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ABSTRACT

Recent emphasis on competition and cooperation in supply chains has resulted in the resurgence
of game theory as a relevant tool for analyzing such interactions in a supply chain. This paper
presents a review of more than 130 papers concerned with game theoretical applications in supply
chain management (SCM). We first give a brief summary of the basic solution concepts in non-
cooperative and cooperative games such as Nash and Stackelberg equilibria, Nash arbitration
scheme and cooperation with sidepayments, the core, the Shapley value and nucleolus. Our review
of supply chain-related game theoretical applications is presented in five areas: (i) Inventory games
with fixed unit purchase cost, (ii) Inventory games with quantity discounts, (iii) Production and
pricing competition, (iv) Games with other attributes, (v) Games with joint decisions on inventory,
production/pricing and other attributes. The paper concludes with a summary of our review,
suggestions for potential applications of game theory in SCM and an alternative classification
of all reviewed papers.

Keywords: Supply chain management, non-cooperative and cooperative games.

1. INTRODUCTION

Game theory is concerned with the analysis of situations involving conflict and cooperation.
Since its development in the early 1940s game theory has found applications in diverse areas
such as anthropology, auctions, biology, business, economics, management-labour arbitration,
philosophy, politics, sports and warfare. After the initial excitement generated by its potential
applications, interest in game theory by operations research/management science specialists
seemed to have waned during the 1960s and the 1970s. However, the last two decades have
witnessed a renewed interest by academics and practitioners in the management of supply chains
and a new emphasis on the interactions among the decision makers (“players”) constituting a
supply chain. This has resulted in the proliferation of publications in scattered journals dealing
with the use of game theory in the analysis of supply chain-related problems. The purpose of
this paper is to provide a wide-ranging survey (of more than 130 papers) focusing on game
theoretic applications in different areas of supply chain management (SCM).

A supply chain can be defined as “a system of suppliers, manufacturers, distributors, retailers,
and customers where materials flow downstream from suppliers to customers and information
flows in both directions” (Ganeshan et al. {57]). Supply chain management, on the other hand,
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is defined by some researchers as a set of management processes. For example, Lal.onde
[94] defines SCM as “the process of managing relationships, information, and materials flow
across enterprise borders to deliver enhanced customer service and economic value through
synchronized management of the flow of physical goods and associated information from
sourcing to consumption.” (See Mentzer et al. [118] for a collection of competing definitions.)
Adopting Lal.onde’s definition, one observes that most SCM-related research has features that
are common to operations management and marketing problems, e.g., inventory control, pro-
duction and pricing competition, capacity investments, service and product quality competition,
advertising and new product introduction.

Several survey papers related to SCM have appeared in the literature. For example, Tayur
et al. [154] have edited a book emphasizing quantitative models for SCM. Ganeshan et al.
[57) proposed a taxonomic review and framework that help both practitioners and academic
researchers better understand the up-to-date state of SCM research. Wilcox et al. [172] presented
a brief survey of the papers on the price-quantity discount. McAlister [113] reviewed a model
of distribution channels incorporating behavior dimensions. Goyal and Gupta [64] provided a
survey of literature that treated buyer-vendor coordination with integrated inventory models.

In addition to the above, some reviews focussing on the application of game theory in
economics or management science have appeared in the last five decades. An early survey of
game theoretic applications in management science was given by Shubik [148]. Feichtinger
and Jo rgensen {53] published a review that was restricted to differential game applications in
management science and operations research. More recently, Wang and Parlar [167] presented
a survey of the static game theory applications in management science problems. A review
of applications of differential games in advertising was given by Jorgensen [78]. Li and
Whang [105] provided a survey of game theoretic models applied in operations management
and information systems where the SCM-related literature focusing on information sharing
and manufacturing/marketing incentives was also discussed. In addition, several books (e.g.,
Chatterjee and Samuelson [31], Gautschi [59), Kuhn and Szego [91] and Sheth et al. [147])
partially reviewed some specific game-related topics in SCM.

In the last few years two important reviews focussing on game theoretical applications
in supply chain management were published. In [27] Cachon and Netessine outlined game-
theoretic concepts and surveyed applications of game theory in supply chain management.
Cachon and Netessine classified games that were developed for SCM into four categories
based on game-theoretical techniques: (i) Non-cooperative static games, (ii) dynamic games,
(iii) cooperative games, and (iv) signaling, screening and Bayesian games. In each category,
the authors presented the major techniques that are commonly used in the existing papers and
those that could be applied in future research. Our paper differs from Cachon and Netessine
[27) because we review about 130 papers based on a classification of SCM topics (rather
than game-theoretical techniques). In [20]) Cachon reviewed the literature on supply chain
collaboration with contracts. Our paper differs from [20] as we review game models concemned
with coordination and competition in supply chains. Moreover, we review several very recent
papers which were not mentioned in [20] or (27].

Most significant — and interesting — topics arising in SCM emphasize the coordination/co-
operation and competition among supply chain’s channel members. In a centralized supply
chain the “central” decision maker may coordinate the members’ activities to increase the
competitive capability of the supply chain. In other words, the single decision maker determines
the optimal solution that globally improves the supply chain performance; thus, in these type of
centralized problems game theory is not used. However, for a decentralized supply chain where
each supply chain member is an independent decision maker, there arise two issues: (i) Supply
chain members compete to improve their individual performance. For example, several agents at
the same echelon of a supply chain may compete for limited resources or compete for demand
from the same group of customers. As a result, various competitive game-related issues arise
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in the analysis of the decentralized supply chains with competition, (ii) Supply chain members
may agree to have a contract to coordinate their strategies in order to improve the global
performance of the system as well as their individual profits. For this type of decentralized
supply chains with cooperation/coordination, channel members may not only achieve supply
chain-wide optimization but also they would have no incentives to deviate from the global
optimal solution. Naturally, a prime methodological tool for dealing with these problems is
non-cooperative and cooperative game theory that focuses on the simultaneous or sequential
decision-making of multiple-players under complete or incomplete information.

This literature review is organized as follows. Section 2 presents a description of important
game theoretic concepts used in the solution of non-cooperative and cooperative games. These
include Nash and Stackelberg equilibria, the Nash arbitration scheme and cooperation with
side-payments, the core, the Shapley value and the nucleolus. In this section we also mention
subgame-perfection and trigger strategy that are commonly used in multi-stage (dynamic) and
repeated games which are becoming more relevent in supply chain applications. Section 2 also
includes a classification of five categories where supply chain-related game theoretical appli-
cations are found: (i) Inventory games with fixed unit purchase cost, (i) Inventory games with
quantity discounts, (iii) Production and pricing competition, (iv) Games with other attributes,
(v) Games with joint decisions on inventory, production/pricing and other attributes. Review
of papers in these five areas is presented in the five subsequent sections, i.e., Section 3 covers
category (i), i.e., inventory games with fixed unit purchase cost, Section 4 discusses category
(ii), Section 5 deals with category (iii), Section 6 covers category (iv), and Section 7 reviews
category (v). The final section presents our concluding remarks and some suggestions for po-
tential applications of game theory in SCM. Finally, in Appendix A we categorize the reviewed
papers according to an alternative classification scheme based on their game theoretic nature,
i.e., non-cooperative vs. cooperative game. In Appendix B we present a summary distribution
of the reviewed papers in all five classes.

2. GAME THEORY AND SUPPLY CHAIN MANAGEMENT

As discussed in Section 1, game theory has become a primary methodology used in SCM-
related problems. The goal of this section is to provide a concise framework of game theoretic
models and their applications to various SCM issues classified into different categories.

2.1 Brief Review of Some Solution Concepts in Game Theory

Game theoretic models can be classified as non-cooperative or cooperative depending on the
nature of interaction among the players. In this subsection we describe some of the standard
approaches in each category.

2.1.1 Non-cooperative Games

Nash and Stackelberg equilibria are two important solution concepts used in many non-
cooperative games. In a game, the feasible actions that could be adopted by the players
are called their strategies. For a player, all possible strategies form the player’s strategy
set. When each player in a game chooses a feasible strategy, an outcome appears as the
specific payoffs to all players. When players in a game choose their strategies simultaneously,
Nash equilibrium applies. But in a leader-following scenario where one player can act before
the other, the strategy for each player can be determined by finding the Stackelberg solution.
Both Nash and Stackelberg strategies require the analysis of the “best response functions.” We
illustrate these ideas by presenting a simple two-person non-cooperative nonzero-sum game.

Best Response Functions: Consider a two-person nonzero-sum game with fi(x;,x;) and
Jf(x1,x2) as the objective functions of the two non-cooperating players where x; € X; and
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X2 € X; represent the strategies chosen by player | (P1) and player 2 (P2) over their respective
feasible regions X; and X,. We assume that each player's objective is to maximize his/her
objective function. Suppose P2 chooses the strategy as x; = X, and announces it to Pl.
The best response xf(%;) of Pl is obtained as the solution of the optimization problem
xf(ﬁz) = arg max,,ex, fi(x.£;). Performing this optimization for all x; € X, we obtain the best
response xX(x;) of P1 given as a function of x,. Similarly, the best response xf(x.) of P2 can
be found as a function of x;.

Example 1

Consider a two-person nonzero-sum game where players 1 and 2 attempt to maximize their
respective objective functions f,(xj,x2) = —2x? + 5x;x2 and fo(x;.x2) = —3x} + 2x)x; + x; for
x),x2 2 0. Note that for any x; = %», P1's objective function f)(x,, %,) is concave in x,, and for
any x; = %, P2’s objective function f2(%,.x;) is concave in x,. Differentiating f;(x},£;) with
respect to x; we find dfj(x;.£;)/0x; = —4x + 5%;. Solving df(x,,%2)/dx; = O for x, gives
xR(x2) = 3 x; as the best response function for P1. For P2 the best response function is found
as x3(x)) = %(le +1). <

We now describe the computation of Nash and Stackelberg equilibria using the best response
functions for each player.

Nash Equilibrium: This concept applies when the players announce their decisions simul-
taneously (as in the children’s game known as *“rock, paper and scissors” (Kreps [88])). It is
also applicable when the players cannot communicate (as in the game known as “prisoners’
dilemma™ (Shubik [149]). The following definition formalizes the concept of Nash equilibrium
(Nash [124]).

Definition 1
A pair of strategies (x ,x}) is said 1o constitute a Nash equilibrium if the following pair of
inequalities is satisfied for all x, € X, and for all x; € X,:

LY > fixnxd) and  fGN 1Y) > HGY . x).

That is, x and x) solve max,exfi(x).xY) and max,cx.fo(x).x2), respectively. (See, for
example, Bagar and Olsder [11] and Gibbons [61, p. 8].)

