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Abstract 

Pursuit Evasion (P-E) problem has been studied as a non-cooperative zero-sum game in 

Homicidal Chauffer problem [1] in 1960s and in the game of two identical cars [2] most 

recently. The capture conditions in the two games, which govern the capture behavior, can 

be determined by solving Hamilton-Jacobi-Isaacs (HJI) equations. However, the existing 

game theoretic solution does not consider wheel slip, and consequently, cannot answer the 

escape and capture conditions in the presence of wheel slip. In this paper we investigate 

how to predict capture and escape conditions when the pursuer has wheel slip. We study a 

dynamic P-E game problem with a nonholonomic Wheeled Mobile Robot (WMR) pursuer 

subject to wheel slip and propose an equivalent kinematic model to develop escape and 

capture conditions in the presence of wheel slip. To our knowledge, this is the first time the 

P-E game problems with WMR have been analyzed with wheel slip. The presented 

framework will allow future development of realistic P-E strategies that do not ignore 

wheel slip and thus will be able to model high speed P-E on different terrains. 
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1. INTRODUCTION  

Wheeled Mobile Robots (WMRs) have been extensively used in various applications such as in 

transportation, planetary exploration, intelligent surveillance, mining and military operations in recent 

years. Traditionally WMRs are modeled as nonholonomic systems that use regular wheels. Generally, no 

wheel slip is considered in modeling and control of nonholonomic WMRs, which is a reasonable 

assumption in many applications. In this work, however, we investigate how pursuit-evasion (henceforth 

P-E) problems, which is a family of problems in which one group of agents pursues to capture evading 

agents of another group, can be formulated with nonholonomic WMRs when no-slip assumption cannot be 
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imposed. This is important since P-E problems require high speed chase with changing directions, and 

possibly on terrains that may have varied friction characteristics and therefore the likelihood of 

non-negligible wheel slip is real.  

A typical example of P-E problem is that of a predator chasing a prey around until the prey is captured or 

it escapes beyond the reach of the predator. Such problems can be effectively analyzed using Game Theory 

[1]. A game-based P-E problem is a non-cooperative zero-sum game problem for two players, a pursuer 

and an evader, who have completely opposite interests. The pursuer tries to capture the evader while the 

evader tries to avoid being captured. Game-based P-E problem is the focus of this paper. The game arises 

in numerous situations. Typical examples would include battle field operations where one unmanned 

vehicle tries to chase another unmanned enemy vehicle, robotic soccer games, missile guidance to chase an 

aircraft, aircraft dogfight missions etc. In this paper, we focus on two game-based P-E problems where 

both the pursuer and the evader are WMRs. 

There are several important works in autonomous P-E problems in the literature. A randomized pursuer 

strategy is applied to locate an unpredictable evader and to capture it in a visibility-based P-E problem in 

[3]. Dynamic programming is applied to find solution in a class of herding problem in [4], and in a 

multi-player P-E problem in [5] where cumulant-based control is used. In [6] nonlinear model predictive 

controller is applied to an evasive UAV in an aerial P-E problem to help evasion. In [7] a graph theoretic 

approach is proposed to a multi-player P-E problem. In [8] a time-optimal pursuit strategy is proposed in a 

P-E game and the pursuer takes the worst analysis to capture the evader in a time-efficient and robust 

fashion even when the evader is intelligent. 

However, note that all these works assume kinematic constraints for the pursuer. For a WMR, this 

implies satisfaction of nonholonomic constraints that assume no-slipping condition, both longitudinally and 

laterally, at the wheels. However, for a realistic P-E problem with WMRs, wheel slip is inevitable, 

especially for motion at high speed in a dynamic and uncertain environment. In a P-E problem, if wheel 

slip is introduced, the behavior of the players may change and the existing P-E solution may no longer be 

valid. While it is necessary to study the effect of wheel slip in a P-E problem, wheel slip cannot be 

introduced without the dynamics of the WMR since the slip dynamics is governed by the traction forces. 

In this paper, we explore how wheel slip can be introduced in game-based solutions of two P-E problems, 

namely the Homicidal Chauffer game [1] and the game of two identical cars [2], with the pursuer having 

dynamic model subject to wheel slip. We propose a mechanics-based approximation by introducing 

conceptually equivalent kinematic model for the pursuer to gain an understanding of how slip may affect 

the classical solutions of these two problems. The contributions of this work are two-fold. First, we show 

how slip may affect the solutions of the above-mentioned P-E problems that are derived without 

considering slip, and thus establish the need to model slip in P-E problems. Second, we present a new 

concept called “kinematically equivalent pursuer” that can be used to understand the impact of slip in P-E 
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problem. 

