 events. We have a quite
good stability of the α estimates for scores of information type,
that is, for (Rw, w̃1/2) and RL H , and its instability for the weights w

rapidly changing near p = 0. In particular, the model w3/.2 results
in the most unfavourable αestimate for the case of 72 alarms and
very good for 328 alarms, namely 7.9 per cent and 0.6 per cent. For
the model w0 the situation is reverse but more stable: α is 1.6 versus
3.7.

5.4 The GS with unreliable { pi}
The reference probabilities for M ≥ 8.0 are based on the Mw ≥
M− = 5.5 earthquakes. These data can include aftershocks in ad-
dition to main shocks, hence the estimates of λi = λ(Gi ) and p±

i

may be overestimated. There is a practice of estimating {λi } di-
rectly based on past target events, even when Gi contains a single
event (see e.g. [ZZ]). The uncertainty of α for ν+

e has been inves-
tigated in relation to the quantity Nλ = #{M ≥ M−} (Molchan &
Romashkova 2010). A similar analysis for the R statistic is more
difficult. For this reason we repeat the analysis of the M8 predictions
using for estimation of {λi } all Ms ≥ 8.0 earthquakes for the period
1900–1984 from the Global Catalogue by Pacheco & Sykes (1992)
with Nλ = 63. Such estimates are strongly advocated by Marzocchi
et al. (2003).

Because Nλ is too small, the estimates of {λi } are highly unreli-
able. Nevertheless the point estimates of τ , τP S remain practically
unchanged; in particular, for the 8.0 ≤ M < 8.5 option one has
τ̂P S = 0.32 versus the original τ̂ = 0.33 (Table 1). As a result, the
point estimates of α based on ν+

e are stable too: α̂P S = 3.2 per cent
versus α̂ = 3.7 per cent (Table 1). At the same time, the αestimates
based on the Rw statistics have diminished considerably: for the
8.0 ≤ M < 8.5 option one has α̂P S = 0.2 per cent versus
α̂ = 1.6 per cent (Table 2) with w = w0, and α̂P S = 0.8 per cent
versus α̂ = 4.8 per cent (Table 2) with w = w1. Even when positive
alarms only are considered, the new α estimates are rather opti-
mistic, for example, α̂P S = 0.9 per cent versus α̂ = 10.5 per cent
(Table 2) with w = w1 and the 8.0 ≤ M < 8.5 option.
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Table 4. Significance level α for the M8 predictions of 8.0 ≤ M < 8.5 events depending on the gambling
score model and subdivision of the M8 alarm volume into parts.

Score (Rw, w0) (Rw, w̃1/2) (Rw, w1/2) (Rw, w1) (Rw,w3/2) RL H

α̂ · 100 per cent 72 alarms 1.6 2.4 2.7 4.8 7.9 3.4
328 alarms 3.7 2.1 0.5 0.5 0.6 2.0

These results reveal a fundamental difference between the con-
ventional and the GS approach. The first operates with the condi-
tional distribution of ν+

e and hence with the relative characteris-
tic τ (see 21). In other words, a rescaling of the rate parameters,
λi → ρλi , does not affect τ . This transformation of {λi } arises
when the magnitude range of target events, M ≥ M0, is shifted by
δM ≈ − lg ρ. If M0 is fixed, the shift may have been caused by
the fact that a different catalogue or a different magnitude type is
used. That is why the τ estimates for the M8 alarms weakly de-
pend on the choice of magnitude type and on the magnitude range
M > M− used to estimate {λi } (see Kossobokov 2005; Molchan &
Romashkova 2010).

In contrast to this, the GS approach uses absolute values of {λi }.
Therefore, the estimates of α may be sensitive to the transformation
λi → ρλi . Fig. 3(b) shows the histogram of {pi } estimates based
on Ms ≥ 8.0 events from the Pacheco & Sykes (1992) catalogue.
We can see that the range of {p+

i } is (0.05, 0.2) (Fig. 3b) versus the
previous (0.1, 0.25) (Fig. 3a). As a result, we have more optimistic
estimates of α (see α̂P S in Table 2).

