
RESEARCH Open Access

Game development software engineering
process life cycle: a systematic review
Saiqa Aleem1* , Luiz Fernando Capretz2 and Faheem Ahmed3

* Correspondence:

saiqa.aleem@zu.ac.ae
1College of Technological

Innovation, Zayed University, Abu

Dhabi 144534, United Arab Emirates

Full list of author information is
available at the end of the article

Abstract

Software game is a kind of application that is used not only for entertainment, but
also for serious purposes that can be applicable to different domains such as

education, business, and health care. Multidisciplinary nature of the game

development processes that combine sound, art, control systems, artificial
intelligence (AI), and human factors, makes the software game development practice

different from traditional software development. However, the underline software

engineering techniques help game development to achieve maintainability,
flexibility, lower effort and cost, and better design. The purpose of this study is to

assesses the state of the art research on the game development software

engineering process and highlight areas that need further consideration by
researchers. In the study, we used a systematic literature review methodology based

on well-known digital libraries. The largest number of studies have been reported in

the production phase of the game development software engineering process life
cycle, followed by the pre-production phase. By contrast, the post-production phase

has received much less research activity than the pre-production and production

phases. The results of this study suggest that the game development software
engineering process has many aspects that need further attention from researchers;

that especially includes the postproduction phase.

Keywords: Software Game, Video game, Online game, Systematic review,
Development software engineerong proces

1 Introduction

With the rapid advancement of computer technology, the significance of software en-

gineering in our daily lives is increasing. It affects every aspect of our lives today, in-

cluding working, living, learning, and education. A new and popular mode of

entertainment and an important application of technology are software games, which

have become increasingly accepted by people of all ages. In today’s culture, technology

is easily accessible and has become more convenient; more and more people like to

play games and are also becoming motivated to design their own games. Salen and

Zimmerman (2003) defined “game is a software application in which one or more

players make decisions by controlling game objects and resources, in the pursuit of its

goal”. Software games are software applications that are installed on hardware devices

such as video game consoles, computers, handheld devices, and Personal Digital Assis-

tants (PDAs). Software games have now become a worldwide creative industry, but

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

Aleem et al. Journal of Software Engineering Research

and Development (2016) 4:6

DOI 10.1186/s40411-016-0032-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s40411-016-0032-7&domain=pdf
http://orcid.org/0000-0002-3385-0613
mailto:saiqa.aleem@zu.ac.ae
http://creativecommons.org/licenses/by/4.0/

because of the multidisciplinary activities required, their development is a very complex

task.

The multidisciplinary nature of the processes that combine sound, art, control sys-

tems, artificial intelligence (AI), and human factors, also makes the software game de-

velopment practice different from traditional software development. However, despite

the high complexity of the software engineering development process, the game indus-

try is making billions of dollars in profit and creating many hours of fun (PWC, 2011–

2014 outlook). The software game market throughout the world has grown by over 7–

8 % annually and has reached sales of around $5.5 billion in 2015 (SUPERDATA 2015).

Newzoo Game Market (2015) has also reported that the world-wide digital game mar-

ket will reach $113.3 billion by 2018.

Creation of any game involves cross-functional teams including designers, software

developers, musicians, script writers, and many others. Also, Entertainment Software

Association (ESA) (2014); 2015) reports highlighted the latest trends about the software

game industry. Therefore, game development careers have currently become highly

challenging, dynamic, creative, and profitable (Liming and Vilorio, 2011). The ability to

handle complex development tasks and achieve profitability does not happen by

chance, but rather a common set of good practices must be adopted to achieve these

goals. The game industry can follow the good and proven practices of traditional soft-

ware engineering, but only a clear understanding of these practices can enhance the

complex game development engineering process.

The computer game domain covers a great variety of player modes and genres (Gredler,

1995; Gredler, 2003; Rieber, 2005). The complexity of software games has posed many

challenges and issues in software development engineering process because it involves di-

verse activities in creative arts disciplines (storyboarding, design, refinement of anima-

tions, artificial intelligence, video production, scenarios, sounds, marketing, and, finally,

sales) in addition to technological and functional requirements (Keith, 2010). This inher-

ent diversity leads to a greatly fragmented domain from the perspectives of both under-

lying theory and design methodology. The software game literature published in recent

years has focused mainly on technical issues. Issues of game production, development,

and testing reflect only the general software-engineering state of the art. Pressman (2001)

states that a game is a kind of software that entertains its users, but game development

software engineering faces many challenges and issues if only a traditional software-

development process is followed (Kanode and Haddad, 2009; Petrillo et al., 2009). Some

studies have proposed a Game Development Software Engineering (GDSE) process life

cycle that provides guidelines for the game development software engineering process

(Hendrick, 2014; Blitz game studio, 2014; McGrath, 2014; Chandler, 2010; Ramadan and

Widyani 2013). However, the proposed GDSE process life cycle development phases do

not ensure a quality development process.

A GDSE process is different from a traditional software development engineering

process, and all phases of the proposed GDSE process life cycle can be combined into

three main phases: pre-production, production, and post-production. The pre-

production phase includes testing the feasibility of target game scenarios, including re-

quirements engineering marketing strategies; the production phase involves planning,

documentation, and game implementation scenarios with sound and graphics. The last

phase post-production involves testing, marketing, and game advertising. Because of

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 2 of 30

high competition and extreme market demand, game development companies some-

times reduce their development process so they can be first to market (Kaitilla, 2014).

This reduction of the development process definitely affects game quality. Because of

these types of complex project-management tasks, the game development software en-

gineering process diverges from traditional software development. Therefore, it be-

comes important now to investigate the challenges or issues faced by game

development organizations in developing good quality games. This systematic literature

review is the first step towards identifying the research gaps in the GDSE field.

1.1 Related work

Managing GDSE process life cycle has become a much harder process than anyone

could have initially imagined, and because of the fragmented domain, no clear picture

of its advancement can be found in the literature. A systematic literature review pro-

vides a state of the art examination of an area and raises open research questions in a

field, thus saving a great deal of time for those starting research in the field. However,

to the best of the authors’ knowledge, no systematic literature review has been reported

for GDSE process life cycle. Many researchers have adopted the systematic literature

review approach to explore different aspects in software games. Boyle et al. (2012) con-

ducted a systematic literature review to explore the engagement factor in entertainment

games from a player’s perspective. In this study, 55 papers were selected to perform the

systematic literature review. The study highlighted the different aspects of engagement

factors with entertainment games; these include subjective feelings of enjoyment,

physiological responses, motives, game usage, player loyalty, and the impact of playing

games on a player’s life. Connolly et al. (2012) explored 129 papers to report the im-

pacts and outcomes of computer and serious games with respect to engagement and

learning by using the systematic literature review approach.

Another study also reported the importance of engagement in digital games by using

a systematic literature review approach. Osborne-O’Hagan et al. (2014) performed a

systematic literature review on software development processes for games. A total of

404 studies were analyzed from industry and academia and different software develop-

ment adoption models used for game development were discussed. The findings of the

study were that qualitative studies reported more agile practices than the hybrid ap-

proach. The quantitative studies used an almost hybrid approach. We also noted that

lightweight agile practices such as Scrum, XP, and Kanban – are suitable where

innovation and time to market is important. A risk-driven spiral approach is appropri-

ate for large projects. Only one systematic study was performed related to research on

software engineering practices in the computer game domain rather than GDSE

process life cycle (Ampatzoglou and Stamelos 2010).

This study mainly review the existing evidence in the literature concerning the GDSE

process research and suggest areas for further investigation by identifying possible gaps

in current research. Furthermore, the aim of this study is to cover the state of the art

for the GDSE process life cycle, and to accomplish this, an evidence-based research

paradigm has been used. In the software engineering field, possible use of an evidence-

based paradigm have been proposed by Dyba et al. (2005) and Kitchenham et al.

(2004). The Systematic Literature Review (SLR) research paradigm constitutes the first

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 3 of 30

step in an evidence-based paradigm research process, and its guidelines for per-

forming systematic research are thoroughly described by Brereton et al. (2007) and

Kitchenham (2004).

The rest of the paper is organized as follows: Section 2 provides the research back-

ground and Section 3 describes the methodology used for the systematic literature re-

view as described by Breton et al. (2007). Section 4 presents the statistics for the

primary studies, Section 5 answers various research questions, Section 6 discuss the ex-

ternal threats to validity, and, finally, Section 7 concludes the presentation.

2 Background

In the software development industry, software games are gaining importance because

they are not only used for entertainment, but also for serious purposes that can be ap-

plicable to different domains such as education, business, and health care. Serious

games are designed to have an impact on the target audience similar to entertainment

games but they are combined seemingly with a practical dimension too. Both have to

be attractive and appealing to a broad target audience (Alvarez & Michaud, 2008). Es-

pecially for serious games, along with their applicability to different domains, their rev-

enue has also been increasing. Games software earned three times more revenue than

any other software product in 2012 (Nayak, 2013).

