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Abstract

Planning for a decentralized team of robots is a fundamentally different

problem from that of centralized control. During decision making, robots must

take into account not only their own observations of world state, but also the

possible observations and actions of teammates. While the interconnectedness

of such a reasoning process seems to require an infinite recursion of beliefs to

be modelled by each member of the team, game theory provides an alternative

approach. Partially observable stochastic games (POSGs) generalize notions

of single-stage games and Markov decision processes to both multiple agents

and partially observable worlds. Even if there is only limited communication

between teammates, POSGs allow robots to come up with policies that still

take into account possible teammate experiences without the need to explicitly

model any recursive beliefs about those experiences.

While a powerful model of decentralized teams, POSGs are computation-

ally intractable for all but the smallest problems. This dissertation proposes

a Bayesian game approximation to POSGs in which game-theoretic reasoning

about action selection is retained, but robots reason only a limited time ahead

about uncertainty in world state and the experiences of their teammates. Plan-

ning and execution are interleaved to further reduce computational burdens:

at each timestep, robots perform a step of full game-theoretic reasoning about

their current action selection given any possible history of observations and a

heuristic evaluation of the expected future value of those decisions.

The Bayesian game approximation algorithm (BaGA) is able to find solu-

tions to much larger problems than previously solved. Further computational

savings are gained by reasoning about groups of similar observation histories

rather than single histories. Finally, efficiency and performance are also im-

proved through the use of run-time communication policies that trade off ex-

pected gains in performance with the costs of using bandwidth. In this dis-

sertation, the performance of BaGA is compared to policies generated for full

POSGs as well as heuristics. BaGA is also used to develop real-time robot

controllers for a series of simulated and physical robotic tag problems that

gradually increase in realism.
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Chapter 1

Introduction

In the field of multi-robot systems, researchers seek to understand and specify the interac-

tion between robots as they cooperate to perform tasks in the real world. It is a field that

has attracted researchers from a variety of backgrounds, each bringing a different flavour to

their approach. Behaviour-based researchers use the notion of social behaviours to facilitate

emergent cooperation in reactive systems (Matarić, 1995; Parker, 1998), while machine-

learning researchers have examined issues of multi-agent adaption and learning (Weiß &

Sen, 1996; Weiß, 1997; Stone & Veloso, 2000). Others have looked at the problem from the

perspective of teamwork: the study of social intentions, commitments, beliefs and desires

(Cohen & Levesque, 1991; Grosz & Kraus, 1996). Market-based approaches treat task al-

location as an auction in which robots bid for tasks in an effort to maximize their individual

rewards (Wellman & Wurman, 1998; Gerkey & Matarić, 2002; Dias & Stentz, 2003).

While it is a powerful multi-agent framework, game theory is rarely used to model multi-

robot problems, in part due to its high computational complexity. In the absence of game-

theoretic reasoning, however, each decision maker in a decentralized multi-robot team is

faced with an infinite belief/knowledge hierarchy. In the case of two robots, Robot 1’s

actions are dependent on what it has seen, what it believes Robot 2 has seen, what it believes

about Robot 2’s beliefs about what Robot 1 has seen, and so on. These belief hierarchies

arise from both uncertainty in the state of the world as well as in the action choices of

teammates. By reasoning directly about all possible sequences of actions and observations

across robot teams, game theory eliminates the need for robots to explicitly model the belief

hierarchies of their teammates in partially observable domains.

In general, the full game-theoretic approach to the multi-agent problem is computationally

infeasible. However, by creating approximate solutions to the games representing these

21



22 Chapter 1. Introduction

problems, this approach can be used to create real-time robot controllers for reasonably

sized domains. Additionally, by understanding how existing algorithms relate to the full

game-theoretic approach, insight is gained into the tradeoff between optimality and perfor-

mance in real multi-robot problems.

1.1 Problem Description

This dissertation is concerned with the problem of constructing policies for robots that

must coordinate their action selection in tightly-coupled tasks within a partially observable

Markovian environment with limited communication.

1.1.1 Tightly-Coupled Tasks

Distributed robot problems can range from loosely-coupled to tightly-coupled tasks. At

one end of the spectrum, once each robot is assigned a task, no interaction is necessary

between teammates during task completion. An example of this class would be robotic

farming in which each tractor is assigned a different field to plow. This type of problem

does not really require multi-robot algorithms because, once the initial task decomposition

is set, the robots function as individual entities.

As task allocation takes on a more dynamic role, the level of interaction between robots

starts to increase. One can imagine that, should a robotic tractor fail, its remaining fields

must be reallocated amongst the remaining team. Or perhaps an ordering exists between

sub-tasks, such as a rock collecting robot that cannot complete its task until one of its

teammates has discovered the location of the rock. Robots must now negotiate between

each other to insure that optimal task allocation and reallocation takes place.

If robots are located physically close in space, another type of interaction starts to occur;

one at a lower level of behaviour. Robots must now re-plan the paths they take while

performing a task in order to avoid bumping into their teammates.

At the tightly-coupled end of the spectrum, robots must coordinate their domain-level ac-

tions in order to achieve optimal performance. They start to function less like individuals

with mutual goals and more like a single entity with a distributed controller. In multi-robot

box pushing, the team must coordinate on actuator placement and force to ensure that the

box takes the correct path (Gerkey & Matarić, 2002). In a sentry problem (e.g., guarding
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an art gallery or museum), robots must ensure that their joint paths through the galleries

leave no area unmonitored.

It is this latter end of the spectrum with which this thesis is concerned. This dissertation

is focused on distributed robots that, in parallel, select individual actions at every timestep

of a problem. The problems consist of an overall task or goal with an associated reward

function that reflects the need of individual robots to coordinate during action selection.1

1.1.2 Stochastic Environment

In the real world, robots must constantly deal with uncertainty. Part of this uncertainty

comes from robot actuators and the effects they have on actions. Generally, these effects

can be captured through some sort of probabilistic model governing the transitions be-

tween states in the environment. Furthermore, for many problems the Markov property

holds. The Markov property states that if the current world state is known, then the future

state is not dependent on any of the previous states. That is, all information necessary to

determine a distribution over the next set of world states is contained entirely within the

current state description. This means that, given a history of past states si and actions ai,

P (st+1|st, at, st−1, at−1, . . . , s0, a0) = P (st+1|st, at).

This dissertation is concerned with problems that obey the Markov assumption and for

which probabilistic world models can be derived. It will be shown, however, that existing

single-robot methods for these problems, and their extensions to handle partial observ-

ability, are not sufficient for modelling decision making in a team of robots with limited

communication.

1.1.3 Partial Observability

The second type of uncertainty comes from how robots sense their environments. Sen-

sors are not perfect and while impressive algorithms for localization exist, there is always

some uncertainty inherent in determining position (Fox et al., 1999). Even with extremely

accurate sensors, components of world state can remain unobservable due to perceptual

1The methods for generating policies that will be explored in this dissertation can still be applied to task-

level coordination; one can replace actions with specific tasks, modify reward functions appropriately and

then use the framework to assign tasks at each timestep. Robots can then use precalculated policies for

implementing those tasks much as they would with frameworks such as market-based approaches (Dias &

Stentz, 2003) and theories of teamwork (Jennings, 1995; Tambe, 1997).
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aliasing of sensed features or sensor limitations. For example, a robot cannot observe what

is around a corner until it actually moves around the corner itself.

In partially observable domains, if some aspect of state is not directly observable then it is

considered hidden state. While a robot cannot directly identify this hidden state, its obser-

vations will contain information that allow it to infer a set of possible world states and to

generate a probability distribution over these possible states. This probability distribution,

also known as a belief, is updated by the robot based upon its actions and observations as

it moves through the environment. Robots can therefore use their beliefs to guide action

selection, much as they would use world state in a fully observable problem.

In robot teams there are two main categories of partial observability: collective observ-

ability and collective partial observability (Pynadath & Tambe, 2002).2 With collective

observability, if robots can share all of their observations then world state is known with

certainty; however, with collective partial observability no assumptions are made about the

joint observations of the team. Unless all observations can be shared, it is not necessarily

easier to find solutions to collectively observable domains.

If full communication is available within a team of robots then any observations of world

state can be shared between the team. Limited communication adds another type of partial

observability. If robots are not able to share their observations every timestep they can

only infer a distribution over the possible experiences of their teammates. As a result, the

true observation history of each teammate can be considered another part of the problem’s

hidden state.

The problems addressed in this dissertation fall into the category of collective partial ob-

servability. More specifically, these problems will all include partial observability as a

result of limited communication.

1.1.4 Limited Communication

In general, communication bandwidth is limited and in some domains not available at all.

For example, robots that function underground or on the surface of another planet may

be limited to point-to-point communication. In these problems, robots must evaluate the

benefit of communication against the associated costs of moving into a position suitable

for initiating communication. Even if communication is more readily available, such as

2One could also include the case of complete, or individual, observability in this set. If a problem has

complete observability, then each robot knows the current world state with certainty.
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with indoor mobile robots, bandwidth limitations often result in latency in communication

between the robots, and critical information may not be received in time to make deci-

sions. While bandwidth requirements for full communication may be feasible for small

robot teams, scaling up the number of robots in such a system will eventually saturate the

communication network.

Instead of sharing complete histories of their actions and observations, robots should be

able to independently reason about appropriate actions to take in a decentralized fashion

that takes into account both their individual experiences in the world and beliefs about

the possible experiences of teammates. If no communication is available, then this type of

reasoning is necessary for the entire duration of the problem. If communication is available,

but is periodic or has latency, this reasoning allows robots to generate optimal policies

between synchronization episodes (Nair et al., 2004).

This dissertation is concerned with problems that have limited or no communication avail-

able to the robot team. Robots must be able to arrive at policies that are optimal given

the information they have available about the experiences of their teammates and the envi-

ronment. If communication is available, robots should be able to generate communication

policies that trade off the benefits of additional information with the costs of communica-

tion.

1.2 Probabilistic Frameworks

This section discusses how the probabilistic frameworks of Markov decision processes

(MDPs) and partially observable Markov decision processes (POMDPs) can be used to

solve decentralized robot problems if certain assumptions are made about the world. As

the framework moves from assumptions of full observability to partial observability, more

realistic problems can be represented; however, even POMDPs are still insufficient for

modelling the original problem.

1.2.1 MDP Solution

One of the most restrictive assumptions typically applied to distributed robot control is that

the world is fully observable. This assumption means that, at each timestep, every member

of the team knows the current world state with certainty. This problem can be modeled as

an MDP.
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An MDP is a tuple (S,A, T,R) where S is a set of possible world states, A is a set of

actions, T : S × A → S is a probabilistic transition function that describes how state

evolves as a function of actions and R : S × A → ℜ is the reward function. MDPs can be

defined with a finite planning horizon in which an agent has a fixed number of timesteps

in which to maximize its reward. Alternatively, they can be formulated as infinite-horizon

problems in which the agent continues to act until some terminal state is reached.

