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Abstract

We consider the strategic behavior of secondary users (SUs) in a cognitive radio system where SUs opportunistically

share a single primary user (PU) band over a coverage area. The service of an SU can be interrupted by a PU in a

preemptive manner, and the interrupted SU may abandon the system or wait until the PU band is sensed available. In

the latter case, if spectrum sensing errors occur, they will cause misdetections and false alarms which impact the

system’s performance heavily. In this paper, we model this problem as a retrial queueing system with server

breakdowns and recoveries in which the interrupted SUs are treated as retrial customers. They will retry for using the

PU band after some period of time due to interruptions or misdetections. The arrival of a PU during service of an SU is

modeled as a server breakdown, and the recovery time is equivalent to the service time of this PU. We focus on the

behavior of arriving SUs who can make decisions on whether to join the system or to balk based on a natural cost

structure and the delays caused by PUs’ interruptions, which can be studied as a non-cooperative game. The

equilibrium and optimal strategies of SUs are both derived. Furthermore, to bridge the gap between the individually

and socially optimal strategies, a novel strategy of imposing an admission fee on SUs to join the retrial group is

proposed. Finally, some numerical examples are presented to show the effect of several key parameters on the system

performance.
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1 Introduction
Spectrum is recognized as one of the limited transmission

resources which face the challenges of the ever increasing

demand for higher data rates and lower latency in com-

munication networks. Cognitive radio (CR) first intro-

duced by Mitola [1] can alter its transmitter parameters

to accommodate the environment where it operates to

utilize spectrums more efficiently. The potential of cogni-

tive radio is being recognized not only by the military but

also by the commercial sector, for example, in intelligent

transportation, in cellular communications, and in public

safety.

Previous studies have shown that the utility of the

spectrum is very low under conventional static spectrum

access strategies [2]. As the users’ demands increase while

the amount of dedicated spectrum is limited, more and

more network users have to choose dynamic spectrum
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access (DSA) which has been considered as a viable solu-

tion to alleviate this spectrum scarcity and improve radio

communication efficiency. An amount of work focused

on the performance analysis of various systems; how-

ever, they neglect the competition between different users.

The relationship between users and operators of radio

networks is also worth considering.

There are two kinds of users in cognitive radio net-

works, namely, licensed (primary) users and unlicensed

(secondary) users. The secondary users can use the capa-

bilities of spectrum sensing, learning, and adaptation to

use the licensed spectrum to transmit, thereby enabling

coexistence and leading to higher overall spectral effi-

ciency. In general, due to the fact that in CR networks

primary users (PUs) have priorities over secondary users

(SUs) and the arrivals of PUs will interrupt the service of

SUs (if any), researchers use queueing systems with break-

downs to characterize the interruption process involved.

To SUs, the preemptive priority scheme underlying the
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CR network implies that the arrival and service of any PU

will bring a breakdown and repair process by means of

queueing way of saying.

In CR systems, in most cases, there is no centralized

controller to regulate channel access. Hence, a rational

secondary user needs to give his strategies relying on

local information and has to adapt to the environment

quickly. It is natural to form a spectrum market including

cooperation, pricing, and leasing since PUs have a limited

number of spectrum bands. In these spectrum markets,

user behaviors can be modeled and analyzed by economic

games. Tran et al. [3] studied delay-sensitive secondary

users via pricing strategies in a dynamic spectrum market

with a single PU band. Do et al. [4] considered a duopoly

market with cooperative and non-cooperative models and

provided the analysis of the pricing effect on equilib-

rium behavior of SUs by using the M/G/1 queue with

breakdown.

Game-theoretic spectrum sharing criteria could be used

to maximize both primary and secondary users’ satisfac-

tion (see [5–7]). Several studies in the literature [8–11]

considered the decentralized behavior of SUs and adopted

queueing-game approach to investigate the interactions

between PUs and SUs in the CR networks. Li and Han

[8] studied the discrete model in a more applicable way

which obtained the threshold of queue length to char-

acterize the optimal joining strategy of SUs. Do et al.