Robin (2009) defines a development method as a systematized procedure to achieve

the goal of producing a working product within budget and on schedule. A number of

methodologies used for game development and design (Castillo 2008). The first is the

waterfall method, which is also commonly used in traditional software development.

Unlike game projects, once the pre-production phase is completed, production phase

activities are performed in a “waterfall” manner. First, the activities are segregated

based on functionalities and assets, and then they are assigned to their respective

teams. The requirements team spent a significant amount of time in functionality def-

inition and front-end activities, which implies a late implementation of level and mech-

anisms (Schwaber & Beedle, 2002). However, in the waterfall method, it is difficult to

reverse any activity (Flood, 2003).

The second development methodology is the agile method that is commonly used for

game development. These methods are highly iterative and not documentation-centric.

The production phase is divided into small iterations and focusses on the most crucial

features. During the beginning phase of each iteration, the whole team meets and sets

clear objectives. At the end of each iteration, results are communicated to clients.

These methods support different team cycles and dynamics through daily meetings.

The most used agile methodologies in game development are extreme programming

(XP), rapid prototyping, and Scrum (Godoy & Barbosa, 2010).

The unified development process (Kruchten, 2000) is another traditional SE method,

which focusses more on analyzing requirements and converting them into functional

software components. The requirement analysis document includes a definition of the

game concept, use cases, and assets definitions (Schwaber & Beedle, 2002). The method

includes five disciplines: requirements, analysis, design, implementation, and testing.

The unified process is based on a philosophy of four key elements: iterative and incre-

mental, use case-driven, architecture-centric, and risk-driven.

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 4 of 30

Kanode and Haddad (2009) stated that an important, but incorrect, assumption was

made that GDSE follows the waterfall method. More recently, researchers have agreed

that it must follow the incremental model (Munassar and Govardhan 2010) because it

combines the waterfall method with an iterative process. A major concern, reported by

Petrillo et al. (2009), was that very poor development methodologies are commonly

used by developers for software creation in the game industry. The GDSE appears as a

question in many forms attempting to determine what types of practices are used.

However, there is no single answer to this question. Few researchers have explored

GDSE practices and then tried to answer questions like the phases of the GDSE process

life cycle. Blitz game studios (2014) proposed six phases for the GDSE process life

cycle: Pitch (initial design and game concept), Pre-production (game design document),

Main production (implementation of game concepts), Alpha (internal testers), Beta

(third-party testers), and the Master phase (game launch). Hendrick (2014) proposed a

five-phase GDSE process life cycle consisting of Prototype (initial design prototype),

Pre-production (design document), Production (asset creation, source code, integration

aspects), Beta (user feedback), and, finally, the Live phase (ready to play). McGrath

(2014) divided the GDSE process life cycle into six phases: Design (initial design and

game design document), Develop/redevelop (game engine development), Evaluate (if

not passed, then redevelop), Test (internal testing), Review release (third-party testing),

and Release (game launch). Another GDSE process life cycle proposed by Chandler

(2010) consisted of four phases: Pre-production (design document and project plan-

ning), Production (technical and artistic), Testing (bug fixing), and, finally, the Post-

production phase (post-mortem activities). The latest GDSE process life cycle in 2013

proposed by Ramadan and Widyani (2013) was based on the four GDSE process life cy-

cles previously described. They proposed six phases: Initiation (rough concept), Pre-

production (creation of game design and prototype), Production (formal details, refine-

ment, implementation), Testing (bug reports, refinement testing, change requests), Beta

(third-party testers), and Release (public release).

In traditional software engineering, the development phase usually involves activities

such as application design and its implementation; the production phase is when the

software actually runs and is ready for use. However, in the GDSE process lifecycle, the

production phase includes the development process, which is the pre-production phase

of the traditional software engineering process, and the production phase of traditional

software engineering is actually the post-production phase of the GDSE process life

cycle (Bethke, 2003). Therefore, the GDSE process life cycle is different from the trad-

itional software engineering process, and many researchers have studied the challenges

faced by this domain (Kanode and Haddad, 2009). The most prominent observation

made in these studies is that to address the challenges faced by the GDSE process life

cycle, more rigorous software engineering strategies must be used. Most researchers

have explicitly compared the software engineering process with the GDSE process, but

none of them has studied complete GDSE process life cycle and research topics under

this domain in detail. This study will provide evidence on these topics and their differ-

ences from the traditional software engineering process. In this paper, the GDSE

process phases were divided into three phases for basic understanding: Preproduction,

Production, and Post-production. Efforts were made to classify these further based on

studies found in the literature. The primary contribution of this paper is that it is the

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 5 of 30

first SLR that addresses these GDSE process life cycle research topics and highlights

the topics that need further attention by researchers.

3 Methods

In this work, the conceptual description of the SLR process presented by Kitchenham

(2004) was used to investigate the research intensity for each phase of the GDSE

process life cycle. Conceptually, SLR provides an opportunity for researchers to collect

empirical evidence from the existing literature about a formulated research question.

Although most authors followed the general SLR guidelines provided by Kitchenham

(2004), there were slight variations in the description and presentation of the concep-

tual process layout. The generic SLR guidelines stated by Kitchenham (2004) are fur-

ther elaborated here, and the overall process is described as a set of activities The

research process has been adopted for this study described by Kitchenham and Char-

ters (2007). There are mainly three phases of the review and the steps associated with

each phase are shown in Fig. 1.

3.1 Planning phase (Step 1–4)

This study started by selecting a topic, at which point the study objectives were also

clearly defined and the boundaries of the domain delineated.

3.1.1 Selection of topic and research questions

Selecting a topic for SLR is of crucial importance because many factors such as individual or

community interest, research gaps, and research impact contribute to shaping research ques-

tions on the topic. Our understanding of the GDSE process life cycle is continuously evolving

(Kitchenham et al., 2010), and many areas in this field lack generalized evidence. It is critically

important for the game industry to identify a quality-driven GDSE process. Several studies

have investigated different phases of the GDSE process life cycle, but they do not offer sys-

tematic, comprehensive, and thorough methodological research specific to this topic.

In this review, studies from 2000 to 2015 will be explored to answer the following re-

search questions:

Research Question (RQ1): What is the intensity of research activity on the GDSE

process life cycle?

RQ2: What topics are being researched in the pre-production, production, and post-

production phases?

RQ3: What research approaches are being used by researchers in the software game

domain?

RQ4: What empirical research methods are being used in the software game domain?

The number of publications has been identified by the research group to address

RQ1. A graphical representation has been used to represent the increase or decrease in

the number of publications per year as a measure of research activity. To address RQ2,

RQ3, and RQ4, each study selected has been affiliated to a research topic, to a certain

approach, and to a specific methodology used for the research. Details of this classifica-

tion into corresponding categories are discussed in section 3.2.4.

3.1.2 Review team & protocol establishment

A multidisciplinary team is needed to perform a high-quality scientific SLR. To en-

hance the thoroughness and minimize the potential bias of a study, an SLR is normally

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 6 of 30

undertaken by more than one reviewer. The SLR team for this review was made up of

three people. Two people were designated as principal reviewers (Second expert report

by American institute 2011). One person was also selected as the project leader to han-

dle additional administrative tasks such as team communication, points of contact,

meeting arrangements and documentation, task assignment and follow-up, and quality

assurance. Table 1 details the tasks required for the SLR process and reviewer’s involve-

ment and total time duration.

In order to ensure the review could be replicated and to reduce researcher bias a re-

view protocol and it’s evaluation procedure was developed at step 3 and 4. The final re-

view protocol is discussed in the following sections 3.2.1 to 3.2.4 (Steps 5–9 incl.).

Fig. 1 SLR Steps

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 7 of 30

3.2 Conducting phase (Step 5–9)

3.2.1 Search strategy

In the SLR, the search procedure is based on an online search. The search strategy for

an SLR is a plan to construct search terms by identifying populations, interventions,

and outcomes. Key terms are combined together to created different groups in order to

form search strings. Each group comprise of terms that are either different forms of the

same word, synonyms, or terms that have similar or related semantic meaning within

the domain. Table 2 depicts the followed approach.

In order to retrieve different sets of relevant literature, four groups are designed. The

main objective of this grouping is to find the literature that is the intersection of the

groups as shown in Fig. 2.

The search strategy was implemented by applying the “AND” and “OR”, where the

“OR” operator is used within the Group and the “AND” is used between the groups.

According to Table 2, the following search string will capture the structure:

(Group 1: [Software game] OR [Digital game] OR [Video game] OR [Computer

game] OR [Online Game] OR [Serious games] OR [Educational Games] OR [Learning

Games])

AND

(Group 2: [Development] OR [Advancement] OR [Steps] OR [Evolve] OR [Project])

AND

(Group 3: [Life cycle] OR [Design] OR [Implementation] OR [Requirements Engin-

eering] OR [Testing] OR [Evaluation] OR [Maintenance])

AND

(Group 4:[Process] OR [Progression] OR [Method] OR [Model]).