Assuming continuity, differentiability and (x).x,) € R?, this definition implies that if the
pair (x¥,xY) is to be a Nash equilibrium, the players’ decisions must satisfy

afl(ﬂ-ﬁ") -0 and af:’(»\'N! , X2) —0
ox) n=o ax; n=d )

Equivalently, the Nash equilibrium is obtained by solving the (nonlinear) system of equations
x1 = xf(x;) and x; = x8(x)).

Example 2
Consider again the problem discussed in Example 1. To compute the Nash equilibrium we
solve

x = %x; and X2 = %(le-i'l)

and obtain (x,x)) = (0.36,0.29), see Figure 1. Substituting this result in the players’
objective functions gives fi(x)',x}) = 0.2628 and f>(x},x}') = 0.2465. The solution found
is the equilibrium since a unilateral move by any of the players results in an inferior solution
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Figure 1: These graphs display the contour curves for each player’s objective function Jy(x4, X5)
and Jy(x;, X5). The best response functions for player 1 and player 2 are given by the straight
lines x; = 3 X, and X, = 3 1 (2x, + 1), respectively. Solving the linear system of the best response
funct;ons gives the unique Nash equilibrium as (x", xf') (0.36, 0.29). Graphically, the Nash
equilibrium is found by superimposing the two figures and finding the intersection of the two lines
(which is denoted by a circle °).
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for that player. For example, if P2 moves away fromx2 = 0.29 while P1 still plays xy = 0.36,

we find that P2’s objective deteriorates. Similarly, if P1 moves away fromx) = 0.36 while
P2 still plays x;' = 0.29, then P1’s objective deteriorates. Hence, in this non-cooperative game
rational players must choose (Y, x)Y) = (0.36,0.29) as their Nash solution. <

Stackelberg Equilibrium: This equilibrium concept — due to von Stackelberg [161] — applies
when one of the players can move before the other player(s) and assumes the role of the leader.
For example, a company may complete its R&D activities and launch a new product before
the others thus assuming the leadership position in the market. In a macroeconomic setting, the
government (leader) sets its fiscal and monetary policy and the firms follow by choosing their
price and employment levels. In a leader-follower environment, the follower chooses her best
response to the leader’s decision; and the leader optimizes his objective function subject to
the follower’s response. In some SCM problems Stackelberg solution concept is more realistic
than Nash equilibrium as a channel member sometimes plays the role of the leader by first
announcing his strategy to the other channel member(s). For instance, in a quantity discount
problem involving a seller and a buyer, the seller (leader) may first announce his discount
policy to the buyer, and the buyer (follower) makes her purchase decision in response to
seller’s decision.

Consider again a two-person game where, say, Pl is the leader and P2 is the follower
with the respective objective functions fi{x1,x2) and f2(x;, x;). For any x; that P1 chooses, P2
uses her best response function to determine her response x, = xX(x;). Since the leader can
determine the follower’s response to his decision (assuming, of course, that the game is played
under complete information), he then optimizes his objectivef(x;,x;) subject to the constraint
X =x R(x;). We now formalize the concept of Stackelberg equilibrium with the following
definition.
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Definition 2
In a two-person game with Pl as the leader and P2 as the follower, the strategy X € X, is
called a Stackelberg equilibrium for the leader if, for all x,,

[i65 xalxy = xR ) = fixixalxe = xFx),

where xf(xl) is the best response function of the follower. (See, Basar and Olsder [11].)

Example 3

Consider again the problem discussed in Example 1 with fi(x;,x;) = —2x? + 5xx; and
f(x1.x2) = —3x2 + 20x2 + x; and the follower's best response function as x; = xf(x)) =
§(2x; +1). To determine the leader’s Stackelberg strategy, we maximize his objectivefi(x),x2)
subject to the constraint x; = x¥(x;) for x; > 0. (Graphically, in Figure 1, this corresponds to
maximizing the first player’s objective on the line representing the best response function of
the second player.) Thus,

xi =arg max NG xf(x)

1 i 5
=g g {-2xt+ 50 [gan )| = e g (~55t+ 3m)

5

e
The follower's Stackelberg solution is then found as x§ = xf(x§) = (2§ + 1) = .
Substituting the solution (r§,x§) = (3, ) into the two players’ objective functions gives
fit. 5) = 2052 and fo(0f. 1) = § ~ 1.02. <

Comparing the Nash and Stackelberg solutions found in Examples 2 and 3, we see that both
players improve their objective functions and the follower does even better than the leader.
This result is sometimes observed in practical situations where a high-cost leader loses market
share to a low-cost follower who imitates cheaper copies of the product without investing in
costly R&D activities. For other interesting aspects of Stackelberg solution, we refer the reader
to the excellent text by Basar and Olsder {11].

We should also mention two other solution concepts (subgame-perfection and trigger
strategy) which are becoming relevant in supply chain applications. Subgame-perfection is
an important concept used in the solution of dynamic games which are represented in ex-
tensive form. In a dynamic game consisting of subgames, a Nash equilibrium is defined as
subgame-perfect if the players’ strategies constitute a Nash equilibrium in each subgame. In a
repeated game which is played infinitely many times, a player i may cooperate with player j
until j stops cooperating which triggers player i to switch to non-cooperation. For a detailed
description of these concepts and illustrative examples, see Gibbons [61, Ch. 2].

In the above paragraphs we have presented a very brief review of some of the solution
concepts associated with non-cooperative games as most existing papers dealing with a variety
of SCM problems focus on finding Nash and Stackelberg solutions. Although most papers on
SCM use the Nash and Stackelberg equilibria to determine the channel members’ decisions,
there are also cooperative solution concepts that are used in the analysis of supply chain
problems as we describe below.

2.1.2 Cooperative games

In a cooperative game, communication between players is allowed (or, possible) so that they
could agree to implement an outcome better than the Nash or Stackelberg equilibrium. Since
the aim of cooperation between channel members in a supply chain is to improve their (and
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the supply chain’s) profitability, it is important to understand the concepts used in cooperative
game theory. Most cooperative games with three or more players are formulated using the
characteristic function form which specifies the payoffs to each coalition; such games are
solved using concepts such as the Shapley value [145] and nucleolus [142]. Cooperative games
that involve only two players are usually analyzed by using the Nash arbitration scheme [123]
which is not given in terms of characteristic functions.

Cooperative Games not in Characteristic Function Form: For cooperative games with two
players which are not stated in characteristic function form, Nash arbitration scheme [123], or
cooperation with side-payments (where a system-wide objective function is optimized) may
provide an acceptable solution.

The Nash Arbitration Scheme: Since this scheme is determined as the solution of a bargaining
game, it is also called Nash Bargaining Solution (see, Nash [123]). This scheme is based on
(i) the concept of undominated Pareto optimal solutions that make up the efficient frontier of
payoff values for the two players, and (ii) the status quo point corresponding to the players’
“security” levels, i.e., the payoffs (fxo, 1Y) guaranteed to each player even when they do not
cooperate. An arbitrated solution to a non-zero sum game is (i) Pareto optimal and, (ii) at or
above the security levels for both players.

One way of determining the Pareto optimal solutions is by solving a nonlinear programming
problem which maximizes P1’s objective f1(x;,x;) subject to the constraint that P2 receives
b, i.e., fo(x1,x2) = b. This problem is solved for each value of b and a parametric solution (a
nonlinear curve) is obtained for the optimal (f{*,f,"). The Pareto optimal solutions 2 on this
curve are those points which are not dominated by any other point on the curve.

Nash’s arbitration scheme depends on four axioms: (i) Rationality, (ii) linear invariance, (iii)
symmetry, and (iv) independence of irrelevant alternatives. With these axioms Nash shows that
there is a unique arbitration solution found by solving the optimization problem

max (i —f)f—f) st(ffp)eP
flzfl,f22f2

where (0, f?) is the status quo point. For an application of Nash’s arbitration scheme to product
quality competition, see Reyniers and Tapiero [136].

Example 4

Consider a two-person non-zero sum cooperative game with the objective functionsf; (x;, x;) =
2 —[(x; — 1?4+ (xp — 1)?] and fo(x1,x2) = 1 — [(x; — 2)® + (x, — 2)?]. Here, the decision
variables (x;,x;) could correspond to production levels chosen by each firm whose profit
functions are given by fi(x1,x2) and f>(x;,x;). To determine the Pareto optimal solutions
for this game we maximize fj(x;,x;) subject to fr(x1,x;) = b. [Since the global maximum
value of f5(x1,x2) is 1, we must have b < 1.] This is achieved by forming the Lagrangian
as L(x;,xp,A) = fi(x1,x2) + A[b — fa(x1,x2)]. Partially differentiating L(x;, x5, A), equating the
derivatives to zero and solving the resulting system of three nonlinear equations we find a set of
two solutions as x; = 24 3 v2(1 — b), x, = 2+ 1 v/2(1 —b), and A = 1 £v/2(1 — b)/(1 —b).

Substituting these in fi(x),x;) and f>(x1,x;) we have (in parametric form)
1 2
LA, x2), o(x1,x2)] = [2 -2 (1 + 3 V2(1 - b)) ,b] forb < 1.

When b = —1, we see that fi (x{, x,) reaches its highest value of 2. Thus, the efficient frontier is
obtained in terms of (f1,£2) as fi = g(fh) =2—2(1— % V2(1 — f))? for 0 < f, < 1. Assuming
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Figure 2: The Pareto optimal solutions P are the collection of points on the thick curve. The
Nash arbitrated solution is (f{%, £*) € P denoted by the circle ® on the curve.

o AN
(1.0.0.0)
g .
-1 9 !
.2 1
-(; .3 0'0 ;rb 1'0 175 ;0 2:5
fy(x,.%3)

the status quo to be (f?2./?) = (0,0), Nash's arbitrated solution ( f.f}') is found by maximizing
hxfi=[12-2(1- -'2- V21T =1))*] x f> subject to fy,f2 > 0. Performing the optimization gives
(A = (1.21,0.72) which correspond to production levels of (x),x2) = (1.62,1.62). With
this solution the total system-wide objective is found as f4 = fA +f} = 1.21+0.72 = 1.93.

<4

Cooperation with Side-payments: Now assume that it is possible for one player to make side-
payments to the other player. The players can then cooperate by maximizing the system-wide
objective function f(x;,x2) = fi(x),X2) + f2(x),X2) and agree to split the extra profit resulting
from this cooperation. In the case of Example 4 this corresponds to maximizing the objective
function f(x;.x3) = 3 — (x; — 12 = (x3 — 1)? — (x; — 2)* — (x3 — 2)* which results in the
optimal solution (x].x3) = (1.5, 1.5) with f* = f(x;,x;3) = 2. Jointly optimizing the system-
wide objective function results in a higher profit (f* = 2) than the total profit obtained under
the arbitrated solution (f* = 1.93) - the difference being 0.07. Now, player 1 can make a

side-payment of, say, 0.03 to player 2 thus making them both better off than at the arbitrated
solution.