[9] investigated the socially optimal strategy of SUs in

unobserved queueing system in cognitive radio base sta-

tion. Jagannathan et al. [10] illustrated SUs utilizing white

spaces that were not used by PUs in the unobservable

case by the same model but did not consider the opti-

mization strategy. All of these works [8–10] assumed that

there is a queue in front of the PU band and the new

arrivals of SUs will enter the queue according to a first-

in-first-out (FIFO) discipline. Recently, Wang and Li [11]

considered the strategic behavior of SUs with retrials but

assumed that the interrupted SU did not leave the service

area and it would get service immediately once the occu-

pied PU completed service and left the band. It should

be noted that, in all the aforementioned papers, spectrum

sensing is assumed to be perfect. None of these works con-

sidered sensing failure problem although sensing failures

occur in practice and have non-ignorable impact on the

system.

Indeed, spectrum sensing plays a vital role in CR net-

works due to unreliability of wireless channels and users’

congestions. In principle, spectrum sensing is imperfect.

When an idle band is sensed busy, a false alarm is said to

occur. A misdetection refers to the situation that a busy

band is sensed idle. These two kinds of errors have sig-

nificant effects on the performance of CR systems. The

probability of a false alarm and that of a misdetection

should be kept below a certain level to guarantee the

QoS of PUs and also SUs, i.e., the system performance is

acceptable. In [12–18], the authors took imperfect sensing

into account. Hoang et al. [12] considered a CR sys-

tem with one single slotted channel sharing by a PU

and an SU, and the problem was formulated as a par-

tially observable Markov decision process. It was shown

that the optimal control policies could achieve significant

performance gain. In [14], a two-dimensional discrete-

time Markov chain is used to model a multiple-channel

CR system with imperfect sensing. In [15], the multiple-

channel CR system with unreliable spectrum sensing was

discussed and the authors employed a two-dimensional

continuous-time Markov chain model to analyze the sys-

tem. However, strategic behavior of SUs has not been

taken into account in these studies and the above mod-

els cannot reflect the decentralized behavior of SUs along

with the opportunistic sharing operation in practice.

In this paper, we focus on the strategic behavior of SUs

in CR networks from a game-theory point of view. More

specifically, we consider the general carrier sense multiple

access (CSMA) protocol arising from wireless communi-

cation networks. The basic idea of this CSMA protocol

lies in the fact that packets start transmission only if no

transmission is ongoing and “listen before talk” protocol is

adopted. That is, every user before attempting any trans-

mission listens whether somebody else is already using the

channel, avoiding the possible collision. To characterize

these factors, wemodel the CR system as a constant retrial

queueing system with server breakdowns, where SUs get

access to the PU band according to “listen before talk” pro-

tocol as retrial customers. The PU band is considered as a

server, and the PUs have the higher priority over all SUs.

When the PU arrives, it will occupy the PU band imme-

diately no matter whether the band is serving an SU or is

in an idle state. Under the assumption of imperfect spec-

trum sensing, an extensive study of the Nash equilibrium

and the socially optimal strategies for all SUs is carried out

in this paper. Besides, to use the PU band more efficiently

and eliminate the difference between the equilibrium and

the socially optimal strategies, a novel approach of impos-

ing an appropriate admission fee for SUs that decide to

join the orbit is proposed under sensing failure. In this

way, it is feasible to induce individually optimizing SUs to

behave in a socially optimal way.

The works of Jagannathan et al. [10] and Wang and

Li [11] are closely related to this paper. The differences

between this paper and Jagannathan et al. [10] are as

follows. (1) Jagannathan et al. [10] did not consider the

optimization strategy. (2) It did not consider the sensing

failure problem. Compared toWang and Li [11], this paper

assumes that the interrupted SUwill leave the service zone

and go back to retrial orbit as a head SU in the retrial

queue. Therefore, a new arriving SU has a chance to utilize

the PU band directly if the PU band is idle upon arrival.
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In the work of Wang and Li [11], they assumed that the

interrupted SU would not leave the service area and it will

get service immediately once the occupied PU completes

his service. As a result, the new arrivals of SUs during this

period (the waiting period of interrupted SU in the ser-

vice area) have to enter the retrial orbit for later attempts.

