

# Game Metrics & Biometrics

## The Future of Player Experience Research

Nacke, L., Ambinder, M., Canossa, A., Mandryk, R., Stach, T. (2009). "Game Metrics and Biometrics: The Future of Player Experience Research" Panel at Future Play 2009.



### Overview

### 1. Introduction of Panelists

### 2. Methods Overview

### 3. Discussion and Questions



## Introduction of Panelists

- 1. Mike Ambinder
- 2. Alessandro Canossa
- 3. Regan Mandryk
- 4. Tad Stach
- 5. Lennart Nacke



## **Mike Ambinder**

User Experience Designer
 Valve Corporation

PhD in Experimental Psychology

Application of knowledge and methodologies from psychology to game design



## **Alessandro Canossa**

#### 3 years experience at EIDOS

 Play pattern modelling techniques (Hitman Blood Money, Kane & Lynch and Tomb Raider Underworld)

#### Play-Persona framework

- Tool used in design phase to integrate different players' needs and motivations
- Backed by game metrics
- Solution Tool used to evaluate experience

#### Speaking at

- Nordic Game (Sweden)
- NLGD (Holland)
- BGExpo (North Carolina, USA)
- Future Play (Canada)
- IGRA (Japan)





## **Regan Mandryk**

- User engagement in games
   Sensing and modeling
- Interaction techniques
   Emerging devices
- Assistant Professor
  - Computer Science
- University of Saskatchewan
   Canada

www.reganmandryk.com



### **Tad Stach**

- A PhD student
- Computer science
   Queen's University
- Service video games
- Heuristics and Usability



### Lennart Nacke

Blekinge Institute of Technology
 PhD Candidate
 Digital Game Development Degree

- & EU FUGA ("Fun of Gaming") project
- Fun & player experience researchBiometrics consulting



## **Methods Overview**

- 1. Mike: Direct Observation, Q&A, Verbal Reports, Surveys
- 2. Alessandro: *In-game metrics, GIS/Heatmaps, Play-Personas*
- 3. Regan: *EMG, Skin Conductance, Heart-Rate*
- 4. Tad: *Heuristics, Usability evaluations*
- 5. Lennart: *EEG, Eye Tracking*



## **Direct Observation**

### So "Typical" playtest

- Watch people play the game
- Observe their gameplay/behavior
- Simulate at-home experience
- Have a design goal
- Is it fun?

### 

### **Direct Observation**

PRO

CON

- + Get a feel for player interaction with game
- Importance of what people do—not what they say

- Presence of observers can bias results
- Salient event can slant
  - interpretation
- Behavior
   requires
   interpretation







## **Verbal Reports**

Think-aloud protocol:

- A People describe their actions as they play
- Output of the second second
- In conjunction with direct observation



## **Verbal Reports**

PRO

CON

- + Enables realtime glimpse into player thoughts, feelings, and motivations
- Interferes with gameplay
- Creates an artificial experience
- + Bring up unnoticed details
- + Effective for `why' questions
- Inaccurate
   and biased



multy

1.00

Don't shoot teammates!

Presents

Bill





л

1



Louis

32 180

7



### Q&As

- Structured (usually) querying of playtesters
- Solution Validate playtest goals
- Source of supplemental information





PRO

- + Answer specific design questions
- + Determine specific player intent

CON

- Group biases

   (anchoring,
   social pressure,
   saliency, etc.)
- People don't
   know why they
   do what they do
- Potential for biased questions



Ø

Laule

Zony

ø

Pepciels



10 78

101



### Surveys

- Set of standardized questions
- Forced choice responses
- Quantify feedback/opinions
- Player categorization



### Surveys

PRO

- + Less biased responses
- + Response validation
- + Forced choice helpful for revealing preference
- + Time-based comparisons

CON

- Eliminate
   nuance
- Difficulty in converting ratings to meaningful decisions
- Limited solution space

How challenging were the following enemies (1 = very easy; 7 = very hard)?

| Boomer:          | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|------------------|---|---|---|---|---|---|---|
| Common Infected: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Hunter:          | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Smoker:          | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Tank:            | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| Witch:           | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

