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Abstract: Integration of the IoT (Internet of Things) with Cloud Computing, termed as the CoT (Cloud of Things) can help 
achieve the goals of the envisioned IoT and future Internet. In a typical CoT infrastructure, the data collected from wireless 
sensor networks and IoTs is transmitted through a SG (Smart Gateway) to the cloud. The bandwidth between an IoT access 
point and SG becomes a bottleneck for information transmission between the IoT and the cloud. We propose a novel game 
theory model to describe the CoT attacker, who expects to use minimum set and energy consumption of IoT attack devices 
to occupy as many bandwidth resources as possible in a given time period; and the defender, who expects to minimize false 
alarms. By analyzing this model, we have found that the game theory model is a non-cooperative and repeated incomplete 
information game, and Nash equilibrium is existent, perfected by the subgame. The best strategy for each stage of the attack 
is to adjust the attack link number dynamically based on the comparison results of value  and turning point  for each time 
period. At the same time, the defender adjusts the threshold value � dynamically, based on the comparison results of the Load 
�����������`����������������Ô��������
������������	
�������������������
�����
���������������������������������������
��
harm of a distributed denial of service attack.
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1  Introduction
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nodes (things) with high intelligence, is dynamic 
and global net worked infrastructure oriented. It 
generally contains small objects (things) with limited 
memory storage and computing capacity, and is 
characterized by the real world with consequential 
issues regarding privacy, performance, scalability 

and reliability[1]. Conversely, cloud computing is vast 
with virtually unlimited capabilities regard to global 
storage and computation power. This technology has 
partially solved most IoT issues. The IoT and cloud 
are two comparatively challenging technologies 
and they have been merged together to change the 
current and future Internet working services[2,3]. Most 
papers proposed the cloud and IoT separately, and 
have shown great interest in this trend since 2008, 
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Moreover, there were more publications between 
2008 and 2013 regarding the proposed integration of 
cloud and IoT in our review. Currently, the upcoming 
trend is the integration of cloud and CoT. This new 
model is called as the CoT.

It is known that many IoT devices are vulnerable 
to simple intrusion attempts, for example, using 
weak or even default passwords[4]. In 2012, the Carna 
botnet revealed that there were more than 1.2 million 
open devices that allowed login with empty or default 
credentials. In January, 2014, an Internet-connected 
refrigerator was discovered as part of a botnet sending 
over 750 000 spam e-mails. In December, 2014, an 
online DDoS (Distributed Denial of Service) attack 
(i.e., booter) knocked down Sony and Microsoft 
Corporation's gaming networks, presumably powered 
by thousands of compromised IoT devices such as 
home routers[5].

From an attacker’s point of view, IoT devices 
have their own advantages, as opposed to PCs. They 
are online 24/7, have no anti-virus installed, and 
have weak login passwords, giving attackers an easy 
access to powerful shells[5]. However, they also have 
their own disadvantages because they rely primarily 
on the battery as a power source. If the total energy 
consumed by the infected IoT devices is too much, 
their lifetime is sharply reduced[6]. Hence, the attacker 
has to consume more time and incur a greater cost 
to infect other IoT devices. Thus, the goal of a smart 
attacker is to control multiple infected IoT devices 
to launch DDoS attacks and slow, or takedown, the 
ability of the targeted domain, network infrastructure, 
web site, or application, to accept legitimate requests. 
The bandwidth between an IoT AP (Access Point) 
and a smart gateway SG becomes a bottleneck for 
information transmission between the IoT and the 
cloud.

The CoT attacker expects to use both a minimum 
number of IoT attack devices and minimal energy 
consumption to occupy the most band-width resources 

in a given time period, whereas the defender expects 
to minimize the amount of false alarms. In this paper, 
we propose a novel game theory model to describe 
the scenario. In our model, we consider that: 1) both 
the attacker and defender are rational, and 2) their 
strategies are dynamic.