Evidently, this is more realistic in CR networks. To sum-

marize, the contributions of this paper lie in the fact that

we study the SUs’ joining behavior in CR networks with a

single bandwidth under imperfect spectrum sensing along

with constant retrial queueing system for the first time.

The paper is organized as follows. Section 2 presents

the model descriptions. In Section 3, we derive the aver-

age sojourn time for the arriving SUs who decide to

enter the cognitive radio base station when they are not

informed the system’s information with imperfect spec-

trum sensing. The equilibrium joining probabilities and

socially optimal strategies of SUs are derived. An appro-

priate admission fee is proposed to eliminate the differ-

ence between these two strategies. Section 4 illustrates

the effect of various performance measures on the sys-

tem by analytical and numerical comparisons. Finally, in

Section 5, we give some conclusions.

2 Systemmodel
We consider a cognitive radio base station which incor-

porates a single PU band that is shared by SUs. It means

that the PU band can transmit either one PU packet or

one SU packet at one time. We regard the PU band as

a server. As PUs have high priorities to use the band,

an emerging PU should be served immediately no mat-

ter whether the band is serving an SU or in an idle state.

SUs can opportunistically use the band when it is not

occupied.

The primary SUs and PUs arrive to the system accord-

ing to a Poisson process with rates λs and λp, respectively.

The service time for SUs (or PUs) follows an exponen-

tial distribution with rate μs (or μp). If the server is free

when an SU arrives, the SU starts service immediately.

Otherwise, if the arriving SU finds the server unavail-

able or an SU in service is squeezed out by an PU, in

both cases, the SU will enter an artificial waiting space

called “retrial orbit” in order. When the PU band becomes

idle, it will be sensed by the first SU in the orbit and

the inter-sensing time follows an exponential distribution

with parameter θ . The arrival processes of PUs and SUs,

service processes of PUs and SUs, sensing process, and

retrial process of SUs are mutually independent of each

other.

If the spectrum sensing is perfect, the QoS experienced

by PUs should not be affected by the SUs. However, in

practice, a PU may experience disruptions by the SUs’

imperfect sensing. The first case is that if a secondary user

searches for the occupied band incorrectly as idle status,

collisions will occur. The second kind of disruption to a

PU may occur when an ongoing SU transmitting on a

given band fails to detect the emergence of an arriving

primary user on that band. We refer to these two detec-

tion errors as class-A and class-B misdetection events,

respectively. In this paper, we will only consider class-B

misdetection events.

Misdetection events can negatively impact the perfor-

mance of the system. When a misdetection event occurs,

an ongoing SU may incorrectly detect that there is no PU

arriving, but in fact, there is a PU entering the band. The

PU will be blocked and the SU will be dropped into the

retrial orbit at the same time. Meanwhile, a false alarm

may also happen when an ongoing SU incorrectly detects

the presence of a PU on the same channel, but in fact,

there is no PU entering the channel. Once this occurs, the

SU will be dropped into the retrial orbit. In this paper, we

denote by pm and pf the probabilities of misdetection and

false alarm, respectively.

Every arriving SU who wants to get service at the cog-

nitive radio base station can decide whether or not to join

the system. We will consider the unobservable case that

SUs do not know the information (i.e., whether the PU

band is available or not and the total SUs in the retrial

orbit) about the system. After each service completed, an

SU will get a reward of R units. And the cost for delay

in the system is charged by C units pet time unit. All

SUs want to maximize their own benefit and they are

risk neutral. It is irrevocable for their decisions on join-

ing or balking according to their assessment on the reward

against the costs.

In the game-theoretic spectrum sharing model depicted

in Fig. 1, we characterize SUs’ strategies by a value q ∈

[ 0, 1] which is the probability an SU decides to enter the

system (thus, with probability 1 − q, the SU decides to

leave the system), i.e., the effective entering probability for

SUs is λsq. As all SUs are allowed to take their own deci-

sions, this system can be regarded as a non-cooperative

game and the aim of our investigation is to derive the sym-

metric Nash equilibria.We will study the SUs’ equilibrium

behavior and socially optimal strategies in the unobserv-

able retrial queueing systems under the impact of sensing

failures. Moreover, to use the PU band more efficiently

and eliminate the difference between the equilibrium and

the socially optimal strategies, we propose an effective

approach of imposing an appropriate admission fee for

SUs that decide to join the system. This control policy can

induce individually optimizing SUs to behave in a socially

optimal way and therefore to utilize the spectrum more

economically.