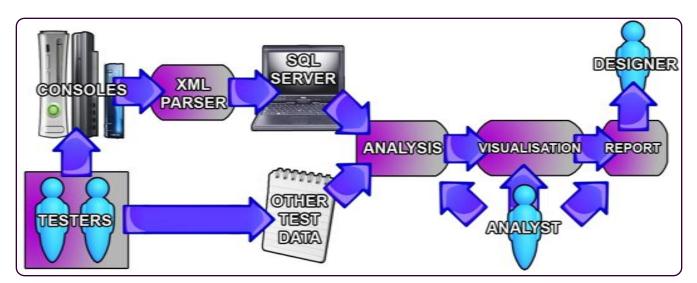
Please rank order your preference for the following weapons from **1** (most liked) to **12** (least liked)

Assault Rifle Auto Shotgun Dual Pistols Gas Can Hunting Rifle Molotov Cocktail Mounted Turret Pipe Bomb Pistol Propane Tank Pump Shotgun SMG





## **Gameplay Metrics**


### **Gameplay metrics = Player behavior**

Sumerical data from game software about player behavior

Types:

Continuous / Frequency / Triggered

Spatial / Non-spatial

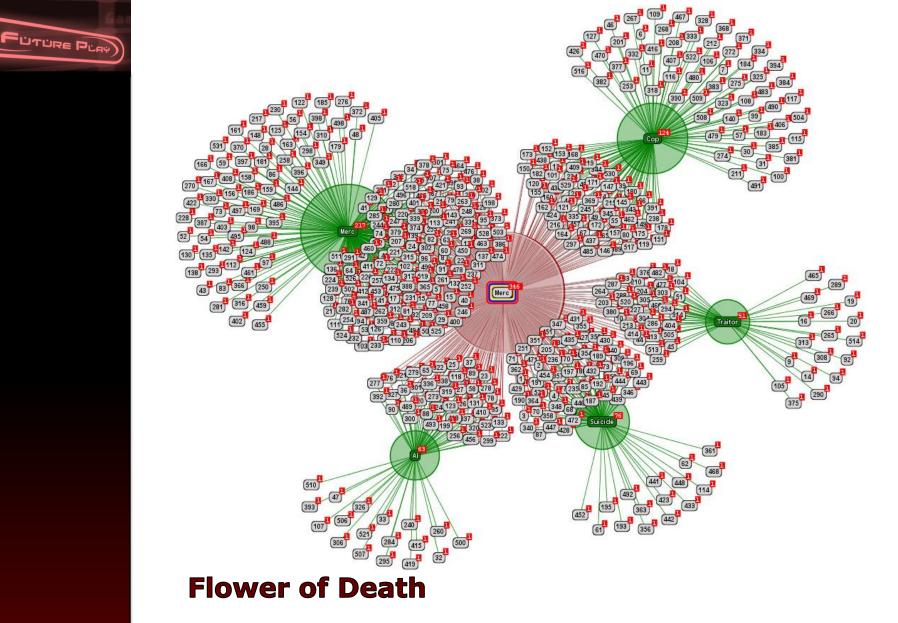




### **Gameplay Metrics**

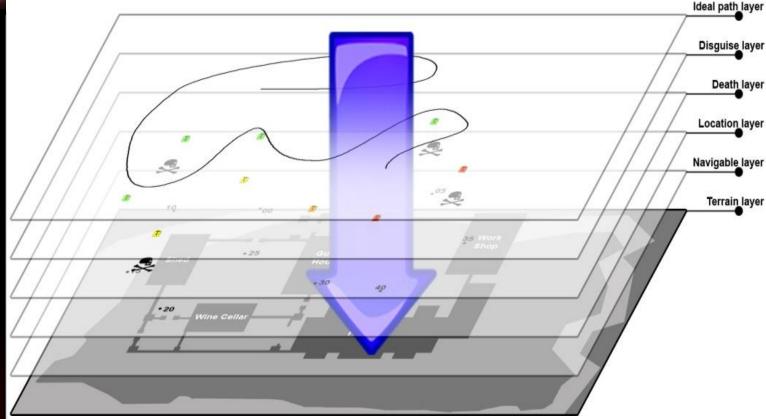
Answers to No answers to

& What?


PRO

Why?

CON


Where?
How?

When?