Using the MDP model, a policy is found for the agent using dynamic programming. This

policy is a mapping between the states in S and the actions inA (as shown in Figure 1.1 (a))

that attempts to maximize cumulative reward. For a finite horizon problem, the agent takes

the action at every timestep that maximizes its current reward plus the sum of discounted

expected future rewards over the remaining timesteps. If πt(st) is the action given by

policy π for state s at timestep t, then the value of starting in state s and executing π for the

remaining T − t steps is given by the finite-horizon Bellman’s Equation:

V t
π(st) = R(st, πt(st)) + γ

∑

st+1

T (st, πt(st), st+1)V t+1
π (st+1) (1.1)

where γ is a discount factor. The optimal policy, π∗, and its value function, V∗, can be found

by maximizing Equation 1.1 and applying backwards induction from t = T to t = 0. For

each state s:

V t
∗ (st) = max

a
(R(st, a) + γ

∑

st+1

T (st, a, st+1)V t+1
∗ (st+1)) (1.2)

and the optimal policy π∗ is given by:

πt
∗(s

t) = arg max
a

(R(st, a) + γ
∑

st+1

T (st, a, st+1)V t+1
∗ (st+1)). (1.3)

For an infinite horizon problem, Equations 1.1, 1.2 and 1.3 can be modified to reflect that

an agent takes the action that maximizes its current reward plus its discounted expected

future reward. Rather than finding a policy dependent on time, the agent is now trying to

find the stationary value function V ∗ that maximizes Bellman’s equation:

V ∗(s) = max
a

(R(s, a) + γ
∑

s′

T (s, a, s′)V ∗(s′)). (1.4)
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MDP

state space

a1

a2

policy

(a) MDP relationship

between state space

and actions.

POMDP

state space belief space

a1

a2

policy
state 

estimation

(b) POMDP relationship between state space, belief

space and actions.

Figure 1.1: Relationship between MDPs and POMDPs. In an MDP, a policy is a direct

mapping between states and actions. In POMDPs, an agent no longer knows the current

state with certainty but instead constructs a probability distribution over all possible states.

A POMDP policy can then be thought of as a direct mapping between these probability

distributions (a belief) and actions. That is, a POMDP can be thought of as an MDP in

belief space rather than state space.

Dynamic programming can be used to find the fixed point, V ∗, of Equation 1.4 and its

associated optimal policy π∗ (Bertsekas & Tsitsiklis, 1996).

To model a multi-robot problem using the MDP framework, the set of actions A becomes

the set of joint actions A = A1 × · · · × An; that is, the robots are treated as a larger meta-

agent with multiple actuators. For each state in S, the meta-agent selects an action from

the set A according to its policy and then ‘tells’ each of its actuators which individual-level

action to implement. In practice, it is not necessary for a central computer to make these

decisions. Because the problem is fully observable, each robot can store a copy of the

computed policy and implement the appropriate portion of the selected joint actions at run

time (Boutilier, 1999).

1.2.2 POMDP Solution

In this section, the problem is made more realistic by removing the assumption that the

state of the world is fully observable by each robot and, instead, robots only receive noisy

observations about the world. Although the problem is no longer fully observable, it is

assumed that full communication is available to the team; that is, any observation made by

one robot is also known by the other robots, without latency or further signal degradation.
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This assumption of full communication allows the problem to be treated as a POMDP.

Formally, a POMDP is a tuple (S,A, Z, T,R,O) where S, A, T and R are as defined

for an MDP, Z is a set of observations and O : S × A × Z → [0, 1] is the observation

emission probability function. Given an initial belief about the world state b0, the current

belief state b (the probability that an agent is in state s) can be calculated from the history

of actions and observations taken by each agent: bt = P (st|zt, at, zt−1, at−1, . . . , z0, a0).

Updating the current belief b is known as state tracking or filtering, and the new belief can

be constructed from the transition and emission functions as follows:

b′(s′) = P (s′|z, a, b) =
O(s′, a, z)

∑

s′ T (s, a, s′)b′(s′)

P (z|b, a)
(1.5)

where b(s) = P (s|b) and P (z|b, a) is a normalization factor equivalent to
∑

s′

(

O(s′, a, z)
∑

s T (s, a, s′)b(s)
)

.

Like MDP policies, POMDP policies are universal plans: they specify an action to take

for any possible belief state. The addition of partial observability, however, makes it sig-

nificantly harder to find policies for POMDPs than it is for MDPs. Every POMDP can be

thought of as an equivalent belief space MDP whose state set is the set of reachable beliefs

of the POMDP (Kaelbling et al., 1998). Rather than plan in state space, an agent plans in

belief space as is shown in Figure 1.1 (b). The value function and optimal policy equations

in Section 1.2.1 can be re-written to take this dependence into account. Given a belief bt:

V t
∗ (bt) = max

a

(

∑

st

bt(st)R(st, a) + γ
∑

bt+1

P (bt+1|bt, a)V t+1
∗ (bt+1)

)

(1.6)

where the transition and observation emission functions are used to calculate P (bt+1|bt, a).

While exact planning algorithms exist for POMDPs, (e.g., the Witness algorithm of Kael-

bling et al. (1998)), finite-horizon POMDPs themselves are PSPACE-complete (Papadim-

itriou & Tsitsiklis, 1987). As a result, a number of approximate algorithms for solv-

ing POMDPs have been developed such as those of Hauskrecht (2000) and Pineau et al.

(2003a).

For the multi-robot version of this problem, as with the MDP solution, a policy for a larger

meta-agent with multiple actuators can be found. In this solution, the action set A consists

of all joint actions A1×· · ·×An, and Z consists of all joint observations Z1×· · ·×Zn. An
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appropriate solution technique can then be applied (e.g., an exact or approximate method

depending on the size of the problem). At run time, each robot receives an observation

zt
i , transmits that signal to its teammates, updates its belief state bt

i with all observations

zt
j ∈ zt and the previous joint action, and then looks up the optimal joint action for the new

belief. Finally, it implements its part of that joint action. Because the robots share all of

their observations at every timestep, the robots will always select the same joint action at

(with ties broken consistently).

Collectively fully observable POMDPs represent a special case of multi-robot POMDPs.

For these problems the global state of the system can be uniquely identified from each set of

observations {zt
1, . . . , z

t
n}. Full communication allows problems that are collectively fully

observable to be modeled as an MDP rather than a POMDP.

If the assumption of full communication is removed, however, then the problem suddenly

becomes much harder, even if it is collectively fully observable. If no communication is

available, each robot must make action decisions based only on its own history of obser-

vations {z0
i , . . . , z

t
i}, actions {a0

i , . . . , a
t
i}, and known problem dynamics (i.e., T , R and

O). If it knows its teammates’ policies, then it can fold that information into the transition

and reward functions and model the problem as a single-robot POMDP. However, because

robots are finding their policies simultaneously and those policies are interdependent, if

each robot optimizes its own policy while holding those of its teammates fixed, it cannot be

guaranteed that the resulting policies are consistent with each other. I.e., if robot i assumes

a set of fixed policies σ for its teammates and then finds an ‘optimal’ policy πi for itself,

it cannot be guaranteed that this πi is identical to the policy that its teammates assign to it

during their own optimization process. As a result, robot i’s teammates can find policies

for themselves that are different from those in σ and so the assumptions that robot i made

about σ are violated. Instead, when choosing actions, each robot must reason about how

the actions its teammates choose would affect its own action selection and, in turn, how

they would effect the teammates’ action selection.

This type of reasoning requires a recursive modelling approach in which each robot builds

up an infinite belief hierarchy about what it believes is the state of the world, what it believes

its teammates believe is the state of the world, what it believes about what its teammates

believe it believes is the state of the world, and so on. Because communication is not

available to establish observations as common knowledge, this hierarchy is infinite even

if the POMDP itself is finite. A single POMDP is no longer a rich enough framework to

properly model what is occurring and so, game-theoretic models must be considered in

order to break the infinite belief hierarchy.
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1.3 Partially Observable Stochastic Games

Stochastic games, first introduced by Shapley (1953), are a generalization of both MDPs

to the multi-robot case and single-stage games to games with state (Fudenberg & Tirole,

1991). Instead of modelling a set of agents as a single agent that executes joint actions,

in a stochastic game each agent is modeled as a self-interested player who chooses actions

that maximize its reward with respect to a reward function. Both reward and the transition

between world states, however, are dependent on the actions selected by all agents. Game

theory concepts like Nash equilibria are therefore used to simultaneously define sets of

policies for all of the agents. Just as POMDPs are the extension of MDPs to partially

observable domains, partially observable stochastic games (POSGs) are the extension of

stochastic games to the case of uncertainty in world state.

A POSG is defined as a tuple (I, S,A, Z, T,R,O). I = {1, . . . , n} is the set of agents, and

S is the set of states. It is important to note that S is not limited to the cross-product of the

states of the individual agents, but can include additional information. For example, in a

multi-robot mapping task the state of the world will include the positions of all of the robots

as well as positions of any obstacle in the environment. A and Z are respectively the cross-

product of the action and observation space for each agent, i.e., A = A1 × · · · × An and

Z = Z1 × · · · ×Zn. T is the transition function, T : S ×A→ S, R is the reward function,

R : S × A → ℜ, and O defines the observation emission probabilities, O : S × A× Z →

[0, 1]. At each timestep of a POSG, the agents simultaneously choose actions and receive

a reward and observation. These actions are given by the solution to the POSG, which is

a set of conditional policies, π = {π1, . . . , πn}. This thesis addresses finite POSGs with

common payoffs, i.e., Ri = Rj∀i, j; however, the set of general POSG problems includes

arbitrary reward functions and infinite horizon problems.3

In the POSG model, a policy for each robot in a team can be found without the need to do

any sort of infinite reasoning or deduction over an infinite belief hierarchy.4 A POSG policy,

πi, is a universal, or conditional, plan that tells a robot what to do at each timestep as it

3While this formalism may appear similar to that of multi-agent POMDPs, a key difference is that in multi-

agent POMDPs each agent is treated as an actuator of a larger meta-agent. This means that the observation

zt is known by all agents and a policy is a mapping from a joint belief to a joint action. In a POSG, however,

each agent only has access to zt
i . As a result, different solution methods are necessary and the policy of an

agent is now a mapping from a history of individual observations to an individual action.
4The proof that the POSG framework is able to implicitly represent any possible infinite belief hierarchy is

quite complex and beyond the scope of the game-theoretic concepts discussed in this thesis. Interested readers

are directed to Harsanyi (1968) and Samet (1997) for an in-depth discussion of the relationship between

belief/knowledge hierarchies and common priors. Informally, if there is a common prior held by all agents

over the possible set of states of the game at any timestep (i.e., common knowledge as to the POSG model



1.3. Partially Observable Stochastic Games 31

acquires additional observations. At each timestep t, a robot has a sequence of observations

ht
i and will execute the action given by πi(h

t
i), i.e., πi : H t

i → Ai. Alternatively, πi

can be thought of as a policy tree as shown in Figure 1.2: the nodes of the tree indicate

actions while branches represent different observations. The robot starts at the root of the

tree and, as it gathers more observations, follows the associated path down through the

tree, executing the action given by each node it passes through. Note that in either case,

while the policy is conditioned on only a history of observations ht
i, due to the nature of

policy construction, it also implicitly includes information about past action choices. This

is because the policy is a deterministic function of history and so, given a history ht
i, the

actions taken at timesteps 0 through t− 1 can be recovered with certainty.5

In order to coordinate their actions, a team of robots must find policies that take into ac-

count possible teammate observations and actions. However, the need for reasoning about

an infinite belief hierarchy is avoided in POSGs by finding policies for all robots simulta-

neously. Given a specific set of policies π, it is possible to evaluate the resulting expected

reward to the team. As shown by Nair et al. (2003), for a 2-robot general-sum problem,

the value to robot i of starting in state s with the observation histories ht
1 and ht