The remainder of this paper is organized as follows: 
Section 2 introduces related studies and gives an 
overview of our research. Section 3 explains our 
game model and Section 4 analyzes the model. The 
simulation experiments using NS-3 are discussed in 
Section 5, and conclusions are provided in Section 6.

2  Related work

In this section, we discuss the basics of IoT, Cloud, 
CoT, and DDoS attacks, and overview their essential 
characteristics.

2.1  Cloud of Things

The core idea of the IoT can be summarized in a 
sentence: “A worldwide network of interconnected 
entities”[7-10]. With the popularity of the wireless 
communication system, IoT has been increasingly 
employed as a technology driver for crucial smart 
monitoring and control applications[11-13]. An IoT 
system can be depicted as a collection of smart 
devices that interact with each other to achieve a 
common goal[14]. IoT works on the basis of M2M 
(Machine-To-Machine) communication, which refers 
to the communication between two machines without 
human intervention. In a centralized approach, 
application platforms located in the Internet (e.g. 
cloud services) acquire information from entities 
located in the data acquisition network, and provide 
raw data and services to other entities.

The sensor is a typical intelligent device in IoT. 
Most sensors utilize limited battery energy to provide 
power. Owing to the conditional restriction in many 
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by maintenance personnel, who hope the batteries can 
survive for months or even years in the network. The 
battery subsystem capacity determines the systems 
operational life span. As Ref.[15] reported, sensors 
operating at high frequencies consumed more power 
than those operating at low (base-band) frequencies. 
Therefore, energy is sharply reduced when the 
sensor frequently sends a large number of data. Thus, 
the IoT system must consider the aspect of energy 
management.

In recent years, cloud computing has brought great 
convenience and improved resources sharing over 
the Internet[16]. It is a model for enabling ubiquitous, 
convenient, and on-demand network access to a 

shared pool with configurable computing resources 
(e.g., networks, servers, storage, applications, and 
services). Thereby, cloud computing can provide 
significant convenience to its customers, and 
performance improvement via resource sharing[17].

The cloud can benefit from IoT, extending its 
limits to real world things in a more dynamic and 
distributed manner, and deliver a massive number 
of services in real time[18-20]. The cloud will act as 
an intermediate layer between the application and 
the things, concealing all the functionalities and 
complexities required for later processing[18]. Fig.1 
presents an overall communication pattern of CoT, 
which helps manage IoT resources and provides more 
����������������������������������������������������
CoT creates a new and extended portfolio of services. 
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Figure 1  Cloud of Things
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With CoT, the services are provided in the cloud, and 
ubiquitous access is given to users, extending the scope 
of service usage, as well as improving accessibility. 
CoT affects future application development, where the 
information gathering process and transmission will 
deliver new challenges to be addressed in a multi-
cloud environment[21].

An SG would provide better help in the utilization 
of network and cloud resources. The data collected 
from wireless sensor networks would be transmitted 
through a gateway to the cloud. Received data are 
then stored in the cloud and provided as a service to 
users through the cloud. SG must manage various 
aspects of underlying IoTs and perform a number 
of tasks, such as data collection, preprocessing, 
���������������������������������������������������
form, uploading only necessary data to the cloud, 
tracking IoT objects and sensor activities, power 
energy consumption, security and privacy of the data, 
and overall service monitoring and management. 
It is possible that the data gathered from the IoT is 
transmitted directly to the SG, or that multiple IoTs 
are connected with base station(s), which in turn 
transmit data to the SG.

2.2  Botnet and DDoS attack defense

Botnet studies typically focus on four aspects, including 
detecting, analyzing, resisting and counterattack. 
Botnet detection and analysis receive more additional 
attention.