For convenience, all notations used in this paper

are listed in Table 1. For simplicity, denote by

η ≡
(

1 − pm − pf
)

λp and ξ ≡ pmλp + pf μs,

respectively.
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Fig. 1 Game-theoretic spectrum sharing model with imperfect sensing

3 Equilibrium analysis and optimal control
In this section, we first study the stability condition of this

system and then give a game-theoretic equilibrium anal-

ysis. An optimal control policy is discussed based on the

gap between equilibrium strategy and the socially optimal

strategy of SUs.

3.1 Stability condition and expected delay

Let (I(t),N(t)) represent the state of the system at time

Table 1 Important notations

Symbol Explanation

R Reward for each service

C Cost per time unit

λs Arrival rate for primary SUs

λp Arrival rate for primary PUs

μs Transmission rate for SUs

μp Transmission rate for PUs

θ Constant retrial rate

pm The probability of misdetection

pf The probability of false alarm

p Admission fee

t, where I(t) denotes the state of the server (0, idle; 1,

serving an SU; 2, serving a PU) andN(t) records the num-

ber of the customers in the retrial orbit. From the model

description, it is obvious that the process {I(t),N(t), t ≥

0} is a continuous Markov chain with state space � =

{(i, j), i = 0, 1, 2, j ≥ 0}. The system states and transition

rate diagram are shown in Fig. 2.

Proposition 1. The quasi-birth-and-death (QBD) pro-

cess {I(t),N(t)} is positive recurrent if and only if the

condition

(λsq+ θ)
[

μpμs − λsq(μp+η)
]

>λsq
(

λp+μp

)

(μs+η+ξ)

is established.

Proof. The proof is given in Appendix 1.

Intuitively, the above condition enables the system not

being too loaded and guarantees the existence of station-

ary distribution of the underlying Markov chain. Denote



Wang et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:141 Page 5 of 12

Fig. 2 Transition rate diagram in the cognitive radio system

by p(i, j), the steady-state probability of state (i, j) and the

balance equations of the system is given below.

(

λp + λsq
)

p(0, 0) = μpp(2, 0) + μsp(1, 0), (1)
(

λp + λsq + θ
)

p(0, j) = μpp(2, j) + μsp(1, j)

+ ξp(1, j − 1), j = 1, 2, . . . ,

(2)

(μs + η + ξ + λsq) p(1, 0) = θp(0, 1) + λsqp(0, 0) (3)

(μs + η + ξ + λsq) p(1, j) = θp(0, j + 1) + λsqp(1, j − 1)

+ λsqp(0, j), j = 1, 2, . . . ,

(4)
(

μp + λsq
)

p(2, 0) = λpp(0, 0), (5)
(

μp + λsq
)

p(2, j) = λpp(0, j) + λsqp(2, j − 1)

+ ηp(1, j − 1), j = 1, 2, . . . .

(6)

We define the partial generating functions:

pi(z) =

∞
∑

j=0

zjp(i, j), i = 0, 1, 2. (7)

Multiplying Eqs. (1)–(6) by zj and summing up over j,

we get the following equations.

(λp + λsq + θ)p0(z) − θp(0, 0) = μpp2(z) + μsp1(z)

+ξzp1(z), (8)

(μs + λsq(1 − z) + η + ξ)zp1(z) = (λsqz + θ)p0(z)

− θp(0, 0), (9)

(μp + λsq(1 − z))p2(z) = ηzp1(z) + λpp0(z).

(10)

After eliminating p(0, 0) from Eqs. (8) and (9) and com-

bining with Eq. (10), we get

λsqp0(z) = (μs − λsqz)p1(z) − λsqp2(z). (11)

Inserting z = 1 into Eqs. (10) and (11), we get the

relations between p0(1), p1(1) and p2(1) as follows:

p2(1) =
λp(μs − λsq) + λsqη

(λp + μp)λsq
p1(1),

p0(1) =
μpμs − (μp + η)λsq

(λp + μp)λsq
p1(1).