2, given that

both robots will execute π for the remaining T − t steps, is:

V t
π,i(s

t, {ht
1, h

t
2}) = Ri(s

t, {π1(h
t
1), π2(h

t
2)}) + γ

∑

st+1

T (st, {π1(h
t
1), π2(h

t
2)}, s

t+1)·

[

∑

z1∈Z1

∑

z2∈Z2

O(st+1, {π1(h
t
1), π2(h

t
2)}, {z1, z2})V

t+1
π,i (st+1, {ht

1 ∪ z1, h
t
2 ∪ z2})

]

. (1.7)

The subscript i is used to indicate that this value function is defined for robot i. As with

Equation 1.1, dynamic programming can be used to find V t
π,i for all t, s, ht

1 and ht
2. Note that

this process requires iterating over all possible one-step extensions of ht
1 and ht

2, yielding a

computational cost of O(|S||Z1||Z2|) for evaluating each V t
π,i(s

t, {ht
1, h

t
2}) pair and a cost

of O(|S|2|Z1|
t+1|Z2|

t+1) for finding V t
π,i. Equation 1.7 can of course be generalized to the

n-robot case.

and policies of each agent), then this common prior can be decomposed into an infinite hierarchy by using

it to calculate the posteriors over all the possible beliefs in the hierarchy. However, in order to prove that a

common prior is able to capture any infinite hierarchy of beliefs, the reverse must also be true. It turns out

that so long as an infinite hierarchy of beliefs is consistent with itself (i.e., does not include beliefs that are

contradictory), then it can be represented exactly as a common prior.
5For a POSG with common payoffs, it is only necessary to reason about deterministic policies due to the

cooperative nature of the team.
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(a) A policy πi for a 3-step problem.
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(b) πi as a policy tree.

Figure 1.2: An example of a policy for robot i in a simple 3-step problem. Robot i has

two possible observations: z1 and z2, and two possible actions: a1 and a2. In (a), πi is

enumerated as a function that returns an action given a history ht
i of observations of length

t. In (b), πi is shown as a policy tree. Robot i starts at the root of the policy tree and,

as it gathers more observations on each timestep, moves through the tree, executing the

appropriate action for each of the nodes it reaches.

Given Equation 1.7, an exhaustive search through the space of all possible joint policies will

guarantee finding the optimal joint policy π∗. In a common-payoff game, V t
π,i(s

t, {ht
1, h

t
2}) =

V t
π,j(s

t, {ht
1, h

t
2}) ∀i, j, and so the optimal policy π∗ will simply be the policy π∗ = {π1, π2}

that maximizes the value function for each (st, {ht
1, h

t
2}) pair.6 However, as each robot has

|Ai|
|Zi|

T+1−1

|Zi|−1
−1

possible individual policies, this search is doubly exponential in the plan-

ning horizon of the problem.

While it is possible to solve a POSG by performing exhaustive search over all possible

joint policies, it seems less elegant than how policies are found in MDPs and POMDPs.

In MDPs, a policy is conditioned on the state s and so it is possible to perform dynamic

programming directly on Equation 1.2 to find a mapping between states and actions. In

POMDPs, an agent does not have full access to the current world state and so a policy that

is conditioned on state alone is not useful. Instead, the agent has a history of observations

and actions that defines a belief over the world state b. If the policy is conditioned on

this belief, then the POMDP must be converted into a belief space MDP before dynamic

programming can be performed to find this policy.7 With a POSG, however, the policy

for each agent is conditioned on its history ht
i. By itself, ht

i does not define a unique

6In general, game-theoretic principles such as Nash equilibria, can be used to suggest policies for each

robot given a set of V t
π,i(s

t, ht) values. Game theory and Nash equilibria are presented in more detail in

Chapter 2.
7While a POMDP policy can be conditioned on a history of observations (and actions), this representation

is unnecessary as the belief state is a sufficient statistic of this information.
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joint belief over the world state because such a belief is dependent on the observations

and actions of all agents. A joint belief b can only be defined by ht = {ht
1, . . . , h

t
n}. At

best, therefore, ht
i defines a probability distribution, dht

i
, over all possible joint beliefs in

which dht
i
(b) = P (b|ht

i). Following the analogy of MDPs and POMDPs, it would seem

possible to rewrite the POSG as a d-state MDP in which agents plan using a state set

equivalent to all possible distributions over joint beliefs. The corresponding optimal policy

will be one in which, for each distribution dt, the agents take the joint action that maximizes

their immediate expected reward and the sum of future expected reward over the remaining

timesteps. That is, the optimal policy satisfies:

σt
∗(d

t) = arg max
a

(

∑

bt

dt(bt)
[

∑

st

bt(st)R(st, a)
]

+ γ
∑

dt+1

P (dt+1|dt, a)V t+1
∗ (dt+1)

)

.

(1.8)

Unlike πt
∗, σ

t
∗ is a mapping from a probability distribution dt to a joint action at = {a1, . . . , an}.

At run time, a robot would construct dt
i , look up the associated at using σt

∗ and implement

its part of that joint action. The problem now becomes, how to construct dt
i. As is shown in

Figure 1.3, choosing dt
i conditioned on ht

i results in miscoordination between robots even

if they are in agreement as to σt
∗. This miscoordination happens because, as each robot

has a different history ht
i, it will generate a different dt

i and therefore select a different joint

action.

Therefore, the use of Equation 1.8 is only valid if each robot uses the same distribution dt at

run time. Coordination can be insured by allowing robots to only use common information

(such as the problem dynamics given by T and O) to generate dt. However, the robots

would then come up with a policy σt
∗ that does not make use of any observations received

by team members during decision making. While such a policy is technically coordinated,

for more powerful policies agents must be allowed to integrate their own information into

the action selection process. However, modifying Equation 1.8 to condition policies on ht
i

and not dt, effectively yields an exhaustive search on Equation 1.7:
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πt
∗(h

t) =











































πt
∗,1(h

t
1) = arg maxπt

1

(
∑

kt∈Ht P (kt|ht
1)

(
∑

st P (st|kt)R(s, πt(kt))+

γ
∑

kt+1∈Ht+1 P (kt+1|kt)V t+1

πt+1
∗

(kt+1)
))

...

πt
∗,n(ht

n) = arg maxπt
n

(
∑

kt∈Ht P (kt|ht
n)

(
∑

st P (st|kt)R(s, πt(kt))+

γ
∑

kt+1∈Ht+1 P (kt+1|kt)V t+1

πt+1
∗

(kt+1)
))

(1.9)

where

V t
π(ht) =

∑

st

P (st|ht)V t
π(st, ht). (1.10)

There are several things to note about Equations 1.9 and 1.10: V t
π(s, ht) is the generalized

n-robot version of Equation 1.7; V t+1

πt+1
∗

(kt+1) is the value of following policy π∗ for steps

t + 1 through T , given a joint history kt+1; P (st|ht) = bht(s) where bht is the joint belief

state associated with ht; and P (kt|ht
i) is the probability of a joint history kt occurring given

that ht
i occurs. Obviously, if ht

i is not the i-th part of kt, this probability will be zero,

otherwise it will be dependent on problem dynamics. The iteration over every possible

joint history kt ∈ H t is a necessary part of Equation 1.9: while the goal is to find the

optimal policy for a specific joint history ht, each robot’s component of that history, ht
i, can

be part of other joint histories and the policy πt
i can only define one action to take for each

ht
i.

Finally, because πt and not just πt
i appears in the optimizations, the arg max operator must

be performed simultaneously.8 In other words, while its form might be more analogous to

Equation 1.3, this equation is merely ‘hiding’ the exhaustive search required by Equation

1.7. At each timestep the number of items in the set to be maximized over for each robot

is equal to the number of different policies it can have at timestep t which is O(|Ai|
|Zi|t).

As the maximization must be done simultaneously, the total number of calls to find π∗ is

O
(

|A∗|
n|Z∗|T

)

, where |Z∗| and |A∗| represent the largest observation and action space of

single robot. This complexity renders finding π∗ through Equation 1.9 computationally

equivalent to exhaustive search.9

8Again, for general-sum games this operator would not be an arg max, but would make use of game-

theoretic concepts.
9For the common-payoff case, this bound can be somewhat reduced by more intelligent dynamic pro-

gramming as seen in Section 7.2.
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Recasting the problem of solving POSGs into Equation 1.9, therefore, is only really useful

for drawing comparisons between MDPs, POMDPs and POSGs. Figure 1.4, the POSG

analogy to Figures 1.1(a) and 1.1(b), gives this comparison in a graphical fashion. Each

robot can use problem dynamics to create a probability distribution d over all possible joint

histories of length T that could be held by the team. This probability distribution defines a

single point d in the space of all possible distributions over joint histories, and this point will

define a corresponding set of plans for each robot. These plans do not dictate a single action

for each robot, but are conditional and allow a robot to perform a different action for each

of its possible observation histories ht
i. No belief hierarchies are necessary in such a model;

however, all information relevant to action selection that would be modelled explicitly in a

belief hierarchy is still present in a set of policies π. In other words, a robot can use those

policies and its own observation history to determine a conditional probability over the set

of teammates’ observation histories (what it believes its teammates saw) and what actions

they will select for any timestep of the problem (what it believes they will do) and vice

versa.

1.3.1 Computational Tractability

Finite-horizon POSGs with common payoffs are a very powerful way to coordinate a team

of decentralized robots. Robots are able to properly integrate both their own observations

and those of their teammates into the decision-making process without having to reason

about recursive beliefs or trying to deduce what actions their teammates will take. However,

exhaustive search methods for finding such policies are computationally intractable as they

requires iterating over O
(

|A∗|
n|Z∗|T

)

possible joint policies. Do more efficient methods for

solving POSGs exist?

Unfortunately, it has been shown by Bernstein et al. (2002) that the problem of solving

finite-horizon POSGs with common payoffs is non-deterministic exponential time com-

plete (NEXP-complete). The authors also prove that this class of problems, even for in-

stances that are collectively fully observable, is NEXP-hard for two or more robots. This

means that there are exponential many sets of policies to search through for the optimal

solution, and that constructing and evaluating each set takes exponential time. Therefore,

in the worst case, a computer would take time doubly exponential in the planning horizon

T to solve a POSG.

Unlike the case of finite-horizon POMDPs which are PSPACE-complete (Papadimitriou

& Tsitsiklis, 1987), it can be proved that there are no polynomial-time algorithms for
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Figure 1.3: In this naive approach to decentralized planning, each robot considers all

possible joint beliefs consistent with its own history of observations ht
i and then plans

in the resulting distribution over belief space d. That is, it finds the point di such that

di(b) = P (b|ht
i)∀b. However, because each robot’s observation history leads to a different

di, its selected joint action ai will also be different from the ones selected by its teammates

even if they are in agreement about the mapping between each d and a. This state of affairs

leads to miscoordination between robots.