A light-weight mechanism was proposed to detect 
botnets by using their fundamental characteristics in 
Ref.[22]. It referred to a BotGAD, which requires 
a small amount of data from DNS (Domain Name 
System) traffic to detect a botnet. The BotGAD can 
automatically detect botnets while providing real-time 
monitoring in large-scale networks. Ref.[23] used fuzzy 
pattern recognition techniques based on frequency to 
observe bot behavior. Meanwhile, several researchers 

have focused on new botnet technologies for better 
botnets analysis and development trend prediction. 
Ref.[24] analyzed a new form of P2P (Peer-to-peer 
Computing) botnets called AntBot, which aimed to 
spread C&C (Command and Control) information to 
individual bots even though an adversary persistently 
polluted keys used by seized bots to search the C&C 
information.

For current DDoS attack and defense studies, as 
Ref.[25] shows, not only is there an alarming increase 
in the number of DDoS attack incidents, but also the 
�����?����
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attained new heights. Effective defense measures to 
mitigate attacks are imminent.

Ref.[26] demonstrated the exploitation pattern of 
an inherent weakness in LHAC (Local-Host Alert 
Correlation) based methods and asserted that current 
LHAC implementations could allow pockets of 
cooperative bots to hide in an enterprise-level network 
scale. Ref.[27] proposed a graph-based representation 
of infected computers, allowing us to use graph-
partitioning algorithms to separate out different botnets, 
even in a network infected with varieties of zombie 
viruses at the same time. Ref.[28] proposed a method of 
detecting DDoS attacks through data mining.

In the new CoT network environment, two problems 
should be noticed: 1) A CoT botnet can dynamically 
adjust attack strategy to launch a larger scale DDoS 
attack using infected smart devices. 2) A dynamic 
defense mechanism should be deployed in the SG 
against the IoT DDoS attack.

3  Game model

A DDoS attack towards the SG is regarded as 
effective, if the adversary can consume the network 
resources between AP and SG sharply and massively. 
We present our game models for CoT DDoS attacks 
and their possible countermeasures. We consider the 
interaction between DDoS attacking device master 
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(AM) and DM (Defense Mechanism) in a SG as a 
two-player game. It is a non-cooperative incomplete 
information game.

The DM knows the network connection numbers 
and loads. It can determine whether to stay connected, 
or disconnect the link, depending on the suspicious 
value for each connection ��using IDS(Intrusion 
Detection Systems). Such strategy is adjusted 
according to a threshold value represented by � and 
Neyman-Pearson criterion for hypothesis testing.

When �>�, the DM considers the device in IoT as 
an attacker and disconnects the link to free bandwidth 
resources. The DM also tries to avoid bandwidth 
overload, which will cause the links of valid things 
to be disconnected. Thus, the attack recognition rate 
% must be improved. The degree is only a theoretical 
value that DM is able to improve by the evaluation 
of the known attacks. Thus the DM attempts to 
discover an optimal strategy for the threshold value � 
of the disconnection request to improve the detection 
rate and reduce the false alarm rate of the current 
knowledge base.

The AM knows all the statuses of the attack 
nodes. This includes the total number of attack nodes 
and links, network infrastructure and whether the 
attack link has been disconnected. The information 
is gathered via various methods (e.g., network 
detection), and includes the bandwidth resource 
consumption of normal and attack nodes, as well as 
the current load. The AM is able to prepare an attack 
strategy, such as the number attack nodes (represented 
by function NA) needed, amount of electrical energy 
(represented by function N2) consumed, and which 
attack mode should be applied in each attack. The 
AM must avoid the DM to detect all attack nodes, 
represented by NB, because for each attraction, NB is a 
����������	
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attack, and, at the same time, hide attack nodes in 
proportion to the AM to the highest degree.

3.1  The DM Strategy

The DM is unable to determine whether network 
traffic is from an attack node. In actual networks, 
the DM responds or rejects a request according to 
the network access control rules. Therefore, the DM 
measures the network connection through a defined 
suspicious value.
Definition 1  (Suspicious) The suspicious of a 
network connection is defined by the malicious 
degree of the connection determined by the DM's 
supervisor.

