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Searching for relevant content in a massive amount of multimedia
information is facilitated by accurately annotating each image,
video, or songwith a large number of relevant semantic keywords,
or tags. We introduce game-powered machine learning, an inte-
grated approach to annotating multimedia content that combines
the effectiveness of human computation, through online games,
with the scalability ofmachine learning. We investigate this frame-
work for labeling music. First, a socially-oriented music annotation
game called Herd It collects reliable music annotations based on
the “wisdom of the crowds.” Second, these annotated examples
are used to train a supervised machine learning system. Third, the
machine learning system actively directs the annotation games to
collect new data that will most benefit future model iterations.
Once trained, the system can automatically annotate a corpus of
music much larger than what could be labeled using human com-
putation alone. Automatically annotated songs can be retrieved
based on their semantic relevance to text-based queries (e.g., “fun-
ky jazz with saxophone,” “spooky electronica,” etc.). Based on
the results presented in this paper, we find that actively coupling
annotation games with machine learning provides a reliable and
scalable approach to making searchable massive amounts of multi-
media data.

The last decade has seen an explosion in the amount of multi-
media content available online: over 7 billion images are up-

loaded to Facebook each month (1), YouTube users upload 24 h
of video content per minute (2), and iTunes, the world’s largest
music retailer, offers a growing catalog of more than 20 million
songs (3). Developing a semantic multimedia search engine—that
enables simple discovery of relevant multimedia content as easily
as Internet search engines [e.g., Google (4)] help us find relevant
web pages—presents a challenge because the domain of the
query (text) differs from the range of the search results (images,
video, music).

To enable semantic search of nontextual content requires
a mapping between multimedia data and a wide vocabulary of
descriptive tags. Describing multimedia content with relevant
semantics necessitates intervention from humans who can under-
stand and interpret the images, video, or music. However, manual
tagging by human experts is too costly and time-consuming to be
applied to billions of data items. For example, Pandora, a popular
Internet radio service, employs musicologists to annotate songs
with a fixed vocabulary of about five hundred tags. Pandora then
creates personalized music playlists by finding songs that share a
large number of tags with a user-specified seed song. After 10 y of
effort by up to 50 full time musicologists, less than 1 million songs
have been manually annotated (5), representing less than 5% of
the current iTunes catalog.

Crowdsourcing has emerged as an affordable and scalable
alternative to expert annotation by engaging many nonexpert
contributors to label content online. Participants are motivated
through small monetary rewards (6), or, even better, to contribute
for free by disguising tasks as fun games, appealing to scientific
altruism, or requiring it to access a service of interest. This dis-
tributed human computation has been applied; e.g., to categorize
galaxies (7), fold proteins (8), transcribe old books (9), classify
smiles (10) and apply descriptive tags to images (11), web pages
(12) and music (13) (see SI Text for a review). Despite the promise

of recruiting vast amounts of free labor, human computation
games have had limited success in tagging the vast amount of
multimedia content on the web: in 5 y, the ESPgame (11) has
collected labels for up to 100 million images—roughly the same
number that are uploaded to Facebook every 10 h—and TagA-
Tune (13) has labeled 30,000 song clips, or about 0.15% of iTunes’
catalog.

Instead of requiring that humans manually label every image,
video, or song, tagging can be partially automated using super-
vised machine learning algorithms that learn how semantics relate
to multimedia. Machine learning approaches discover consistent
patterns among a modest number of prelabeled training examples
and then generalize this learned knowledge to label new, unla-
beled data. The scalability of computer automation offers the
potential to categorize massive amounts of multimedia informa-
tion but reliability hinges on the quality of training data used. For
example, by learning from millions of example images of faces in
all possible poses, angles, and lighting conditions, machine learn-
ing algorithms (14) rapidly and reliably detect faces to automate
focus in consumer digital cameras.