1.3. Partially Observable Stochastic Games 37

POSG

joint history space distribution over 
joint history space

b

c
d

e

f

g

x
y

z

a1

a1 if     =c

a1if     =d

a2

a2

a2

a3

a3

a3

1

1

2

3

4

1

2

1

4

h1
t

h1
t

if     =bh1
t

if     =eh2
t

if     =fh2
t

if     =gh2
t

if     =xh2
t

if     =yh2
t

if     =zh2
t

policy

problem
dynamics

problem
dynamics

distribution
estimation

problem
dynamics

Figure 1.4: A graphical representation relating the concepts of planning with POSGs to

those of MDPs and POMDPs. Each robot constructs the distribution over all possible joint

histories using only information available to the entire team. It then constructs a conditional

plan for every robot in the team that allows each robot to take a different action for each of

its possible observation histories. The plans specify individual rather than joint actions for

each robot, indicated here by the subscript. However, because each robot is planning for

the same point, d, in the space of all possible distributions over joint histories, all robots

will arrive at the same set of conditional plans and therefore be coordinated.
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finding solutions to finite-horizon POSGs (i.e., it is known that P6=NEXP and the NEXP-

completeness of the POSG holds even if the horizon is smaller than the number of states).

Indeed, assuming EXP6=NEXP, in the worst case any algorithm for solving a POSG with

common payoffs will be doubly exponential in the time horizon of the problem. This math-

ematical evidence backs up the intuition that solving decentralized problems is fundamen-

tally harder than solving centralized problems or problems that can be treated as centralized

due to communication. As Bernstein et al. (2002) point out, this also means that the key to

solving POSGs exactly does not lie in discovering some way to convert them into POMDPs

and then applying known solution techniques. Instead, a different approach is required.

In the mean time, POSGs remain a powerful way to model tightly-coupled problems in

Markovian environments and so the pursuit of approximate algorithms is important.

Furthermore, even if it is computationally intractable to solve a POSG, knowing how a

framework for decentralized robot teams relates to this model can help provide insight into

algorithms for problem solving. For example, the solutions generated by modelling a small

version of the problem as a POSG could help create heuristics for larger versions of the

problem. Alternatively, identifying what assumptions or approximations are made by an

algorithm for action selection lets one understand what its limitations are with respect to

performance. Finally, just because the general class of problems is NEXP-complete, it does

not mean that all POSGs are hard to solve. Specific domain constraints can lead to solution

techniques that are not applicable in general. These issues will all be explored in more

detail in Chapter 7.

1.4 Bayesian Game Approximation Algorithm

As discussed in the previous section, the NEXP-complexity result for POSGs with common

payoffs means that exact solutions for these problems will not be found through some con-

version to POMDPs. While it is possible to approximate these solutions using POMDPs, it

requires some modelling of teammates in order to properly deduce their effects on action

selection. An alternative approach to explicit teammate modelling is one that retains the

use of game theory to perform action selection for immediate timesteps but approximates

the future value of actions using a heuristic. Furthermore, by interleaving planning and exe-

cution, robots can use past decisions to reduce the number of possible observation histories

that must be taken into account during action selection at later timesteps.

The resulting algorithm for finding approximate solutions to POSGs with common pay-
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offs is called the Bayesian game approximation, or BaGA. This algorithm uses a less well

known game-theory construct, the Bayesian game, to model each timestep of a POSG.

In each of the linked Bayesian games, robots reason about their current action selection

by considering both immediate rewards and estimates of future rewards. These estimates

come from heuristics that approximate how, for a given set of observation histories, robots

will be able to perform in the future. Thus, robots only reason in the short term about true

uncertainty in the observations and action selection of their teammates: a tradeoff has been

made between reasoning about future uncertainty and computational tractability. How-

ever, if the heuristic function accurately evaluates the expected future value of actions, then

BaGA becomes exact.

BaGA does not result in a set of full universal plans for the POSG but rather finds condi-

tional plans for those parts of the POSG that can possibly occur (given earlier decisions)

by concatenating together solutions from each of the smaller Bayesian games. By generat-

ing policies in a forward fashion and using heuristics in combination with game-theoretic

solution concepts, much larger problems can be solved than previously possible. Indeed, it

will be shown that it is even possible to generate real-time robot controllers using BaGA.

1.5 Thesis Statement

In this dissertation, I will advance the following thesis:

Partially observable stochastic games (POSGs) are a powerful way to model

decision making in a team of robots with limited communication. Approximate

solutions to POSGs with common payoffs can be found by interleaving plan-

ning and execution, thereby transforming the problem into a series of smaller,

linked Bayesian games. Furthermore, robots can generate good policies by

reasoning only a limited time ahead about uncertainty in both world state and

the experiences of their teammates.

1.6 Thesis Contributions and Outline

This dissertation presents an overview of the BaGA algorithm. Quantitative experiments

compare the performance of BaGA to the solutions of full POSGs and basic heuristics on a
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variety of abstract and real-world problems. The core contributions of this dissertation can

be summarized as follows:

• Familiarizing the robotics community with the POSG framework and its use in mod-

eling the problem of decentralized decision making for teams of robots without full

communication.

• The observation that, if a POSG is to be approximated in a forward fashion, then each

timestep must be represented as a Bayesian game in order to keep robots coordinated.

The basic BaGA algorithm for finding approximate solutions to POSGs is the result

of this observation.

• An extension to BaGA which reasons over clusters of observation histories rather

than every possible history, leading to computational savings without loss of perfor-

mance.

• The use of BaGA to generate run-time communication policies that improve both

computational efficiency and the expected performance of a robot team.

• An implementation of BaGA on a team of physical robots, which validates BaGA as

a real-time robot controller.

Because several game-theoretic concepts are important to the development of the BaGA

algorithm, the body of this dissertation starts with an overview of game theory rather than

moving directly to the BaGA algorithm itself. Due to the similarity between POSGs and

extensive-form games, the first part of Chapter 2 is devoted primarily to solution techniques

for these game trees. Bayesian games are then introduced and discussed in detail in the

latter half of the chapter. It is very important that the reader understands Bayesian games

before proceeding because these games form the building blocks of the BaGA algorithm.

After all necessary game-theory concepts have been presented, the basic version of the

BaGA algorithm is introduced in Chapter 3. BaGA is analyzed with respect to computa-

tional savings and the levels of approximation it makes in order to find tractable solutions

to POSGs with common payoffs. Experimental results, validating BaGA, are presented for

three domains of various size. In Chapters 4 and 5, two extensions to the basic algorithm

that decrease computational costs are introduced: clustering together of similar histories

and the addition of communication acts.
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The basic algorithm and its two extensions are brought together in Chapter 6 to show how

a relatively abstract notion of control, game theory, can be used to develop real-time robot

controllers. In this chapter, a series of large, realistic robot tag problems are described

and implemented in a high-fidelity simulator and on a physical robot team. BaGA is able

to successfully control the robots in real time and shows performance improvements over

common heuristics used for robot control. Chapter 6 closes with a discussion of how the

BaGA algorithm meets the requirements of a software framework for robust, real-time

multi-robot control.

While POSGs themselves are not a novel contribution of this thesis, the term POSG is still

relatively unknown in the fields of multi-agent and multi-robot control (with the excep-

tions being economics and game theory). Over the past ten years, many different decision-

theoretic frameworks have been proposed for controlling decentralized agents in stochastic

environments. However, analysis of the parameters and constraints of these frameworks

reveals that they are actually equivalent to various sub-classes of POSGs. In Chapter 7,

this pantheon of frameworks and their relationship to POSGs with common payoffs is dis-

cussed, as are approximation algorithms for each of the framework and how they relate

to BaGA. Chapter 7 also includes a discussion of several alternatives to decision-theoretic

decentralized decision making: joint intentions, behaviour-based approaches and market-

based approaches. The ways in which robots take their teammates into account during

decision making in these frameworks are analyzed and relationships between these models

and POSGs identified. Finally, in Chapter 8, some concluding remarks are made.





Chapter 2

Game Theory and Bayesian Games

This chapter provides a broad overview of key representations and solution techniques

in non-cooperative game theory in order to provide the reader with enough game-theory

background to understand BaGA, the POSG approximation algorithm presented in this

dissertation. It may be safely skipped by those familiar with game theory. Readers familiar

with basic game theory, but not with Bayesian games can find that information in Section

2.2.1.

Non-cooperative game theory is the study of strategic decision making: how self-interested

agents choose actions in the presence of other agents who are also choosing actions. In a

game with common payoffs, each agent has the same reward function and, despite selecting

actions in a self-interested fashion, can still act cooperatively with others. Because this

thesis deals with robot teams, this chapter will focus on games with common payoffs and,

as such, is not intended to be an exhaustive overview of the entire field. There are many

texts that provide a good introduction to game theory, including Owen (1968), Basar &

Olsder (1982) and Fudenberg & Tirole (1991).

Information plays an integral role in choosing actions and this results in two different

classes of games: games of imperfect information and games of incomplete information.

Games of imperfect information are games in which all the aspects of the game are known

to every player. While a player might not know what specific actions other players will

take, it does have access to all the information upon which those decisions will be made.

Extensive-form and normal-form games fall into this category as do POSGs. Games of

incomplete information are games in which players do not have access to information cru-

cial to the decision-making process of other players. This includes situations in which the

number of players in the game, the reward functions of certain players or even the game

43
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itself is unknown to at least one player. A combination of game theory and decision theory

leads to a solution technique for these problems known as Bayesian games.

Because Bayesian games form the basic building blocks of the BaGA algorithm, it is im-

portant to understand how they work. First, however, an overview of games of imperfect

information and their solution techniques will be presented. This is done to provide the

necessary foundation for understanding the more complex Bayesian game.

2.1 Games of Imperfect Information

This section describes the most common types of games: extensive and normal-form games.

Extensive-form games and POSGs are actually quite similar; the major difference between

these two frameworks is that while POSGs include the notion of world state in their defi-

nitions, extensive-form games do not. Because of this similarity, many of the issues about

solving POSGs that were addressed in Chapter 1 also come up in the simpler extensive-form

model. The sequence form, presented in Section 2.1.5, is a more compact representation of

a multi-stage game that was developed to alleviate some of the difficulties of solving large

extensive-form games (Koller et al., 1996; von Stengel, 1996). This technique will also be

used in Section 3.1 to construct an algorithm for finding approximate solutions to an entire

POSG at once. While this algorithm is not as efficient as the BaGA algorithm, it will be

useful for evaluating the performance of BaGA.

This section ends with a discussion of correlated equilibria and sub-game perfect equilibria.

These concepts are described and their relevance to common-payoff games and this thesis

discussed.

2.1.1 The Extensive Form

Classic board and card games follow a distinct pattern. Players take turns selecting a move

from a range of possibilities until the game is over and one player is declared the winner.

In some games, chance moves can occur due to the roll of a die or the shuffling of a deck

of cards. In board games, the entire state of the game is usually visible to all players,

while in card games much information is hidden. All of these games, with their different

variations in chance moves and visibility, can be intuitively represented with a tree structure

called the extensive form. The root of the tree indicates the starting condition of the game

and each leaf represents a terminal condition (with an associated payoff). Internal nodes
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are separated into chance nodes and player nodes, and represent decision points for the

associated players. Vertices between nodes are moves amongst which a player (or chance)

may decide. A vertex associated with a chance node generally has a probability assigned

to it that indicates the probability that the associated move will occur. These chance nodes

can also be thought of as nodes associated with the player Nature.

The actual play of the game is represented by a single path through the tree that reflects all

of the actions taken by the players and any outcomes of the chance elements. The outcome

of the game is given by the payoff associated with the terminal node reached.