The DM handles each connection by consulting 
�(X) and its rule. Hereby, we define % to denote the 
accuracy of the judgment towards current attacks. 
Thus,�% is an objective theoretical value. Hereby, we 
�������
��������������������������@ ) to describe 
whether a connection is malicious.
Definition 2  (Malicious intent) Malicious intent  
of a network connection, defined by the malicious 
possibility of the connection. It is a function of % and �. 
We denote it as (%, �).

When %�= 0, the probability of whether a con-
nection has malicious intent can be denoted by 1/2, 
which is independent of the subjective suspicious 
of the DM. When %�= 1, the probability of whether a 
connection has malicious intent can be denoted by �. 
How the DM improves its recognition rate through 
self-learning is beyond the scope of this paper. Here, 
we simply assume (%, �) is a linear function with 
respect to %. Then we get the expression:

                   （1）

Therefore, whether a connection is malicious can 
be denoted by probability function 1 (%, �).

There are four cases that will happen when IDS 
judges the link property and processes the link 
connection status. 1) A link to be preserved, while 
the link is an attack connection. 2) A link to be 
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disconnected, and the link is an attack connection. 
3) A link to be preserved, and the link is a normal 
connection. 4) A link to be disconnected, while the 
link is a normal connection. For each connection, we 
get the strategies of the DM distribution as shown in 
Tab.1.

Table 1  Strategies distribution of the DM

property\strategies reserve disconnect probability

attack PAR PAD (%, �)

normal PNR PND 1 %(%, �)

probability P{� �} P{�>�}

Since variables %  and � are independent of 
each other, we assume that the joint distribution is 
independent. Thus, we get

We get the strategies expectation of DM for 
connection i.

 (2)

WAR, WAD, WNR and WND respectively represent the 
weight of the above four different cases, Case 1 and 4 
represent the incorrect judgment of IDS, while case 2 
and 3 represent the correct judgment of IDS.

Attacking nodes can imitate the normal devices 

(e.g., sensors) to access the SG.  represents the 

total bandwidth resources of the SG. RC represents 
the resource occupation of one connection. Thus,   

 depicts the capacity of all connections of 

the server. Moreover, the current total number of 
connections is NC (NC NR).

Thus, we get the utility function of the DM.

 .  (3)

WO denotes the costs of the crashed network 
between AP and SG caused by the DM strategy 
failure. WD denotes the weight of the network not 
crashed yet with NC connections maintained in the 
meantime.

3.2  The AM strategy

Similarly, the AM is unsure whether the DM has 
been equipped with a sandbox or honeypot for series 
detection and measurements towards the AM. The 
probability that the current attack node is rejected 
is the basis for the AM’s next strategy decision. 
Assume NA is the current total active attack nodes 
keeping a connection with the smart gateway. NT 
represents the total active attack nodes in time T. It 
is a non-decreasing function related to time t and 
has a minimum value 0, and maximum value NB to 
denote the total attack nodes. While, the function 

itself depends on the strategy that AM decided.  

depicts the proportion of the DM forwarding attack 

�����������������?���������������F  to denote the 

denying probability of next the attack.
The AM can apply strategies to launch attacks 

or keep the hidden state for each infected node. 
Obviously, the connections of the attack nodes, which 
have already been launched, shall be considered as 
exposure regardless of whether the AM continues to 
take the attack strategy. Meanwhile, we assume that 
the AM decides whether to start attack traffic based 
on the comparison between the current time t and T, 
denoted as the actual initial attack time of the current 
launching attack nodes. That is to say, if t > T, then 
the attack link starts. If t T then the link hides and 
does not start attacks.
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The same applies for the DM strategy. There 
are four cases that will happen for each infected 
node connection as follows: 1) An infected node 
launches an attack, while the defender deploys 
defense mechanisms, such as IDS, and honeynet. 2)
An infected node hides, and the defender deploys 
defense mechanisms. 3) An infected node launches 
attack, and the defender does not deploy defense 
mechanisms. 4) An infected node hides, and the 
defender does not deploy defense mechanisms. We 
derive the strategies distribution for the AM, which 
is shown in Tab.2.