Cooperative Games in Characteristic Function Form:Consider a game with multiple players
who can communicate and (perhaps) improve their payoff by cooperation. Many such games
can be analyzed by casting them in characteristic function form defined as follows.

Definition 3

A game G = (N,v) in characteristic function form is a set of N players and a function v
which assigns a number WS) to any subset S C N.

The number v(S) assigned to the coalition S is interpreted as the amount that players in set S
could win if they formed a coalition. A game in characteristic form is said to be superadditive
when v(SUT) > v(S)+v(T) for any two disjoint coalitions § and T. A superadditive N-person
game is inessential if ),y v(i) = v(N). Otherwise, the game is essential.

For an N-person game in characteristic form, the payoff to each player is expressed as an
n-tuple of numbers x = (x;,X3....,X,). A payoff n-tuple, which satisfies individual rationality
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Figure 3: The core of the 3-person game with v({}) = v(A) = v(B) = C) =0, (AB) =2,
V(AC) = 4, (BC) = 6 and V(ABC) =7 is the area indicated by thick lines. The Shapley
value ¢ is outside the core, but the nucleolus v is inside it.

I

kel
>

il
—

[i.e., x; > v(i) for each player i] and collective rationality [i.e., >,y x; = v(N)], is called an
imputation for the game (N, v).

Example 5

As an example, consider a 3-person game with N = {A, B, C} where the characteristic functions
are given as v() = v(A) = v(B) = v(C) = 0, v(AB) = 2, v(AC) = 4, v(BC) = 6
and v(ABC) = 7. Here, individually, none of the players can receive any payoff. But if
they cooperate, different coalitions result in a positive payoff for each coalition. If they
all cooperate, then the “grand coalition” receives an amount v(ABC) higher than any other
coalition.

In the last 50 years more than a dozen solution concepts have been introduced to find a
“fair” allocation for cooperative games. Here we briefly describe the three most important
cooperative solution concepts commonly encountered in the literature.

The Core: This concept arises from the argument that the total payoff to the members of any
coalition S should be at least as much as their coalition could provide them, i.e., the imputations
should be undominated. That is, the core of a game in characteristic form is defined as the set
of all imputations (x1,xs,...,%,) such that for all S C N, >"._.x; > v(S); see Owen [128] and
Rapaport [134].

In Example 5, the core is the set of all (x4, xg,x¢) satisfying x4 +xp > v(AB) = 2, x4 +x¢c >
V(AC) = 4, xp + x¢c > v(BC) = 6 and x4 + xg + xc = v(ABC) = 7. This is a non-empty set
which includes, for example, (x4,x5,xc) = (0,2,5) and (x4,x5,xc) = (0.3,3.0,3.7), among
infinitely many others. [In this example the core would be empty, if, we had v(AB) = 5.]

The set of imputations in this game can be represented by an equilateral triangle with height
equal to v(ABC) = 7. For any point Q = (x4, xp,Xc) in the triangle, x; is the distance to side
of the opposite corner { = A, B, C as indicated in Figure 3. (Thus, player i prefers imputations
that are close to corner i.) Since x; +x; > v(ij) < xx < v(ABC) — v(ij) for i # j # k, the latter
inequalities can be drawn to obtain the core — provided that it is nonempty.The core in this
game is obtained by drawing the regions x4 < 1, x5 < 3 and x¢c < 5; these give rise to the
area indicated by thick lines in Figure 3.

i€s
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The Shapley Value: Shapley [145] suggested a solution concept for cooperative games which
provides a unique imputation and represents payoffs distributed *“fairly” by an outside arbitrator.
The Shapley value @ = (9,,...,9,) is determined based on three axioms: (i) the symmetries in
v, (ii) irrelevance of a “dummy™ player, and (iii) the sum of two games. Axiom (i) implies that
if some players have symmetric roles in v, then the Shapley values to these players should be
the same. From Axiom (ii), the Shapley value to the player who adds nothing to any coalition
should be determined as zero. Axiom (iii) says that if two games have the same player set,
then the characteristic value of the sum game for any coalition should be the sum of the
characteristic values of two games. For example, consider two games respectively denoted by
(N,v) and (N, w). For a coalition S, we have (v + w)(S) = v(S) + w(S).

Based on the three axioms, Shapley determines the unique values @; = 3 ,cs(IS| — D'(n —
[SNUV(S) — v(S — i)]/n! where S denotes a coalition and |S]| is the size of S. For Example 5,
the Shapley values for the three players are found as @ = (Qa.9s.9c) = (1,2},34) reflecting
the importance of C's contribution to the coalitions of which she is a member. Note, however,
that in this example the Shapley value is not in the core.

The Nucleolus: This solution concept, proposed by Schmeidler [142), minimizes the “un-
happiness” of the most unhappy coalition. Let es(x) = v(S) — ) _,sx; denote the excess
(unhappiness) of a coalition S with an imputation x. With this definition, nucleolus can be
found as follows: (i) First consider those coalitions S whose excess es(x) is the largest for
a given imputation x, (ii) If possible, vary x to make this largest excess smaller, (iii) When
the largest excess is made as small as possible, consider the next largest excess and vary x
to make it as small as possible, etc. Although for small problems with a few players this
approach works efficiently, large problems are normally solved using a series of linear pro-
gramming problems; see Wang [163] and Carter [30). For Example S the nucleolus solution is
found as ¥ = (v4,vg.Vc) = (0.50,2.25,4.25) with the corresponding excesses e, (V) = —0.50,
eg(V) = =225, ec(V) = —4.25, exp(V) = —0.75, esc (V) = —0.75, epc(v) = —0.50. Since the
excesses are all negative, their absolute values could be considered as the level of happiness
for each coalition.

2.2 Topical Classification of SCM-related Problems

Our classification of game-theoretical applications in SCM is based on five application areas.
Better control and maintenance of inventory systems can result in significant benefits for a
supply chain in the form of lower costs, higher profits and more satisfactory service quality.
However, in a supply chain one member’s inventory decision may impact the upstream and/or
downstream members. Thus, game theoretic analysis can provide important insights into the co-
operative/competitive nature of inventory-related supply chain decisions. Since a large number
of publications have focused on game theoretical applications in inventory management, we
divide our review of inventory-related games into two separate classes: () INVENTORY GAMES
WITH FIXED UNIT PURCHASE COST, and (i INVENTORY GAMES WITH QUANTITY DisCOUNTs. Even before
game theory was rigorously formalized in the 1940s, some early applications involving com-
petitive behavior of decision makers in production/pricing were made by Bertrand [14) and
Coumot [47]) in the 19th century. Many papers in this area which we label ) prODUCTION
AND PRICING COMPETITION focused on the vertical competition between a manufacturer and a
retailer, or horizontal competition between two manufacturers or two retailers. In addition to
the game theoretical applications in inventory management and production/pricing competi-
tion, there exist a considerable number of papers concerned with attributes such as capacity,
service/product quality, advertising and new product introduction. We categorize and review
papers with these attributes into a single class labelled (v) GAMES WITH OTHER ATTRIBUTES. In some
game-theoretic models the supply chain members make joint decisions involving some of the
attributes indicated in the last four classes. Papers concemned with such issues (e.g., jointly
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made inventory and pricing decisions of supply chain members) are included in this class
labelled (v) GAMES WITH JOINT DECISIONS ON INVENTORY, PRODUCTION/PRICING AND OTHER ATTRIBUTES.

3. INVENTORY GAMES WITH FIXED UNIT PURCHASE COST

Inventory management problems involving competition arise in either horizontal or vertical
channels. First, consider examples of competition in horizontal channels. In one of the early
papers in this area Parlar [129] developed a single-period context game theoretic model
of competition between two players. In his model the products sold by two retailers are
substitutable and the retailers simultaneously choose their order quantities # and v to maximize
their expected profits Jy(u, v) and J»(u, v), respectively. The first retailer’s objective is given as

Jl<u,v>:(s1+p1)[/0 xf(x)dx+u/ f(x)dx] —plE(X)+q1/0(u—x)f<x)dx

u B o]
+ (s —ql)/ [/ b(y—V)g(y)dy+/ (u—x)g(y)dy]f(x)dx—clu,
0 v B

where f(x) and g(y) are the demand densities faced by each retailer, a and b (0 < a,b <1)
are the substitution rates of the retailer’s products when they are sold out; sy, ¢y, g; and p;
are the unit selling price, purchase cost, salvage value and and shortage penalty cost for first
player’s product, and B = [(u — x)/b] +v and A = [(v — y)/a] + u. For this model Parlar
proved the existence and uniqueness of the Nash equilibrium and showed that cooperation
between two players can increase their profits. Wang and Parlar [168] extended the model to
describe a three-person game in the same context (i.e., a single-period inventory competition
with substitutable products). They also investigated the cooperation of retailers when switching
excess inventory between the three players (side-payment) is and is not allowed. They showed
that Nash equilibrium exists in both cases and cooperation reduces inventory. Furthermore,
they used the concept of core to study the cooperation model and presented the conditions for
non-empty core. More recently, Avgar and Baykal-Giirsoy [5] extended Parlar’s model in [129]
to the infinite horizon and lost-sales case and examined a two-person nonzero-sum stochastic
game under the discounted payoff criterion.

In another early work on single-period models, Nti [126] examined an inventory procurement
model with n competitive organizations (countries). In random demand setting, Nti proved
that a unique Nash equilibrium exists. Lippman and McCardle [109] analyzed a competitive
newsboy model in both oligopoly and duopoly contexts. They started the duopoly case with
two aspects of demand allocation: the initial allocation and the reallocation. With the initial
allocation, they specified several rules to split demands to various firms. The reallocation is
the same cooperative scheme (side-payment) as in Wang and Parlar [168]. In Mahajan and
van Ryzin [111], a more general model with n-firm inventory competition was analyzed with
dynamic choice behavior of heterogeneous consumers and its effect on firms’ inventory and
profit. Anupindi, Bassok and Zemel [4] developed a general framework for the analysis of a
two-stage decentralized distribution systems where N retailers face stochastic demands. More
specifically, in the first (non-cooperative) stage, each retailer decides on his order quantity to
satisfy his own demand. In the second (cooperative) stage, the retailers transship products for
the residual demands and allocate the corresponding additional profits. The authors derived
the sufficient conditions for existence of a Nash equilibrium in the first stage, and in the
second stage used the concept of core for the allocation of profit and also presented the
sufficient conditions for the existence of the core. Granot and Sosic [65] extended the results
in Anupindi et al. [4] to a three-stage model where the first and third stages are the same as
the first and second stages in [4], and in the second stage each retailer decides how much of
his residual supply/demand he wants to share with the other retailers.
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A few papers have also been published emphasizing cooperative inventory system. Gerchak
and Gupta [60) examined the allocation of joint inventory control costs among multiple (N)
customers of a single supplier. They first proved that centralization is always beneficial in this
model, i.e.,