This paper is organized as follows. In Section II, two game-based kinematic P-E problems, namely 

the Homicidal Chauffeur game and the game of two identical cars, are introduced. In Section III, the 

importance of wheel slip consideration is discussed. In Section IV, the WMR model with wheel slip 

and the model of the traction force between the wheels and the surfaces are introduced. The model is 

then used in the game-based P-E problems with WMR pursuer subject to wheel slip. We then propose 

the equivalent kinematic model for the dynamic WMR subject to wheel slip in Section V. In Section 

VI, we present capture condition and backward reachable set in the P-E games subject to wheel slip 

where the equivalent kinematic model of the pursuer is used. In Section VII, we present simulation 

results to show the pursuit evasion behavior for dynamic WMR pursuer subject to wheel slip. We 

summarize our contributions in Section VIII. 

 

2. GAME-BASED P-E PROBLEMS 

P-E problems can be classified into one-sided optimization problems, which are non-game based, and 

two-sided optimization problems, which are game based. One-sided optimization problem is an optimal 

control problem where an objective function is optimized for one player, while in two-sided optimization 

problem an objective function needs to be maximized by one player and minimized by the other player 

simultaneously. Game-based P-E problem is the focus of the paper. 

2.1 Homicidal Chauffeur game 

The first P-E game is the Homicidal Chauffer game which was studied in 1960s [1]. In this game, the 

pursuer P moves at a fixed speed vp, and its radius of curvature is bounded by a given quantity R. It steers 

by selecting the value of this curvature at each moment. The evader E moves at a fixed speed ve (ve<vp) and 

it steers, at each moment, by choosing its direction of travel. Abrupt changes in this choice are allowed. 

Each player knows the other’s relative location and orientation at each moment. Capture occurs when the 

distance between the pursuer and the evader, PE≤ l, where l is a given quantity. The solution of the game 

provides conditions that guarantee either capture (capture condition) or escape (escape condition) [1]. 

Guaranteed capture means that when the capture condition is satisfied, no matter what strategy the evader 

follows, there always exists a strategy for the pursuer to achieve capture. Guaranteed escape means that 

when the escape condition is satisfied, no matter what strategy the pursuer follows, there always exists a 

strategy for the evader to avoid being captured. It has been proved [1] that the inequality (1) is the capture 

condition and the inverse of it is the escape condition. 

1)(sin)(1 12 −+−> − γγγ
R
l                                          (1) 

where 
p

e

v
v

=γ . The solution also provides optimal strategy for the pursuer and the evader to follow in 
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order for each to achieve their conflicting goals [1]. While there is an analytic solution to this problem, the 

problem itself is of limited practical utility since the evader in the Homicidal Chauffer game does not have 

a turning constraint, which is not a realistic assumption. As a result, the game of two identical cars [2][9] 

has been studied with both players having turning constraints. 

2.2 The game of two identical cars 

In the game of two identical cars, the pursuer P and the evader E have fixed speed vp and ve (vp>ve), 

respectively, and their radii of curvature are bounded by given quantities Rp and Re, respectively. They 

steer by selecting the value of their curvatures at each moment. Each player knows the other’s relative 

location and orientation at each moment. Capture occurs if two cars come within a distance l of each other. 

However, it is shown in [9] that based solely on given initial conditions, the optimal play for the two 

players can not be derived analytically. Instead, a concept called the backward reachable set in the game 

space is computed as the game solution to describe the dependency of the game result on the initial 

conditions [2]. Capture is guaranteed to occur when the game starts from this set while escape is 

guaranteed when the game starts from the complement of this set. Generally computation of reachable set 

is used to verify and validate system design by catching every potential failure mode. Different from 

simulation, which only checks a single trajectory of a system each time, the reachable set is a way of 

checking the entire group of trajectories at once. Backward reachable set is a set of all states, starting from 

which trajectories can reach a given final set of states. In this game, the final set of states represents a set of 

all possible states at the moment of capture in the game space.  