Table 2  Strategies distribution of the AM

property\strategies attack hide probability

detected PDA PDH 1

not detected PNA PNH   

probability P{t>T} P{t T}

Because variables NA and T are independent 
of each other, we assume the joint distribution is 
independent. Thus, we get

 

We get the strategies expectation of AM for 
connection i.

  (4)

WDA, WDH, WNA and WNH respectively represent the 
weight of the above four different cases, Case 1 and 4 
represent the AM does not take an effective attack 
strategy, while case 2 and 3 represent that AM does 

take an effective attack strategy.
The sensors operating at high frequencies burn 

more power than those operating at low (baseband) 
frequencies. As Ref.[6] reported, the author analyzes 
the relationship between the transmitted data volume 
and the energy consumption in different transfer 
������������������������������������������������
��
between them as presented in Fig.2. It shows that the 
energy consumption almost closes to a linear function 
with the number of sent data.

Figure 2  Total amount of data sent at the BS per given 

amount of energy

&����������  (Energy consumption) 7i denotes the 
energy consumption of an attack link, from the ith 
infected device in IoT.

                           7i=li · 2i ,                             (5)
where li denotes the number of bits transmitted 
through the i�
������?���?������
�������������@ÁT), 2i 
denotes the energy consumption for transmitting one 
bit.

It is shown that in Ref.[6], 2iÎ]H��z�����������
�
�
can be denoted as 2, for a wireless IoT node. For 
convenience, we assume that communication devices 
are similar in terms of energy consumption in the IoT, 
and nearly equal data transmission l for each attack 
node. Thus, we get the total energy consumption of 
all the infected nodes that launched attack, and denote 
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it as 7�:
                      7�= NA�2�.                          (6)

The utility function of AM is

        
(7)

    
(8)

WE denotes the weight of costs if AM exposes all 
attack nodes. WA denotes the weight if AM does not 
expose all attack nodes. WS denotes the income if AM 
���
����
��ZZ�"������?��������
��
��"����������������
82 represents the weight of the importance of the 
energy consumption.

4  Model analysis

We use MATLAB as the platform for numerical 
computation. Just like the example in the DM, let us 
consider the scenario WAR = WND = 1 and WAD = WNR 
= 1. Fig.3 illustrates the pay off of DM UD for each 
different distribution of �.

Experiment 1 parameters are: NR=1 000, %= 0.5, 
WO = 100; UD(Load, �) when WD = 1. We consider 
that the value E(�) is in compliance with a Poisson 
distribution. Thus we denote the cumulative 

distribution function (CDF) as  , where ( is the 

expected value and k is the number of occurrences. 
Therefore, we first select �1¸ÖPoisson (40) and �2¸Ö�
Poisson (70) to approximate a practical situation. 

Then we distribute   and  as the distribution of 

�1 and �2.

Here, Load = , and E(�) are the mathe-matical 

expectation of �. Experiment 1 shows the best 
strategy for DM by which the value � is increased 
if Load > E(�), and decreased if Load > E(�). This 
�������������������������
�
����������������
��Z&�
according to the utility function.
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Figure 3  Effect of suspicious value to the DM
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Figure 4  Effect of suspicious value to the AM

For the AM, we consider the scenario WDA = 
WNH = 1 and WDH = WNA = 1. Fig.4 illustrates the 
payoff of AM UA for each different distribution of 
NB. Experiment 2 parameters: NR = 10 000; WE = 
100; WA =1; WS = 100; W2= 1; l = 800×1 024×8; 2�

=0.000 000 005; Load = 0.8, NB has the value 300, 

1 000, and 3 000, respectively. Where .
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Fig.4 shows the UA curve graph when variables 
NB, 9 are changed in three conditions, while other 
��������������`����������������
���
���������������
focused on one point, denoted as Turning Point, 
represented by  . By analyzing the curve change 
process, we can determine the best strategy for the 
AM is hiding attack nodes to avoid detection and 
counterattack, if the number of effective attack 
connections is over , that is . Conversely, if the 
AM has less than  of effective attack connections, 
that is,  <  , the best strategy is to increase the 
number of current launching attack nodes. It can be 
concluded that value  has a deep influence on the 
AM strategies.