Table 1 Reviewers’ involvement in SLR tasks

Task Team members involved Time Duration

Development of review protocol Principal reviewers One week

Development of search strategy All One week

Assessment of papers, including relevance and study design Other reviewer Four weeks

Data extraction Other reviewer Four weeks

Data analysis Principal reviewers Three weeks

Final SLR report All Six Weeks

SLR update All Three weeks

Table 2 Search terms and corresponding groups

Number of Terms Group 1 Software
Games

Group 2
Development

Group 3
Lifecycle

Group 4
Process

Term 1 Digital Games Advancements Design Progression

Term 2 Video Games Steps Requirement Engineering Method

Term 3 Computer Games Evolve Implementation Model

Term 4 Online Games Project Evaluation

Term 5 Serious Games Testing

Term 6 Educational Games Maintenance

Term 7 Learning Games

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 8 of 30

Therefore, “Software game development lifecycle process”, “Computer game development

design process” and “video game testing process” are some examples of the search strings and

similar way different search strings were formed in order to capture all relevant studies.”

To ensure that all relevant research concerning this area of study was reviewed,

journals and conferences from 2000 to 2015 were covered, using as sources IEEE

Explorer, ACM Digital Library, Science Direct Elsevier, Taylor & Francis, Google

Scholar, and Wiley Publications. If the information required, as indicated on the

form shown in Table 3, was not explicitly present in the potential study, then that

paper was peer-reviewed by all team members and, after discussion, validated for

correctness. Otherwise, each paper was reviewed by one reviewer. Each study in-

volved some general information and some specific information, as indicated on

the form.

3.2.2 Pilot selection & data extraction

The research study selection and data extraction was based on the following coverage

criteria:

3.2.2.1 Inclusion criteria for study For SLR, articles and research papers from 2000

to 2015 were included, and to evaluate their suitability, the following criteria were

analyzed:

� The study should be thoroughly reviewed by at least one of the reviewers.

� Only the following types of studies were considered: case studies, theoretical

papers, and empirical analysis surveys.

� The full text of the article should be available.

� If any article identifies any challenges and problems in software games, that article

is included as a review.

Fig. 2 Selection of relevant studies

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 9 of 30

� Studies that describe motivation for game application.

3.2.2.2 Study exclusion criteria The following criteria were used to determine articles

to be excluded:

� Articles published on company Web sites.

� Articles not relevant to the research questions.

� Articles not describing any phase of the game development life cycle.

3.2.2.3 Study selection This procedure involved two phases. In the first phase, an

initial selection was made on the basis of the inclusion criteria and after reading

the title, abstract, and conclusion of each article. In the second phase, if a particu-

lar article met the criteria, then the whole article was studied. One hundred forty-

eight papers were identified after final selection, as shown in Fig. 3. Table 4 shows

the results found in each data source and Additional file 1: Appendix A contains a

full list of selected publications.

Table 3 Publication-specific data

Specific Information about a Research Article

A) Research Methodology used in SLR

Empirical

Descriptive

Exploratory

B) Empirical research methods

Experiment

Survey

Case study

C) Type of publication

Journal

Conference

Workshop

D) Research activity per country

Country name Number of publications

E) Year of Publication

2000–2005

2006–2010

2010–2015

Fig. 3 Study selection process

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 10 of 30

3.2.3 Quality criteria

In this research, quality guidelines were defined based on a quality instrument that was

used to assign a quality score to each article as a basis for data analysis and synthesis.

The quality instrument consisted of four sections: a main section containing a generic

checklist applicable to all studies, and three other sections specific to the type of study.

The checklist was based upon SLR guidelines (Kitchenham, 2004) and was derived

from Kitchenham (2004) and Second expert report by American institute (2011). The

detailed checklist is shown in Table 5. Some of the checklist items could be answered

by “yes” or “no” and they also included a “partial” option. A value of 1 was assigned to

“yes,” 0 to “no,” and 0.5 to “partial”; then the sum of the checklist values was used to

assign a quality score to the study to assess document quality.

3.2.4 Data synthesis

For data synthesis the topics, research approaches and methods are classified and their

classification details are listed below:

3.2.4.1 Classification of topics in the GDSE Life Cycle This section includes a classi-

fication of the topics covered by each study with respect to the pre-production, produc-

tion, and post-production phase issues involved. The 2012 ACM classification system

was used for classification, which is the same method used by Cai and Card (2008).

The proposed classification system has been adopted by many journals and conferences

specifically for software engineering topics. The same classification was used here to

classify the papers under study, and these were further fabricated based on studies

found in the GDLC domain. Table 6 presents the selected classification schema.

3.2.4.2 Research approaches and methods classification Research articles can be

characterized based on their method and approach, as described by Glass et al. (2002).

The main categories for scientific approach are descriptive (a system, tool, or method; a

literature review can also be considered as descriptive studies), exploratory (performed

where a problem was not clearly defined), and empirical (findings based on observation

of its subjects). To evaluate new methods or techniques, three major empirical research

methods are used: surveys, case studies, and experiments (Wohlin et al., 2000). Table 7

describes the three major empirical research types; Dyba and Dingsoyr (2008) also used

the same type of empirical classification.

The data collected were statistically analyzed as follows:

Table 4 Results found in each data source

Resource Total results found Initial selection Final selection

IEEE Explorer 349 145 94

ACM 120 30 17

Elsevier 200 38 15

Taylor & Francis 10 6 4

Springer 20 15 5

John Wiley 73 5 2

Google Scholar 15 12 11

Total 787 244 148

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 11 of 30

� To address RQ1, the number of studies published per year, whether journal articles

or conference publications, and the number of publications on the GDLC hosted by

each digital library.

� To address RQ2, the major topics of the GDLC that were investigated in the

software game domain.

� To address RQ3 and RQ4, the research approach or method used by number of studies.

From Section 3.2.4, data were tabulated and are presented in Additional file 2: Appendix B.

3.3 Documenting (Step 10–12)

This step of the SLR describe conclusion, possible threats and limitations to the validity

of this study. Authors believe that there is a chance that the word game was not part of

the title of some studies, but that nevertheless they discussed game development. These

studies may, therefore, have been excluded from the primary dataset by the search pro-

cedure. There are other threats that are also linked to a systematic literature review

such as generalization and subjective evaluation (Shadish et al., 2002).

There are limitations to our results, although significant amounts of effort and time

was spent to select the papers that were studied. More specifically, our search was lim-

ited to the academic databases. It is obvious from the results of RQ1 that developers

prefer to submit their work on the blogs or forums. However, posts for different game

forums and blogs cannot be included in a systematic literature review because they

don’t fulfil the quality criteria used for the selection of papers. In addition, the

Table 5 Quality checklist data (Kitchenham, 2004)

Quality Checklist

Generic

Are the aims clearly stated? Yes/No

Was the study design appropriate with respect to its research aim? Yes/No/Partial

Are statistical methods justified by the authors? Yes/No

Are negative findings presented? Yes/No/Partial

Are all research question answered? Yes/No

Are the data collection methods adequately described? Yes/No

Empirical Analysis

Was population size reported? Yes/No

Did the authors justify the sample size? Yes/No

Is the sample representative of the population to which the results will be generalized? Yes/No

Theoretical Analysis

Does the author report personal observations? Yes/No

Is there a link between data, interpretation, and conclusions? Yes/No

Does the study cover all literature up to that point in time? Yes/No

Is the focus of study reported? Yes/No

Case Study

Is the case study context defined? Yes/No

Is the case study based on theory and linked to existing literature? Yes/No

Is clear evidence established from observations to conclusions? Yes/No/Partial

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 12 of 30

exclusion of less-known journals and conferences from the Web of Science and the

Scopus index might have led to a different dataset.

Another limitation of the study is the exclusion of Human-Computer Interaction

(HCI) filed studies. In the phase of screening out, we found studies from HCI field such

as (Plass-Oude Boss et al. (2010)) for games but they didn’t focus on software engineer-

ing perspective. In short, we didn’t consider studies from HCI because they take non-

functional requirements, and usability features into account. These methods help devel-

opers to evaluate software and they considered as an integral part of game develop-

ment. However, due to the limited scope of the study, we excluded studies from HCI

field.

Table 6 GDSE process life cycle classification of topics (Kai and Card, 2000)

GDLC topics

Pre-production phase

Game process development management

Requirements Specification

Game system description language

Reusability

Game design document

Game prototype

Tools for designing

Risk Management

Production Phase

Assets creation

Story board production

Development platforms

Formal language definition

Programming

Game Engine

Implementation

Post-production Phase

Quality Assurance

Beta Testing

Usability Testing

Empirical Testing

Tools for testing

Marketing

Table 7 Empirical methods

Empirical
method

Description

Survey One or more questionnaires are filled out by a set of subjects either directly or by Internet,
and results are derived from the answers.

Experiment A specified task is performed in a highly controlled environment by a set of subjects. The
results are the observations made by the subjects; in addition, task outcome inspection gives
answers to research questions.

Case study According to a methodology, an activity, project, or assignment is examined, and project
measurements provide results.