2.3 Game-based solution 

The optimal play and the backward reachable set need to be solved for the Homicidal Chauffeur game 

and the game of two identical cars, respectively. The optimal inputs can be derived analytically in the 

Homicidal Chauffeur game [1]. In the game of two identical cars, the solution to the game can be 

characterized using Hamilton-Jacobi-Isaacs (HJI) theory. More precisely, the Hamiltonian of the system is 

the H function term in (2). The inputs that correspond to the optimal Hamiltonian are the optimal inputs. 

While it is not possible to solve for the optimal inputs, the backward reachable set can be solved instead. 

Let ),,( 21 ωωxfx =&  be the governing kinematics of the game, where x is the system state and 

21,ωω are inputs for two players. Let V(x,t) be the value function of the game. It has been shown in [2] 

that the solution of V(x,t) to the HJI PDE 

0))],(,(,0min[),( =+ txVDxHtxVD xt ,                         (2) 

where Dt is the derivative w.r.t time and Dx is the derivative w.r.t. x, ),,(minmax),( 21
21

ωω
ωω

xfppxH T=  is 

the boundary of the backward reachable set when t=0, where ),( txVDp x=  in this case. It is not possible 

to determine the solution to (2) either analytically or numerically, however numeric approximation of the 
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solution can be obtained by various techniques [2]. Viscosity solution to (2) has been proved in [2] to be the 

value function of the game. A family of algorithms called level set methods have been designed to compute 

approximations to the viscosity solution to (2). The Hamiltonian term, the time derivation term and the 

special derivation term in (2) are computed using Lax-Friedrichs approximation, a second order TVD RK 

approximation and a fifth order WENO spatial approximation, respectively. For the definition of above 

techniques, please refer to [2]. 

In this paper we want to find a solution to the game when dynamic model and wheel slip are 

introduced. If a game system has a full dynamic model, the model can be transformed into a higher 

dimensional system of first order ODEs and treated as a kinematic model such that the algorithms in 

[2] can be applied to solve the HJI equation. The highest dimension that has been solved in the 

literature is four as in the aircraft landing example [10], where the computation takes several days [11]. 

However, as the dimension becomes larger, the algorithms become computationally infeasible [11]. 

For example in the game of two identical cars, if the pursuer has a full dynamic model subject to 

wheel slip, the model can be transformed into a system of nine ODEs, which makes the computation 

extremely time consuming, if not impractical. Therefore, instead of pursuing the problem from a pure 

mathematical point of view, we approach the dynamic P-E problem from the viewpoint of 

mechanics-based approximation of the physical behavior of the WMR subject to wheel slip. 

 

3. IMPORTANCE OF SLIP CONSIDERATION IN P-E GAMES 
In this section, we demonstrate by examples, for each of the two games (i.e., the Homicidal 

Chauffer game and the game of two identical cars), that the introduction of wheel slip for the pursuer 

may invalidate the solution predicted by the Game Theory. An example of the original Homicidal 

Chauffeur game is shown in Fig. 1 where vp=2m/s, ve=1m/s, R=2m, l=0.5m, e0=[0,0] and 

p0=[0,1, 2/π ]. For these parameters, the Game Theory predicts a capture and the simulation confirms 
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Fig. 1 Pursuit evasion paths in the original Homicidal Chauffeur game: 

red line is evader’s path; blue curve is pursuer’s path. 
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the prediction (Fig. 1). We then simulate the same problem with the same parameters but with wheel 

slip in Fig. 2 and Fig. 3 where the friction coefficients for the pursuer are 0.7 and 0.1, respectively. 

When the friction coefficient is 0.7, the slip is negligible so that the pursuer does not deviate much 

from its nominal path and the pursuer can still capture the evader (Fig. 2). However when the friction 

coefficient is 0.1, the pursuer deviates too much from its nominal path and therefore cannot capture 

the evader (Fig. 3). Thus it can be seen that introduction of wheel slip may invalidate the game 

theoretic prediction. Let us now consider an example of the game of two identical cars as shown in 

Fig. 4 where vp=ve=5m/s, R1=R2=5m, l=5m, p0=[0,0,0] and e0=[6,-11, 2/π ]. These parameters 
ensure that the game starts within the backward reachable set and thus the capture can be guaranteed. 

We simulate the problem with wheel slip in Fig. 5 and Fig. 6 where the friction coefficients for the 
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Fig. 3 Pursuit evasion paths in the Homicidal Chauffeur game subject to pursuer’s wheel slip when 

friction coefficient is 0.1: red line is evader’s path; blue curve is pursuer’s path. 
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Fig. 2 Pursuit evasion paths in the Homicidal Chauffeur game subject to pursuer’s wheel slip when 

friction coefficient is 0.7: red line is evader’s path; blue curve is pursuer’s path. 