Table 3  Turning point

W2  W2  W2  W2  
ÄH 0.5 ÄG 0.32 ÄB 0.19 Ä� 0.05

ÄF 0.42 Äx 0.26 Ä^ 0.16 ÄFH 0.02

ÄK 0.37 Ä] 0.21 Ä\ 0.11 ÄFF 0.008

�10 �8 �6 �4 �2 0
0

0.1

0.2

0.3

0.4

0.5

W2

� 0

Figure 5  Turnning points of AM

Tab.3  represents value  as it corresponds to 
different W2 values. The relationship diagram is 
shown in Fig.5.

The dashed curve shows the actual relation-
ship diagram. To simplify, we use a linear function   
@�
�����������������L� �������������������
��������

that they are similar.  is shown as.

                 
 =                           (9)

From the above analysis, the strategies of the DM 
are “increase �” and “decrease �”, while the strategies 
���'&�����¾������������������¿�����¾�������������
������¿��{��������������
���ZZ�"������?�� �
������
party-game, between the AM and DM, is a non-
cooperative and repeated with incomplete information 
game.
Theorem 1  If the DM and the AM are rational, 
there exists a unique Nash equilibrium point in stage 
strategies.
Proof 1  (Proof of theorem 1) :

Before the given time T, the DM is uncertain, not 
only of the ratio�����������������������?��������������
to all attack nodes, but whether the AM intends to 
increase or decrease the number of current launching 
attack nodes. Hence, based on the known Load and 
E(�), if E(�) > Load, the DM chooses to “increase �”, 
otherwise, to “decrease �”.

Similarly, before the given time T, the AM is 
uncertain not only of the suspicious value � of the 
DM for each connection, but of E(�). Hence, based 
on the known  , if  <  , the AM chooses to “increase 
��������¿����
����������¾�����������������¿�

At the given time T, both the DM and AM need 
to decide their strategies according to the E(�) and  

previously determined. The game reaches the Nash 
equilibrium. We represent the Nash equilibrium 
point as s*(X*, Y*) fulfilling UA( , X*) UA( , X). 
The X represents whether to increase or decrease the 
new random attack connection numbers, UD(E(�), 
Y*) UD(E(�),Y). The Y represents whether to 
increase or decrease the value of �. The game 
parties can then determine their strategies for each 
connection and traffic with reference to this result. 
The DM may decide to reserve or disconnect each 
connection based on the new � value for obtaining the 
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vector y* of the strategies matrix. In a similar manner, 
the AM may adjust new connection operations via 
controlled attack nodes based on the strategy X * for 
obtaining strategy x* vector.

In each stage of the game, if the DM and AM are 
rational, they both choose the strategy using their 
respective utility function to reach maximization. 

 and 
. Thus, the strategies’ choices are clear in each 

stage of the game, and Nash Equilibrium is the strictly 
dominant strategy for the DM and AM. Therefore, the 
Nash Equilibrium point is unique.

5  Simulation

We use an NS-3 network simulation tool as the 
platform to validate our model. The network topology 
is shown in Fig.6.

attack
node 

normal
node 

cloud

access
point

smart
gateway

Figure 6  Simulation network topology

There are some normal IoT nodes and attack IoT 
nodes in the AP radio coverage. The data collected 
from wireless sensor networks and IoTs’ flows 
will be transmitted through SG to the cloud. The 
simulation configuration of the NS-3 platform is 
shown in Tab.4.