If a player cannot distinguish between two or more nodes in the tree, those nodes are joined

together into an information set and the player must make the same decision for all of the

nodes in that set. For example, if it is a player’s turn in Bridge, then all of the possible

hands that are consistent with the cards she was dealt are represented by a single node in

the tree. Because she cannot view the cards of the other players, she cannot distinguish

between any of these hands and so she must make the same decision for all of them.

Figure 2.1 (a) shows the extensive-form representation for a very simple card game that

captures all of these ideas. There are two players, each with a single turn. A card is drawn

from a standard deck of cards at random and the first player makes a guess at its colour.

After hearing Player 1’s action (her guess), Player 2 then guesses the colour of the card.

If both players correctly guess the same colour then they both get a payoff of 1. If only

one is correct, then she or he gets a payoff of 3 and the other a payoff of 0, and if they

both guess the same colour incorrectly then they both get a payoff of -1. This game is not

a common-payoff game but rather a general-sum game because the players have different

reward functions and those rewards do not add up to a constant sum (what would be a

zero-sum game).

In this game, Player 1 has two nodes in the tree, one in which a red card is drawn and one

in which a black card is drawn, but only one information set because she does not actually

know which card was drawn. Player 2 has four nodes in the tree, one for each combination

of Player 1’s guess and the colour of the card. However, as Player 2 only knows what

Player 1’s action was, these nodes must be grouped into two information sets: one for each

of Player 1’s actions.

If this game were to be extended into a larger game, perhaps with players getting a chance

to amend their guesses after hearing the other player’s guess, then the tree would simply

increase in size. Each player would have two decision-making points in the game: she

would make a guess in the first round and then a second guess in the second round after
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(a) Extensive-form representation.
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RR RB BR BB

Player 1 R (0,0) (0,0) (1.5,1.5) (1.5,1.5)

B (1.5,1.5) (0,0) (1.5,1.5) (0,0)

(b) Normal-form representation.

Figure 2.1: Example of the extensive-form (a) and normal -form (b) games for a very

simple 2-player problem. In the game tree the root node N represents the drawing of a card

from the deck at random by the Nature or chance player. Player 1 then guesses whether

or not the card is red (R) or black (B). She has one information set indicated by the two

nodes within the dashed box. Player 2, after hearing Player 1’s guess, then makes his own

guess. He has two information sets, one for each guess of Player 1. His two information

sets consist of his shaded and unshaded nodes respectively.The payoffs to the two players

are shown at the terminal nodes with the payoff to Player 1 given first. The normal form

game is represented as a matrix M of payoffs to each player. For example, the strategy

pair (R,BR) has the outcome (3,0) if Nature selects a red card, but (0,3) if a black card is

chosen. The expected value of this strategy pair is therefore (1.5,1.5) as the card can be red

or black with equal probability.
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hearing the other player’s selection. The specific guesses, or actions, made by a player are

known as the player’s strategy. A strategy is a plan that tells a player what action it will

select for each information set in the tree. In extensive-form games there are two types of

strategies: a pure strategy and a behaviour strategy. A pure strategy is a strategy in which

only one action is played deterministically at each information set. For example, if Player

1 decides to always guess red then she is playing a pure strategy. A behaviour strategy

is used to described randomized strategies. In these strategies a probability distribution

over the action set of each player is defined for each information set. If an information set

is reached during game play, then a player will randomly select one of its actions using

the given distribution. For example, Player 1 could have a behaviour strategy for her only

information set that assigns a probability distribution of {0.5,0.5} to the guesses of red

and black respectively. While she will only play one of these two actions during an actual

instance of the game, if the game were to be repeated multiple times then, on average, she

would guess red and black roughly an equal number of times.

The criteria for decision making has not yet been addressed and so a discussion of what the

optimal strategy for each player would be in such a game is left until later.

2.1.2 The Normal Form

In an extensive-form representation of a game, each player is thought of as not making a

decision until it reaches a specific information set during the course of play. However, for

many games a player does not have to wait until that point to make a decision. For example,

in the card game in Figure 2.1, Player 2 does not need to wait until Player 1 has selected a

move to choose his own move. Instead, he can decide ahead of time on a plan for how he

will react to Player 1. This plan will be conditional as it will tell the player which action

he will select in response to each possible action of Player 1. For example, his plan might

be to guess red if Player 1 guesses black and black if Player 1 guesses red. Player 1 can

also make such a plan before the game begins. As in extensive-form games, these plans

are called strategies and each strategy assigns a move to each information set that can be

encountered by a player during the entire course of the game.

In this simple card game, Player 1 has two pure strategies: play red or play black (R or B).

She has only two possible strategies because she has only one information set at which to

make a decision and only two possible action choices. Player 2, however, has two infor-

mation sets, each of which has two possible actions (R or B), yielding four possible pure

strategies for the game. If the first element represents what he will do if Player 1 selects
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R and the second if Player 1 selects B, then these four strategies are: RR,RB,BR and BB.

For example, the strategy in which Player 2 always makes the opposite guess to Player 1 is

given by BR.

The normal-form representation of a game is a tabulation of the expected payoffs to each

player for each possible combination of pure strategies. The payoff for a pair of strategies is

determined by the expected value of the terminal node(s) reached by following the path(s)

indicated by the strategies through the game tree. For example, as shown in Figure 2.1, the

strategy pair (R, BR) has two possible paths through the tree: one in which the card selected

is red, Player 1 guesses red and Player 2 guesses black leading to a payoff of (3,0) and a

second path in which the card selected is black, Player 1 chooses red and Player 2 chooses

black leading to a payoff of (0,3). As each path occurs with equal probability of 0.5, the

overall payoff to the players is (1.5,1.5). The two players make the same action selections

in each path because Player 1’s strategy dictates that only one action, R, will be played and

Player 2’s conditional plan also yields the same action both times because Player 2’s choice

is conditioned only on Player 1’s choice.

As in extensive-form games, in normal-form games a pure strategy is a strategy in which

only one action is selected at each information set. In this case, Player 2 has four pure

strategies while Player 1 has two pure strategies. Randomization over pure strategies, how-

ever, results in mixed strategies rather than behaviour strategies. A mixed strategy consists

of a single probability distribution over all of the possible pure strategies for the game.

Before game play starts, a player randomly selects one of her pure strategies according to

this probability distribution. During game play, she then follows that pure strategy with

no further randomization. For example, a mixed strategy for Player 2 might be {0.35, 0.2,

0.15, 0.3} which means he will play RR 35% of the time, RB 20% of the time, etc.

As opposed to behavioural strategies, which only involve independent randomizations,

mixed strategies permit correlations across information sets. For this reason, a behaviour

strategy can be achieved by a mixed strategy (by more than one, in some cases) but not ev-

ery mixed strategy can be achieved by a behaviour strategy. In games of perfect recall (i.e.,

no player forgets an action or observation made in a previous round), mixed and behaviour

strategies are interchangeable as any probability distribution over outcomes which can be

achieved by one can be achieved by the other.
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2.1.3 Formal Definitions

A general-sum n-player normal-form game is defined as a tuple (I, A,R) where I is a set

of players 1 through n, A = {A1, . . . , An} is a set of action choices for each player and

R = {R1, . . . , Rn} is a set of payoff functions. The payoff function Ri(a1, . . . , an) gives

the payoff to player i for each combination of actions ai, . . . , an taken by all players. A

2-player normal-form game is generally represented as a set of matrices {M1,M2}. Each

element ri
jk of matrixMi corresponds to the payoff to player iwhen Player 1 selects strategy

aj ∈ A1 and Player 2 strategy ak ∈ A2. That is, each row of the matrix represents the

payoffs for a strategy for Player 1 and each column the payoffs for a strategy for Player 2.

A strategy is a function that assigns an action to each information set of a player. There

are three types of strategies: pure, behaviour and mixed. A policy in a normal-form game

for player i, πi, is defined to be a probability distribution over its set of strategies. If the

game involves only one instance of action selection per player (a single-stage game), then

this set of strategies is the set of actions Ai. A pure strategy is represented by a policy

πi in which only one element is non-zero while a mixed strategy is represented by any

probability distribution. Under a mixed strategy, the probability of playing a specific action

aj is given by πi(aj).

The expected payoff to player i under policy πi, assuming that the other players adopt

policies π1, . . . , πi−1, πi+1, . . . , πn, is given by the expected value of Ri when weighted by

the probabilities of each action combination given by π = {π1, . . . , πn}:

Ri(π) =
∑

a∈A

(

n
∏

j=1

πj(aj)
)

Ri(a1, . . . , an) (2.1)

where aj is the individual action of player j in the joint action a.

A general-sum n-player game with multiple action selections for each player is defined

similarly to a single-stage normal-form game, but it also includes information about the

number of steps in the game, who makes decisions at which points, and the action set

available to each player at each of their decision points. In a mixed strategy for such a

game, the probability of playing the specific sequence of actions sj (i.e., a specific strategy)

is given by πi(sj). The reward for a set of strategies, Ri(s), is simply the sum of rewards

over the sequence of action choices. The expected payoff to player i, given a sequence

action choices, can therefore be defined by replacing the action aj with the strategy sj in

Equation 2.1.
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A behaviour strategy for an extensive-form game, as stated earlier, is a probability distribu-

tion over the action set for each possible information set. That is, it is a set of probability

distributions πi = {σ1, . . . , σk} where σk defines a probability distribution over the possi-

ble actions at information set k . Similarly to a normal-form game, for a pure strategy each

of these probability distributions will have only one non-zero element.

2.1.4 Solution Techniques

While the definitions of a strategy and policy for extensive- and normal-form games have

been given, what is meant by a solution to the game has not yet been defined. A solution to

a game is a set of policies, π, which dictate how each player should play the game in order

to optimize some criterion.

First, the notion of a best-response policy must be defined. A best-response policy π∗
i is the

policy for player i that maximizes its expected reward given a set of known policies π−i for

all other players:1

π∗
i = arg max

πi

Ri(πi, π−i).

The benefit of playing mixed strategies now starts to make sense: if any other player knows

exactly what strategy player i will select, then she can guarantee playing her best-response

to that specific strategy. If player i instead plays according to a mixed strategy, the other

players can only select policies that are best responses in expectation. That is, player i

can now hide its specific strategy selection from the other players in order to achieve a

higher payoff for itself (randomization also has other benefits in a general-sum game). A

basic requirement for a stable solution to a game is that the set of policies π be a set of

best-response strategies.

There are various solution concepts for games, the most well known of which is the Nash

equilibrium (Nash, 1950). Every normal-form game has at least one set of best-response

policies π∗ such that no player i can improve its expected payoff by unilaterally changing

its policy π∗
i . That is:

Ri(π
∗
i , π

∗
−i) ≥ Ri(πi, π

∗
−i) ∀πi, i ∈ I.

1The subscript −i refers to all players other than i. For example, π−i = π1, . . . , πi−1, πi+1, . . . , πn.
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These equilibria points are called Nash equilibria. While some games can have Nash equi-

libria in pure strategies, every game of this form is guaranteed to have at least one mixed-

strategy Nash equilibria (Nash, 1950). A game may have multiple Nash equilibria and

selecting an appropriate one to play can become part of the decision-making process for

certain games. Unfortunately, it is very difficult to find Nash equilibria for general-sum n-

player games (see McKelvey & McLennan (1996) for an overview of solution techniques

including approximation techniques). Games with common payoffs, however, have nice

properties that make them easier to solve.