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 13 of 30

Finally, the classification scheme might have altered the results if they were classified

by a scheme, such as the waterfall model, instead of the ACM classification scheme.

Despite these limitations, the results of our systematic literature review will be useful

to game development organizations and developers of software games.

4 Results and Discussion

This section presents the results of statistical analysis of the data set discusses the find-

ings concerning the RQs formulated in Section 3.1. The characteristics of the data set

are tabulated for better understanding. To trace the categories of each mapped study,

the interested reader is referred to the Additional file 2: Appendix B. A total 148 stud-

ies were collated and analyzed as part of this review. To identify GDSE process life

cycle domain specific characteristics, the findings of this review will be compared to re-

sults from similar studies done by Cai and Card (2008), Glass et al. (2002), and Dyba

and Dingsoyr (2008).

4.1 RQ1 What is the intensity of research activity on the GDSE process life cycle?

Table 8 clearly shows that GDSE process life cycle research intensity has increased dur-

ing the last few years. Figure 4 showed an increase in GDSE process life cycle over

time. The y-axis represents the number of publications in the form of a fraction and is

calculated by taking year(i)’s number of publications as the numerator and year(0)’s

number of publications as the denominator. From Table 8, 2007 was taken as year(0),

and the first data point of the graph was calculated for year(1) i.e., 2008. Figure 4 shows

the results up to 2015. Years are given on the x-axis.

Figure 4 illustrates that during the last few years, research activity in the GDSE

process life cycle domain has continuously increased and the number of publications in

the GDSE domain has increased at a polynomial growth rate since 2005. During 2013,

2014 and 2015 the drop in research activity is noted. It seems obvious that most of the

work related to GDSE research activity was not published on the selected sources for

this study. During 2014, most of the research activities were seen on the game develop-

ment associations/groups web sites, like DIGRA association and Gamastura, or game

developers personal blogs.

Moreover, Fig. 5 shows the list of countries most active in GDSE process life cycle

topics research. Looking at research activity based on countries, China now dominates

GDSE process life cycle research, but its research into the game domain started only in

2010. In four years, China has come to dominate this area of research. Before 2010, the

United States and the United Kingdom were dominant.

Table 8 Type of citation and per year research activity

Years

Citation type 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Book 0 0 0 0 0 0 0 0 0 0 0 0 3 2

Journal 1 2 2 2 3 4 1 4 2 5 2 2 4 0

Conference 1 1 4 1 1 5 7 14 15 15 17 10 4 10

Workshop 0 0 0 0 0 0 0 1 1 0 0 1 0 1

Total 2 3 6 3 4 9 8 19 18 20 19 13 11 13

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 14 of 30

Authors from North and South America have played a dominant role since 2004 and

are still contributing in this area. Contributors in Europe also started research into the

GDSE domain in 2007, but the Asian continent has dominated the GDSE domain since

2010. It can be visualized in Fig. 6. The most popular venue for GDSE research publica-

tion is IEEE; it seems that IEEE accounts for the main bulk of publications (approxi-

mately 63 %), followed by Elsevier, Springer, and ACM.

4.2 RQ 2: What topics are being researched in the pre-production. Production and post

production phase?

This section addresses the identification of main research topics in the GDSE process

life cycle domain. Table 9 clearly suggests that most research has been conducted in

the production phase, followed by the pre-production phase. On the other hand, the

post-production phase has not attracted much research interest. These GDSE process

life cycle topics are somewhat different than in software engineering because of two

Fig. 4 Increase in GDSE process life cycle research activity

Fig. 5 Research activity per country

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 15 of 30

Fig. 6 Research activity by continent

Table 9 GDSE process life cycle topics

GDLC topics Frequency Percentage

Pre-production phase 58 39.18 %

Management 18 12.16 %

Requirements specification 9 6.08 %

Game system description languages 6 4.05 %

Reusability 3 2.02 %

Game design documents 11 6.75 %

Game prototyping 7 4.72 %

Design tools 3 2.02 %

Risk management 1 0.67 %

Production phase 66 45.27 %

Asset creation 7 4.72 %

Storyboard production 3 2.02 %

Development platforms 13 8.78 %

Formal language definition 2 1.35 %

Programming 17 11.48 %

Game engine 11 8.10 %

Implementation 13 8.78 %

Post-production phase 24 16.21 %

Quality Assurance 2 1.35 %

Beta testing 5 3.37 %

Heuristic testing 6 4.05 %

Empirical testing 2 1.35 %

Test tools 1 0.67 %

Marketing 8 5.40 %

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 16 of 30

factors: first, the GDSE domain has special needs and priorities, and second, it is a

young domain which requires more fundamental research in the area of requirements,

development, and coding tools. When the GDSE domain becomes mature, then other

areas in the field, like testing and verification, will attract the interest of researchers.

As mentioned earlier in Section 2, games have specific characteristics, which the con-

ventional software development process cannot completely address. In the past years,

research on GDSE process life cycle topics has become more active because, unlike

other software products, games provide entertainment and user enjoyment, and devel-

opers need to give more importance to these aspects. As a result, research about the

pre-production phase has increased. The implementation phase is shorter than in the

traditional software implementation process because of the short time to market. This

production-phase research intensity has attracted the interest of many researchers, and

maximum research activity has been reported because the GDSE domain requires effi-

cient development and coding techniques. McShaffry (2003) also highlighted the im-

portance of the production phase to counteract poor internal quality. There is much

less research activity in the post-production phase than in the pre-production and pro-

duction phases.

Figure 7 presents the growth of each GDSE process life cycle research topic since 2000.

It is apparent that in the pre-production phase, the most researched topic is management

of the game development process, followed in this order by production-phase develop-

ment platforms, programming, and implementation topics. In the post-production phase,

the marketing area attracted the largest amount of research interest. The state of the art

research is the description of actual primary studies, and, therefore, they are mapped ac-

cording to the research topics they addressed (Budgen et al., 2008). Next, a short descrip-

tion of each GDSE topic is presented along with a full reference list. A full reference list of

all the studies included is presented in Additional file 1: Appendix A.

Fig. 7 GDSE process life cycle research topics

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 17 of 30

4.2.1 Pre-production phase

4.2.1.1 Management In the pre-production phase, most of the studies categorized

under this topic address management issues during the GDSE process life cycle. The

overall management of the game development process combines both an engineering

process and creation of artistic assets. Ramadan and Widyani [S1] compared various

game development strategies from a management perspective, and most studies like

[S3], [S6], [S7], and [S8] have proposed frameworks for game development. Game de-

velopment guidelines can be followed to manage GDSE process life cycle. The presence

of agile practices in the game development processes is also highlighted by some stud-

ies. Tschang [S4] and Petrillo et al. [S17] highlighted the issues in the game develop-

ment process and their differences from traditional software development practices.

Management of development-team members and their interaction is critically import-

ant in this aspect.

Some studies [S10] and [S11] have provided data analytics and empirical analysis of

the game development process and issues of interdisciplinary team involvement. Best

management practices in the game development process must consider certain ele-

ments such as staying on budget, timing, and producing the desired output. To assess

game quality, five usability and quality criteria (functional, internally complete, bal-

anced, fun, and accessible) can be used, but a process maturity model specific to the

game development process is still needed to measure these processes for better man-

agement and high performance.

4.2.1.2 Requirements specification One of the main differences between the trad-

itional software development process and GDSE process life cycle is the requirements

phase. The game development process requires consideration of many factors such as

emotion, game play, aesthetics, and immersive factors. In four studies, the authors have

discussed the requirements engineering perspective to highlight its importance for the

whole game-software development process. They discussed emotional factors, language

ontology, elicitation, feedback, and emergence [S19], [S20], [S21], and [S22]. In particu-

lar, game developers must understand these basic non-functional requirements along

with the game play requirements and incorporate them while developing games. The

main challenges in requirements identification are a) communication between diverse

background stakeholders, b) non-functional requirements incorporation with game play

requirements, such as media and technology integration, and c) validation of non-

functional requirement such as fun, which is very complex because it is totally

dependent on the target audience. Callele et al. [S20] further fabricated a set of require-

ments based on emotional criteria, game-playing criteria (cognitive factors and me-

chanics), and sensory requirements (visual, auditory, and haptic). The requirements

specification phase must address both the functional and non-functional requirements

of game development.

4.2.1.3 Game system description language Many description languages are currently

used by developers, such as the UML model, agent-based methodologies, and soft-

system methodologies. Quanyin et al. [S32] proposed the UML model for mobile

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 18 of 30

games. They performed experiments and reported that it would be a good model for

further development of games on the Android operating system. Shaker et al. [S33] ex-

tracted features of the Super Mario Brothers game from different levels, frequency se-

quences of level elements, and statistical design levels. Then, they analyzed the

relationship between a player’s experience and the level design parameters of platform

games using feature analysis modelling. Tylor et al. [S28] proposed a soft system meth-

odology for initial identification of game concepts in the development process. The

proposed approach can be used instead of a popular description language because it

provides an overview of the game. Chan and Yuen [S30] and Rodriguez et al. [S31] pro-

posed an ontology knowledge framework for digital game development and serious

games modelling using the AOSE methodology. A system description language for

games must be both intelligible to human beings and formal enough to support com-

parison and analysis of players and system behaviors. In addition, it must be

production-independent, adequately describe the overall game process, and provide

clear guidelines for developers.