As described in the previous model description, we 
assume that both attacker and defender are rational. If 

 the AM hides three more attack nodes, to avoid 

detection. Otherwise, it adds three additional attack 
nodes for the current launching attack. The DM set 
�=� + 0.1, if Load>E(�), and �=� 0.1, if Load>E(�). 
The suspicious value for each connection � depends 
on its arrival time. According to a threshold value, 
represented by � and Neyman-Pearson criterion 
for hypothesis testing, if an IoT node �>�, the SG 
controlling the AP should disconnect the link between 
it and the AP.

Table 4��$"�G���������������������

name �����������

NS-3 version V 3.25

server CPU
INTEL XEON X5650

12 M cache, 2.66 GHz, 6.40 GT/s

server OS fedora 21 Linux System

bandwidth
FH�&�����{�	������Æ·���'[

FHH�&�����'[�Æ·���"�

delay
K����{�	�$�����Æ·���'[

F��'[�Æ·���"�

WiFi channel model YANS[29]

����������� TCP socket

port 8080

interarrival time(ms)
������Ö������/F]�x]2
�����?Ö������/H�xH2

IoT nodes number
normal: 30
attack: 20

access start time
normal: 0th second
attack: 1th second

packet size 800 KB

energy consumption per Bit 50 nJ

simulation end time 5.5 th second

Fig.7 shows the comparison among the 3 cases: 
1) Neither the AM nor DM adopts our strategies. 2) 
Both the AM and DM adopt our strategies. 3) Only 
the DM adopts our strategies. The X-axis is the time 
of simulation, and Y-axis is the bandwidth occupancy 
rate of the line between AP and SG.

We have noted that: In case 1), neither the AM nor 
DM adopts our strategies. When the DDoS attack 



Game strategies for distributed denial of service defense in the Cloud of Things 153

started, all 20 attack nodes sent socket message 
requests to SG through AP. We can see the bandwidth 
occupancy rate increasing sharply to above 90% 
keeping at a high level.
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Figure 7  Effect comparison of our strategies

In case 2), both the AM and DM adopt our 
strategies. We can see the bandwidth occupancy rate 
increasing slower than the other two cases.

This is because the AM dynamically adjusts the 
number of attacking nodes for fewer exposure, 
and the DM dynamically adjusts threshold value 
�� for better network utilization according to our 
strategies.

In case 3), only DM adopts our strategies, and AM 
does not adopt our strategies. When the DDoS attack 
started, all 20 attack nodes launch an attack, and we 
can see the bandwidth occupancy rate reducing after 
���������������������	
�������������
����
��Z&�
decreases threshold value �, such that some attack 
requests are disconnected.

Therefore, the simulation experiment shows that 
our strategies do indeed significantly mitigate the 
harm of the DDoS attack.

6  Conclusion and future work

In this paper, we propose a novel game theory model 

to describe our scenario as follows: the CoT attacker 
expects to use a minimum number of IoT attack 
devices to occupy the most bandwidth resources 
in a given time period, and the defender expects 
to minimize the false alarm rate. In our model, we 
consider that: 1) both the attacker and defender are 
rational, and 2) their strategies are dynamic.

_������������
�����������������
����
���������������
relationship between the attacker and defender can be 
described as a non-cooperative game model. We have 
proved it to be a repeated incomplete information 
game, with an existent Nash equilibrium is existent 
perfected by the subgame. The best strategy for each 
stage of the SG defender is to reduce the threshold 
value � when estimating that the mathematical 
expectation of the suspicious value is greater than 
the load rate of server resources. We use an NS-3 
network to validate our model and its effectiveness. 
	
����������
�����
�������������������������������
mitigate the treat posed by a DDoS attack. Our 
planned future work is the analysis of new DDoS 
attacks in the CoT network, and how to recognize 
and trace them.
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