First, in games with common payoffs, there is no benefit to hiding one’s strategy from

teammates or for randomizing action choices and so the Nash equilibrium solutions can

be found in pure strategies. Furthermore, not only can a Nash equilibrium be found, but

the set of Pareto-optimal Nash equilibria can also be found. In general, a Pareto-optimal

Nash equilibrium point is one in which it is not possible for one player to be better off

without harming the performance of any other players.2 For common-payoff games, in the

Pareto-optimal Nash equilibrium each player is receiving its highest possible payoff out of

all possible Nash equilibria of the game. If it were not the case, and there is another equilib-

rium in which one player could receive a higher payoff, then there must be an equilibrium

in which all players receive a higher payoff because they have the same reward function.

Because all players receive this higher payoff, no players are harmed by moving to the new

equilibrium point. But, by definition, the original Nash equilibrium could not have been

Pareto-optimal. Therefore, the set of Pareto-optimal Nash equilibria for common-payoff

games correspond to the set of Nash equilibria with highest possible payoff to each player.

Furthermore, these Pareto-optimal Nash equilibria can be defined to be the action set(s) that

correspond to the maximum element(s) in R.3 If multiple Pareto-optimal Nash equilibria

exist, then players will require some form of coordination strategy (e.g., Boutilier (1996);

von Stengel & Koller (1997); Wang & Sandholm (2002)) to ensure that they select the same

equilibrium. Without this coordination, players might select their actions from different

equilibrium points and the resulting play is generally sub-optimal (i.e., not an equilibrium

point itself).

Solutions to extensive-form games are much harder to find. If each information set col-

2Not every Nash equilibrium is Pareto-optimal. Consider a case with two Nash equilibria with payoffs

1.0 and 2.0 to all players, respectively. While considering the first Nash equilibrium, Player 1 cannot receive

more by unilaterally changing its policy; however, she could do better if everyone were to switch to the second

equilibrium point, making this second one Pareto-optimal for the problem.
3For a fully observable, multi-step common payoff game, these Pareto-optimal Nash equilibria correspond

to the optimal solution that would be found for the MDP formulation of the problem in joint-action space.
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lapses to a single node in the tree then a solution can be found through backward induction,

starting at the terminal nodes of the tree and working upward (Fudenberg & Tirole, 1991).

Backward induction fails if information sets contain multiple nodes as the same action

must be selected for each node in the set. Instead, a generalization of backward induction,

sub-game perfection, can be used to find policies (Fudenberg & Tirole, 1991).

Two alternatives exist for finding solutions to extensive-form games. The first is to convert

the game into its normal-form equivalent and to then find optimal policies. In general, the

resulting policies will be mixed strategies rather than behaviour or pure strategies; however,

in common-payoff games, the solutions will correspond to pure strategies. The problem

with this method is that the number of possible pure strategies that must be represented is

exponential in the size of the game tree and, as the size of the game tree increases, it rapidly

becomes computationally infeasible to solve the corresponding normal-form game. This

exponential scaling affects not just general-sum games but also common-payoff games;

while it is easier to solve the common-payoff case, conversion to normal form still requires

an iteration over every combination of possible pure strategies.4

For example, consider the game in Figure 2.2. In this common-payoff game each player

has two turns in which to select between the actionsA andB. In the first round, each player

selects an action simultaneously, then in the second round they are informed of the other

player’s previous selection and, using that information, once again select an action simul-

taneously. The players both receive a payoff of 1 for each round in which they select the

same action and a payoff of −1 for each round in which they do not. Each player has five

unique information sets: an initial information set in which she has no information and then

four information sets, each one corresponding to a combination of her first move and the

other player’s first move, to represent the second round. For each of these five information

sets, the player has two action choices and therefore 25 different possible pure strategies.

The normal-form matrix representing this game would be 32 × 32. If the game were ex-

panded to include a third round then each player would have an additional 16 information

sets leading to a total of 221 pure strategies each.

In general, if each player has the same action set with size |A| and has k possible informa-

tion sets during the game, then each player has |A|k different possible pure strategies and

determining the Pareto-optimal Nash equilibrium will require representing |A|kn tabulated

4This statement does not contradict Chu & Halpern’s (2001) NP-completeness proof for finding the op-

timal solution to a common-payoff extensive-form game . While straightforward, conversion to the normal

form is not the most efficient method for solving extensive form games. In Section 2.1.5, the sequence form

is presented and an algorithm for finding solutions to common-payoff problems using this more efficient

representation discussed. This latter algorithm is more consistent with Chu & Halpern’s result.
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Figure 2.2: A more complicated game tree showing a game with two turns per player. In

this common-payoff game, the two players select between two actions A and B simultane-

ously, are informed of each other’s action choice and then select between the two actions

again simultaneously. Each player has five unique information sets. Nodes within a dashed

box indicate one information set. The players receive a reward of 1 for each round in

which they select the same action, and a reward of -1 for each round in which they do not.

The highlighted path through the tree indicates the path realized by the sequence ABA for

Player 1.
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payoffs. While k may be low for games with only one decision point, as the number of

times a player makes a decision grows, so does k. For example, if the players each select

an action at timestep t and know the actions taken by all players at times 1, . . . , t− 1 then

by timestep t each player will have:

k =
t

∑

j=1

(

|A|n
)j−1

,

which makes the number of possible pure strategies per player for this type of game doubly

exponential in the number of players.

The alternative is to convert the game into its corresponding sequence form and then find a

solution to the new game.

2.1.5 The Sequence Form

The sequence form is designed to find equilibrium policies in extensive-form games that

are too large to solve by conversion to normal form (Koller et al., 1996; von Stengel, 1996).

Specifically, for 2-player games, once the game has been converted into its sequence form,

it can be solved as a linear complementarity problem. For n-player common-payoff games

in sequence form, an alternating-maximization algorithm can be used to find locally optimal

solutions.

The sequence form of a game is similar to the normal form of a game except that, instead

of using pure strategies as the action set of each player, sequences are used. A sequence of

actions σi
j is the series of choices made by player i at each information set it encounters as

it traverses a single path j through the game tree. Naturally, this sequence can only occur,

or be realized, if all other players and Nature also make selections that lie on the path j.

For each player there are at most as many sequences as there are nodes in the tree, and so

the sequence form is linear in the size of the game tree (instead of exponential).

A sequence of moves is highlighted in Figure 2.2. It corresponds to Player 1’s sequence

of actions: ABA (play action A and then play action B if Player 2 plays action A in the

first round). This specific sequence, however, is only realized if Player 2 has a series of

actions that starts with action A and then makes an action choice conditioned on Player

1’s first action of A; otherwise, it cannot occur. Player 2 actually has two sequences that

permit Player 1’s sequences to be realized: AAA and ABA, both of which are part of the

highlighted path.
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In general, for the sequence form, if a player has k information sets, then she has k|A| + 1

sequences (the additional sequence is a empty sequence, ∅, used for the purpose of building

constraints and the set of sequences includes all sub-sequences). For the example game,

the total number of sequences is exponential in the number of players, because k is expo-

nential in the number of players. Unlike the total number of pure strategies, however, it

is not doubly exponential. For the game in Figure 2.2, the sequence form has 11 possible

sequences per player: ∅, A, B, AAA, AAB , ABA, ABB , BAA, BAB , BBA and BBB . In

contrast, there are 32 different pure strategies. If the game is extended to a third round, then

the number of sequences is 41 compared to the 221 pure strategies of the normal form.

If σu represents a sequence of actions that lead up to information set u, then σua is the

sequence of actions that includes the action choice of a at information set u. A realization

plan x corresponds to a behaviour strategy for a player in which action a is played at

information set u with probability x(σua)/x(σu) (Koller et al., 1996). The goal of solving

a game in sequence form is to find a realization plan x for Player 1 and a realization plan y

for Player 2 that correspond to a Nash equilibrium.

An equilibrium is formed by the realization plans x and y if each of the plans is a best

response to the other. In order to solve for the optimal x and y simultaneously, the lin-

ear complementarity problem that simultaneously maximizes the payoffs to both players

subject to constraints on x and y must be created and solved, for example, using Lemke’s

algorithm. The payoffs to Players 1 and 2 are given by the matrices B and C respectively.

Each element of B, bjk, is the expected payoff to Player 1 if she takes the path given by

her sequence j while Player 2 takes the path given by his sequence k. There are constraints

Ex = e and Fy = f that are designed to ensure that an action is selected for each infor-

mation set and that the sum of the probabilities of reaching the children of an information

set is equal to the probability of reaching that information set. Under the realization plans

x and y, the expected payoff to Player 1 is xTBy and to Player 2 is xTCy. The optimal

solution maximizes the following two equations, subject to the given constraints:

max
x

xT (By) (2.2)

subject to xTET = eT

xT ≥ 0

and:
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max
y

(xTC)y (2.3)

subject to Fy = f

y ≥ 0.

See Koller et al. (1996) and von Stengel (1996) for more details on this algorithm.

Solving the sequence form is non-trivial for arbitrary n-player games; however, a set of lo-

cally optimal best-response strategies for common-payoff games can be found using an

alternating-maximization algorithm. Holding the realization plans, x−i, of all but one

player fixed, linear or dynamic programming can be used to find a best response plan xi for

the remaining player. Optimization is done for each player, in turn, until no player wishes

to change its realization plan (this process will eventually converge for common-payoff

games because the policies are deterministic). The resulting equilibrium point is a local

optimum, but random restarts can be used to further explore the strategy space. During

this optimization process, it can be ensured that players have realization plans equivalent to

pure strategies rather than behaviour strategies by using some rule for breaking ties between

actions that are equivalent in reward.

For a 2-player game this algorithm is equivalent to repeatedly performing the maximiza-

tions given by Equations 2.2 and 2.3 but instead of doing so simultaneously, first y is held

fixed while xT (By) is maximized and then x is held fixed while maximize (xTB)y is max-

imized.

2.1.6 Alternate Solution Concepts

In general-sum games, correlated equilibria (Aumann, 1974) are gaining popularity over

Nash equilibria. In a Nash equilibrium, each player defines an independent probability dis-

tribution over what actions to play. In correlated equilibria, however, players can condition

their action selection on an external signal in order to achieve higher payoffs. The bene-

fits of a correlated equilibria can be easily seen in the classic Battle of the Sexes problem.

In this 2-player game, each player selects from actions A and B. Player 1 has a stronger

preference for action A and Player 2 for action B, but both prefer to play the same action

as each other leading to the payoff function in Figure 2.3. This game has two pure strategy

Nash equilibria: (π1 = {1, 0}, π2 = {1, 0}) and (π1 = {0, 1}, π2 = {0, 1}). These equilib-
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Player 2

A B

Player 1 A (2,1) (0,0)

B (0,0) (1,2)

Figure 2.3: Example of a general-sum game with a payoff structure equivalent to that of

Battle of the Sexes. Each player has a preference for a different action choice but overall

prefers to choose the same action as its opponent.

ria lead to unequal payments to the two players: each player gets 2 or 1 depending on which

equilibrium is selected. A mixed Nash equilibrium solution has each player independently

define a probability distribution over their individual action choices in proportion to how

much he prefers one action to the other. The mixed strategy equilibrium of π1 = {2/3, 1/3}

and π2 = {1/3, 2/3} generates an expected reward of 2/3 to each player. Even though this

equilibrium generates a lower outcome to both players, it could be considered more fair be-

cause it does not favour one player over the other. Additionally, if each player opts to play

according to the pure strategy Nash equilibrium that favours her, then the resulting actions

do not form a Nash equilibrium at all (i.e., AB or BA) and each player would receive only

0.