4.2.1.4 Reusability The existence of reusability of software (Capretz and Lee 1992)

and development platforms in game development has been reported by some re-

searchers, but to gain its full advantages, commonality and variability analysis must be

done in the pre-production phase. This category addresses reuse techniques for game

development software (Ahmed and Capretz, 2011). Neto et al. [S34] performed a sur-

vey that analyzed game development software reuse techniques and their similarity to

software product lines. Reuse techniques in game development could reduce cost and

time and improve quality and productivity. For reuse techniques, commonality and

variability analysis is very important, similar to a software product line. Szegletes and

Forstner [S36] proposed a reusable framework for adaptive game development. The

architecture of the proposed framework consisted of loosely coupled components for

better flexibility. They tested their framework by developing educational games. The re-

quirements of the new game must be well aligned with the reusable components of the

previously developed game.

4.2.1.5 Game design document The Game Design Document (GDD) is an important

deliverable in the pre-production phase. It consists of a coherent description of the

basic components, their interrelationships, directions, and a shared vocabulary for effi-

cient development. Westera et al. [S37] addressed the issue of design complexity in ser-

ious games by proposing a design framework. Furthermore, Salazar et al. [S38]

highlighted the importance of a game design document for game development and pro-

vided an analysis of many available game design documents from the literature. They

also compared their findings with traditional software requirement specifications and

concluded that a poor game design document can lead to poor-quality product, rework,

and financial losses in the production and post-production phases. Hsu et al. [S40]

pointed out the issues of level determination in games and trade-off decisions about

them. They proposed an approach to solve the trade-off decision problem, which is

based on a neural network technique and uses a genetic algorithm to perform design

optimization. Khanal et al. [S41] presented design research for serious games for mobile

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 19 of 30

platforms, and Cheng et al. [S42] provided design research for integrating GIS spatial

query information into serious games. Finally, Ibrahim and Jaafar [S43] and Tang and

Hanneghan [S44] worked on a game content model for game design documents. Cur-

rently, GDD suffers from formalism and incomplete representation; to address this

issue, the formal development of GDD is very important. A comprehensive GDD (fo-

cused on the game’s basic design and premises) results in good game quality.

4.2.1.6 Game prototyping Game prototyping in the pre-production phase helps the

developer to clarify the fundamental mechanics of the final game. Game prototyping in

the preproduction phases is considered important because it is used to convey game

and play mechanics and also helps in evaluating a game player’s experience. Reyno and

Cubel [S49] proposed automatic prototyping for game development based on a model-

driven approach. An automatic transformation generates the software prototype code

in C++. De Silva et al. [S48] proposed community-driven game prototyping. The devel-

oper can approach the well-established community and focus on the technical stuff ra-

ther than starting from scratch. They used this approach for massive, multi-player

online game development. Guo et al. [S50], Kanev and Sugiyam [S51], and Piesoto et

al. [S52] proposed analysis of rapid prototyping for Pranndo’s history-dependent games,

3D interactive computer games, and game development frameworks respectively. Pro-

totypes also help to identify missing functionality, after which developers can easily in-

corporate quick design changes. Model-driven or rapid-prototyping approaches can be

used to develop game prototypes.

4.2.1.7 Design tools Game design tools are used to help game developers create de-

scriptions of effects and game events in detail without high-level programming skills.

Cho and Lee [S56] and Segundo et al. [S57] proposed an event design tool for rapid

game development and claimed that it does not require any kind of programming skill.

These tools also enable reuse of existing components and reduce the total time of the

game-creation process.

4.2.1.8 Risk management In the game development domain, risk management factors

do not receive much discussion by researchers. Risk management is very important

from a project management point of view. Identifying risk factors in the game develop-

ment process is also important. In game development, the project manager is the game

producer and must bring together management, technical, and aesthetic aspects to cre-

ate a successful game. The study by Schmalz et al. [S58] is the only study highlighting

the issue of risk management in video development projects. They identified two risk

factors during the development process: failure of development strategy and absence of

the fun factor. In game development, important risk factors can be the development

strategy, the fun factor or extent of originality, scheduling, budgeting, and others, but

very low priority has been given by game developers to formal analysis of risk factors.

4.2.2 Production phase

4.2.2.1 Asset creation Asset creation in the production phase is the foundation stage

where game developers create the various assets and then use them in the game

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 20 of 30

implementation phase. In the production phase, the first step is to create assets for the

game. One of these assets is audio creation. Migneco et al. [S63] developed an audio-

processing library for game development in Flash. It includes common audio-

processing routines and sound-interaction Web games. Minovic et al. [S65] proposed

an approach based on the model drive method for user interface development, and

Pour et al. [S64] presented a brain computer interface technology that can control a

game on a mobile device using EEG Mu rhythms. For audio processing, open-source li-

braries are available, especially for games. Audio and interface design are examples of

game assets.

4.2.2.2 Storyboard production Storyboard production is the most important phase

of game production; it involves development of game scenarios for level solutions

and incorporation of artificial intelligence planning techniques for representing the

various features of games through a traditional white board or flow chart. Pizzi et

al. [S59] proposed a rational approach that elaborated game-level scenario solutions

using knowledge representation and also incorporated AI techniques to explore al-

ternative solutions by direct interaction with generated storyboards. Finally, Ander-

son [S61] presented a classification of scripting systems for serious and

entertainment games, and Cai and Chen [S62] explored scene editor software for

game scenes. Their approach was based on the OGRE.Net framework and C++

technology. Various scripting editors based on different technologies are available

for game developers to produce storyboards. Some of this software helps to de-

velop and edit scenes at different game levels, and other software helps by generat-

ing game levels automatically based on a description.

4.2.2.3 Development platforms The studies classified under this category proposed

various types of platforms for game development. Development platforms provide a

ready-made architecture for server–client connectivity and help developers create

games quickly. Open-source development platforms are available, but developers must

customize them according to the required functionality. Peres et al. [S69] used a scrum

methodology for game development, especially for multiple platforms, and imple-

mented interfaces with social networking Web sites such as Twitter and Facebook. Jieyi

et al. [S70] proposed a platform for quick development of mobile 3D games. First, the

platform implemented the game template in two environments such as the Nokia series

60 platform and the Symbian OS. The second part of the process involved analysis of

the entire game structure and extraction of game parameters for later customization.

Finally, the tool could be used for game customization. Lin et al. [S] developed intelli-

gent multimedia mobile games from embedded platforms. The proposed communica-

tion protocol was able to control the embedded platform to achieve the game usability

and amusement. Mao et al. [S78] presented a logical animation platform for game de-

sign and development, and Alers and Barakova [S81] developed a multi-agent platform

for an educational children’s game. Suomela et al. [S77] highlighted the important as-

pects of multi-user application platforms used for rapid game development. Some re-

searchers have proposed a development platform similar to that described above that

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 21 of 30

provides connectivity along with client customization and unnecessary updating of

game servers.

4.2.2.4 Formal language description Game semantics can be classified under formal

language description for programming languages; only two studies were reported under

this classification. The formal language description of game semantics provided a way

to gain insight into the design of programming languages for game development. Mel-

lies [S99] proposed a denotational prepositional linear logic for asynchronous games,

and Calderon and McCusker [S100] presented their analysis of game semantics using

coherence spaces. Very little work has been reported in this area, and very few game se-

mantic descriptions of languages have been published.

4.2.2.5 Programming Code complexity is increasing, especially in game development,

because of the incorporation of complex modules, AI techniques, and a variety of be-

haviors. The most common programming languages used in game development are

object-oriented structured languages such as Java, C, and C++. Studies classified under

this category explored the programming aspect of game development. El Rhalibi et al.

[S82] proposed a development environment based on Java Web Start and JXTA P2P

technologies called Homura and NetHomura. It extends the JME game engine by facili-

tating content libraries, providing a new interface, and also providing a software suite

that supports advanced graphical functionalities within IDE. The other two studies,

done by Meng et al. [S84] and Chen and Xu [S85], also explored programming lan-

guages such as C++, DirectX, and Web GL and also Web Socket technologies for game

development. Three studies by Yang et al. [S87], Yang and Zhang [S88], and Wang and

Lu [S89] explored collision detection algorithms from a game logic aspect for software

games, proposed A* search, and AI optimization-based algorithms.