By virtue of the normalizing condition

∞
∑

j=0

(p(0, j)+p(1, j)+p(2, j)) = p0(1)+p1(1)+p2(1) = 1,

we can get the probabilities that the PU band is idle, occu-

pied by an SU, or occupied by a PU, respectively, given

by

p0(1) =
μpμs −

(

μp + η
)

λsq
(

λp + μp

)

μs
, (12)

p1(1) =
λsq

μs
, (13)

p2(1) =
λp (μs − λsq) + λsqη

(

λp + μp

)

μs
. (14)

The expected number of customers in the retrial orbit

under the state i is therefore given by

E[Ri]=

∞
∑

j=0

jp(i, j), i = 0, 1, 2.

With the help of pi(z), we obtain that

E[Ri]= p′
i(z)|z = 1.
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Differentiating Eqs. (8), (10), and (11), and taking z = 1

yields

(

λp + λsq + θ
)

p′
0(1) = ξ

(

p1(1) + p′
1(1)

)

+ μpp
′
2(1)

+ μsp
′
1(1), (15)

−λsqp2(1) + μpp
′
2(1) = η

(

p1(1) + p′
1(1)

)

+ λpp
′
0(1),

(16)

λsqp
′
0(1) + λsqp1(1) = (μs − λsq) p

′
1(1) − λsqp

′
2(1).

(17)

From Eqs. (15)–(17), we can easily get the expressions

of p′
0(1), p

′
1(1) and p′

2(1). Hence, the expected number of

customers in the system is given by

N =

i=2
∑

i=0

E[Ri]+p1(1)

=
λsq (λsq + θ)

[(

λp + μp

) (

μp + η
)

+ λp (μs − λsq) + λsqη
]

(

λp+μp

) {

(λsq+θ)
[

μpμs−λsq
(

μp + η
)]

−λsq
(

λp+μp

)

(μs+η+ξ)
}

+
λsq

[

λp (μs − λsq) + λsqη +
(

λp + μp

)

(η + ξ)
]

(λsq + θ)
[

μpμs − λsq(μp + η)
]

− λsq
(

λp + μp

)

(μs + η + ξ)
.

(18)

Further, the expected delay of an arriving SU is given by

T(q) =
N

λsq
. (19)

3.2 Nash equilibrium

Based on the results obtained above, the equilibrium

behavior of SUs is given as follows.

Theorem 1. In the considered model, a unique mixed

equilibrium strategy which is the joining probability qe is

given by

qe =

⎧

⎨

⎩

0, if R ≤ CT(0),

qe
∗, if CT(0) < R < CT(1),

1, R ≥ CT(1),

(20)

where qe
∗ satisfies the equation CT(qe

∗) = R.

Proof. The proof is presented in Appendix 2.

Remark 1. Suppose that q is the joining probability of

other arriving SUs, if q < qe, we can conclude that the

expected net benefit of the tagged SU is positive once he

enters the system. In this case, the unique response is 1.

Similarly, the unique best response is 0 if q > qe. What is

more, any strategy between 0 and 1 is a best response if

q = qe. This shows that an individual’s best response is an

decreasing function of the strategy by the others, i.e., the

higher the joining probability selected by the others, the

lower is one’s best response. Therefore, we have an “avoid

the crowd” (ATC) situation. We conclude that qe is the

unique equilibrium strategy.

3.3 Socially optimal strategy

Now, we turn our attention to social optimization. In the

real situation where resources are limited, this queueing

system considered from a social point of view is of great

significance. The social objective function is defined as

Ssoc = λsq(R − CT(q)), (21)

where λsq is the effective arrival rate. Let qsoc be the

optimal joining strategy. By solving

q∗ = arg max
0≤q≤1

{

λsq(R − CT(q))
}

, (22)

we can get the following results.