During game play, even if players select their actions according to their mixed strategies,

due to the independence of the probability distributions, the sub-optimal joint actions of

AB or BA can occur. If, instead, action choices are allowed to be conditioned on some-

thing like a coin-flip (the outcome of which is observed by each player), then players can

define equilibrium policies that only result in situations in which AA or BB are played.

For example, if the coin is Heads, both players play A, otherwise B. In this correlated

equilibrium, their expected payoff is now 3/2 which is clearly better than that given by the

mixed Nash equilibrium solution (and is equivalent to the players alternating between the

two pure strategy Nash equilibria). Players will follow the policies induced by the correlat-

ing device because they do not have any incentive to deviate: if Player 2 knows that Player

1 will play A if the coin is Heads, his best response is to also play A.

Correlated equilibria are equivalent to Nash equilibria in a larger version of the game that

includes information about the correlating device. So the Nash equilibria of the original

game will also appear in the set of correlating equilibria. It is possible to define a universal

correlating device, rather than rely on an external device, in which a trusted third party

gives advice on what actions to play. As with a randomized correlating device, players will

have no incentive to deviate from the given advice. The correlated equilibrium in which
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the payoff to each player is maximized can be found in polynomial time by constructing a

linear program with the appropriate constraints (e.g., that the sum of each player’s payoff is

optimized). However, constructing constraints that express the incentives that each player

has to play according to the correlated equilibrium still requires enumeration over all the

possible joint actions or joint strategies.

In common-payoff games, the algorithm used to find Nash equilibria and to resolve con-

flicts between multiple possible Nash equilibria can be thought of as a correlating device.

Additionally, as both Nash and correlated equilibria will exist in pure strategies, there would

be no gain in reward to be achieved by switching from one solution concept to the other

(i.e., as each probability distribution is a point distribution, no farther correlations are nec-

essary).5 Therefore, it is not necessary to use correlated equilibria as a solution concept for

these types of problems unless it simplifies the search for a Pareto-optimal Nash equilib-

rium. For this reason, this thesis will focus solely on Nash equilibria.

2.1.7 Sub-Game Perfect Equilibria

For games with multiple turns, the issue of sub-game perfect equilibria must be addressed.

For extensive-form games solved using backward induction or sub-game perfection then

this issue is moot; however, if the game is solved by conversion to normal or sequence form

then it is important. Basically, while a strategy for a player defines what it would do for

every information set in the game, it is possible that decisions made early during game play

will render parts of the game tree (i.e., sub-games) unreachable.6 Because any decisions

made in these unreachable portions will have no effect on the expected value of the game

(if calculated using the normal or sequence form), their effect on Nash equilibria strategies

is unusual; there can now be multiple Nash equilibria that make the same decisions (and

therefore have the same expected value) for all the reachable parts of the game tree but

make different action choices in the unreachable portions. Which Nash equilibrium is more

desirable? For general-sum games, the notion of credible threats makes it important to play

sub-game perfect equilibria. However, for a common-payoff game, if one truly believes that

5If the policies of the agents are stochastic, then correlated equilibria may have higher payoffs. See

Bernstein et al. (2005) for an example of using finite-memory stochastic controllers that include a correlating

device to approximate the solutions to infinite-horizon common payoff POSGs.
6By unreachable, it is meant only those parts of the game tree that are impossible given any common

information rather than those information sets off of the current path of play. For example, in Figure 2.2,

if Player 1 policy selects action A in the first round then, for the second round, it is known that any of the

sub-games that would be reached by Player 1 selecting action B in the first round are now unreachable.
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those portions of the game tree will never be visited (because they represent sub-optimal

play), then it is perhaps not important. But if a mistake could occur, either during action

selection or action execution, then the strategies taken by players in these now reachable

parts of the game tree are important.

A sub-game perfect equilibrium (sometimes referred to as a perfect equilibrium) defines

strategies for each player that are in equilibrium even for those parts of the game tree that

can never be reached due to earlier decisions. That is, while any strategy defines what a

player would do for each information set, only a sub-game perfect equilibria is guaranteed

to be made up of strategies that are best responses to each other at every point in the tree.

It is an extremely stable solution concept because it ensures that players will recover and

play optimally in the future, even if some mistake is made by a player at an earlier timestep.

Most of the solution methods looked at in this thesis will not, in general, generate sub-game

perfect equilibria. This is because, from the point of view of the normal or sequence form,

a sub-game perfect equilibrium and an equilibrium that defines identical action choices

for all reachable portions of the tree (but different actions for unreachable sub-games) will

generate the same expected value and so the more ‘optimal’ of the two can not be identified.

Therefore, if the domain is such that noisy actions can occur, this will be reflected in the

problem dynamics.

2.2 Games of Incomplete Information

This section describes an example of an incomplete information game: the Bayesian game.

In games of incomplete information, players do not have access to information crucial

to the decision-making process of other players. While POSGs are games of imperfect

information, if one approximates a POSG by interleaving planning and execution, then

each timestep must be represented as a Bayesian game in order to guarantee that the agents

remain coordinated. This observation is the cornerstone of the BaGA algorithm which is

presented in Section 3.2. Because understanding Bayesian games is crucial to the rest of the

thesis, this section includes a high-level overview of this kind of game, a formal definition

and a simple 2-robot example.
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2.2.1 Bayesian Games

Bayesian games model single state problems in which each player has private information

about something relevant to the decision-making process (Harsanyi, 1968). While this

private information can range from knowledge about the number of players in the game to

the action set of the other players, in general it can be represented as uncertainty about the

utility (or payoffs) of the game. In other words, utility depends on this private information.7

The games shown in Figures 2.1(a) and 2.2 do not have this type of private information;

while the players may not know the actions taken by the other player, they do have access

to all information relevant to the decision-making process. Each player knows the payoff

functions for all players, the actions available to all players and the dynamics of the game.

Using this information, each one can solve the game in parallel to find a policy for all

players and, provided that there is a way to break ties between different Nash equilibria,

they are guaranteed to find the same policy π.

An example of a game in which players do have private information would be an art auction

in which each player has received an appraisal for a painting from a different appraiser. The

players must now decide upon a bid using only their own evaluation of the painting’s worth

and not those of other players. If Player 1 makes assumptions about the values held by

other players, perhaps naively assuming they are the same as her own, then she will create

and solve a game G1 to find a set of policies π1. Player 2, however, following the same

reasoning but having a different evaluation will create and solve a different game G2 to find

π2. The players are no longer playing the same game and so will no longer play according

to an equilibrium solution. This situation leads to sub-optimal performance on the part of

one or both players. The Bayesian game framework, however, is able to properly represent

the information known by each player and guarantee that each player is once again playing

the same game. Generally, it does so by making the assumption that a common prior over

all possible instantiations of joint private information is available to all players.

Games with incomplete information such as this auction might lead one to think about

solutions in terms of infinite hierarchies of beliefs: Player 1 has beliefs about the evaluation

of the painting, she has beliefs about the other player’s evaluation of the painting, she has

beliefs about the other player’s beliefs about herself and so on. Using this infinite belief

hierarchy, one could imagine each player being able to construct the same, albeit large,

7In general, utility will be used in this thesis to refer to the payoff or reward function for a problem

modelled as a Bayesian game. This choice was made to keep the discussion in line with the game-theory

literature.
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game and find a solution. Luckily, this infinite belief hierarchy can be replaced with a

probability distribution over the space of all possible joint sets of private information.

While each player has received a different evaluation of the painting, those evaluations are

not completely independent as they are based upon the same painting. This allows the

assumption to be made that, based on some publicly known facts (e.g., sums for which

paintings by the same artist were previously auctioned), the players can determine a prob-

ability distribution over the set of all possible combinations of painting evaluations for

Player 1 and Player 2. For example, the combination of evaluations {$100, $90} has a

higher probability of occurring than {$100, $5} if previous paintings were valued in the

range of $95. Furthermore the assumption is made that each player calculates the same

probability distribution over the joint set of evaluations (this assumption will be explained

in more detail later). Each player can now create a larger game in which pure strategies

define an action choice for each possible evaluation she can hold for the painting. To keep

things simple, assume that players can either bid an amount equal to the value they hold for

the painting (B) or not bid (N), and that they either have a high evaluation or low evaluation

for the painting. An example pure strategy for Player 1 would be BN, in which she bids if

she has a high evaluation for the painting and otherwise does not bid. The reward received

for this strategy depends not only on the payoffs of the game but also on the distribution

over possible evaluations.

In the game-theory literature, the private information held by a player is called its type, and

it encapsulates all non-commonly-known information to which the player has access. The

set of possible types for a player can be infinite, but this thesis will be limited to games with

finite sets. Each player knows its own type with certainty but not those of other players.

Beliefs about the types of others are given by a commonly held probability distribution

over joint types. So long as the type space meets certain consistency requirements, infinite

recursion about beliefs about the beliefs of others can be modelled as a prior over joint

types rather than explicitly as a hierarchy. That means that, for each player, the subjective

probability distribution over other players that would arise from reasoning about an infinite

hierarchy of beliefs is the same as the conditional probability distribution generated by the

common prior over joint types (Harsanyi, 1968).

The assumption of a common probability distribution over joint types is actually not a re-

quirement for Bayesian games (see Sakovics (2001) for an example of work that does not

make this assumption); however, it makes the games much easier to solve. Furthermore,

for the common-payoff games for which this framework will be used, it is not an unreason-

able assumption to make as all players have access to the same problem dynamics and are
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functioning as a team.

If I = {1, . . . , n} is the set of players, θi is a specific type of player i and Θi is the set

of all possible types for player i such that θi ∈ Θi, then a joint type θ is θ1, . . . , θn and

the joint-type space is Θ = Θ1 × · · · × Θn.8 θ−i is the type of all players but i, and Θ−i

is defined similarly. A probability distribution, P ∈ ∆(Θ), over the joint-type space Θ is

used to assign types to players, and this probability distribution is assumed to be commonly

known. From this probability distribution, the marginal distribution over each player’s type,

Pi ∈ ∆(Θi) can be recovered as can the conditional probability Pi(θ−i|θi).

The utility (or payoff) u of action ai to a player is dependent on the actions selected by

all other players as well as on their joint type, and is defined as ui(ai, a−i, (θi, θ−i)). By

definition, a player’s strategy πi must define an action for every one of its possible types

even though at run-time it will only be assigned one type. This constraint follows because

the solution to the game is a set of best-response policies. In order for player i to know what

its best response is to the other players, it must simultaneously solve for policies πi and π−i.

Therefore, π−i must state what players −i will do for any one of their types because i does

not know their specific types. In turn, players −i are also simultaneously finding policies

π−i and πi. Because they do not know what type player i is, πi must define what i would

do for each of its possible types. As the players are trying to find the same πi and π−i, each

player’s policy must therefore be conditional over her entire possible type space Θi. If a

player’s strategy is given by πi, then the probability distribution over actions it assigns for

its type θi is given by P (ai|θi) = πi(θi).