This paper proposes and investigates game-powered machine
learning as a reliable and viable solution to annotating large
amounts of multimedia content for semantic search, by lever-
aging the effectiveness of human computation through online
games with the scalability of supervised machine learning. The
main idea, illustrated for music search in Fig. 1, is to use an online
annotation game to collect reliable, human-labeled examples that
are tailored for training a supervised machine learning system.
Once trained, this system can automatically annotate new content
with the same tags used in the game, rapidly propagating seman-
tic knowledge to lots of multimedia content. Through an active
learning feedback loop, the game focuses on collecting data that
most effectively improves future machine learning updates.

To validate the effectiveness of game-powered machine learn-
ing for music search, we designed and developed “Herd It,” an
online music annotation game that motivates players to contri-
bute tags for songs. In contrast to previous “games with a pur-
pose” which have aimed to annotate every image (11) or song
(13, 15) on the web, Herd It was designed with a different, unique,
and more realistic goal in mind: to enable the active machine
learning approach presented in Fig. 1. To this end, Herd It was
designed to integrate with a machine learning system that actively
suggests songs and tags to be presented to users. As a result, the
game can collect the most effective data for training the machine
learning algorithm that then automates large-scale music tagging.
Besides focusing human effort on efficient data collection, active
song and tag suggestion also made gameplay more appealing.
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We deploy this game-based machine learning system to inves-
tigate and answer two important questions. First, we demonstrate
that the collective wisdom of Herd It’s crowd of nonexperts can
trainmachine learning algorithms as well as expert annotations by
paid musicologists. In addition, our approach offers distinct ad-
vantages over training based on static expert annotations: it is
cost-effective, scalable, and has the flexibility to model demo-
graphic and temporal changes in the semantics of music. Second,
we show that integrating Herd It in an active learning loop trains
accurate tag models more effectively; i.e., with less human effort,
compared to a passive approach.

Herd It—A Social Music Annotation Game
A player arriving at Herd It (www.HerdIt.org) is connected with
“the Herd”—all other players currently online—and the game
begins. Each round of Herd It begins by playing the same piece
of music to all members of the Herd. A variety of fun, simple mini-
games prompt players to choose from suggested tags that describe
different aspects of the music they hear (Fig. 2 illustrates an ex-
ample of Herd It’s gameplay with further examples in SI Text). In
every minigame, players earn points based on their agreement
with the tags chosen by the rest of the Herd, encouraging players
to contribute tags that are likely to achieve consensus.

Herd It’s goal is to collect training data that primes and im-
proves the machine learning system through an active learning
loop by motivating human players to provide reliable descriptions
of a large number of example songs using a dynamic vocabulary
of tags. To achieve this goal, Herd It’s development followed a

user-centered design process (16) that aimed to create an intuitive,
viral game experience. A series of rapid prototypes were released
every month and tested on focus groups of 5–50 new players,
both in person at our lab and in a controlled online environment.
During each test, we evaluated factors including playability and
appeal, user-interface intuitiveness, viral potential, and stability.
Interviews and questionnaires were used to evaluate the extent to
which players were able to focus on the music (ensuring reliable
data collection), their awareness of the other players (Herd It is a
social game and a player’s score depends on the Herd), and over-
all enjoyment (indicating likelihood of large-scale participation).
Iterative user feedback led to improvements in the design and the
process continued until key gameplay and social evaluation me-
trics were satisfied (e.g., 94% of players understood the scoring
metric within five games, 82% said they would recommend Herd
It to their friends; further results in SI Text). The user-centered
design process was instrumental in determining crucial gameplay
mechanics, described below, that differentiate Herd It from other
music annotation games [e.g., (13, 15)].

In particular our user tests discovered that, while free-text tag-
ging works well when annotating images (which tend to feature
many obvious, easily named objects; see; e.g., ref. 11), many lis-
teners found it difficult to produce and agree on a variety of tags
for music in a game environment without some priming. Asking
players to type their own descriptions of the music meant that
the vast majority of tags were confined to a limited vocabulary
of generic tags; e.g., “rock,” “guitar,” “drums,” “male/female voc-
alist” [MajorMiner (15) suffers from this problem]. As a result,

Fig. 1. Game-powered machine learning framework for music annotation.