Theorem 2. In the considered model, a unique socially

optimal joining probability qsoc adopted by the SUs which

can be expressed as

qsoc =

⎧

⎨

⎩

0, q∗ ≤ 0,

q∗, if 0 < q∗ < 1,

1, if q∗ ≥ 1.

(23)

Proof. Since T(q) is increasing with q, the function

to be maximized is strictly concave and has a unique

maximum q∗.

We can infer q∗ ≤ qe due to d(Ssoc)
dq |q=qe = λs(R −

CT(qe)) − λsqeC
dT(q)
dq |q=qe ≤ 0. It shows that individ-

ual optimization leads to a longer queue than the desired

socially optimal strategy. We can impose an appropriate

admission fee on the SUs who enter the system to gap this

difference.

3.4 Admission fee

We have derived the equilibrium strategy and the social

optimization strategy of SUs upon arrival. It is easy to see

that these two strategies do not coincide with each other,

and the relationship q∗ ≤ qe holds. From the manage-

rial point of view, this leads to the fact that the limited

resources will be used excessively, as all users want tomax-

imize their own benefit regardless of others. In order to

reduce the gap between individual and social optimization

and let SUs behave in a socially optimal way, the adminis-

trator of the cognitive radio base station is likely to impose

a constant admission fee p on SUs when they decide to

enter the system.

When the admission fee p is imposed, the reward for

an SU who enters the system is reduced into R − p. As

the administrator absorbs every SU’s surplus, then the

equilibrium joining strategy qe(p) is changed into

1) R − p ≤ CT(0): qe(p) = 0;

2) CT(0) < R − p < CT(1): qe(p) satisfies the equation

CT(qe(p)) = R − p;

3) R − p ≥ CT(1): qe(p) = 1.
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Under the condition of being imposed an admission

fee, the social benefit of the system is λq[R − p −

CE[T(λ)] ]+λqp which equals to Ssoc. Note that as the

admission fee p has no effect on the social objective func-

tion, the final socially optimal joining strategy will not be

changed. To eliminate the difference between the equi-

librium joining strategy and the socially optimal solution,

an optimal admission fee p∗ should satisfy the equation

qsoc = qe(p
∗).

4 Numerical examples
In this section, we focus on the effects of different param-

eters on the behavior of SUs via numerical examples.

More concretely, we first examine how the equilibrium

and socially optimal entrance probabilities are affected by

changing the values of parameters λ, μ, η, β , θ , and R. It

is not hard to find that q∗ is smaller than qe in all these

figures, as explained before. The impact of misdetections

on equilibrium and socially optimal behavior can also be

observed.

It is shown in Fig. 3 that both qe and q∗ are decreasing

as the arrival rate λs increases. This is because when λs
increases, arriving SUs who do not know whether the PU

band is available or not will see more blocked SUs waiting

in the retrial orbit. So the arriving SUs are less inclined to

join the orbit to avoid more waiting cost as they are not

allowed to balk during their waiting. Figure 4 depicts the

influence of service rateμs on the strategic entrance prob-

abilities. We observe that qe and q∗ are increasing with

respect to μs. It can be explained that the increasing ser-

vice rate of PU band benefits SUs waiting in the retrial

orbit as the completing service time for SUs get faster. As

in Fig. 5, the strategic entrance probabilities decreases as

the arrival rate λp of PUs increases. This is due to the

priority of PUs, and when λp increases, the interruption

times per unit become more frequent. The server needs

some time to serve the PU. So SUs are reluctant to join the

orbit upon arrival. The system will get more loaded as the

server’s breakdown become more frequent. Considering

the influence of μp on these two entrance probabilities,

we observe in Fig. 6 that along with the increasing of μp,

the expected sojourn time for an PU becomes shorter.

There will be more opportunities for arriving SUs who

stay in the orbit to use the PU band. When it comes to θ

in Fig. 7, PUs are more willing to join the system in pace

with the increasing retrial rate of the SUs in orbit. When

θ increases, SUs will have more probabilities to get suc-

cessful to retry for using the PU band during the same

period. All the above figures show that the equilibrium

strategies of SU are larger than the socially optimal strat-

egy, so it is of significance to impose an admission on

the administrator of the network. As for the impact of

the probabilities of misdetection and false alarm on the

behavior of SUs, it can be seen from Fig. 8 that arriv-

ing SUs will be more likely to enter the system as pm
increases and the phenomenon is reverse as pf increases.