N
C@Q.H <) €@

i=l
where C(Q, r) denotes the inventory relevant costs containing ordering, holding and shortage
costs; Q7 the customer i's EOQ-like quantity; r] the customer i’s optimal reorder point; and
QO =Y, 0 and# = TV, r;. These authors also showed that the control costs for the
model have the superadditive feature. As an extension of Gerchak and Gupta’s work Robinson
(137] showed that the best of allocation approaches in the preceding work is unstable, i.e.,
not in the core of an associated game. Robinson also pointed out that the Shapley value as
an allocation scheme satisfies stability, where the Shapley value sets the costs allocated to

customer i as
C
Sena ( ] )

Here, the index set of the f customers is denoted by T = {I,..., t}: S C T denotes a non-
empty subset of T; Cs is the joint control costs for the subset S: and |S| is the cardinality of
the subset S. Referring to our description of the Shapley value in Section 2.1.2 we see that
the second term of (1) represents a Shapley value to customer i, where Cs can be thought of
as characteristic value of coalition S. Hartman and Dror [68] re-examined the cost allocation
scheme for the centralized and continuous-review inventory system. In their work three criteria
(stability, justifiability and polynomial computability) are proposed to evaluate seven allocation
methods including the Shapley value discussed in Robinson [137] and the nucleolus scheme.
Hartman and Dror [69) analyzed the problem of minimizing the cost of inventory centralization
as a function of the covariance matrix for the single period inventory models with normally
distributed, correlated individual demands. They developed a three-step algorithm to find an
optimal centralization solution for which the conditions of the nonempty core are always
satisfied. As another work of cooperation in inventory systems, Rudi, Kapur and Pyke [139]
investigated a two-location inventory problem with transshipment.

As we indicated, the papers reviewed above have focused on the horizontal channel in a
supply chain. Now we restrict our attention to the vertical competition issues related to inventory
control. Cachon [ 18] considered a two echelon competitive supply chain inventory problem with
a single supplier and a single retailer that faces stochastic demand. In his model, the two firms
implement base stock policies while holding and backorder cost as well as the positive lead
times between stages exist. Cachon used the response function procedure described in Section
2.1 to analyze the game and find the Nash equilibrium. The response function ry(s;) for the
retailer is expressed as r(s2) = {s; € o|H\(s|.52) = min,eq H(x,s:)} where s and s, denote
the base stock levels determined respectively by the retailer and supplier with strategy space
o = [0,S] and H,(s), ;) is defined to be retailer’s expected cost per period. The supplier’s
response function ry(s) has an analogous pattern. The retailer’s objective function H,(s;.s2)
is given as H\(s),52) = ®*(52)G\(5)) + L” oL (x)G,(s) + 52 — x)dx where L, (L)) represents
the lead time for shipments from the source (supplier) to the supplier (retailer); ®* and ¢**
the distribution and density functions of demand over L, periods, and G(s,) is the retailer’s
expected cost in period (1 + L) with the inventory position s, at the reorder time 7. Cachon
showed that there is a pair of unique Nash equilibria (s}, s;), where s} € ry(s3) and 53 € ra(s}).
Furthermore, Cachon also showed that the equilibrium is not optimal solution for global supply
chain performance. When shortages result in lost sales (instead of backorders), Cachon [17]
obtained a similar competitive equilibrium and optimal policy.
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In another work [28] by Cachon and Zipkin, a two-stage serial supply chain with stationary
stochastic demand and fixed transportation times was investigated. The authors provided two
different games under two tracking methods for firms specified as a supplier and a retailer. In a
competitive setting either game has a unique Nash equilibrium. Under conditions of cooperation
with simple linear transfer payments (side-payment) it was also claimed that global supply chain
optimal solution can be achieved as a Nash equilibrium. Further, the Stackelberg solution was
also discussed. Cachon [19] also extended the above models to analyze the competitive and
cooperative inventory issue in a two echelon supply chain with one supplier and N retailers.
Wang, Guo and Efstathiou [162] extended the model in Cachon and Zipkin [28] to a one-
supplier and n-retailer situation where the supply from the supplier might not satisfy the
demand of multiple retailers. In their model, the authors separated sufficient supply from
the supplier and insufficient supplies from the supplier. Moreover, several Nash equilibrium
contracts were designed for the system-wide optimal cooperation.

Raghunathan [132] considered a one manufacturer, N-retailer supply chain with the cor-
related demand at retailers and applied the Shapley value concept to analyze the expected
manufacturer and retailer shares of the surplus incurred due to information sharing. In this
paper, the author examined the impact of demand correlation on the value of information
sharing and the relative incentives of manufacturers and retailers to form information sharing
partnerships. Continuing our focus on vertical competition and cooperation in a supply chain,
we refer the reader to the papers by Anupindi and Bassok [2], Anupindi and Bassok [3] and
Axsiter [6]. Another paper in this area is by Corbett [43] who studied the well-known (Q, r)
model in a supplier-buyer supply chain with conflicting objectives and asymmetric information.

4. INVENTORY GAMES WITH QUANTITY DISCOUNTS

Quantity discount policy is a common marketing scheme adopted in many industries. With
this policy the buyer has an incentive to increase her purchase quantity to obtain a lower unit
price. In recent years several reviews focussing on quantity discounts have been published
including Chiang et al. [35] and Wilcox et al. [172]. Since the quantity discount scheme plays
an important role in the analysis of two-stage vertical supply chains, we review this topic in
the present section.

In one of the early papers in this area, Monahan [119] developed and analyzed a quantity
discount model to determine the optimal quantity discount schedule for a vendor. The paper
considered the scenario in which a vendor and a buyer are involved in a sequential-move
(Stackelberg) game model. Monahan assumed that the vendor requests the buyer to increase
her order size by a factor of K and performed the analysis to determine the buyer’s response.
Monahan defined D, as the total annual demand faced by the buyer, S; and S, as the buyer’s
and vendor’s fixed order processing costs, Q) as the buyer’s current order size, H, as the
buyer’s annual inventory holding cost as a percentage of the value of the item and P; as the
current delivered unit price paid by the buyer. The vendor’s yearly net profits, denoted by YNP,

was given as D
1
YNP = Dl(M2P1 - dK) - (QI_K) Sz,
where M, denotes the vendor’s gross profit on sales, expressed as a percent, and dxg is “break
even price discount” given as dx = (K — 1)>\/25:H\P,/D; /(2K). The vendor’s optimal value

for factor K was then found as

K = D% 4
01v2D,$1H, P,
As one of the early works on quantity-discount decisions, Monahan’s paper [119] is an
important contribution to the literature. However, Joglekar [77] pointed out some shortcomings
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of [119] as well as its contribution. These shortcomings are due to several implicit assumptions
which make Monahan's results unpractical. In response to these comments, Monahan [120]
argued that the principal purpose in [119] is to provide an introductory model in this area.
Another note on Monahan's model in 1984 was published by Banerjee (8] who presented
an extension by incorporating vendor’s inventory carrying costs to obtain a general version.
These papers opened up a significant direction of quantity discount research with game theory
applications in the field.

Lee and Rosenblatt [98] also extended Monahan's model [119] by addressing two important
issues: (i) Impose some constraints on the amount of price discount so as to make it less than
the selling price of the product; (ii) revise the order-to-order assumption in [119] to the situation
for supplier to order a larger quantity than buyer’s order amount. With these assumptions, Lee
and Rosenblatt found the optimal discount schedule for the supplier in the general context.
Considering again this model, Goyal [63] presented a much simpler approach. Rosenblatt and
Lee [138] studied another extension of Monahan's model [119]). They developed different
objective functions for vendor and retailer and simultaneous-move (Nash) game. In addition,
Lal and Staelin [93) investigated the same problem in [119] respectively under the cooperative
and competitive environment.

Extending Lal and Staelin’s work, Kohli and Park [87] examined a cooperative game
theory model of quantity discounts to analyze a transaction-efficiency rationale for quantity
discounts offered in a bargaining context. In this model, a buyer and a seller negotiate over
lot size orders and the average unit prices. The authors used the Pareto optimal approach
to investigate the Pareto efficient transactions. Kim and Hwang [85] studied the effects of
quantity discount on supplier’s profit and buyer's cost in the competitive and cooperative
contexts. They explored how the supplier decides the discount schedule given the assumption
that the buyer always behaves optimally by using the classical EOQ inventory decision. Chiang
et al. [35) investigated the game theoretic discount problem in both two-stage competition and
cooperative contexts. For the non-cooperative game, a Stackelberg solution was obtained, and
for the cooperative game the Pareto optimal criterion was utilized to find multiple optimal
strategies. They concluded that quantity discounts is a mechanism of coordinating channel
members. A similar result was found earlier by Jeuland and Shugan [76] who paid attention
to the simultaneous-move competitive and cooperative behaviors between a manufacturer and
a buyer. More discussion on this issue was provided by Jeuland and Shugan [75], Rao [133],
Sabavala [141] and Sen (143].

Similar to the papers by Chiang et al., [35] and Jeuland and Shugan [75], [76], Parlar and
Wang [130] investigated the discounting scheme of the seller and a linear ordering decision of
a group of homogeneous customers in a game framework. However, in this paper Parlar and
Wang assumed that the seller’s discount influences the buyer’s demand. The authors started
with a Stackelberg model of the problem and reached two important conclusions: (i) Gains
from the discount schedule motivate the seller to set up a discount schedule such that the buyer
orders more than EOQ, and (ii) benefit from the discount policy comes from decreasing the
inventory-related costs and increasing the market demand. The effect of discount scheme on
joint maximum gain for seller and buyer was also examined. An extension of this model was
also studied by Parlar and Wang [131] with incomplete information. Another similar work was
from Corbett and Groote [45].

In a paper on cooperation Weng (171] presented a model for analyzing the impact of
joint decision policies on channel coordination in a supply chain including a supplier and
a group of homogeneous buyers. In this model, the supplier’s and the buyer's annual profit
functions were given as G,(p:x.Q) = (p — c)D(x) - §,D(x)/Q — 1 hsQ and G,(x,Q:p) =
(x —p)D(x)—SpD(x)/Q — % h,Q, respectively, where p denotes the unit purchase price charged
by supplier, x and Q are the buyer’s selling price and order quantity, D(x) is the annual
demand rate, h; and A, are the supplier’s and buyer’s unit inventory holding cost per year, and
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Ss and S, are the supplier’s and buyer’s fixed cost per order. Weng showed that: (i) Quantity
discounts alone are not sufficient to guarantee joint profit maximization, and (ii) the all-unit and
incremental discount policies have the same effect on coordination under complete information.
The problem regarding cooperation between seller and buyer was also addressed by Li and
Huang [106].