Generated by a cluster visualization tool (shows data from *Fragile Alliance*, it relates **role** at death with **cause** of death)

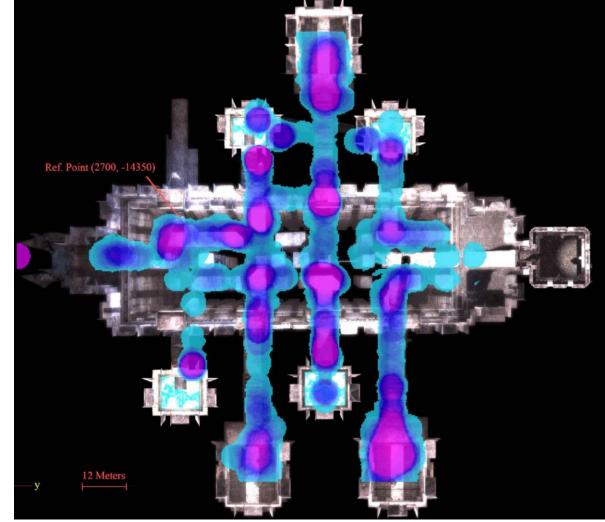




#### **Geographical Information System (GIS)** GIS are computerized data management systems used to capture, store, manage, retrieve, analyze, and display information with spatial dimension.



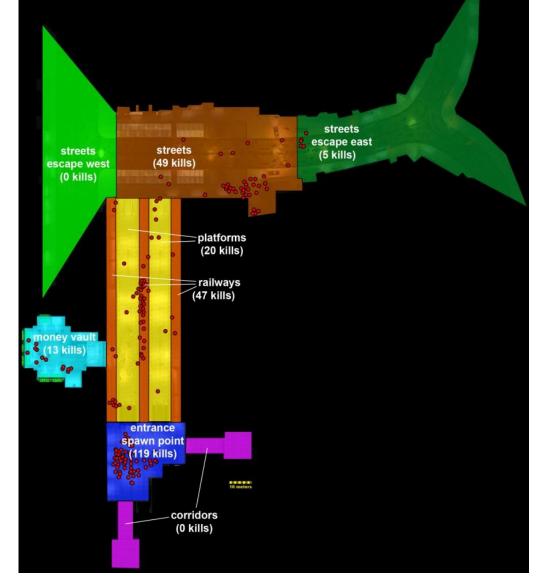
### **Geographical Information Systems (GIS)**


#### PRO

- Service Flexible
- Off-the-shelf
- Cheaper
- Minimal customization needed

#### CON

- Overkill
  - for simple, nonspatial analyses
- Not integrated with game engine
- Limited 3D representation



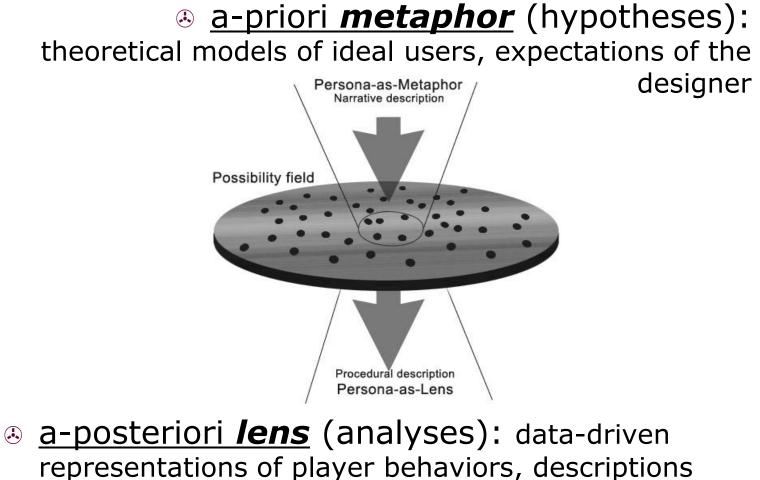



#### Heatmap

HoD requests have been plotted and a density kernel calculated into a heatmap to visualize the distribution of areas with high and low intensities of requests






#### **Deaths in Sectors**

Plotted deaths divided per sub-sector



### **Play-Personas**

aggregate descriptions of possible player behaviour:



of what actual, real players do during play



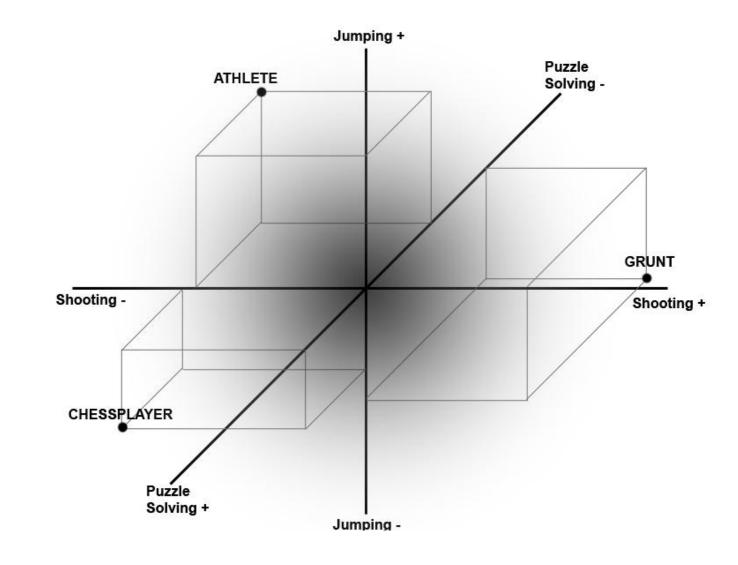
## **Play-Personas**

### Pre/Production

- Envision different play experiences
- After Launch
  - Evaluation of experiences

Hypothesising and analysing what players repeatedly do, sheds light on what their **goals**, **intentions** and **desires** are at a precise moment in time and in a precise context: the game.



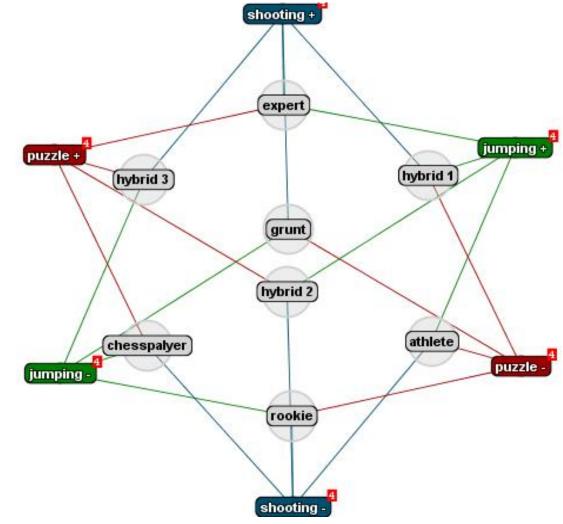

## **Play-Personas**

#### PRO

- Experiences easier to
  - Design
  - Analyse
- Focus
  - A Play experience
  - Player behavior
- Map playing landscape
- Provide varied experience

#### CON

- Aisk of truisms
- No detection of
   problems unrelated to patterns of play
- Not useful for usability issues




#### Play persona possibility space

**CUTURE PLAY** 

Mapping the possibility space with playpersonas



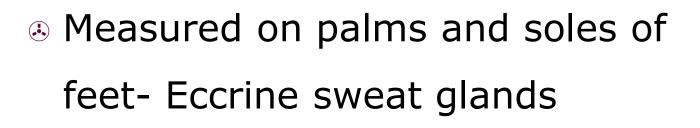


#### **Gameplay parameter relations**

Persona hypotheses emerge as relations between parameters that have been derived from gameplay mechanics.



### Some references


Tychsen, A. and Canossa, A., Defining personas in games using metrics. In 2008 Conference on Future Play: Research, Play, Share, (Toronto, Ontario, Canada, 2008), ACM, 73-80.

Canossa, A. and Drachen, A., Play-Personas: Behaviours and Belief systems in User-Centred Game Design. Interact Conference 2009. Uppsala, Sweden.

Tychsen, A. and Canossa, A., Analyzing User Behavior via Gameplay Metrics. Future Play 2009.



## Galvanic Skin Response



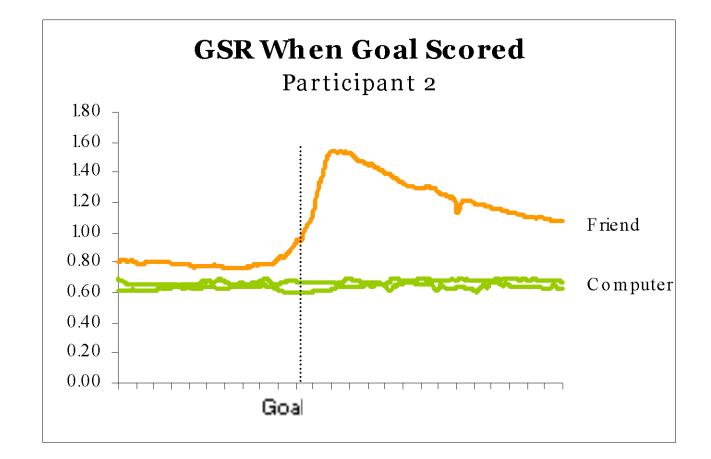
- Measures electrical resistance (or conductance) between two electrodes
- Correlate to psychological arousal