Because the arriving PU will be forced to drop when mis-

detection occurs, the SUs’ waiting time in the retrial orbit

will be reduced. However, if pf increases, the SU who is

in service tends to give up and enters the retrial orbit,

which incurs negative externalities on those who stay in

the retrial orbit. The same phenomenon is observed for

the maximum social strategies as shown in Fig. 9. It is

interesting to see that in Fig. 10, the arriving SUs will

be imposed more fees as pm increases or pf decreases,

because the amount of SUs in the system will increase

in both cases and the negative externalities lead to these

results.
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Fig. 3 Equilibrium and social optimization joining probabilities vs. λs for R = 10, C = 1, μs = 2, λp = 0.4, μp = 2, θ = 0.7, pm = 0.001, and

pf = 0.001
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Fig. 4 Equilibrium and social optimization joining probabilities vs. μs for R = 10, C = 1, λs = 0.4, λp = 0.4, μp = 2, θ = 0.7, pm = 0.001, and

pf = 0.001
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Fig. 5 Equilibrium and social optimization joining probabilities vs. λp for R = 10, C = 1, μs = 2, λs = 0.4, μp = 2, θ = 0.7, pm = 0.001, and

pf = 0.001
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Fig. 6 Equilibrium and social optimization joining probabilities vs.μp for R = 10, C = 1,μs = 2, λp = 0.4, λs = 0.4, θ = 0.7, pm = 0.01, and pf = 0.01
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Fig. 7 Equilibrium and social optimization joining probabilities vs. θ for R = 10, C = 1, μs = 2, λs = 0.4, λp = 0.4, μp = 2, pm = 0.01, and pf = 0.01

5 Conclusions
In this paper, we considered the SUs’ joining behavior in

cognitive radio network with a single bandwidth under

imperfect spectrum sensing. We used the constant retrial

queueing system with server breakdowns to model the

actual situations in which the PUs own priority over SUs

and SUs will retry their luck for service if interrupted

or blocked upon arrival. The SUs’ joining behavior were

described from an economic viewpoint based on game-

theoretic analysis. The equilibrium and socially optimal

strategies of SUs were investigated. It was shown that the

equilibrium strategy is greater than the socially optimal

strategy, and it was verified through numerical examples.

To eliminate the gap between equilibrium strategy and

socially optimal strategy, we proposed a control policy

that imposes an admission fee on each joining SU in order

to utilize the PU band more efficiently.

Appendix 1: Proof of Proposition 1
Proof. Using the lexicographical sequence for the states,

the infinitesimal generator Q can be written as

Q =

⎛

⎜

⎜

⎜

⎝

A0 C

B A C

B A C

. . .
. . .

. . .

⎞

⎟

⎟

⎟

⎠

,
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Fig. 8 Equilibrium strategies vs. pm for R = 15, C = 3, μs = 2, λs = 0.4, λp = 0.5, μp = 2, and θ = 0.7
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Fig. 9 Optimal social strategies vs. pm for R = 10, C = 1, μs = 2, λs = 0.4, λp = 0.4, μp = 2, and θ = 0.7

where

A0 =

⎛

⎜

⎜

⎜

⎜

⎝

−
(

λsq + λp
)

λsq λp

μs − (μs + λsq + η + ξ) 0

μp 0 −
(

λsq + μp

)

⎞

⎟

⎟

⎟

⎟

⎠

,

B =

⎛

⎝

0 θ 0

0 0 0

0 0 0

⎞

⎠ ,

A=

⎛

⎝

−
(

θ+λsq + λp
)

λsq λp
μs −(μs + λsq + η + ξ) 0

μp 0 −
(

λsq + μp

)

⎞

⎠ ,

C =

⎛

⎜

⎜

⎝

0 0 0

ξ λsq η

0 0 λsq

⎞

⎟

⎟

⎠

.