By utilizing the uniform quantity-discount policy in a Stackelberg game system, Wang [164]
also investigated the coordinating issue between a vendor (supplier) and a group of independent
buyers. Chen, Federgruen and Zheng [32] adopted a power-of-two policy to coordinate the
replenishments within a decentralized supply chain with one supplier and multiple retailers.
Wang [166] considered a similar decentralized supply chain and developed a coordination
strategy that combines integer-ratio time coordination and uniform quantity discounts. Wang
showed that the integer-ratio time coordination provides a better coordination mechanism than
the power-of-two time coordination used in [32]. Further, Wang [165] and Wang and Wu [169]
proposed the optimal quantity discount schedule for supplier with different (heterogeneous)
buyers.

5. PRODUCTION AND PRICING COMPETITION

Some of the earliest applications of game theoretical ideas were in production and pricing
competition and they can be traced back to the 19th century. Since production and pricing
decisions play an important role in the profitable operation of a supply chain we now review
some papers on this topic.

Earliest publications dealing with production/pricing competition are due to Cournot [47]
and Bertrand [14]. In [47], Cournot derived the production equilibrium in a market where two
producers supply similar products to the same market while Bertrand [14] focused on pricing
equilibrium. In the Cournot model, g, and g, denote the production quantities chosen by firms
1 and 2, respectively with Q = g;+¢, as the aggregate demand. Firm i’s total cost of producing
g; units is Ci(q;) = cq;, i = 1,2 (with ¢ as the marginal cost) and p(Q) =a— Q (for Q < a
and ¢ < a) is the price charged when Q units are produced. Thus, the profit functions of each
firm are given as

Ti(qi, 4j) = qilp(gi + ) — ¢l = gqila — (i + q;) — c].
For this model, the two firms’ best response functions are obtained as

g1=4%a—c—q), and g =1i@—c—q).

Solving these two equations, the Nash equilibrium (¢Y,¢}) is ¢} = ¢} = 3(a— o).

In Bertrand’s model two firms simultaneously and independently choose their prices p; and
D2, and the market demand ¢ is allocated to the firm who provides the lower price. It is assumed
that demand is a linear function of the prices, i.e., ¢ = a — p; — p, where a < p; +ps, ¢ < p;
and ¢ < p,. Thus the profit function for each firm is expressed in terms of the prices p; and
p2 as

@i — c)a—p1 — p2), if p; <pj,
(i pj) = ¢ 3li —c)a—p1 — p2)l, if p; = pjs
0, if p; > p;.

For this model, the Nash equilibrium (pY,p}) is found as pY¥ = p = c. In this equilibrium
solution, both firms obtain a zero profit. However, since in real world, firms compete in prices
and can make positive profits, this result is known as the “Bertrand paradox.”

The Austrian economist von Stackelberg [161] extended the Cournot model by assuming
that Firm 1 acts as the leader and Firm 2 as the follower. In the leader-follower game, Firm 1
determines the production quantity g; by solving

max (g1, g5(q)) = max slara—q1 — o).
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Table 1: Summary of some papers related to production/pricing with constraints.

Year Author Brief Review of the Game Model

1972 Levitan and Shubik [100) Cournot’s and Bertrand’s equilibria under capacity
restraints for firms that face a linear demand.

1991 Hviid (73] Bertrand’s equilibrium for capacity-constrained firms
under random demand in a duopoly market.

1991 Gal-Or [56] A game where a manufacturer imposes the

pricing constraints on his retailers.

1997 Butz [15]) A game of a manufacturer who controls his vertical
relationship with retailers by using many levers
(e.g.. vertical integration, buyback).

This yields the Stackelberg solutions as ¢; = 3(a—c)and ¢3 = j(a—c). For detailed discussion
on Coumot, Stackelberg and Bertrand games, see Kreps [89, Ch. 10]), Osbome (127, Ch. 3]
and Tirole (155, Ch. 5].

A large number of papers extending Coumot and Bertrand’s results have appeared in
economics and management science literature. Shapley and Shubik [144] applied game theory
to study a monopolistic price competition among firms (sellers) with differentiated products,
under the assumptions of a linear demand, constant average costs and given capacities for the
firms. When demand was assumed random, Levitan and Shubik [99] studied the price variation
and duopoly (oligopoly) with differentiated products. Jain and Kannan [74] proposed a model
for the pricing problem of an online information product. In their paper, they examined the
conditions under which the most commonly used pricing schemes — connect-time-based pricing,
search-based pricing, and subscription-fee pricing - are optimal. For a two-level supply chain
involving a seller and a buyer. Banks, Hutchinson and Meyer {10] investigated the impacts of
the firms’ reputations on their pricing equilibrium strategies.

Joint production and pricing strategies were also considered: Klemperer and Meyer [86]
analyzed the Nash equilibrium prices and quantities as strategic variables in a one-stage
duopolistic game with differentiated products. By using a differential game approach, Jg rgensen
[79] considered a continuous-time game problem to compute optimal production, purchasing
and pricing policies in a two-stage vertical channel involving one manufacturer and one
retailer. In [46), Corbett and Karmarkar developed an explicit game model of entry (Nash-
characterized) and post-entry (Cournot) competition in serial multi-tier supply chains with
price-sensitive linear deterministic demand. The authors derived expressions for prices and
production quantities as functions of the number of entrants at each level.

There are other papers focusing on different forms of constrains (such as price constraints)
which we summarize in Table 1.

The first publication emphasizing the channel cooperation in this category was by Zusman
and Etgar [175] with a combined application of economic contract theory and Nash bargaining
theory. Individual contracts involving payment schedules between members of a three-level
channel were investigated and the equilibrium set of contracts was obtained. Later, a large
number of papers appeared investigating channel coordination/cooperation. In McGuire and
Staelin [115]. four industry structures induced by two types of channel system consisting of
two manufacturers were studied. Under the assumption that one secller (retailer) carries the
product of only one manufacturer, they derived the Nash equilibrium prices, quantities and
profits for each of four different structures. An extension of the cooperative game model in
[115] was again proposed by McGuire and Staelin {117]. By extending the non-cooperative
model in [115], McGuire and Staelin [116] also studied the effect of product substitutability on
Nash equilibrium distribution structures in a duopoly (two-manufacturer) competitive system.
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For the decentralized competitive problem mentioned in [116], Moorthy [122] studied the effect
of strategic interaction (complements or substitutability) on Nash equilibrium strategy. Dong
and Rudi [51] proposed a game model for supply chain interaction between a manufacturer
and a number of retailers with transshipment scheme.

Some recent papers have investigated the pricing policy used as a means for coordinating
supply chains. Zhao and Wang [173] developed a Stackelberg game for a two-level supply chain
where a manufacturer acts as leader and a distributor/retailer acts as follower. In the game, both
parties make pricing and production/ordering decisions over a finite-time horizon. It was shown
that there exists a manufacturer’s price schedule that induces the distributor to adopt decisions
to achieve the performance of a centralized supply chain. Under the e-commerce environment,
Chiang, Chhajed and Hess [34] developed a price-setting game for a two-level supply chain
where a manufacturer directly sells a single product to online customers rather than via his
independent retailers. It was shown that the direct marketing can indirectly increase the flow
of profits through the retail channel and help the manufacturer improve overall profitability.

Choi [36] studied the effect of existence of channel intermediary on the intensity of horizontal
competition between two manufacturers. He considered three non-cooperative structures (two
Stackelberg games and one Nash game) between the two manufacturers and one common
retailer. In these three structures, manufacturer i’s and the retailer’s profit functions (I1y;, and
I1g) were respectively given as

2
Ty, = Wi —cqi, i = 1,2, and Tl = ) mig;, 2)

i=1

where w; denotes manufacturer i’s wholesale price; m; is the retailer’s margin on product i;
¢; is manufacturer i’s variable cost of producing its product; and g; is the demand for brand i
at price p; given that the price of the other brand j is p;. As in McGuire and Staelin [116], ¢;
in (2) was expressed by the linear duopoly demand function ¢; = a — bp; + yp; that captures
product differentiation where the parameters a, b and 7y satisfy a > 0 and b >y > 0. For the
model with linear demand, Choi assumed equal costs for manufacturing (i.e.,c; = ¢; = ¢) and
obtained a Nash equilibrium as

a+2bc and o ab—7y + bc
36— PP =@ -y -7

The Stackelberg equilibria were also found explicitly in terms of the model parameters. With
the linear demand function, Choi [36] reached the conclusion that a manufacturer is better
off by maintaining exclusive retailers while a retailer prefers to have several manufacturers.
Another counter-intuitive result was found which indicated that all channel members’ prices
and profits increase as products are less differentiated. When the demand function is assumed
nonlinear, an exclusive retailer channel provides higher profits to all members. As an extension
of Choi [36], Trivedi [156] analyzed three channel structures dealing with competition at
both two manufacturer and two retailer levels. Kadiyali, Chintagunta and Vilcassim [82] also
extended Choi’s work [36] by allowing a continuum of possible channel integration between
manufacturers and a retailer instead of three channel interaction games.

As the channel members in a supply chain (should) attempt to cooperate to increase their
profits, they may have incentives to share information about the market. Thus, we review
papers concerned with information sharing in Cournot and Bertrand competition. In the context
of an N-player Bayesian Cournot game, Clarke [41] examined incentives for firms to share
private information in a stochastic market. In a similar setting Gal-Or [54] investigated an
oligopolistic market with uncertain demand. Vives [160] developed a symmetric differentiated
duopoly model in which two firms have private information on market data on the uncertain

Wi = Wy =
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and linear demand. Gal-Or [55] examined the incentives of two duopolists to share information
in Bertrand or Cournot competition under unknown private costs. Li [101] extended the papers
by Clarke [41], Gal-Or [54] and Vives [160] under common demand uncertainty and the
private cost uncertainty. In both cases a unique Bayesian Nash equilibrium was derived for the
second-stage game (information sharing followed by Cournot or Bertrand competition).

In a recent publication, Li [103] has examined the incentives for firms to share information
vertically for improving the performance of a single manufacturer, N retailer supply chain.
In the supply chain, the retailers are engaged in Cournot competition and the manufacturer
determines the wholesale price. The conditions under which information can be shared were
derived in the paper. In the context of information transparency in a B2B electronic market,
Zhu [174] developed a game-theoretic model to examine whether the incentives to join a B2B
exchange would be different under different competition modes (quantity and price), different
information structures, and by varying the nature of the products (substitutes and complements).

In this topical category there are two more important papers focusing on the contract structure
in a coordinated supply chain. Lariviere [95] considered the supply chain coordination issues
with random demand under several contract schemes such as price-only contracts, buyback
contracts and quantity-flexibility contracts. Corbett and DeCroix [44] developed shared-savings
contracts for indirect materials in a supply chain containing a supplier and a buyer (customer).

6. GAMES WITH OTHER ATTRIBUTES

In the preceding three sections, we reviewed inventory game models with fixed unit purchase
cost, with quantity discounts and games with production and price competition. There are also
papers that are concerned with a variety of topics such as capacity decisions, service quality,
product quality and advertising and new product introduction. We now review papers belonging
to each of these subclasses.