Wang et al. [S83] proposed a framework for developing games based on J2ME tech-

nology. Zhang et al. [S92] also explored the effects of object-oriented technology on

performance, executable file size, and optimization techniques for mobile games and

suggested that object-oriented technology should be used with great care because the

structured programming in game development is highly competitive. Bartish and The-

vathayan [S86] and Fahy and Krewer [S90] analyzed the use of agents, finite state ma-

chines, and open-source libraries for the overwhelmingly complex process of multi-

platform game development. Optimization techniques can be used with object-oriented

programming to avoid unnecessarily redundant classes and inheritance, and to handle

performance bottlenecks. These languages can be used across different development

environments such as Android, iOS, Windows, and Linux. Researchers have proposed

various approaches and tools for efficient game development. The integration of vari-

ous development artefacts into games can also be done by generative programming,

which also helps to achieve efficient development.

4.2.2.6 Game engine A game engine is a kind of special software framework that is

used in the production phase for creating and developing games. Game engines consist

mainly of a combination of core functionalities such as sound, a physics engine or colli-

sion detection, AI, scripting, animation, networking, memory management, and scene

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 22 of 30

graphs. Hudlicka [S108] identified a set of requirements for a game engine, including

identification of the player’s emotions and the social interactions among game charac-

ters. This is the only study that has highlighted the important functionalities that an

affective game engine must support. Another study by Wu et al. [S109] focused on

game script engine development based on J2ME. It divided script engines into two

types. The first type is the high-level script engine that includes packaging and refining

of the script engine. The second type, the low-level script engine includes feature pack-

ages associated only with API. Four studies [S102], [S105], [S106], and [S107] explored

the development of game engines on mobile platforms. Finally, Anderson et al. [S109]

proposed a game engine selection tool. Recently, developers have been using previously

developed or open-source game engines to economize on the game development

process. Various researchers have proposed script-based, design pattern-based, and

customizable game engines. In the GDSE process life cycle, game engines automate the

game creation process and help a developer to develop a game in a shorter time.

4.2.2.7 Implementation The foundations of game theory are used in game development

because it is a branch of decision theory that describes interdependent decisions. Most

studies in this category described different aspects of game implementation technologies

on various types of platforms. They considered improving programming skills, 2D/3D ani-

mations and graphics, sound engineering, project management, logic design, story-writing

interface design, and AI techniques. Various kinds of game implementation technologies

can be found in the literature. Vanhatupa [S117] presented a survey of implementation

technologies especially for browser games. The technologies explored in these studies are

mainly server applications (application runtime, server-side scripting, and user interface

and communication), client applications, databases, and architecture. The same study also

described the accessories that can be used for implementation: application platforms,

game engines, and various types of plug-ins. Abd El-Sattar [S112] proposed an interactive

computer-based game framework for the implementation process. The framework in-

cludes steps from design through implementation that are based on game theory founda-

tions and focus mainly on game models, Nash equilibrium, and strategies of play. The

proposed framework includes architectural design and specifications, a proposed game

overview, a game start-up interface and difficulty scaling, game modelling, the game envir-

onment and player control, and a free-style combat system.

Four studies [S113], [S114], [S119] and [S120] focused mainly on a development frame-

work for mobile devices. Su et al. [S96] proposed a framework describing implementa-

tion of various main modules such as pressure movement, a thread pool based on the

I/O completion port, and a message module. They also claimed that their proposed

framework addressed the problems of traditional frameworks such as the single-server

exhaustion problem, synchronization, and thread-pooling issues. Jhingut et al. [S114]

discussed 3D mobile game implementation technologies from both single-player and

multi-player perspectives. They also evaluated two game APIs: MDP 2.0 and M3G API.

Finally, Kao et al. [S120] proposed a client framework for mobile devices that used a

message-based communication protocol and reserved platform-specific data as much

as possible. A few researchers have proposed agent-based frameworks as explored

above for effective communication and synchronization between system components.

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 23 of 30

4.2.3 Post-production phase

4.2.3.1 Quality assurance Process validation plays an important role in assessing game

quality. Collection and evaluation of process data from the pre-production phase

through to the post-production phase either provide evidence that the overall develop-

ment process produces a good-quality game as a final product or reveal that it cannot.

Only two studies were reported under this classification. Stacey et al. [S122] used a

story-telling strategy to assess the game development process. They carried out a two-

year case study on a four-person development team. Astrachan et al. [S126] tried to

validate the game creation process by analyzing the development process and design

decisions made during development. The scope of studies done under this category

was limited. The case studies were done for small teams and were limited to only one

phase. In the game development process, quality assurance and process validation are

critical components, and standard methodologies are lacking. More exploration is

needed to provide deeper insights. QA for games needs more research attention be-

cause very little work has been reported.

4.2.3.2 Beta testing Beta testing in games is used to evaluate overall game functionality

using external testers. Beta testing is a kind of first public release for testing purposes

by users. Game publishers often find it effective because bugs are identified by users

that were missed by developers. If any desired functionality is missing, it must be ad-

dressed at this stage. This testing is performed before final game release. Under this

classification, only four studies [S127], [S128], [S129], and [S130] were reported. Hable

and Platzer [S129] evaluated their proposed development framework for mobile game

platforms. Omar et al. [S128] evaluated educational computer games and identified two

evaluation techniques: Playability Heuristic for Educational Games (PHEG) for expert

evaluators, and Playability Assessment of Educational Games (PAEG) for real-world

users. The proposed AHP-based Holistic Online Evaluation System for Educational

Computer Games (AHP_HeGES) online evaluation tool can be used in the evaluation

process. Very little work was reported in this category.

4.2.3.3 Heuristic-based testing Heuristics are a kind of design guideline and can be

used as an evaluation tool by game design developers or users. Basically, heuristics can

be used in software engineering to test the interface. In games, evaluation must extend

beyond the interface because other playability experiences also need evaluation such as

the game story, play, and mechanics. Six studies [S132], [S133], [S134], [S146], [S147],

and [S148] fell under this classification. Al-Azawi et al. [S132] proposed a heuristic

testing-based framework for game development. The proposed framework divides test-

ing by two types of user: experts and real-world users. Experts evaluate playability,

game usability, and game quality factors. Users evaluate the game as a positive or nega-

tive experience. Omar and Jaafar [S133] and Al-Azawi et al. [S134] proposed a frame-

work for the evaluation phase in the game development process. Heuristic testing can

be done during the development process and repeated from the early design phase. It is

perfect for game testing because after the game is implemented, if anything goes wrong,

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 24 of 30

it will be too expensive to fix and will affect the project schedule. This topic also needs

attention by researchers.

4.2.3.4 Empirical testing Empirical testing approaches for the game-testing phase have

been explored by only a few researchers. The approaches described by these researchers

have focused only on final-product quality and usability. Only two studies were re-

ported under this classification [S135] and [S136]. Escudeiro and Escudeiro [S135] used

a Quantitative Evaluation Framework (QEF) to evaluate serious mobile games and re-

ported that QEF frameworks are very important in validating educational games and

final-product quality. Choi [S136] analyzed the effectiveness of usability-expert evalu-

ation and testing for game development. Experimental results showed the importance

of the validation process in game development. The scope of the studies done under

this category was very limited, and other aspects of final-product testing have not been

explored by researchers.

4.2.3.5 Testing tools Development of testing tools has not been addressed by many re-

searchers. Only one study [S137] was reported under this classification. Cho et al.

[S137] proposed testing tools for black-box and scenario-based testing. They used their

tool on several online games to verify its effectiveness. Tools for game testing facilitate

the testing process. The proposed scope of study was also limited, and available testing

tools have focused only on evaluation of online games.

4.2.3.6 Marketing After a game has been developed, the final step is marketing. Mar-

keting of games includes a marketing strategy and a marketing plan. The marketing

strategy is directly related to the choice of users and the types of games that are in de-

mand. The marketing plan is something that a publisher can give to a distributor to

execute on the publisher’s behalf. Some studies have been done from the perspective of

game-user satisfaction that provide the baseline for the factors that game developers

must take into account for new game development. Yee et al. [S142] described a game

motivation scale based on a three-factor model that can be used to assess game trends.

Three studies [S139], [S143], and [S144] empirically investigated the perspective of

game-user satisfaction and loyalty. No study in the literature has directly captured a

marketing strategy and a marketing plan for games.

4.3 RQ 3: What research approaches are being used by researchers in digital game

domain?

Table 10 shows that most GDSE process life cycle studies have used an exploratory re-

search approach. Figure 8 shows a comparison between the three research approaches

used in the GDSE process life cycle domain. Figure 9 shows a comparison among the

Table 10 GDLC research approach

Research approach Frequency

Descriptive 61

Empirical 30

Exploratory 57

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 25 of 30

empirical research methods used in the GDSE process life cycle domain. The results

suggest that surveys are most frequently used in GDSE domain research.

These results were to be expected because the GDSE domain has only been growing

since 2005; before 2010 more studies follow the descriptive approach because the field

was young. After 2010, more studies have followed the exploratory approach because

the domain has been maturing. More specifically, exploratory and descriptive ap-

proaches seem now to be equally used in the GDSE process life cycle domain.

4.4 RQ4: What empirical research methods are being used in the software games

domain?