 
 
 
 

 - 7 -       Advanced Robotics (RSJ) 
 

pursuer are 0.7 and 0.1, respectively. Since the game-based solution does not provide optimal play 

strategy, we let the pursuer take a pure pursuit [12] strategy while letting the evader maximize its 

distance from the pursuer. Fig. 4 confirms the capture as predicted by the backward reachable set 

consideration. Now we vary the friction coefficient to introduce slip. When the friction coefficient is 

0.7, the slip is negligible so that the pursuer does not deviate much from its nominal path and the 

pursuer can still capture the evader (Fig. 5). However when the friction coefficient is 0.1, the pursuer 

deviates too much from its nominal path and therefore cannot capture the evader (Fig. 6). Note that in 

Fig. 3 and Fig. 6 when P is at p1 and E is at e1 they have the shortest distance from each other. The 

dynamic model of the pursuer used in this example is the one developed in next section. Note that 

even though we used a constant friction coefficient in these simulations to show the effect of slip, the 
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Fig. 5 Pursuit evasion paths in the game of two identical cars subject to pursuer’s wheel slip when 

friction coefficient is 0.7: red line is evader’s path; blue curve is pursuer’s path. 
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Fig. 4 Pursuit evasion paths in the original game of two identical cars:  

red line is evader’s path; blue curve is pursuer’s path. 
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formulation can account for variable friction coefficient. The above results demonstrate the need to 

consider wheel slip in P-E problems. 

 

4. DYNAMIC WMR MODEL SUBJECT TO WHEEL SLIP 

In recent literature there are some works that present approaches to model wheel slips. In [13] 

anti-slip factor was introduced to represent the amount of slip. However, traction force was considered 

as unmodeled dynamics. In [14-15] slip is introduced into kinematic WMR modeling and control. In 

[16][17] longitudinal slip dynamics was considered in WMR. However, the ideal WMR model was 

used in control design for simplicity. In [18][19][20] traction forces were introduced into WMR that 

were approximated to be linearly dependent on slips. In summary, either the slip has been ignored or 

assumed small for a WMR, or a nonlinear traction force model has not been considered so that the 

effect of traction forces to the WMR due to variation of slip can be investigated. In this paper, we 

want to model wheel slip in the overall nonholonomic WMR dynamics, investigate the effect of the 

nonlinear traction forces to the WMR due to variation of slip, and exploit the slip and traction force 

such that the maneuverability of the WMR can be improved. 

The WMR subject to wheel slip is modeled as in Fig. 7, where Pc is the center of mass of the WMR, 

P0 is the center of the wheel shaft, d is the distance from Pc to P0, b is the distance from the center of 

each wheel to P0. F1 and F2 are the longitudinal traction forces for wheel1 and wheel2, respectively. F3 

is the lateral traction force. Note that a dynamic model needs to be studied in order to take into 

account the effect of slip on the WMR. The equations for the dynamic WMR model are derived from 

Newton’s Law as shown in (3). 
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Fig. 6 Pursuit evasion paths in the game of two identical cars subject to pursuer’s wheel slip 

when friction coefficient is 0.1: red line is evader’s path; blue curve is pursuer’s path. 
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where M is the mass and I is its moment of inertia of the WMR, respectively, Iw is the moment of 

inertia of each wheel about the wheel axis, r is the wheel radius, φ  is the orientation of the WMR, 

iθ  is the angular displacement of the i-th wheel, and iτ  is the wheel torque applied to the i-th wheel. 

Equation (3.a) represents the entire WMR dynamics in the plane while (3.b) represents the spinning 

dynamics of the wheels. 

The lateral and longitudinal traction forces are functions of slip angle (sa) and slip ratio (sr), 

respectively, and are modeled following the so-called Magic Formula [21] in the literature. The slip 

angle and the slip ratio are defined as 

i

ii
i v

vrsr −
=

θ& , )(tan 1

v
sa η&−=                                          (4) 

where vi is the longitudinal speed of the center of the i-th wheel, 2/)( 21 vvv +=  is the forward speed, 

η&  is the lateral speed of the center of each wheel. They satisfy the following nonholonomic 

constraints [22] 

φφφ &&& byxv cc ++= sincos1                                          (5) 
φφφ &&& byxv cc −+= sincos2                                         (6) 
φφφη &&&& dxy cc −−= sincos                                           (7) 

Note that, unlike classical nonholonomic constraints of WMR, the above constraints allow both 

longitudinal and lateral slips. 