# Galvanic Skin Response



Easy to measure


- Inexpensive hardware
- Easy to interpret
- Non-intrusive
   (could be built into a device)

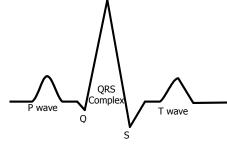
Noisy signal

CON

- Large
   individual
   variations in
   baseline and
   responsivity
- Slow decay (signals add together)



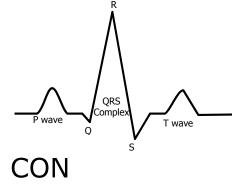



#### **Example Usage**

Three instances of GSR when a goal was scored in NHL 2003

- twice against the computer and once against a friend




# Cardiovascular Measures



- Selectrocardiography (EKG)
- Heart Rate (HR)
- Interbeat Interval (IBI)
- Heart Rate Variability (HRV)
  - Spectral analysis of sinus arrhythmia
  - Indicative of mental effort, cognitive load
- Blood Volume Pulse (BVP) (periodic)
- Blood Pressure (BP)



### Cardiovascular Measures PRO



- Easy to measure some signals (HR)
- Inexpensive hardware (HR)
- Salient and established measures

- Intrusive to measure accurately
- Affected by many things (e.g., physical activity)
- Complex analysis (HRV)



# **Electromyography**

- Isometric tension, or detection of motion
- Needles or surface electrodes
- Tension in the jaw
- Some Forehead (smiling vs. frowning)
- Can be used on any muscles



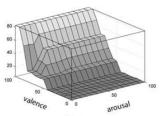
# **Electromyograph** PRO

- Analysis of signals easy
- More sensitive than image processing for facial expressions
- Easy to interpret

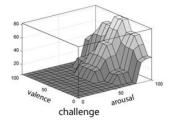
- Intrusive to measure
- Difficult to get natural measures
- Hardware is expensive
- Interference of muscle groups

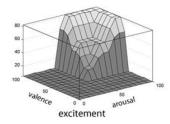


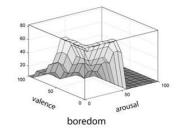


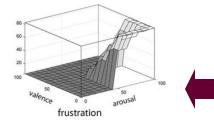


#### EMG, HR, and GSR (and respiration)

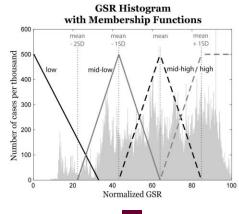
Intrusiveness of sensors is clear, but participants forgot about them after a short time



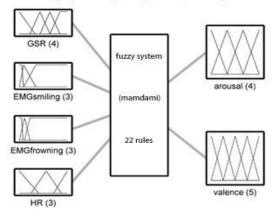



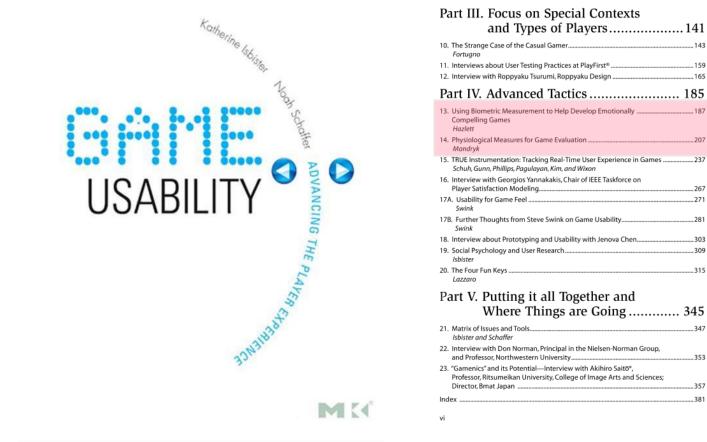












Fuzzy System: Physiological data to AV space







#### For more information:

R.L. Mandryk (2008). Physiological Measures for Game Evaluation. in Game Usability: Advice from the Experts for Advancing the Player Experience. (K. Isbister and N. Shaffer, Eds.), Morgan Kaufmann.