6.1 Capacity Decisions

Cachon and Lariviere [25] conducted an equilibrium analysis on a capacity-constrained system
where a supplier utilizes linear, proportional and uniform allocation schedules. Additionally,
Cachon and Lariviere [24] applied the manipulable and truth-inducing capacity allocation
schemes to study the retailers’ order behaviors and supplier’s capacity choice problem. Further,
one recent paper was associated with forecast sharing issues: Cachon and Lariviere [26}
investigated a forecast sharing model of a manufacturer and a supplier. The forecast sharing
procedure between the two channel members is given as follows: (i) The manufacturer provides
her initial forecast to the supplier; (ii) if supplier accepts the forecast, he sets up capacity:
otherwise (iii) the manufacturer receives the updated forecast and submits the final order.
The paper showed that in the specified setting firm commitments are not useful for aligning
incentives but useful for communicating information. Motivated by the experiences of a major
US-based semiconductor manufacturer, Mallik and Harker [112] developed a game model
involving multiple product managers and multiple manufacturing managers who forecast the
means of their respective demand and capacity distributions. A central coordinator decides on
the allocation of the capacities to product lines. The authors designed a truth-eliciting bonus
mechanism and an allocation rule for the supply chain.

Hall and Porteus [67] considered a game where firms compete on the capacity investment
for market share. Hall and Porteus assumed that market share of either firm depends on the
prior realized level of customer service that is considered as the capacity per customer. Based
on this assumption with two firms i and j the expected market share of firm i in month £ + 1 is

E(A sa1 M. xﬂ) = Xir — MYl (yi) + A7’:‘thi()'jl)- 3)

where A,; denotes the fractional market share for firmi in month ¢; y; is the normalized capacity
of firm / in month 7; ¥; is the switching rate of customers experiencing service failure from firm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




GAME THEORY AND SUPPLY CHAIN MANAGEMENT 205

i to firm j (0 <1; < 1). Hall and Porteus denoted by ;, the capacity selected by firm i in month
t which is expressed as p; = yiA;. Defining A(y;) as the customer service, Ayh(y;) is the
expected number of firm i’s customers that experience service failure in month 7 when firm i has
a normalized capacity of y;. The term A;Y;h;(y;) in (3) refers to the expected number of firm
i’s customers that switch to firm j in month ¢+ 1. The authors then derived an optimal capacity
choice (Nash equilibrium) and the conditions under which the Nash equilibrium capacity levels
scale directly and linearly in the number of customers being served. The model developed in
the paper was also applied in two contexts: competition between Internet service providers and
inventory availability competition.

6.2 Service Quality

The eventual goal of a supply chain is to deliver goods to a consuming market with the
satisfaction of ultimate consumers. Consumers usually pay attention not only to the sale price
but also to product and service quality. Product quality is an easily understood concept; service
quality may involve issues such as a firm’s response time to customer demand, waiting time
of customers, post-sale service, etc. In order to build up the loyalty of existing customers
and attract more demand and new customers, channel members might strengthen their market
power by improving product and service quality. Therefore, the appropriate trade-off between
expenditure and benefits are considered by competing firms. We restrict our attention to game
theoretic approaches for service quality in this subsection and for product quality competition
in the next subsection.

A firm’s service speed (response time) to customer demand is an important factor implicitly
affecting the profitability of a firm. Game theory has also been applied to service speed decisions
of firms. Kalai, Kamien and Rubinovitch [83] proposed a two-server game theoretic model with
exponential service time and Poisson arrival of customers. In [58], Gans developed a model
of m suppliers competing on service quality for customers whose choices respond to random
variation of quality. The author obtained a closed-form expression for a customer’s choice as
the long-run purchase fraction. Based on the expression, the suppliers seek to maximize their
long-run average profits. The paper shows that (i) the consumer’s switching behavior forces
suppliers to maintain an industry norm that increases with the number of competitive suppliers
and (ii) a competitor with cost advantage can increase investment for quality improvement that
induces higher market share.

The following papers examined other models associated with service quality. Cohen and
Whang [42] developed a Stackelberg game model of product life cycle. In this sequential-
game framework, there is vertical competition for the provision of after-sales service quality
in a channel consisting of a manufacturer and an independent service operator. Chu and Desai
[40] proposed a game model to describe a manufacturer motivating a retailer with two incentive
schedules, i.e., CS (Consumer Satisfaction) assistance and CSI (Consumer Satisfaction Index)
bonus. From the viewpoint of customer, Kulkami [92] considered a queuing system with one
single server station and two types of customers.

6.3 Product Quality

If we restrict our attention to the literature related to product quality competition in supply
chain management, we find a limited number of papers in this area. As one of the first papers
emphasizing the contract design for product quality, Reyniers and Tapiero [136] determined the
effect of contract parameters on the quality of the end product in a vertical channel including a
supplier and a producer. In this contract the supplier and producer negotiate the price rebates
and after-sale warranty for the delivered materials or parts from the supplier. The game in this
paper corresponds to a bimatrix (A, B) with entries (ay;, b;), where i refers to the quality (1 for
low quality and 2 for high quality) and j is producer’s decision on whether or not to test the
incoming parts (1 for test and 2 for no test). In this bimatrix, a; and b; respectively denote a
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risk-neutral producer’s and a supplier’s expected payoffs such that
@-m-[r—pr.r—-pAr+CO)-T). j=1

fori =1,2,
(e_ [n“’P:(l _a)R]- n “P:QR— T:)' .I = zv

(@i, b;) = {
where O denotes the producer’s selling profit (net of manufacturing costs), p, and p; the
probabilities of a defective part with technologies | and 2, respectively. Additionally, m is the
cost of testing an incoming part, x is the producer’s unit sale price, An is the reduction in
sale price incurred when a unit is defective, C is the producer’s repair cost, R is the post-
sales failure cost, & is a parameter in sharing R between producer and supplier, and 7; is the
unit cost of production borne by the supplier such that T} < T>. For different values of these
above paramelers, the authors found different Nash solutions containing one mixed strategy.
Extending Reyniers and Tapiero’s model [136], Lim [108] designed producer-supplier contracts
with incomplete information.

A paper emphasizing the product quality signaling mechanism was published by Chu and
Chu [39] who analyzed a game theoretical model of a manufacturer selling a product through
a reputable retailer to signal its product quality. It was shown that, in equilibrium, manu-
facturers of high quality distribute product through strongly reputable retailers while in tumn
manufacturers of low quality distribute products through retailers without reputation.

6.4 Advertising and New Product Introduction

Game theoretic applications in advertising-related SCM problems date back to the 1970s. One
of the earliest game theory models for an oligopolistic market with advertising competition is
Balch [7]. In this paper each firm in the competitive market decides on the advertising outlay
to maximize its individual profit and market share in the next production/marketing period.
With this assumption, the kth firm’s expected profit for the next day is

Te(X) = Br@e(X) — Xz, @)

where x; is defined as the firm k's decision on advertising outlay and x = (x},X2,..... xn)
is the strategy vector for n firms. The B; term in (4) is given as By = (p — c;)D where
p denotes the unit price that is cooperatively set for next day, ¢ is the kth firm's average
production cost per unit, and D is given in term of p represents the cooperative expectation
at p for the next day’s total demand. The @i(x) term is defined as the kth component in an
expected market share vector @(x) for the next day, i.e., @x(x) = (1 — 0)®; +B0yx; /ax, where
a = (o,0,,...,0,) is an n-tuple of positive weights reflecting firmwise current advertising
appeal and (ouXx;)/(@x) is the purchase from firm k with (conditional) probability ¢, and 6
is the fraction of all consumers of the previous day who differentiated product primarily on
the appeal of a particularly current advertising campaign. For this model a Nash equilibrium
for the firms was characterized. Another early paper by Deal [49] determines the optimal time
of advertising expenditure over a finite planning horizon in a dynamic duopoly competitive
situation. A few other papers focusing on advenrtising-related decisions are summarized in Table
2.

There are a few other papers associated with new product introduction. In Chu’s work
[38], the channel members (manufacturers and retailers) dealt with asymmetric information in
two ways: (i) demand signalling by manufacturers through advertising and wholesale price, (ii)
demand screening by retailers through slotting allowance. In [ 1], Amaldoss et al. examined three
types of strategic alliances that may help participants to compete: (i) Same-function alliances,
(ii) parallel development of new products, (iii) cross-functional alliances. They modeled the
interaction within an alliance as a noncooperative game where each firm invests part of its
resources to increase the utility of a new product offering. Desai [SO] studied how a high-
demand manufacturer uses advertising, slotting allowances, and wholesale prices to signal its
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Table 2: Summary of some papers related to advertising decisions.

Year Author Brief Review of Game Model

1984 Karnani [84] A dynamic game model of marketing competition
in an oligopoly with differentiated products.

1989 Hauser and Wernerfelt [70] A supply chain game where consumers chooses
a brand based on advertising and price.

2001 Wang and Wu [170] A differential game model of competitive advertising
decisions by extending Deal’s model [49].

2001 Huang and Li [71] Two noncooperative and one cooperative
advertising game models for a vertical channel.

2002 Li et al. [107] Three Stackelberg games for the supply chain
analyzed in [71].

2002 Huang, Li and Mahajan [72] A co-op advertising game in the supply chain with
one manufacturer and multiple retailers.

2003 Jgrgensen, Taboubi and Zaccour [81] A supply chain game where a manufacturer shares
the brand promotion costs with a retailer.

high new product demand to retailers. The author also investigated the impact of retailer’s
uncertainty on the effectiveness of the manufacturer’s advertising.

7. GAMES WITH JOINT DECISIONS ON INVENTORY, PRODUCTION/PRICING
AND OTHER ATTRIBUTES

In many realistic problems, supply chain members encounter problems involving two or more
decisions that must be made simultaneously. For example, a supply chain member may have to
make joint decisions on inventory and pricing problems. In the section, we review the papers
concerned with joint decisions on inventory, production/pricing and other attributes.