Fig. 2. Illustration of Herd It gameplay. (A) Six bubbles float around the play area, each suggesting a mood that might be evoked by the music that is playing.
The player clicks the bubble they feel is most appropriate and all other bubbles disappear with a pop. After 15 s, the minigame ends. (B) Choices made by the
rest of the Herd are revealed. During this feedback period, an “agree-O-meter” fills up as other members of the Herd agree with the player’s choice. Players
earn points equal to the percentage of the Herd in agreement with them, rewarding consensus and implicitly collecting reliable music tags.
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the independent inputs of multiple players rarely converged on
more interesting tags [TagATune (13) avoids this problem by ask-
ing players to guess whether they are listening to the same song,
based on the free-text tags other players entered, rather than re-
quiring agreement on the exact tags]. To achieve both variety and
consensus, Herd It’s unique solution is to suggest tags for player
confirmation, thereby controlling the vocabulary used to describe
music while maintaining simple and compelling gameplay. In ad-
dition, tag suggestion addresses another, important design objec-
tive: it facilitates the active learning paradigm depicted in Fig. 1
which requires precise control over the data collected from the
Herd. Specifically, an active learning approach leverages machine
learning models to suggest {song,tag} combinations that, if con-
firmed by human players, are most likely to produce useful train-
ing examples and optimize future model training. Herd It’s tag
suggestion mechanism enables active learning by focusing human
labeling on specific {song,tag} combinations. Vice versa, Herd
It’s new tag suggestion design benefits from it being powered with
machine intelligence. Indeed, suggesting tags randomly, rather
than intelligently, was found to result in many minigames that
have no relevant choices and are not fun.

To achieve widespread player engagement and thus maximize
training data collection, we found that Herd It should target the
“casual” gamer. Unlike the traditional computer gaming demo-
graphic (i.e., teenage boys) who enjoy long-lasting games with
complicated gameplay mechanics, casual games appeal to a much
wider demographic (e.g., skewed towards middle-aged women),
are played in short time increments (5–20min) and feature simple
but addicting gameplay (17). Herd It’s simple, single-click game-
play, cartoon-ish minigame design, and intuitive scoring metric
were designed to attract a broad audience of casual gamers.

Based on the choices offered in a given minigame, different
users may end up describing a song differently, using either com-
patible tags (e.g., a “romantic” song that is also described as
“carefree”) or opposite tags (e.g., what sounds “exciting” to one
listener may be “boring” to another). Given this subjectivity in-
herent in music appreciation, our design process revealed that it
is important to evaluate agreement in minigames in a (larger)
group setting, as this enables clusters of consensus to develop
between the players, around multiple “right” answers. This obser-
vation inspired us to make “the Herd” a central feature of the
game, rather than the player-vs-player mechanic used by other
games [e.g., (11, 13)]. In addition, our user tests determined that
realtime, social interaction produced more compelling gameplay
than off-line group feedback [e.g., (15)]. The group dynamic also
makes it more difficult for a few players to cheat and gain lots of
points by coordinating poor labeling (other measures to prevent
cheating include randomizing tag order in minigames and pre-
venting a single player from entering multiple games).

Finally, because individuals use music preference to commu-
nicate information about their personality (18), players desired
Herd It to be embedded in a larger social music experience. For
example, players wanted to choose preferred genres, share music,
create personal profiles, and challenge and compare scores with
friends, leading us to integrate the game within the players’
existing social network by releasing Herd It as an application
on Facebook. Integrating Herd It with Facebook offers many
avenues to engage players (e.g., easy login, personalized mes-
sages, player photos) and promote the game to a wide audience
(e.g., invites, challenges, see SI Text). Facebook also provides de-
mographic and psychographic information about players (e.g.,
gender, age, location, friends, favorite music), offering a hitherto
unavailable level of insight into how different people experience
and describe music.