TABLE OF CONTENTS

.207

267

271

...315

...347

.....353

..... 357

.381



## **Some References**

- R.L. Mandryk, and M.S. Atkins (2007). A Fuzzy Physiological Approach for Continuously Modeling Emotion During Interaction with Play Environments. International Journal of Human-Computer Studies, 6(4), pg. 329-347. The original publication is available at Elsevier Online.
- R.L. Mandryk, K.M. Inkpen, and T.W. Calvert (2006). Using Psychophysiological Techniques to Measure User Experience with Entertainment Technologies. Behaviour and Information Technology (Special Issue on User Experience), Vol. 25, No.2, March-April 2006, pg. 141-158.
- R.L. Mandryk, M.S. Atkins, and K.M. Inkpen (2006). A Continuous and Objective Evaluation of Emotional Experience with Interactive Play Environments. in Proceedings of the Conference on Human Factors in Computing Systems (CHI 2006). Montreal, Canada, April 2006, pg. 1027-1036.
- R.L. Mandryk (2008). A physiological approach for continuously modeling user emotion in interactive play environments. in Proc of Measuring Behavior 2008, Maastricht, NE, August 2008, pg. 93-94.



# Heuristic Evaluation for Games

- Sew formal methods exist for evaluating the usability of game interfaces
- Developed usability principles for video game design
- Heuristics can be used to carry out usability inspections of video games



# **Developing Game Usability Heuristics**

- Step 1: identify problems from game reviews
  - 108 reviews from GameSpot
  - 6 major PC game genres
- Step 2: develop problems categories
   12 common categories found
- Step 3: develop game heuristics
   10 heuristics created from problem categories



# **Usability Heuristics**

- 1. Provide consistent responses to user's actions
- 2. Allow users to customize video and audio settings, difficulty and game speed
- 3. Provide predictable and reasonable behaviour for computer controlled units
- 4. Provide unobstructed views that are appropriate for the user's current actions
- 5. Allow users to skip non-playable and frequently repeated content
- 6. Provide intuitive and customizable input mappings
- 7. Provide controls that are easy to manage, and that have an appropriate level of sensitivity and responsiveness
- 8. Provide users with information on game status
- 9. Provide instructions, training, and help
- 10. Provide visual representations that are easy to interpret and that minimize the need for micromanagement



# **Usability Heuristics**

PRO

- help identifying game-specific usability problems
- applicable to mockups and prototypes
- can be used to evaluate most games

CON

- does not address engagement and "playability"
- limitations in the development of heuristics



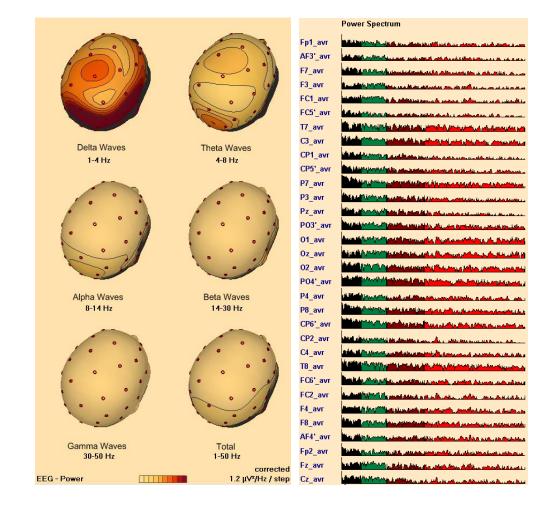
### **Some References**

- Pinelle, D., Wong, N., Stach, T., Gutwin, C.
   (2009) Usability Heuristics for Networked Multiplayer Games. To appear in *GROUP 2009*.
- Pinelle, D., Wong, N., Stach, T. (2008) Using Genres to Customize Usability Evaluations of Video Games. *Future Play 2008*, 129-136.
- Pinelle, D., Wong, N., Stach, T. (2008) Heuristic Evaluation for Games: Usability Principles for Video Game Design. *CHI 2008*, 1453-1462.