6 C O N C LU S I O N A N D D I S C U S S I O N

(1) We discussed a version of the GS approach in which the
results of prediction are considered with weights that depend on
reference probabilities of the alarms. A fair scoring scheme helps to
reduce (but not entirely remove) the number of unknown functions
in the GS. For this reason a serious argumentation for the choice of
the GS model is required in each case of its application.

(2) On the basis of the GS Zechar & Zhuang (2010) suggested
a method for comparison of predictions with their randomized ver-
sion. It looks like a comparison of the prediction method with
random guess. Theoretical arguments show that any outcome of
such comparison cannot exclude the possibility that the prediction
results may be statistically significant.

(3) The problem of earthquake predictability is still debatable.
For this reason we apply the GS approach to the significance analysis
of results from prediction of M ≥ 8.0 events by the M8 algorithm.

Theoretical considerations and straightforward estimates of the
significance level α show a strong dependence of α on the GS
weight function model and on the distribution of alarm reference
probabilities near zero. Both of these factors may affect the estimate
of α in either direction and this can be exploited by the researcher.
At the same time, the distribution of the reference probabilities is
affected by:

(i) the partitioning of the entire alarm space–time into subar-
eas, that is, into individual alarms Ai ;

(ii) the method used to estimate the rate of target events in
the alarms, {λi }; this involves the choice of the catalogue and the
type of magnitude, the choice of small events to extrapolate the
recurrence of target events and so on.
(4) All estimates of α based on the reasonable weight functions,

wβ , β ≤ 1, show that the M8 algorithm is non-trivial for the predic-
tion of 8.0 ≤ M < 8.5 events: 0.5 per cent < α < 5 per cent. This

interval covers the estimate α = 3.7 per cent, which was obtained
in the conventional way using the number of predicted events, ν+

e .
(5) The significance analysis of M8 results based on the statistic

ν+
e has some advantages.

(i) There are analytical upper bounds for α that incorporate
the number of data Nλ used for estimating the rate of target events
{λi }.

(ii) Estimates of α are not affected when {λi } are replaced with
{ρλi }. This makes α stable under the choice of the estimation
method for {λi }.

(iii) Estimates of α do not require any partitioning of the alarm
space. The more detailed is the partitioning, the more difficult it
is to interpret α. For small alarm domains α may merely reflect
the uncertainty in {λi }.
(6) The following quantities are important in the statistical anal-

ysis of a prediction method: the number of target events Ne for the
monitoring period, the number of events Nλ used to estimate {λi }
and the rate of growth of the GS weight function w(p) near p = 0.
Small values of Ne, Nλ and high rates of growth of w(p) near p = 0
destabilize the estimates of significance of prediction results. For
this reason the rules that regulate the testing of prediction algorithms
should include restrictions on the above quantities. In our analysis
of the M8 algorithm we have Ne ≈ 20, the restrictions (22) on Nλ,
and we consider the statistics (ν+

e , τ ) and (Rw, w = 1) as the most
preferable.
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A P P E N D I X : L I S T O F E S S E N T I A L
N O TAT I O N

Rw , GS with weight function w(p), formula (7);
wβ , model of w(p), formula (10);
RL H , score of information type (formula (13);
A±

i , positive (+) and negative (–) space–time alarms;
N±, number of positive (+) and negative (–) alarms;
N = N+ + N− , total number of alarms;
Ny , number of alarms that cover the target events;
ν++, number of successful positive alarms;
Ne, number of target events;
N̂e, observed value of Ne;
ν+

e , number of predicted events;
ν̂+

e , observed value of ν+
e ;

λi , rate of target events in the i-th alarm zone;
Nλ, total number of {M ≥ M−} events used for estimation of

target event rates;
τ , normalized measure of space–time alarms;
τ̂ and τ̃ , point estimate and upper estimate of τ ;
α, significance of prediction results;
α̂ and α̃, point estimate and upper estimate of α;
α̂P S and τ̂P S , α̂ and τ̂ for the case of the Pacheco & Sykes (1992)

catalogue;
p+

i , reference probability of target event for positive alarm;
p−

i , reference probability of target event for negative alarm.
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