Automatic Music Tagging
Statistical pattern recognition methods for tagging music begin
by extracting features that summarize properties of the acoustic

waveforms, essentially “listening” to themusical signal. By consid-
ering a training set of reliably labeled songs, supervised machine
learning algorithms identify statistical regularities in these acous-
tic features that are predictive of descriptive tags like “bluegrass,”
“banjo,” or “mellow.” Machines can then generalize this knowl-
edge by detecting the presence of similar patterns in vast catalogs
of new, untaggedmusic, thereby leveraging the accuracy of human
labeling (to obtain the training set) with the scalability of auto-
mated analysis to tag this new music content. Machine learning
methods formusic tagging continue to improve and, given training
data of sufficient quality, their accuracy approaches the ceiling set
by the inherent subjectivity in describing music with tags (19).

To thoroughly evaluate the efficacy of the game-powered ma-
chine learning paradigm depicted in Fig. 1, we consider various
state-of-the-art autotagging algorithms for its machine learning
component, including generative (19, 20) and discriminative
(21, 22) approaches. Generative methods focus on estimating
the (class-conditional) distribution [e.g., with a Gaussian mixture
model (GMM), dynamic texture mixtures (DTM), etc.] of acous-
tic features that are common among songs that human “trainers”
have labeled with a given tag. By evaluating the likelihood of
features from a new song under the learned distribution, the
model determines the probability that the tag is a relevant de-
scription of the song (19). Discriminative methods, on the other
hand, directly optimize a decision rule to discriminate between a
tag being present or absent for a given audio clip. Evaluating the
decision rule for a new song allows to obtain tag probabilities.
Just as Internet search engines rank web pages by their relevance
to a text query, the tag probabilities output by a model can be
used to rank songs by their relevance to the tag.

Traditional machine learning approaches use a single, fixed
training set to learn models that, once trained, remain static.
In our game-powered machine learning framework however,
new data is constantly being contributed by Herd It players. That
data can be used to update our tag models. Even more, because
Herd It’s design permits actively focusing players’ efforts on spe-
cific songs and tags, it is possible to collect specifically that data
that is expected to improve tag models most effectively, achieved
through an active learning approach (see ref. 23 for a review), that
leverages the current tag models to identify the most effective
song-tag pairs for future model updates. Active learning fully in-
tegrates the autotagging algorithm with the data collection pro-
cess, to optimize model training. To investigate the benefits of
deploying Herd It in an active learning loop compared to updat-
ing with randomly collected data, we develop a unique active
learning algorithm to suggest data for training the generative
GMM-based autotagger, a top performer in the 2008 MIREX
evaluation of automatic music tagging algorithms (24).

Various active learning algorithms have been proposed for dis-
criminative machine learning methods†, where both positive and
negative examples are used to learn a decision boundary between
classes. Generative approaches, on the other hand, require only
positively labeled examples for training (i.e., songs that exemplify
a certain tag) and negatively labeled training examples offer no
improvement to the model‡. To collect positively labeled training
examples and improve a generative model through active learn-
ing may suggest sampling unlabeled examples that have high
likelihood under the current model and procuring labels for them
[e.g., by presenting {song,tag} pairs in Herd It minigames]. How-
ever, this “certainty” sampling approach suffers from two draw-
backs: early in training, when the model is not yet well learned,

†Strategies for actively learning discriminative models include uncertainty sampling (25)
where points are chosen that are least certain (or have highest entropy) under the
current model (e.g., points closest to the decision boundary) and variance reduction
(26) where samples are chosen to reduce the model’s output variance.

‡For example, for generative models, uncertainty sampling faces the problem that
unlabeled songs which have low certainty under the current model are likely to result
in negative labels.
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the most likely samples may not in fact be positive examples and
thus will not contribute to the training set. Later in the learning
process, sampling from the most likely areas results in many con-
firmed positive examples that conform to the model’s current
training set and lack the diversity required to generalize the cur-
rent model to uncertain areas of the feature space. Exploration of
these uncertain areas advocates for a more random sampling of
unlabeled examples. Rather than a complete random sampling,
we can actively increase the efficiency of the data collection and,
thus, the learning rate, by reducing the likelihood of sampling un-
labeled examples that are eventually labeled as negatives (which
are of no use to train the generative model) and thereby avoiding
points that most disagree with the current model. More specifi-
cally, we rank all of the unlabeled examples by their likelihood
under the currentmodel, remove the 10%of examples with lowest
likelihood, and query labels randomly from the remaining 90% of
examples. By removing the least likely points and sampling ran-
domly elsewhere, we aim to avoid querying labels for negative ex-
amples and achieve rapid confirmation of a diverse training set for
our generative model. Our active GMM experiments show that
removing the 10% least likely songs finds a good balance between
exploring poorly modeled areas of the feature space while avoid-
ing points that are unlikely to produce positive examples.§