### EEG

- Sector Electrodes placed on scalp (from 20 to 256)
- Measures electric potentials
- Brainwaves are described in frequency bands
  - Delta (trance, sleep)
  - Theta (emotions, sensations)
  - Alpha (calm, mental work)
  - Low beta (focus, relaxed)
  - Mid beta (thinking, alert)
  - High beta (alert, agitated)
  - Gamma, seldom (information processing)






#### **Game experiment Setup**

EEG and EMG electrodes are being attached. The Biosemi electrode cap consists of 32 electrodes in the areas: frontal (F), parietal (P), temporal (T), occipital (O), central (C).





#### **EEG Frequencies and Spectrum**

EEG Analysis is difficult. After artifact scoring, values have to be transformed for spectral analysis.





PRO

- Objective
- Covert & continuous recording
- Quantifiable
- Aeliable
- Replicable
- Empirical power

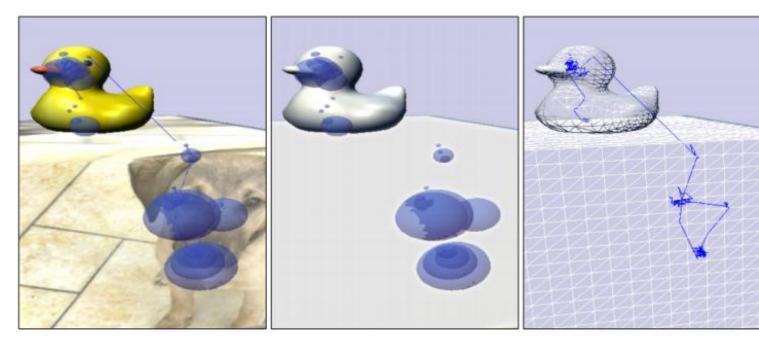
#### CON

- Intrusive
- Sector Expensive
- Artifact scoring
- Timeconsuming
- Sometimes hard to interpret



# **Eye Tracking**

Measures what eyes look at Saccades (fast movement) Gaze path Sixations (dwell times) Attention focus Pupil dilation/blink rate
 Attention precedes gaze (200ms) Used mainly to improve interface Lack of 3D analysis tools






#### **Experimental playing session**

Experimental gaming session with all logging equipment in place.





#### **Example of 3D Eye Tracking Visualization**

Viewed game world objects can be displayed together with their gazepaths in 3D (see also Stellmach, 2009)



# **Eye Tracking**

PRO

- Easy to use
- Objective
- Covert
- Continuous
- Quantifiable
- Replicable
- Empirical power

CON

- Can be expensive
- Lack of good tools
- Timeconsuming



### **Some References**

Nacke, L. and Lindley, C.A., Flow and Immersion in First-Person Shooters: Measuring the player's gameplay experience. In *Proceedings of the 2008 Conference on Future Play: Research, Play, Share*, (Toronto, Canada, 2008), ACM, 81-88.

- Grimshaw, M., Lindley, C. A., & Nacke, L. (2008). Sound and Immersion in the First-Person Shooter: Mixed Measurement of the Player's Sonic Experience. Audio Mostly Conference 2008, Piteå, Sweden.
- Nacke, L., Lindley, C., and Stellmach, S. (2008) Log Who's Playing: Psychophysiological Game Analysis Made Easy through Event Logging. In Proceedings of the 2nd international Conference on Fun and Games (Eindhoven, The Netherlands, October 20 - 21, 2008). P. Markopoulos, B. Ruyter, W. Ijsselsteijn, and D. Rowland, Eds. Lecture Notes In Computer Science, vol. 5294. Springer-Verlag, Berlin, Heidelberg, 150-157.
- Stellmach (2009). Visual Analysis of Eye Gaze Data in Virtual Environments. Master's Thesis. University of Magdeburg.



### Discussion

- Is an integration of the presented methods feasible?
- Solution Can they be integrated in a costefficient way?
- Which methods are suitable for evaluating which parts of game development?
- Gan empirical data be applied to game design? How?



### Discussion

- Should there be a discussion about separating quantitative from qualitative or do we agree on integrated measures?
- What can these methods be used for beyond evaluation? Exergames? Biofeedback?
- Are those methods improving games? If yes, how can (or should) they be adopted by the majority of the game industry?



## **More questions?**

#### Audience



### Find out more...

- Mike: <u>www.valvesoftware.com</u>
- Alessandro: <u>www.dkds.dk</u>
- Regan: <u>www.reganmandryk.com</u>
- Tad: <u>equis.cs.queensu.ca</u>
- Lennart: <u>www.acagamic.com</u>

③ project.hkkk.fi/fuga/



### Thanks a lot!