The traction force between a wheel and a surface is modeled as 

( )( )( )( ) vSSKSKKSKKKF +−+= −−
33

1
43

1
21 tantansin    (8) 

where S is a function of slip angle for lateral traction force and slip ratio for longitudinal traction force. 

All other variables Ki, i=1,…,4 and Sv are constants and are determined from the curve fitting process 
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Fig. 7 WMR model subject to wheel slip. 
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of the empirical data. K1 is proportional to friction coefficient. Fig. 8 shows an example of lateral 

traction forces with friction coefficient 0.7 and 0.3, respectively. The example of longitudinal traction 

force is omitted as its profile is similar to that of the lateral traction force. 

Since Fi (i=1,2) is a functions of sri(i=1,2), sri(i=1,2) is a function of iθ& (i=1,2) and iθ&& (i=1,2) is a 

function of iτ (i=1,2), iF& (i=1,2) becomes a function of iτ (i=1,2), as shown in (9). Thus after taking 

the derivative of (3.a), it becomes a third order system with iτ  as the input. We observe that it is an 

underactuated system with a second order nonholonomic constraint. 

. 

5. EQUIVALENT KINEMATIC MODEL FOR THE DYNAMIC WMR 
SUBJECT TO WHEEL SLIP 

5.1. Equivalent Kinematic Model 

As discussed earlier, game theoretic solutions to the P-E problems do not consider wheel slip. 

However, we showed by simulation that wheel slip can make an ideally capture scenario to become an 

escape scenario (Figs. 3 and 6). Thus while considering wheel slip is important in a P-E problem, 

mathematically it becomes intractable if slip is included in the dynamic model. In order to avoid this 

problem, we propose a new concept called an equivalent kinematic P-E model, which is defined to be 

equivalent in terms of motion to a dynamic WMR subject to wheel slip if its lower bound of the radius 

of curvature (i.e., the minimum turning radius) is the same as the dynamic model’s minimum allowed 
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Fig. 8 Lateral traction for friction coefficients 0.7 and 0.3. 
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radius of curvature in a stable motion at a given speed. Let us explain the concept further. The game 

theoretic P-E problems (as discussed earlier) assume that the WMR has a given (maximum) forward 

speed and a given (minimum) turning radius. However, in reality when there is wheel slip, the forward 

speed and the turning radius will be determined by the slip-traction characteristics as well as the 

dynamics of the WMR and cannot be arbitrarily specified. Thus the idea of the equivalent kinematic 

model is to incorporate the allowable forward speed and turning radius from the dynamic WMR 

model and the slip-traction characteristics and then use these values as the given parameters in game 

theoretic solutions to predict the capture and escape conditions. If the slip-traction characteristics vary 

(e.g., change in terrain conditions) then a new forward speed and turning radius will be computed for 

each variation, which will then be used to predict capture and escape conditions at that instant. Note 

the difference of the solution obtained in this manner in contrast to traditional game theoretic solution. 

Instead of specifying arbitrary forward speed and turning radius in traditional P-E solutions that may 

or may not be achievable in reality, here the forward speed and the turning radius are computed from 

mechanics model of the dynamics of the WMR and the slip-traction characteristics of the terrain and 

thus provides more realistic capture and escape conditions. 

When the WMR makes a turn at constant forward and angular velocity, the resultant tangential 

force is zero, the resultant normal force entirely contributes to the centripetal acceleration. Also, in 

this case, the resultant external moment is zero. In a kinematic model, it is assumed that the normal 

force can be as large as needed for turning. Thus the radius of curvature can be theoretically arbitrarily 

small when a kinematic model is used. However for the dynamic WMR subject to wheel slip, the 

dynamics is governed by (10) where the normal force is limited by traction forces.  
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When the lateral traction force F3 reaches its maximum max(F3), the lateral slip velocity at that 

moment is denoted as optimal slip optη& . When both max(F3) and optη&  are known or estimated, for 

forward speed v, the minimum allowed radius of curvature is 

)max(
cos)(

3

22

F
vM

R opt φη&+
=  where 

v
optη

φ
&

=)tan( .              (11) 

In Table I we show the minimum turning radii of the dynamic WMR pursuer at various speeds on 

surfaces with various characteristics using the equivalent kinematic model developed in (11). Note 

that if the forward speed is variable during turning, then the minimum allowed turning radius derived 

from (11) will also vary at different parts of the path. We have presented a simulation in section VI 
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where the pursuer accelerates and decelerates during turning. 