Game-Powered Machine Learning
Our game-powered machine learning approach aims to collect
sufficient human labels, through game play, to train an automatic
music annotation system that can reliably generalize semantics to
unlimited music. Qualitatively, we argue that this crowdsourced
approach is superior to requiring expert annotators as it is less
costly, more scalable, and collects a dynamic dataset that can be
adapted over time to focus on the most relevant or important
tags. To quantify the efficacy of our game-powered machine
learning framework, we conduct experiments designed to answer
the following two questions: (i) Can machine learning algorithms
be trained with data collected from Herd It’s crowd of nonexperts
as accurately as with data collected from paid expert musicolo-
gists? (ii) Can accurate tag models be learned with less human
effort by encapsulating Herd It in an active learning framework?
To answer these questions, we deployed Herd It online, engaging
7,947 people to provide over 140,000 clicks that associate songs
with tags through five different types of minigames.

To generate minigames in a passive system, without active
learning, we begin with 10–20 candidate {song,tag} pairs, chosen
randomly from the authors’ personal music collection of over
6,000 popular songs from the past 70 y, and a vocabulary of 1,269
tags, including subgenres, emotions, instruments, usages, colors,
and more categories. To generate a minigame, one {song,tag} pair
is selected from the list of candidate pairs, biased by associations
(determined using the onlinemusic service http://last.fm/api/) with
the musical genre selected by the player at the start of the game
(pop, rock, hip-hop, blues, electronica, or “everything”) and by the
particular minigame (e.g., certain minigames focus on subgenres,
colors, or bipolar adjectives). Remaining minigame tags (each
minigame suggests between one and nine tags) are restricted to
the same tag category. Candidate {song,tag} pairs remain on
the list until they have been viewed by at most 50 players. At that
point the {song,tag} pair is discarded and replaced by a new, ran-
domly sampled one. Maintaining a reasonable list of candidate
pairs ensures diverse gameplay.

Consensus between players’ clicks collected in Herd It mini-
games is used to “confirm” reliable {song,tag} associations. More
specifically, the generative model of labels, accuracies, and diffi-

culties, or “GLAD,” (10) conceives of each human input as an
estimate of the underlying true label that has been corrupted
by player inaccuracy and the difficulty of labeling the song. Using
an expectation-maximization algorithm, GLAD optimally com-
bines the votes from all Herd It players and we confirm the find-
ings of (10) that the resulting consensus is more reliable than
heuristics such as majority vote, percentage agreement, or vote
thresholds. A {song,tag} pair is presented in Herd It minigames
until GLAD “confirms” a reliable association, based on the his-
torical click data for that {song,tag} pair. If a {song,tag} pair re-
mains unconfirmed after being viewed by 50 Herd It players, it is
“rejected” and not sampled further. Overall, GLAD confirmed
8,784 {song,tag} pairs, representing song examples of 549 tags,
while 256,000 pairs were rejected. To ensure that we have enough
data to train robust machine learning models and answer the first
question, we reduce the dataset to the 127 tags for which Herd It
has identified at least 10 reliable example songs. Data was col-
lected passively (i.e., no active learning) and this provides the
baseline against which to compare an active learning strategy
and evaluate the second question.