7.1 Joint Inventory and Production/Pricing Decisions
In an early paper [52], Eliashberg and Steinberg considered a Stackelberg game in a vertical
channel consisting of a manufacturer and a distributor. Jg rgensen and Kort [80] analyzed a
two-step inventory and pricing decision problem with one store and one central warehouse
and investigated both non-cooperative and cooperative games. Bylka [16] considered a game
model for the decentralized dynamic production—distribution control where a vendor produces
a product using batch production and supplies it to a buyer under deterministic conditions.
Bernstein and Federgruen [12] considered a two-echelon supply chain where a supplier
distributes a single product to N competing retailers, each of which facing a deterministic
demand rate dependent on all retailers’ prices. In this paper, the authors first characterized
the solution to a centralized supply chain. Then, assuming linear wholesale pricing schemes
by the supplier, the paper investigated the decentralized systems under Cournot and Bertrand
competition, respectively. In the retailer game, retailer i’s profit function 7;(p;|p—;, w;) with his
optimal EOQ replenishment policy is given as

T(pilp—i»wi) = (P — ¢; — wdi(p) — 1/ 2di(PhK], (5)

where p; denotes retailer i’s price, p—; = (P1,...,Pi~1,Pi+1>-- - Pn), W; is the constant per-unit
wholesale price charged by the supplier to retailer i, ¢; is the unit transportation cost from the
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supplier to retailer i, A; is the annual holding cost per unit inventory at retailer i, K is the per-
delivery fixed cost incurred by retailer i and d;(p) = a; —b,~p,-+2#, Biip; is the demand function
for retailer i where the parameters a; and b, are both positive and B; > 0. Under Bertrand price
competition, it was shown that if [d,(p)]? > %b,‘/ZI-z,K,.’. then the retailer game has a Nash
equilibrium p°. The authors also found a similar result for the Cournot quantity competition.
Bemnstein and Federgruen [13] extended Bemnstein and Federgruen [12] to a periodic review,
infinite-horizon model with stochastic demand faced by retailers.

There are two recent papers focusing on the allocation problems. Cachon [21] analyzed
the problem of allocating inventory risk between a supplier and a retailer via three types
of wholesale price contracts: (i) Push, (ii) pull, and (iii) advance-purchase discount. It was
shown that the efficiency of a single wholesale price contract (i.e.. push or pull contract)
is considerably high. By applying the concept of Nash bargaining solution, Gjerdrum, Shah
and Papageorgiou [62] found optimal mulii-partner profit levels subject to given minimum
echelon profit requirements,and presented a mixed-integer programming formulation for fairly
aliocating optimized profits between echelons in a general multi-enterprise supply chain.

In a recent paper Su and Shi {153) developed a game model involving quantity discounts
and buyback pricing decisions. The authors incorporated retumn (buyback) contracts into the
traditional quantity discount problems in a two-stage game with a manufacturer and a retailer.
In the first stage two supply chain members determine the inventory level cooperatively as
Q' =F '{(p+s—m)/(p+5)}. where p, s and m denote unit retail price, unit goodwill loss
and unit production cost, respectively, and F(-) is the distribution function of the market demand
D. In the second stage the manufacturer bargains with the retailer for a quantity discount and
return schemes to maintain channel efficiency. The quantity discount Aw was given as

Aw = (wo —w') —u [EI.- EQ* — D)‘] . 6)
where wq denotes the baseline wholesale price per item, u is the unit buyback price, and

| . ¢ A
w = —Q—.-{pE [min (Q°, D)) — sE(D — Q°)* — «t.(wo.Q)}.
n,(wo. Q) = p min (Q.D) — woQ — (D — Q)"
Q= F Y{(p+s—wy)/@+s)}

It was shown that all feasible set (Aw,u) combinations in equation (6) satisfy the Pareto
efficiency.

7.2 Joint Inventory and Capacity Decisions
We now focus on the review of game models with joint inventory and capacity decisions.
Cachon and Lariviere [23] considered a supply chain comprising of one supplier and multiple
retailers. When the sum of the retailers’ orders exceeds the supplier’s fixed capacity, the supplier
uses a turn-and-eamn capacity allocation scheme which allocates capacity for a retailer in one
period equal to the retailer’s sale volume in the last period. Mahajan, Radas and Vakharia
{110} examined a supply chain where a supplier distributes two independent products through
multiple retailers. For the unlimited or limited capacity of the supplier, respectively, the authors
determined the optimal stocking policies for the retailers. Chen and Wan [33] analyzed the
competition between two make-to-order firms each provides a value of service and a service
rate (capacity) and has a firn-dependent unit costs of waiting.

Caldentey and Wein [29] developed a supply chain game where a supplier chooses the
production capacity v and a risk-neutral retailer adopts an (s — 1, s) base-stock replenishment
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policy. Assuming that the retailer faces a Poisson demand process, the authors derived the
retailer’s and the supplier’s expected cost functions respectively as

1_ —Vs b —Vs b —Vs
Cr(s,V) = 5 — Ve + 2 i and  Cs(s,v) = (1 — 00) ev

+cv,

where b denotes per unit backorder cost, o the retailer’s backorder cost share, ¢ the supplier’s
capacity cost per unit of product. Caldentey and Wein presented a unique Nash equilibrium
solution as well as a centralized solution to system-wide cost Cg(s, V) + Cs(s, V). It was found
from comparison of the two solutions that the Nash equilibrium is inefficient. Thus the two
authors designed a linear transfer payment contract for coordinating the supply chain, i.e., the
game model with the linear transfer payment is

Cr(s,V) = Cr(s,v) —(s,v) and Cs(s,V) = Cs(s,V) +1(s,V),

where the linear transfer payment function t(s,v) is defined by t(s,v) = YCgr(s,v) — (1 —
YCs(s,v). The paper also examined a Stackelberg game with the supplier as leader and the
retailer as follower, and compared system-wide costs, the agents’ decision variables and the
customer service level of the Nash, centralized and Stackelberg solutions.

7.3 Joint Production/Pricing and Capacity Decisions

In the subsection we discuss some papers concerned with joint production/pricing and capacity
decisions. Kreps and Scheinkman [90] considered a two-stage game where, in the first stage,
two firms simultaneously and independently determine their production capacities, and in the
second stage they engage in Bertrand-like price competition. The two authors showed that
the unique equilibrium production capacities for both firms are the Cournot solutions. (For a
detailed discussion of [90], see Tirole [155].) Van Mieghem [157] investigated the channel
coordination between a manufacturer and a subcontractor for decisions on capacity investment,
production and sales.

Similar to [157], Van Mieghem and Dada [158] provided a two-stage decision model
of postponing strategies, where firms make three decisions: capacity investment, production
(inventory) quantity and price. There were six strategies in the model: (1) No postponement, (2)
production postponement, (3) price postponement with clearance, (4) price postponement with
hold-back, (5) price and production postponement, and (6) full postponement. For Strategies
1 and 2, the value functions of each firm involve joint decisions on capacity investment and
price, i.e.,

—(ck + ¢4+ cp)K + pE min (X, (€ — p)*), for Strategy 1,

V(K,p) =
(K.p) { —cxK +(p — cg)E min (K, (e — p)*), for Strategy 2,

where K and p are production capacity and price set by the firm, ck, ¢, and ¢, respectively
denote unit capacity investment cost, constant marginal production cost and constant marginal
inventory holding cost rate of ex-ante production, and the random variable € represents the
uncertainty in the market demand D. The authors showed how competition, uncertainty and
the timing of operational decisions influence the strategic investment decision of the firm and
its value.

7.4 Joint Production/Pricing and Service/Product Quality Decisions

We first briefly review two early papers emphasizing the joint production/pricing and product
quality decisions. In an early paper [121], Moorthy considered a duopolistic game model
comprising of two horizontal firms who compete on product quality and pricing strategy for
consumer. Another early paper focusing on competition between firms in a price competitive
market with differentiation of product quality was by Reitman [135].
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There are several papers focusing on the joint production/pricing and service quality de-
cisions. Combining the service quality and pricing competitions, McGahan and Ghemawat
[114] developed a game model in a duopoly system with two-stage competitions. Cohen and
Whang [42] developed a Stackelberg game involving product life cycles where the product
price and the service quality were characterized. Rump and Stidham [140] studied the dy-
namic behavior of an input-pricing mechanism for a service facility in which decisions of
heterogeneous self-optimizing customers are based on their previous experience.

A few other models have considered the delivery time decision as service quality. When
the pricing, production, scheduling and delivery-time components were jointly considered in
the competition between firms that produce goods or services for customers sensitive to delay
time, Lederer and Li [97] analyzed the game model in two cases and found that a unique Nash
solution exists in either case. Assuming that demands in a market are sensitive to both the price
and delivery time guarantees, So [151] considered a supply chain involving multiple firms who
compete for customers in the market. In the horizontal competition, Firmi chooses an optimal
price and delivery time guarantee to maximize his operating profit function given as

ooy @it R 5 P
max Mipi.ti) = Y A PRI A k. »

where p; and {; denote Firm i's price and delivery time guarantee, respectively, ¥; is the unit
operating cost for Firm i, y; is the capacity of Firm i, A is the fixed market size, a and b
are two nonnegative constants denoting the price and time attraction factors of the market.
Furthermore, k and B; in (7) are defined as k = —log(1 — @), and §; = (1/L)) _,; Ljpj‘“tj“".
where a represents the service reliability for each firm, and the term L;p;“1;® refers to the
attraction of Firm i with the parameter L; > 0. Through a numerical study, the author illustrated
how the different firm and market characteristics would affect the price and delivery equilibrium
solutions in the market.

Cachon and Harker (22] considered a model of two firms facing scale economies (i.e., each
firm’s cost per unit of demand is decreasing in demand). The general framework, which was
used in this paper, involved a queuing game (i.e., competition between two service providers
with price- and time-sensitive demand) and an economic order quantity game (i.e., competition
between two retailers with fixed-ordering costs and price-sensitive consumers). In a supply
chain where two suppliers compete for supply to a customer, Ha, Li and Ng [66) analyzed
pricing and delivery-frequency decision by developing two three-stage games with different
decision rights designated to the parties.

A paper for joint decisions on production/pricing . product and service quantities is the
following: Li and Lee {104] investigated a game model with the duopolistic competition when
customer preferences are concerned with not only the price and product quality but also service
quality (i.e., delivery time).

7.5 Joint Production/Pricing and Advertising/New Product Introduction Decisions

In this subsection we review three papers concerned with the joint decisions on produc-
tion/pricing and advertising/new product introduction. Hauser and Wemerfelt (70} explored
the interaction between price and advertising decisions. Lariviere and Porteus [96) analyzed
the game model of a manufacturer who decides on the wholesale price when a new product
is introduced in a distribution channel. Banerjee and Bandyopadhyay (9] constructed a multi-
stage game-theoretical model of advertising and price competition in a differentiated products
duopoly, where proportions of consumers exhibit latent inertia in favor of repeat purchase. The
authors characterized the nature of equilibria under symmetry and showed that when a large
proportion of consumers exhibit inertial tendencies, then a multiplicity of equilibria exists.
Marketing implications and comparative statics were also discussed.
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8. CONCLUSION AND FURTHER DISCUSSION

In this paper we presented a brief description of some of the important solution concepts used in
non-cooperative and cooperative games. We also reviewed more than 130 papers that focused
on game theoretic applications in SCM. The papers reviewed were presented using a topical
classification scheme consisting of five classes: (i) Inventory games with fixed unit purchase
cost, (ii) inventory games with quantity discounts, (iii) production and pricing competition, (iv)
games with other attributes and (v) games with joint decisions on inventory, production/pricing
and other attributes. We conclude from this survey that game theory has been found useful in
solving a variety of competitive and cooperative problems in this field.