 

5.2. Control of a WMR in P-E Problems Subject to Slips 

Capture condition for the Homicidal Chauffeur game with the equivalent kinematic pursuer 

For the game with a WMR pursuer subject to slip, given instantaneous vp and ve, when (11) is substituted 

into (1), (12) is the instantaneous capture condition and its inverse is the escape condition. 

1)(sin)(1
cos)(
)max( 12

22
3 −+−>

+
− γγγ

θηoptvM
Fl

&
              (12) 

 
Fig. 9 Backward reachable set when vp=ve=2m/s, Rp=0.48m, Re=2m, l=0.48m, 12 ≤ω , 155.41 ≤ω .

TABLE I 

EQUIVALENT KINEMATIC MODEL FOR DYNAMIC WMR 

Velocity 

(m/s) 

Friction 

Coefficient

Max (F3) 

(N) 

optη&  

(m/s) 

Radius of 

Curvature (m) 

1 0.1 17.6 0.18 1 

1 0.3 53 0.18 0.3 

2 0.1 17.6 0.36 3.9 

2 0.3 53 0.36 1.3 

3 0.1 17.6 1.1 8.8 

3 0.3 53 1.1 2.9 
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where 
v
optη

θ
&

=)tan( . 

The instantaneous capture condition presented by (12), unlike the classical solution (1), includes the 

effect of wheel slip and traction properties of the surface and thus allows us to understand the impact 

of slip in the Homicidal Chauffer game. 

Backward reachable set for the game of two identical cars with the equivalent kinematic 

pursuer 

Since there is no analytical capture or escape condition for this game, we simply demonstrate that it is 

possible to compute the backward reachable set in the presence of wheel slip using the equivalent 

kinematic model. In this game, we take an example with the pursuer having instantaneous speed 

vp=2m/s and friction coefficient 0.3.The corresponding Rp=0.48m and we take ve=2m/s, Re=2m, 

12 =≤
e

e

R
vω , l=0.48m. The instantaneous backward reachable set computed using the toolbox in [23] 

is shown in Fig. 9, where x, y, and φ  represent coordinates and orientation of the evader relative to 

the pursuer.  

 

6. SIMULATION RESULTS 

In order to demonstrate the usefulness of the equivalent kinematic model in P-E problems, we 

needed to use a controller that would control the motion of the WMR pursuer in the presence of slip. 

We used a sliding mode controller that we had developed earlier [24] that controls the pursuer such 

that during turning it tracks the desired forward speed as well as maintain maximum lateral traction 

force. This controller does not assume the full knowledge of traction force. Instead traction forces are 

estimated using observers and we control the lateral traction force to reach its maximum by using a 

sliding mode-based extremum seeking control (ESC) technique [25][26]. We only assume traction 

forces are nonlinear and there is only one maximum both locally and globally. However, we assume 

that we can measure slip. While most current off-the-shelf WMRs are not equipped with slip sensors, 

this is not an unreasonable assumption. There are research groups in mobile robot community that 

have already developed various measurement and estimation techniques for detecting wheel slip in 

real-time for different surfaces [27-29]. We believe that such techniques will be available in many 

WMRs in the near future especially when there is a need to measure slip. 

In the following simulations we simulate P-E games with a WMR pursuer subject to wheel slip to 

verify the capture condition and the backward reachable set as predicted by the equivalent kinematic 

model. We select initial conditions that satisfy the capture condition for the Homicidal Chauffeur 

game and select initial conditions from inside the backward reachable set for the game of two 

identical cars, using the equivalent kinematic model and show by simulation that capture truly occurs. 
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6.1 Homicidal Chauffer game with the WMR pursuer subject to wheel slip 

We take a scenario where desired vp=2m/s, friction coefficient is 0.3, equivalent Rp=1.3m, 

ve=0.5m/s and l=0.24m. It can be shown by (12) that in this case the capture condition is satisfied. In 

Fig. 10, we select initial positions as p0=[0,1, 2/π ] and e0=[0,0]. The simulations show the capture 

scenario for the WMR pursuer subject to wheel slip. 