To answer the first question, we quantify the efficacy of our
game-powered machine learning framework and compare it to
“expert-trained” machine learning. That is, we evaluate the per-
formance of a music autotagging algorithm when trained on (i)
the Herd It game data and (ii) data derived from expert musicol-
ogists at Pandora.com’s “Music Genome Project” (MGP), respec-
tively. After training, the accuracy of each autotagger is evaluated
on CAL500: an independent evaluation set of 500 songs fully
labeled by multiple humans using a controlled survey (19) (see
SI Text for details about the CAL500 andMGP datasets). For this
comparison, we train and evaluate models of all tags that are
available in both theMGP and CAL500 vocabulary and for which
Herd It has collected at least ten confirmed example songs,
resulting in 25 tags. The models of each of these tags are used
to retrieve the 10 most relevant songs from the CAL500 corpus
for each single-tag query. These top-ten search results—automa-
tically retrieved by a machine—are evaluated by comparing to the
CAL500 ground-truth, and computing the precision (i.e., the num-
ber of songs in the machine-ranked top-ten that the ground truth
effectively associates with the tag). Finally, the precision is aver-
aged over all 25 tags. Because both Herd It andMGP models are
instances of the same machine learning algorithm, but trained on
different datasets, any significant differences in autotagging per-
formance most likely reflect differences in the quality of the re-
spective training data sources and allow us to evaluate human
computation games—Herd It, in particular—as a source of reli-
able training data. To prevent bias induced by a particular choice
of machine learning algorithm, this comparison is repeated for
multiple state-of-the-art autotagging algorithms.

In addition to showing that game-powered machine learning
can be competitive with an expert-trained system, in a second step,
we demonstrate the efficacy of actively integrating machine learn-
ing with game-based data collection. The baseline here is the pas-
sive approach outlined above, which “analyzes” (i.e., confirms or
rejects through human labeling) {song,tag} pairs in random order.
As more {song,tag} pairs are analyzed (i.e., more human effort
contributed), a tag’s training set grows, tag models are updated
and autotagging performance is expected to improve. We compare
this passive approach to an active learning paradigm which aims to
improve tag models more effectively by leveraging current models
to select the next {song,tag} pairs that will be analyzed. More pre-
cisely, for each of the 25 Herd It tags that were evaluated earlier,
we collect all songs that appeared with the tag (confirmed or re-
jected) in previousHerd Itminigames.We then estimate 25GMM-
based tagmodels by engaging in an iterative training procedure, for
each tag, based on this list of “candidate” songs. At each iteration,
we first compute the likelihood, under the current tag model, of all
remaining candidate songs and use our active learning method for

§In a feature space of high dimension, d, the probability density of a Gaussian distribution
with variance σ is focused on a small shell a distance σ

ffiffiffi

d
p

from the mean. Thus the
majority of points tend to have very similar GMM likelihoods (27). While this fact can
make it difficult to identify positive points based on likelihood, any points that have
significantly lower than average likelihood can be excluded with confidence.
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generative models to prioritize 10 candidate songs for analysis with
that tag (for the first iteration, candidate songs are chosen ran-
domly). That is, we use our active learning algorithm to resample
{song,tag} pairs that were previously presented in Herd It games.
Songs for which the {song,tag} pair was previously confirmed are
added to the tag’s training set; the remaining, rejected songs are
removed from future candidate lists. Finally, we retrain the tag
model using the updated training set and evaluate its performance
on theCAL500 test set.We once again recompute the likelihood of
all remaining candidate songs under the updated model, actively
select 10 candidate songs for analysis, retrain the tag models,
and so on. Song selection is repeated up to 200 times, analyzing
up to 2,000 songs for each tag. At each iteration, we evaluate
the average performance of the 25 tag models. We compare active
learning to the passive baseline which samples 10 songs randomly at
each iteration, for each tag.

Results
Table 1 presents the average precision of the top-ten music search
results for 25 single-tag queries on CAL500, achieved by training
four state-of-the-art autotagging algorithms on Herd It’s data. We
compare to the performance obtained by training on expertMGP
data. For each of the 25 tags common to Herd It, MGP and
CAL500, we evaluate the top-ten precision on CAL500 and aver-
age performance over all tags. While the absolute performance
depends on the machine learning method used, the relative per-
formance between models trained using Herd It and those that
use MGP data remains consistently over 95%. These findings
answer our first question by demonstrating that a game-based
machine learning system, trained on data collected from Herd
It players, provides a competitive alternative to a system trained
on expert labeled data, across a variety of algorithms.