Table 11 depicts the results of the RQ4. The experimental empirical method is less

used in the GDSE process life cycle domain, as mentioned by Wohlin et al. (2000),

because carrying out formal experiments requires significant experience. The case-

study method has also been used infrequently by researchers. The reason for this

could be that case studies require project data obtained through various types of

observations or measurements, and no research database or repository is available

for the GDSE process life cycle domain. Finally, the survey method was more com-

mon than the other two methods. This is reasonable because the GDSE domain is

still immature and researchers are trying to produce knowledge by questioning

game users, experts, and others.

5 Conclusions

The GDSE process proved to be incredibly challenging as game technology including

game platforms and engines changes rapidly and coding modules are used very rarely

in the another game project. However, recent success of digital game industry enforces

further stress along with game development challenges and highlights the need of good

practices adoption for game development process. In order to find out the specific area

in game development software engineering process for improvement, assessment of

process activities needs to be performed. However, due to relatively young history and

empirical nature of the field, there has not been any development strategies or set of

Fig. 8 GDSE process life cycle research approaches

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 26 of 30

best practices to carry out game development fully explored. This systematic literature

review helps to identify the research gaps in game development life cycle.

The main objective of this research was to provide an insight into the GDSE process

life cycle domain because, in the past, researchers have pointed out that it is different

from the traditional software development process. To achieve this objective, a system-

atic literature review was performed, which confirmed the first step of the evidence-

based paradigm. The results also confirmed that the GDSE process life cycle domain is

different from the traditional software engineering development process and that re-

search activity is growing day by day, attracting the interest of more researchers. This

observation provided an evidence for developers they need to look for other important

activities on top of software development process. This paper describes the various

topics in the GDSE domain and highlights the main research activities related to the

GDSE process life cycle. The research topics identified in the GDSE were a combin-

ation of different disciplines and together they complete the game development

process.

The most heavily researched topics were from the production phase, followed by the

pre-production phase. On the other hand, in the post-production phase, less research

activity was reported. In the pre-production phase, the management topic accounted

for the most publications, whereas in the production phase, the development platform,

programming, and the implementation phase attracted the most researchers. The pro-

duction phase has attracted more research because game developers focus more on im-

plementation and programming because of the limited game-development time period.

The post-production phase includes process validation, testing, and marketing topics.

Very little research activity was observed in this area because the quality aspect of game

Fig. 9 Empirical research approaches

Table 11 Software games empirical research methods

Empirical method Frequency

Case study 10/30

Experiment 6/30

Survey 14/30

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 27 of 30

development is not yet a mature field. These results highlighted that researcher’s need

to pay attention especially in the phase of post-production.

In addition to research topics, more researchers used exploratory research methods;

as for empirical research methods, surveys were carried out by more researchers than

case studies and experiments. Overall, the findings of this study are important for the

development of good-quality digital games. Rapid and continual changes in technology

and intense competition not only affect the business, but also have a great impact on

development activities. To deal with this strong competition and high pressure, game

development organizations and game developers must continually assess their activities

and adopt an appropriate evaluation methodology. The result of the study highlighted

that use of a proper assessment methodology will help the organization identify its

strengths and weaknesses and provide guidance for improvement. However, the frag-

mented nature of the GDSE process requires a comprehensive evaluation strategy,

which has not yet been entirely explored. Finally, this kind of research work provides a

baseline for other studies in the GDSE process life cycle domain and highlights re-

search topics that need more attention in this area. The findings of this study will help

researchers to identify research gaps in GDSE process life cycle and highlights areas for

further research contributions. This study also is a part of a larger project aiming to

propose a digital game maturity assessment model (Aleem et al. 2016a). The identified

important dimensions are developer’s perspective (Aleem et al. 2016b), the consumer,

the business (Aleem et al. 2016c), and the process itself. It also reinforces the assertion

that the GDSE process life cycle domain is a complex scientific domain comparable to

the software engineering development process, and it needs more attention and consid-

eration of different factors in game development software engineering process.

In short, this study presents a systematic literature review of the GDLC topics. Over-

all, the findings of this study are important for the development of good-quality digital

games because they highlight the areas that needs research attention. The results of this

study have shown that the fragmented nature of the GDLC process requires a compre-

hensive evaluation strategy, which has not yet been entirely explored. Finally, this kind

of research work provides a baseline for other studies in the GDLC domain and high-

lights research topics that need more attention in this area. The findings of this study

will also help researchers to identify research gaps in the GDLC and highlight areas for

further research contributions.

Additional files

Additional file 1: Appendix A (DOC 114 kb)

Additional file 2: Appendix B (DOC 313 kb)

Abbreviations

GDD: Game Design Document; GDSE: Game Development Software Engineering (GDSE); QEF: Quantitative Evaluation
Framework; SLR: Systematic Literature Review

Authors’ contributions

SA designed the study and performed the review methodology, collected the data, analyzed the data and drafted the

manuscript. LC helped to conceive the study and provided guidance to carry out the quality assessments of paper,
reviewed the drafted manuscript and fine-tune the final draft. FA helped in study design, provided guidance to

present the analysis and helped to draft the manuscript. All authors read and approved the final manuscript.

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 28 of 30

dx.doi.org/10.1186/s40411-016-0032-7
dx.doi.org/10.1186/s40411-016-0032-7

Competing interests

The authors declare that they have no competing interests.

Author details
1College of Technological Innovation, Zayed University, Abu Dhabi 144534, United Arab Emirates. 2Department of
Electrical & Computer Engineering, University of Western Ontario, London, ON N6A 5B9, Canada. 3Department of

Computing Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.

Received: 16 March 2016 Accepted: 25 October 2016

References

Ahmed, F., Capretz, L. F., 2011. A business maturity model of software product line engineering. Information Systems
Frontiers, Springer, 13, 4, 543–560, DOI: 10.1007/s10796-010-9230-8

Aleem S, Fernando Capretz L, Ahmed F (2016). A Digital Game Maturity Model (DGMM), Entertainment Computing 17,

55-73. http://dx.doi.org/10.1016/j.entcom.2016.08.004

Aleem S, Capretz LF, Ahmed F (2016a) Critical Success Factors to Improve the Game Development Process from a
Developer’s Perspective. J Comput Sci Technol 31(5):925–950

Aleem S, Capretz LF, Ahmed F, (2016c). Empirical investigation of key business factors for digital game performance,

Entertainment Computing, Vol. 13,pp. -25-36, http://dx.doi.org/10.1016/j.entcom.2015.09.001

Alvarez, J. Michaud, L., (2008). Serious Games: Advergaming, Edugaming, Training, and More, IDATE
Ampatzoglou A, Stamelos I (2010) Software engineering research for computer games: a systematic review. J Inf Softw

Technol Elsevier 52(9):888–901.

Bethke E (2003). Game Development and Production. Wordware game developer's library. Wordware Pub, Plano. ISBN

978-0-585-44833-6
Blitz game studio, (2014). Project Lifecycle. Retrieved May 1, 2014 from http://www.blitzgamesstudios.com/blitz_

academy/game_dev.

Boyle EA, Connolly TM, Hainey T, Boyle JM (2012) Engagement in digital entertainment games: A systematic review.

Comput Hum Behav 28:771–780
Brereton P, Kitchenham B, Budgen D, Turner M, Khalil M (2007) Lessons from applying the systematic literature review

process within the software engineering domain. J Syst Softw 80(4):571–583

Budgen D, Turner M, Brereton P, Kitchenham B (2008). Using mapping studies in software engineering. In: Proceedings

of Psychology of Programming Interest Group (PPIG). Lancaster University, Lancaster. pp. 195–204
Cai KY, Card D (2008) An analysis of topics in software engineering. J Syst Softw 81(6):1051–1058

Capretz LF, Lee PA (1992) Reusability and life cycle issues within an Object-Oriented Design methodology

(refereed). In: Ege R, Singh M, Meyer B (eds) Technology of Object-Oriented Languages and Systems.

Prentice Hall, Englewood Cliffs, pp 139–150. ISBN 0-13-042441-2
Castillo T, Novak J, (2008). Game Development Essentials: Game Level Design. Delmar Cengage Learning. ISBN:

9781401878641

Chandler HM (2010) Game Production Handbook. Johns and Bartletts, Sudbury

Connolly TM, Boyle EA, MacArthur E, Hainey T, Boyle JM (2012) A systematic literature review of empirical evidence on
computer games and serious games. Comput Educ 59:661–686

Dyba T, Dingsoyr T (2008) Empirical studies of agile software development: a systematic review. Information and

Software Technology 50(9-10):833–859

Dyba T, Kitchenham BA, Jorgensen M (2005) Evidence-based software engineering for practitioners. Software Magazine.
IEEE Computer Society 22(1):58–65

Entertainment Software Association (ESA), (2014). Essential facts about the Computer and Video Game Industry.

Entertainment Software Association Available at: http://www.theesa.com/wp-content/uploads/2014/10/ESA_EF_

2014.pdf. Accessed on 15 Oct 2015.
Entertainment Software Association (ESA), (2015). Essential facts about the Computer and Video Game Industry.