Due to the block structure of matrix Q, {I(t),N(t)} is

called a quasi-birth-and-death (QBD) process.
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Fig. 10 Admission fee vs. pm for R = 10, C = 1,μs = 2, λs = 0.4, λp = 0.4,μp = 2, and θ = 0.7
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First, we assume

D=B +A+C=

⎛

⎝

−(θ + λsq + λp) θ + λsq λp
μs + ξ −(μs + η + ξ) η

μp 0 −μp

⎞

⎠.

Since D is reducible, the Theorem 7.3.1 in [19] gives the

condition for positive recurrence of the QBD. After per-

mutation of rows and columns, the Theorem 7.3.1 states

that the QBD is positive recurrent if and only if

υ

⎛

⎝

0 θ 0

0 0 0

0 0 0

⎞

⎠ 1 > υ

⎛

⎝

0 0 0

ξ λsq η

0 0 λsq

⎞

⎠ 1,

where 1 is a column vector with all elements equal to one,

and υ is the unique solution υD = 0,υ1 = 1. After

some algebraic manipulation, the QBD process is positive

recurrent if and only if

(λsq+θ)
[

μpμs−λsq(μp + η)
]

>λsq
(

λp+μp

)

(μs+η + ξ)

(24)

are established. The right side of the inequality is always

greater than zero which infers to

μpμs > λsq(μp + η).

Therefore, the Eqs. from (12) to (14) are greater than

zero which is reasonable.

Appendix 2: Proof of Theorem 1
Proof. The expected waiting time of the tagged SU who

choose to enter system is increasing with the same strate-

gies q adopted by other SUs. We can output the expected

waiting time as in (25).

T(q)

=
(λsq + θ)

[(

λp + μp

) (

μp + η
)

+ λp (μs − λsq) + λsqη
]

(

λp+μp

) {

(λsq+θ)
[

μpμs−λsq
(

μp+η
)]

−λsq
(

λp+μp

)

(μs+η+ξ)
}

+
λp (μs − λsq) + λsqη +

(

λp + μp

)

(η + ξ)

(λsq + θ)
[

μpμs − λsq
(

μp + η
)]

− λsq
(

λp + μp

)

(μs + η + ξ)
.

(25)

Differentiating the denominator in the second fraction

(denoted as g(q)) of T we can obtain

g′(q) = −λs (2λsq + θ)
(

μp + η
)

− λsλp (μs + η + ξ)

− λsμp (η + ξ) < 0.

Thus, it is decreasing with q. Observing the whole

expression of T, it is mean to identify the monotonicity

of
λp(μs−λsq)+λsqη

g(q) . It is easier to prove the inverse fac-

tion which is
g(q)

λp(μs−λsq)+λsqη
is monotone decreasing as q

increases. Just differentiate the objective function, and we

omitted it.

Therefore, the payoff for the tagged SU who chooses to

enter the system (means that the tagged SU selects the

strategy 1) when all others select strategy q is

S(q) = R − CT(q).

For all the arriving SUs, each has two pure strategies: to

join or balk and a mixed strategy. We denote these pure

and mixed strategies by a fraction q, 0 ≤ q ≤ 1. So the

mixed strategy means an SU enters the system with prob-

ability q and not to join with probability 1 − q. Let qe be

the individual equilibrium strategy of each SU, then we

analyze the equilibrium behavior of arriving SUs as three

cases below:

1) R ≤ CT(0). An SU who joins can get a negative

benefit when there are no other SUs entering the

system. So his decision is not to join. Therefore, the

strategy of joining with probability qe = 0 is an

equilibrium strategy.

2) CT(0) < R < CT(1). We can specify that if qe = 1,

then an SU who joins gets a negative benefit. So this

is not an equilibrium strategy. If qe = 0, an SU who

joins obtains a positive profit which is more than by

balking (the benefit is 0). Thus, this is not an

equilibrium strategy too. Therefore, there exists a

unique equilibrium strategy qe such that CT(qe) = R.

3) R ≥ CT(1). In this case, any arriving SU will obtain a

non-negative profit even if all other SUs join the

system. So, the only one equilibrium strategy of

joining the system is qe = 1. And joining is a

dominant strategy.
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