Fig. 3 offers a more detailed comparison of Herd It and MGP
based systems, by examining the performance of each tag model
learned by the hierarchical GMM algorithm (19). The ability of
the machine learning algorithm to model different tags varies;
e.g., “acoustic,” “male lead vocals,” and “hip hop” songs are more
easily identified, while “hand drums” and “funk”music are poorly
modeled. In general, model performance is independent of the
training data source (i.e., most points lie close to the diagonal
in Fig. 3, indicating comparable results for each system). Models
trained on either data source performed significantly differently
for just two tags: “synthesizer” (MGP-based model better) and
“drum set” (Herd It-based model better, 2-tailed t-test, 95% sig-
nificance level). In summary, Table 1 and Fig. 3 quantitatively de-
monstrate that training from Herd It’s crowdsourced data
captures knowledge similar to training from expert annotations.

We turn now to the second question: can integrating machine
learning and Herd It’s game-powered data collection in an active
learning loop train accurate models with less human effort than
a passive system? Tomeasure human effort, we consider the num-
ber of {song,tag} pairs analyzed through Herd It gameplay,
expressed as the number of songs analyzed per tag (for each of
the 25 tags being modeled). Fig. 4 displays the improvement in
song retrieval performance of the GMM autotagging algorithm as

more songs are analyzed for each tag (and, consequently, more
training examples collected for model estimation), following both
an active learning and a random sampling strategy. The results
demonstrate an improved learning rate due to active learning:
active learning requires analyzing, on average, 450 songs per tag
to achieve no significant difference between Herd It and MGP
performance (paired, one-tailed t-test, p ¼ 0.1) while the passive
strategy hits this level after analyzing 940 songs for each tag. Fig. 4
highlights the improved efficiency by shading the learning curves
while performance is significantly different from the MGP: by
prioritizing the order in which {song,tag} pairs are presented
to players, our active learning approach reduces the human label-
ing effort required by half. A more detailed inspection of the
results reveals that active learning achieves expert performance
by confirming an average of 31 training songs per tag, out of 450
analyzed candidates, vs. 49 out of 940 for random sampling. Ac-
tive learning boosts the learning rate by suggesting fewer {song,
tag} pairs that are eventually rejected and not used for training
[compared to suggesting random {song,tag} pairs] while still pro-
ducing a sufficiently diverse set of confirmed training songs.

Having demonstrated that Herd It data can train automatic
music taggers that are as accurate as an expert-trained system,
we now compare the tagging efficiency of crowdsourced amateur
players with that of trained experts. Pandora’s musicological ex-
perts take 20–30 min to analyze and quantify the association be-
tween a song and 100–500 semantic dimensions, a rate of about
12 song-tag associations per expert-minute. Herd It minigames
last about 30 s and present, on average, 5.4 tags for player ana-
lysis. Thus a single Herd It player analyzes 10.8 song-tag associa-
tions per minute, a little less than the Pandora expert. To quantify
(i.e., confirm or reject) a song-tag association, the analysis of up
to 50 players is required, vs. that of one Pandora expert. So, Herd
It’s game-based approach gathers reliable tags from humans for
free with about 2% the efficiency of paid, expert labeling. Of
course, Herd It’s lower efficiency is multiplied by the number
of simultaneous players in the Herd, which could be significantly
larger than the number of musicological experts that can be gain-
fully employed, simultaneously.