Entertainment Software Association. Available at: http://www.theesa.com/wp-content/uploads/2015/04/ESA-

Essential-Facts-2015.pdf. Accessed on 15 Oct 2015.

Flood K (2003) Game Unified Process: GameDev., Available at: http://www.gamedev.net/page/resources/_/technical/
generalprogramming/game-unified-process-r1940. Accessed June 12, 2015

Glass RL, Vessey I, Ramesh V (2002) Research in software engineering: an analysis of the literature. Inf Softw Technol 44(8):491–506

Godoy A, Barbosa E F, (2010). Game-Scrum: An approach to agile game development, Proceedings of SBGames 2010

Computing Track (I. S. F. SC, ed.), Sao Carlos, pp. 292–295, November 8–10, pp. 292–295.
Gredler M. E (1995). Designing and evaluating games and simulations. Behavioral Science. Wiley Online Library, 40, 1 (1995), 76–77

Gredler M. E (2003). Games and simulations and their relationship to learning. Handbook of Research on Educational

Communications and Technology, Lawrence Erlbaum, Inc: Mahwah, NJ pp. 571–581.

Hendrick A (2014). Project Management for Game Development. Retrieved 20 May 2014, from http://mmotidbits.com/2009/06/
Kaitilla C (2014). How to learn Ouya Gamdev. Retrieved December 20, 2014, from http://gamedevelopment.tutsplus.

com/articles/how-to-learn-ouya-gamedev–gamedev-9197.

Kanode C M., Haddad H M (2009). Software engineering challenges in game development. In Proceedings of the 2009

Sixth International Conference on Information Technology: New Generations, (April 27–29, 2009), 260–265
Keith C (2010) Agile game development with Scrum. Addison-Wesley, Boston

Kitchenham B (2004). Procedures for performing systematic literature reviews. Joint Technical Report. Computer

Science Department, Keele University, July 2004, 33 pages.

Kitchenham B, Charters S, (2007). Guidelines for performing systematic literature reviews in software engineering,
Software Engineering Group, Keele University and Department of Computer Science, University of Durham, United

Kingdom, Technical Report EBSE-2007-01, 2007

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 29 of 30

http://dx.doi.org/10.1007/s10796-010-9230-8
http://dx.doi.org/10.1016/j.entcom.2016.08.004
http://dx.doi.org/10.1016/j.entcom.2015.09.001
http://www.blitzgamesstudios.com/blitz_academy/game_dev
http://www.blitzgamesstudios.com/blitz_academy/game_dev
http://www.theesa.com/wp-content/uploads/2014/10/ESA_EF_2014.pdf
http://www.theesa.com/wp-content/uploads/2014/10/ESA_EF_2014.pdf
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf
http://www.theesa.com/wp-content/uploads/2015/04/ESA-Essential-Facts-2015.pdf
http://www.gamedev.net/page/resources/_/technical/generalprogramming/game-unified-process-r1940
http://www.gamedev.net/page/resources/_/technical/generalprogramming/game-unified-process-r1940
http://mmotidbits.com/2009/06/
http://gamedevelopment.tutsplus.com/articles/how-to-learn-ouya-gamedev%2D-gamedev-9197
http://gamedevelopment.tutsplus.com/articles/how-to-learn-ouya-gamedev%2D-gamedev-9197

Kitchenham, B., Sjoberg, D.I.K., Brereton, P., Budgen, D., Dyba, T., Host, M., Pfahl, D., Runeson, P., 2010. Can we
evaluate the quality of software engineering experiments? In Proceedings of the 2010 ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement, 1–8

Kruchten P (2000) The Rational Unified Process: An Introduction, 2nd edn. Addison Wesley Longman, Reading

Liming D, Vilorio D (2011). Work for play: Careers in video game development, Occupational Outlook
Quarterly. Available at: http://www.bls.gov/careeroutlook/2011/fall/art01.pdf. Accessed on: 30 Sept 2015.

McGrath J (2014). The game development lifecycle: A theory for the extension of the agile project methodology.

http://blog.dopplerinteractive.com/2011_04_01_archive.html. Accessed 1 May 2014

McShaffry M (2003) Game coding complete. Paraglyph Press, AZ, USA
Munassar N, Govardhan A (2010) A Comparison Between Five Models Of Software Engineering. International Journal of

Computer Science Issues 7(5):94–101

Nayak M (2013). A look at the $66 billion video-games industry, Reuters, Retrieved June 2013 from http://in.reuters.

com/article/2013/06/10/gameshow-e-idINDEE9590DW20130610. Accessed 12 Sept 2014
Newzoo Game Market Research, 2015. Global Report: U.S. and China take half of $113 bn game market in 2018. Available at:

http://www.newzoo.com/insights/us-and-china-take-half-of-113bn-games-market-in-2018/. Accessed 2 Oct 2015

Osbourne-O'Hagan A, Coleman G, O'Connor RV (2014) Software development processes for games: a systematic

literature review. In: 21st European Conference on Systems, Software and Services Process Improvement EuroSPI,
Luxembourg, 25-27 June 2014

Petrillo F, Pimenta M, Trindade F, Dietrich C (2009) What went wrong? A survey of problems in game development.

Computers in Entertainment. ACM Digit Library 7(1(13)):1–22

Plass-Oude Boss, D., Reuderink, B., Van De Laar, B.L.A., Gurkok, H, Muhl, C., Poel, M., Heylen, D.K.J., Nijholt, A. (2010),
Human-Computer Interaction for BCI Games: Usability and User Experience. In Proceedings of the International

Conference on CYBERWORLDS, A. Sourin (eds), IEEE Computer Society, Los Alamitos, 277–281

Pressman RS (2001) Software engineering: a practitioner approach, 5th edn. Wiley, New York

PWC global media and entertainment outlook 2011–2014, 2011. Available at http://www.pwc.com/gx/en/global-
entertainment-mediaoutlook/territory-segments-digital-forecast-overview.jhtml. Accessed on 28 Jul 2013.

Ramadan R., Widyani Y, (2013). Game development life cycle guidelines. In Proceedings of 5th International Conference

on Advanced Computer Science and Information Systems (ICACIS). IEEE Computer Society, Jakarta, Indonesia,

(September 28–29, 2013) 95–100.
Rieber LP (2005) Multimedia learning in games, simulations and microworlds. Cambridge Handbook of Multimedia

Learning. Cambridge University Press, UK, pp 549–567

Robin S, (2009). Introduction to game development, 2nd edition. Charles River Media. ISBN-10: 1584506792

Salen K, Zimmerman E (2003). Rules of Play: Game Design Fundamentals. MIT Press, ACM Digital Library. p. 80. ISBN 0-
262-24045-9

Schwaber K, Beedle M (2002) Agile Software Development With Scrum. Prentice-Hall, Upper Saddle River

Shadish WR, Cook TD, Campbell DT (2002). Experimental and Quasi-experimental Designs for Generalized Causal

Inference. Houghton Mifflin Company, Boston
SUPERDATA 2015 Digital Good Measurement Blog. Worldwide digital games market. Available at: https://www.

superdataresearch.com/blog/us-digital-games-market/. Accessed 30 Dec 2015.

Wohlin C, Runeson P, Host M, Ohlsson MC, Regnell B, Wesslen A (2000) Experimentation in Software Engineering.

Kluwer Academic Publishers, Boston/Dordrecht/London

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Aleem et al. Journal of Software Engineering Research and Development (2016) 4:6 Page 30 of 30

http://www.bls.gov/careeroutlook/2011/fall/art01.pdf
http://blog.dopplerinteractive.com/2011_04_01_archive.html
http://in.reuters.com/article/2013/06/10/gameshow-e-idINDEE9590DW20130610
http://in.reuters.com/article/2013/06/10/gameshow-e-idINDEE9590DW20130610
http://www.newzoo.com/insights/us-and-china-take-half-of-113bn-games-market-in-2018/
http://www.pwc.com/gx/en/global-entertainment-mediaoutlook/territory-segments-digital-forecast-overview.jhtml
http://www.pwc.com/gx/en/global-entertainment-mediaoutlook/territory-segments-digital-forecast-overview.jhtml
https://www.superdataresearch.com/blog/us-digital-games-market/
https://www.superdataresearch.com/blog/us-digital-games-market/

	Abstract
	Introduction
	Related work

	Background
	Methods
	Planning phase (Step 1–4)
	Selection of topic and research questions
	Review team & protocol establishment

	Conducting phase (Step 5–9)
	Search strategy
	Pilot selection & data extraction
	Quality criteria
	Data synthesis

	Documenting (Step 10–12)

	Results and Discussion
	RQ1 What is the intensity of research activity on the GDSE process life cycle?
	RQ 2: What topics are being researched in the pre-production. Production and post production phase?
	Pre-production phase
	Production phase
	Post-production phase

	RQ 3: What research approaches are being used by researchers in digital game domain?
	RQ4: What empirical research methods are being used in the software games domain?

	Conclusions
	show [a]
	Authors’ contributions
	Competing interests
	Author details
	References