Table 3 in Appendix B indicates the number of papers we reviewed for each class during
each five-year period. Furthermore, Figure 4 (in Appendix B) shows that around 58% of all
our reviewed papers were published in the past decade, and about 40% papers of all papers
appeared in the period of from 2000 to 2004. We note in Figure 5 (in Appendix B) that
during the most recent period of 2000-2004, many researchers have focused on problems in
Classes (i), (iv) and (v). We predict that as supply chain members usually face multiple decision
problems, the number of published papers in Class (v) will continue to grow rapidly. We also
note that most of models developed during 2000-2004 that fall in Class (iii) have focused
on pricing decisions in the context of information sharing and/or eBusiness. We believe that
production/inventory and pricing decisions in the eBusiness setting should be a significant
direction in the field of supply chain-related games.

We now present some suggestions for further directions in SCM research with game theoretic
applications. As discussed at the beginning of Section 2, Nash and Stackelberg equilibria are
two most-frequently used solution concepts in non-cooperative games. Although more non-
cooperative game models have appeared than cooperative ones, some researchers have also
examined coordination and cooperation issues in SCM. Based on our observation, we find
that most theoretical analyses in cooperative game models have applied the side-payment or
side-payment-like concept. Only a few authors have made use of the other cooperative game
solution concepts involving the characteristic function form (such as the core, Shapley value,
nucleolus, etc.).

The objective of every supply chain is to maximize the overall value (i.e., profitability)
generated. Supply chain profitability is the total profit to be shared across all supply chain
stages; see Chopra and Meindl [37, pp. 5-6]. Naturally, such profitability can be achieved
only if the decision makers in each stage of a supply chain agree to cooperate. For supply
chain researchers interested in applying game theory, this should be an exciting observation.
We have here the basic ingredients of a cooperative game, i.e., a group of decision makers
having different objectives; and if they cooperate then they can improve their well-being as
a whole. Since our survey has revealed that very few researchers have looked at problems
in SCM involving cooperative games in characteristic function form one may develop a
cooperative game of a supply chain involving the major “players” of a supply chain, i.e.,
the supplier, manufacturer, distributor, retailer or even the customer. The problem of sharing
fairly the increased profit in a supply chain may be analyzed by using the solution concepts of
cooperative game theory such as the Shapley value or nucleolus.

We now suggest, based on our topical classification, some potential research topics in SCM
that can be analyzed using game theoretic tools.

Inventory Games with Fixed Unit Purchase Cost: With regard to inventory control problems
with fixed purchase cost, we have encountered more papers that focus on the decentralized
channel than on the centralized channel. Since coordination/cooperation is a critical issue in
centralized system, we feel that more attention should be paid to investigating models involving
centralization settings. Some papers in this class considered game models for substitutable
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products. One can also analyze some competitive problems with complementary products. For
example, consider a game problem where suppliers of two different components (e.g., memory
chips vs. monitors) serve the same manufacturer. In this situation, the suppliers’ products
are complementary since the manufacturer must use both components to produce the final
product. When a supplier holds more inventory than the other not only would the former carry
excess stock resulting in holding cost but also the manufacturer may be unable to complete the
assembly of his products resulting in lost sales. Thus, when the suppliers do not communicate
and the manufacturer faces a random demand the resulting 3-person game can be analyzed
using cooperative game theory.

Inventory Games with Quantity Discounts: As most of the publications in this class deal
with vertical supply chains, future research in this area may pay more attention to horizontal
supply chains. For example, we may consider a supply chain involving two retailers who choose
their respective optimal quantity discount policies to compete for customers in a market. Both
competitive and cooperative games could be developed for the horizontal supply chain.

Production and Pricing Competition: This category of problems have been analyzed in
a wide variety of SCM contexts. However, production/pricing competition in the eBusiness
context may also attract the interest of researchers such as Jain and Kannan [74) who considered
a vertical supply chain problem involving the pricing decisions. We could consider a horizontal
supply chain where two firms determine prices of their substitutable information products to
compete for customers in a online market.

Games with Other Attributes: This category involved a variety of games with other attributes
(e.g., capacity, service/product quality, advertising and new product introduction) and we predict
that there may be more research opportunities in this class. For example, service competition
in vertical channels and product competition in horizontal channels have not attracted much
attention from SCM academics which can be explored further. We could consider a vertical
channel where a manufacturer and a retailer offer an after-sale service (e.g., free repair) to
their customers. The service quality (level) is defined in terms of service availability when a
customer calls for repair to either manufacturer or retailer. Each member in the system employs
professional workers to set up service capacity, and the service quality of the system can be
considered in terms of total workforce. Given a certain service quality (i.e., the total number
of workers), the two channel members compete on the labor force hiring decisions.

Game with Joint Decisions on Inventory, Production/Pricing and Other Attributes: As
in the topics discussed above one could examine many new topics in this class, for example,
one may analyze a problem where the firms not only determine their Cournot quantities but
also the contract parameters on the quality of the end product.

A. ALTERNATIVE CLASSIFICATION

Our survey reveals that although many papers have examined the problems of competition in
supply chains, some have also considered cooperation among channel members using side-
payments (or, in the case of a few, using the characteristic function form). In this Appendix
we present an alternative classifications based on the nature of interaction among the players,
i.e., (i) non-cooperative games, (ii) cooperative games.

A.1 Non-cooperative Game Models

Amaldoss, Meyer, Raju & Rapoport [1], Anupindi & Bassok [2], Anupindi & Bassok [3),
Avsar & Baykal-Giirsoy [S], Axsiiter [6], Banerjee [8], Banerjee & Bandyopadhyay [9], Banks,
Hutchinson & Meyer [10], Bemstein & Federgruen {12], Bemstein & Federgruen [ 13), Bertrand
[14], Butz [15], Bylka [16], Cachon [17], Cachon [18], Cachon [19], Cachon [21], Cachon &
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Harker [22], Cachon & Larivere [23], Cachon & Larivere [24], Cachon & Larivere [25], Cachon
& Lariviere [26], Cachon & Zipkin [28], Caldentey & Wein [29], Chen & Wan [33], Chiang,
Chhajed & Hess [34], Chiang, Fitzsimmons, Huang & Li [35], Choi [36], Chu [38], Chu & Chu
[39], Chu & Desai [40], Clarke [41], Cohen & Whang [42], Corbett [43], Corbett & DeCroix
[44], Corbett & Groote [45], Corbett & Karmarkar [46], Cournot [47], Cvsa & Gilbert [48],
Deal [49], Desai [50], Eliashberg & Steinberg [52], Gal-Or [54], Gal-Or [55], Gal-Or [56], Gans
[58], Gjerdrum, Shah & Papageorgiou [62], Goyal [63], Granot & Sosic [65], Ha, Li & Ng [66],
Hall & Porteus [67], Hauser & Wernerfelt (70], Huang & Li [71], Hviid [73], Jain & Kannan
[74], Joglekar [77], J@rgensen [79], Jgrgensen & Kort [80], Kadiyali, Chintagunta & Vilcas-
sim [82], Kalai, Kamien & Rubinovitch [83], Karnani [84], Kim & Hwang [85], Klemperer &
Meyer [86], Kreps & Scheinkman [90], Kulkarni {92], Lal & Staelin [93], Lariviere & Porteus
[96], Lederer & Li [97], Lee & Rosenblatt [98], Levitan & Shubik [99], Levitan & Shubik
[100], Li [101], Li [102], Li [103], Li & Lee [104], Lim [108], Mahajan, Radas & Vakharia
[110], Mahajan & van Ryzin [111], McGahan & Ghemawat [114], McGuire & Staelin [115],
McGuire & Staelin [116], Monahan [119], Monahan [120], Moorthy [121], Moorthy [122],
Netessine & Rudi {125], Nti [126], Parlar [129], Parlar & Wang [130], Parlar & Wang [131],
Reitman [135], Reyniers & Tapiero [136], Rosenblatt & Lee [138], Rump & Stidham [140],
Shapley & Shubik [144], Shugan [150], So [152], Su & Shi [153], Trivedi [156], Van Mieghem
& Dada [158], van Ryzin & Mahajan [159], Vives [160], Wang [165], Wang & Wu [169],
Wang & Wu [170], Zhu [174].

A.2 Cooperative Game Models

Anupindi & Bassok [2], Anupindi, Bassok & Zemel [4], Balch [7], Bernstein & Federgruen [13],
Bylka[16], Cachon [21], Cachon & Lariviere [26], Cachon & Zipkin [28], Chen, Federgruen
& Zheng [32], Chiang, Fitzsimmons, Huang & Li [35], Corbett & Groote [45], Dong & Rudi
[51], Gerchak & Gupta [60], Hartman & Dror [68], Hartman & Dror [69], Huang & Li [71],
Huang, Li & Mahajan [72], Jeuland & Shugan [75], Jeuland & Shugan [76], J@rgensen &
Kort [80], Jgrgensen, Taboubi & Zaccour [81], Kim & Hwang [85], Kohli & Park [87], Lal
& Staelin [93], Lariviere [95], Li [101], Li & Huang [106], Li, Huang, Zhu & Chau [107],
Lippman & McCardle [109], Mallik & Harker [112], McGuire & Staelin [115], McGuire &
Staelin [117], Parlar & Wang [130], Raghunathan [132], Rao [133], Reyniers & Tapiero [136],
Robinson [137], Rudi, Kapur & Pyke [139], Sabavala [141], Sen [143], Sherali & Rajan [146],
Van Mieghem [157], Wang [164], Wang [166], Wang, Guo & Efstathiou [162], Wang & Parlar
[168], Weng [171], Zhao & Wang [173], Zusman & Etgar [175].

B. DISTRIBUTION OF THE REVIEWED PAPERS

Table 3: Distribution of the papers reviewed in the survey. Here, the five classes are defined as
follows: (i) Inventory games with fixed unit purchase cost, (i) Inventory games with quantity
discounts, (iif) Production and pricing competition, (iv) Games with other attributes and (v) Games
with joint decisions on inventory, production/pricing and other attributes.

Class (i) Class (ii) Class (iii) Class (iv) Class (v) Total
2000-2004 12 6 10 12 14 54
1995-1999 8 3 3 5 7 26
1990-1994 3 2 3 3 3 14
1985-1989 2 8 6 1 3 20
1980-1984 0 7 4 2 1 15
Before 1980 0 0 6 2 0 8
Total 25 26 33 25 28 137
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Figure 4: Percentages of the reviewed papers published during the six five-year periods.
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Figure 5: Distribution of the reviewed papers in the five classes. The five classes are:

(i) Inventory games with fixed unit purchase cost, (ii) Inventory with quantity discounts,

(iii) Production and pricing competition, (iv) Games with other attributes and (v) Games
with joint decisions on inventory/pricing and other attributes.
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