In comparing game-based and expert annotation methods,
we recognize that, even with crowdsourced consensus, multiple

Table 1. Average top-ten precision of autotagging algorithms
trained on Herd It examples and tested on CAL500

Autotagging algorithm
Top-10 Precision
Herd It training

Relative Precision
Herd It : MGP

Hierarch. GMM (19) 0.40 95.8%� 4.6
Hierarch. DTM (20) 0.42 98.9%� 6.0
Boosting (21) 0.38 99.7%� 4.2
SVM (22) 0.38 95.6%� 7.2

Also shown is relative performance (top-ten precision) of Herd
It-trained models compared to models trained on expert MGP
examples. Top-ten precision of random guessing is 0.18.
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Fig. 3. Top-ten precision for machine learning models trained on Herd It’s
crowdsourced data (x-axis) and models trained on data from the Music
Genome Project (y-axis). While absolute performance depends on the tag
(e.g., “acoustic” music is better modeled than “soul” music), on average
(dashed lines) Herd It’s crowdsourced data trains models that are as precise,
at the tag-level, as models learned from expert-labeled data.
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amateur raters are likely less reliable than experts when identify-
ing certain details pertaining to musical theory (e.g., we find Herd
It players are inconsistent in Scales minigames that ask to distin-
guish major from minor keys) or esoteric subgenres and instru-
ments (e.g., tags for the subgenres “doommetal” and “worldbeat”
and the instruments “siren” and “spoons” were rarely chosen
when suggested in a minigame and, if they were chosen, it often
was seemingly without relation to the audio content). In design-
ing Herd It’s games, we generally focused on tags that are more
relevant to our goal of building a music search engine that can
empower a wide audience to discover relevant music using sim-
ple, semantic search.

Finally, while a human-only approach requires the same label-
ing effort for the first song as for the millionth, our game-powered
machine learning solution needs only a small, reliable training set
before all future examples can be labeled automatically, improv-
ing efficiency and cost by orders of magnitude. Tagging a new
song takes 4 s on a modern CPU: in just a week, eight parallel
processors could tag 1 million songs or annotate Pandora’s com-
plete song collection, which required a decade of effort from doz-
ens of trained musicologists.

Conclusions
We proposed game-powered machine learning as an integrated,
scalable, affordable, and reliable solution for semantic search of
massive amounts of multimedia content and investigated its effi-
cacy for music search. Herd It, an online music annotation game,
collects reliable examples of how humans use semantic tags to
describe music. By itself, this human computation approach is
insufficient to label the millions of songs available on the web.
Instead, the knowledge collected by our game trains machine
learning algorithms that can generalize tags to vast amounts of
new, unlabeled music. Compared to other music games with a
purpose, Herd It was specifically designed to be actively inte-
grated with the machine learning algorithms and provide the data
that most effectively trains them. Our results demonstrate, first,
that game-powered machine learning is as good as expert-based
machine learning—annotations collected from human computa-
tion games train autotagging models as accurately as expensive,
expert annotations—while offering some distinct advantages
(e.g., cost-effectiveness, scalability, flexibility to update the game
to focus on tags of interest). Second, we show that embedding
Herd It in an active learning paradigm trains accurate autotag-
gers more effectively; i.e., with less human effort, compared to
a passive approach. We conclude that actively integrating human
computation games and machine learning—combining targeted
data collection by annotation games with automatic prediction
by scalable machine learning algorithms—enables simple, wide-
spread multimedia search and discovery.
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songs for passive). Error bands show the standard error of the mean, aver-
aged over three independent trials, and remain shaded while Herd It perfor-
mance is significantly below MGP (paired t-test, p ¼ 0.1). Integrating active
learning with Herd It’s data collection improves the learning rate, achieving
significant performance with less human effort.
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Correction

COMPUTER SCIENCES
Correction for “Game-powered machine learning,” by Luke Bar-
rington, Douglas Turnbull, and Gert Lanckriet, which appeared
in issue 17, April 24, 2012, of Proc Natl Acad Sci USA (109:6411–
6416; first published March 28, 2012; 10.1073/pnas.1014748109).
The authors note that, due to a printer’s error, the affiliation

for Luke Barrington and Gert Lanckriet should instead appear
as “Electrical and Computer Engineering Department, Univer-
sity of California at San Diego, La Jolla, CA 92093.” The cor-
rected author and affiliation lines appear below. The online
version has been corrected.
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