In another scenario, assuming everything is the same as above except that when the pursuer is 

turning it varies its speed, e.g., accelerates and decelerates as in Fig. 11, capture still occurs since (12) 

is satisfied for any instantaneous speed of the pursuer (see Fig. 12). 

In the third scenario, assuming everything is the same except that there is 10% uncertainty in the 

measurements of both longitudinal and lateral slip velocities. Capture still occurs as shown in Fig. 13. 
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Fig. 11 Pursuer’s varying speed in the Homicidal Chauffeur game for dynamic WMR pursuer 

subject to wheel slip governed by a sliding-mode based control 
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Fig. 10 Homicidal Chauffeur game for dynamic WMR pursuer subject to wheel slip governed by a 

sliding-mode based control. 
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6.2 The game of two identical cars with the WMR pursuer subject to wheel slip 

We take a scenario where vp=2m/s, friction coefficient is 0.3, equivalent Rp=1.3m, ve=2m/s, Re=2m 

and l=0.48m. We select initial conditions from inside the backward reachable set in Fig. 9 as 

p0=[0,0,0] and e0=[3,0,π ]. Since the game-based solution does not provide optimal play strategy, we 

let the pursuer take a pure pursuit [12] strategy while letting the evader maximize its distance from the 

pursuer. Fig. 14 shows the capture scenario for the WMR pursuer subject to wheel slip. 

6.3 Explanation of simulations in Section III 

Back in Section II, in the Homicidal Chauffeur problem, in Fig. 1 capture condition (1) is satisfied in 
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Fig. 12 Homicidal Chauffeur game for dynamic WMR pursuer subject to wheel slip governed by 

a sliding-mode based control. Note the change in turning radius in comparison to Fig. 10 due to 

varying speed during turning. 
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Fig. 13 Homicidal Chauffeur game for dynamic WMR pursuer subject to wheel slip governed by 

sliding-mode based control (10% uncertainty in slip velocity measurement). 
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the original game and capture occurs under optimal play. When small amount of slip is introduced in 

Fig. 2, capture condition (12) is satisfied and capture still occurs. However when large amount of slip 

is introduced in Fig. 3, capture condition (12) is not satisfied and capture does not occur. In the game 

of two identical cars, in Fig. 4 the game starts from inside the backward reachable set so that capture 

occurs when the pursuer takes a pure pursuit [26] strategy. When a small amount of slip is introduced 

in Fig. 5, the game still starts from inside the backward reachable set and capture still occurs. 

However, when a large amount of slip is introduced in Fig. 6, the backward reachable set shrinks and 

the game starts from outside the set and capture does not occur. 

 

7. CONCLUSION 

In the P-E game problems with kinematic players, there exist analytic capture condition for the 

Homicidal Chauffer game and approximate backward reachable set for the game of two identical cars. 

In terms of wheeled mobile robots (WMR) as pursuers, the traditional solution implies kinematic 

model of the WMR with no wheel slip. However, we believe that for high speed P-E on uncertain 

terrains the wheel slip can be an important parameter that may impact the outcome of the P-E problem. 

Thus, in this paper, we wanted to extend our ability to predict whether a pursuer can capture an evader 

in the presence of slip. As discussed, the existing game theoretic solution does not consider wheel slip, 

and consequently, cannot answer the question that we ask in this paper. In fact, our first contribution is 

to show by simulation that prediction of capture based on game theory can be erroneous when there is 

wheel slip (Section II).  

The second and more important contribution of our work is to provide a mechanism to study the 

P-E problem when there exists wheel slip. In order to be able to predict the outcome of a P-E problem 
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Fig. 14 Game of two identical cars for dynamic WMR pursuer subject to wheel slip governed by 

sliding-mode control. 
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in the presence of wheel slip, we formulated the problem in the dynamic level (as opposed to the 

kinematic formulation of game theory) and explicitly included a slip-traction characteristic within the 

WMR dynamics so that any pursuit is subject to the wheel slip dynamics. We then presented an 

equivalent kinematic model of this dynamic P-E game so that one can still use the classical game 

theoretic tools developed for kinematic game for the dynamic game presented here. To our knowledge, 

this is the first time the P-E game problems with WMR have been analyzed with wheel slip. The 

presented framework will allow future development of realistic pursuit evasion strategies that do not 

ignore wheel slip and thus will be able to model high speed P-E on different terrains. 
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