Formally, a Bayesian game is a tuple (I,Θ, A, P, u) where A = A1 × · · · × An, u =

{u1, . . . , un} and I , Θ and P are as defined above. Given the commonly held prior P (Θ)

over the distribution over players’ types, each player can calculate a Bayesian-Nash equilib-

rium policy. A Bayesian-Nash equilibrium is a set of best response strategies, π, in which

each player maximizes its expected utility conditioned on its probability distribution over

the other players’ types, and in which no player can do better by unilaterally changing its

strategy. In this equilibrium, the policy πi maximizes the expected value:

ui(πi, θi, π−i) =
∑

θ−i∈Θ−i

P (θ−i|θi)ui(πi(θi), π−i(θ−i), (θi, θ−i))

for each θi ∈ Θi, given π−i. Note that the conditional probability P (θ−i|θi) comes from

8In game-theory literature, a joint type is also referred to as a type profile. In this thesis, joint type is used

because it is a more consistent with terms from multi-agent control (e.g., joint action, joint observation).
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the marginals of the prior P (Θ). By using the marginals in this way, each player can

determine, in expectation, the best action to take for each of its types without having to

recurse infinitely on what type the other players are. Used in this way, the prior guarantees

that each player will solve the same game while still being able to come up with conditional

policies.

In general, one finds the set of Bayesian-Nash equilibria in the same way one finds the

set of Nash equilibria for a normal-form game. It follows because the Bayesian game is

represented as a normal-form game with a set of pure strategies that define what action to

take for each possible type. However, like the exponential explosion in the conversion of

an extensive-form game to a normal-form game, as the number of possible types increases,

the number of pure strategies goes up exponentially.

In this thesis, Bayesian games are solved by transforming them into their sequence form. If

player i has a set of types Θi and an action set Ai, then each type θi can be thought of as an

information set. This transformation results in |Ai||Θi| possible sequences for each player.

For common-payoff Bayesian games in which ui = uj ∀i, j, the alternating-maximization

algorithm described in Section 2.1.5 can be applied to find the set of realization plans x that

correspond to a locally optimal set of strategies π.

For common-payoff games, alternating maximization will find a set of locally optimal best-

response policies that correspond to a Bayesian-Nash equilibrium. Multiple restarts must

therefore be used to determine if there are other Bayesian-Nash equilibrium with higher

payoffs to the team. The global optimum of this search problem is equivalent to the set

of Pareto-optimal Bayesian-Nash equilibria. Alternating maximization as applied to this

Bayesian game requires that the expected payoff of any combination of joint sequences

be evaluated. If each agent has |Ai||Θi| sequences, then this algorithm has computational

complexity with an upper bound of O
(

|A∗|
n|Θ∗|

n
)

where A∗ and Θ∗ are the largest action

and type spaces of any player.

2.2.2 Example Bayesian Game

Consider a very simple 2-robot task-allocation problem. In this problem, there are two

different types of tasks: simple and complex. A simple task can be completed by one robot

while a complex task requires both robots. A task is generated with probability p, and with

probability q it will be a simple task and with probability 1 − q a complex task. There are

three possible tasks or world states: no-task, simple-task and complex-task with the prior
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Table 2.1: Reward function for the 2-robot task allocation problem.

State Action Reward

* <do-nothing,do-nothing> 0

no-task <do-nothing,do-task> −f

no-task <do-task,do-nothing> −f

no-task <do-task,do-task> −2f

simple-task <do-nothing,do-task> s− f

simple-task <do-task,do-nothing> s− f

simple-task <do-task,do-task> s− 2f

complex-task <do-nothing,do-task> −f

complex-task <do-task,do-nothing> −f

complex-task <do-task,do-task> c− 2f

Table 2.2: Emission probabilities for task signals.

State No-Signal Simple-Signal Complex-Signal

no-task 1.0 0.0 0.0

simple-task 0.2 0.5 0.3

complex-task 0.2 0.3 0.5

probability of each occurring being 1 − p, pq and p(1 − q), respectively. Each robot must

select between one of two actions: do-nothing and do-task. The reward function is given in

Table 2.1. A robot incurs no costs if it does nothing, but has a fuel cost of f for doing a task.

A simple task has a reward of s while a complex task has a reward of c. It is assumed that

c ≫ 2f > s > f . Finally, the robots do not know the actual task or world state, but they

do each receive an independent (but correlated) observation of that state. There are three

possible signals: no-signal, simple-signal and complex-signal with emission probabilities

as shown in Table 2.2.

In this example, the private information received by each robot is its observation: Θi ={no-

signal, simple-signal, complex-signal}. Using the prior over the three world states and

the emission probabilities of the observations, the set of conditional probabilities such as

Pi(no-signal−i|no-signali) can be calculated, as can the probability distribution over Θ,

which consists of nine possible joint types. These values are shown in Tables 2.3 (a) and

(b), assuming a value of 0.3 for p and 0.5 for q.
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Table 2.3: Common prior over joint types (a), the resulting conditional probabilities (b), and

the utility function (c) for a 2-robot task allocation problem. These values were found using

the emission probabilities given in Table 2.2 and the prior probability over world states with

p = 0.3 and q = 0.5. In (b) each element is interpreted as Pi(row-entry−i|column-entryi).

no-signal2 simple-signal2 complex-signal2

no-signal1 0.328 0.056 0.056

simple-signal1 0.056 0.119 0.105

complex-signal1 0.056 0.105 0.119

(a) Common prior.

no-signali simple-signali complex-signali

no-signal−i 0.745 0.127 0.127

simple-signal−i 0.2 0.425 0.375

complex-signal−i 0.2 0.375 0.425

(b) Conditional probabilities.

Joint Type
Joint Action

<do-nothing,do-task> or <do-task,do-nothing> <do-task,do-task>

(no-signal,no-signal) 0.043s − f 0.043s + 0.043c − 2f

(no-signal,simple-signal) 0.625s − f 0.625s + 0.375c − 2f

(no-signal,complex-signal) 0.375s − f 0.375s + 0.625c − 2f

(simple-signal,no-signal) 0.625s − f 0.625s + 0.375c − 2f

(simple-signal,simple-signal) 0.735s − f 0.735s + 0.265c − 2f

(simple-signal,complex-signal) 0.5s − f 0.5s + 0.5c − 2f

(complex-signal,no-signal) 0.375s − f 0.375s + 0.625c − 2f

(complex-signal,simple-signal) 0.5s − f 0.5s + 0.5c − 2f

(complex-signal,complex-signal) 0.265s − f 0.265s + 0.735c − 2f

(c) Utility function. The utility for performing <do-nothing,do-nothing >is always 0.0.
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In this problem, the utility of taking a set of actions given a set of types is the expected

reward of taking those actions given the belief over world states induced by those types. For

example, if the joint type {simple-signal, complex-signal} leads to a probability distribution

over the three world states of {0.0,0.5,0.5} then the utility of taking actions {do-nothing,

do-task} is 0.5(s − f) + 0.5(−f) = 0.5s − f . This is a common-payoff game and so

u1 = u2 = u with the complete payoff function tabulated in Table 2.3 (c).

The normal-form representation of this game has eight pure strategies per player. In order

to simplify notation,DN andDT represent the actions do-nothing and do-task respectively

and n,s and c represent the observations no-signal, simple-signal and complex-signal. An

example pure strategy is then DNnDNsDTc which corresponds to a strategy of only per-

forming the task if the player hears the complex-signal. As each entry rjk in the normal

form represents the expected reward of taking the pure strategies j and k, the calculation of

each entry involves iterating over the eight possible combinations of observations and the

resulting actions taken by the two players.

The sequence-form representation, however, has seven different sequences per player (six

plus the null sequence ∅ as a placeholder used for the purpose of building constraints).

An example sequence is ∅DNn which means the player will do-nothing if it hears the

observation no-signal. If the payoff matrixB is tabulated for the sequence form, each entry

bjk requires the evaluation of taking sequences j and k: if the two sequences cannot occur

together then the entry has value 0.0, otherwise it is the expected outcome of taking those

actions given the associated signals (given by Table 2.3 (c)), weighted by the probability

of those signals occurring (given by Table 2.3 (a)). The full payoff matrix can be seen in

Table 2.4.

In order to solve for the locally optimal set of realization plans, the alternating-maximization

algorithm is applied to matrix B using a set of random initial plans x and y. If values for

f , s and c of 2.0,3.0 and 10.0 are substituted then, using random-restarts, the best plans are

x = {∅DNn, ∅DTs, ∅DTc} and y = {∅DNn, ∅DTs, ∅DTc} with an expected value of 1.02

to the team (notation has been abused somewhat to only show the sequences with weights

of 1.0). This result corresponds to a policy in which each robot will do the task so long as

it receives the simple-signal or complex-signal.
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Table 2.4: The payoff matrix B for the sequence form of the 2-robot task allocation prob-

lem. Player 1’s sequences are shown as the rows and Player 2’s as columns. Sequences for

the same information set are grouped together. Because it is a common payoff game, the

solution for each player requires that she selects one sequence per group.

∅ ∅DNn ∅DTn ∅DNs ∅DTs ∅DNc ∅DTc

∅ 0.0 0.0 0.0 0.0 0.0 0.0 0.0

∅DNn 0.0 0.0 0.014s− 0.328f 0.0 0.035s− 0.056f 0.0 0.021s− 0.056f

∅DTn 0.0
0.014s −
0.328f

0.014s + 0.014c

− 0.656f

0.035s −
0.056f

0.035s + 0.021c

− 0.112f

0.021s −
0.056f

0.021s + 0.035c

− 0.112f

∅DNs 0.0 0.0 0.035s− 0.056f 0.0 0.087s− 0.119f 0.0 0.053s− 0.105f

∅DTs 0.0
0.035s −
0.056f

0.035s + 0.021c

− 0.112f

0.087s −
0.119f

0.087s + 0.032c

− 0.238f

0.053s −
0.105f

0.053s + 0.053c

− 0.21f

∅DNc 0.0 0.0 0.021s− 0.056f 0.0 0.053s− 0.105f 0.0 0.032s− 0.119f

∅DTc 0.0
0.021s −
0.056f

0.021s + 0.035c

− 0.112f

0.053s −
0.105f

0.053s + 0.053c

− 0.21f

0.032s −
0.119f

0.032s + 0.087c

− 0.238f

2.3 Summary

This chapter has provided a summary of different representations and solution techniques

used in game theory both for games of imperfect information and games of incomplete

information. Because this information is intended to provide the reader with the necessary

background for understanding BaGA, its focus has been on games with common payoffs.

There are two key concepts addressed in this chapter that are of particular importance to

the rest of this dissertation and, therefore, should be understood before continuing. First,

POSGs and extensive-form games are very similar, with the primary difference being that

a POSG includes state in its model parameters while an extensive-form game has no notion

of state. As a result, many of the issues that arise when finding policies for extensive-form

games also occur in POSGs. In Section 2.1.5, the sequence form, an alternative representa-

tion of an extensive-form game, was presented and solution techniques discussed. Unlike

the normal form, the sequence form is linear in the size of the game tree and not expo-

nential. The space and time savings afforded by using the sequence form allows larger

extensive-form games to be solved. In the following chapter, this sequence-form approach

to solving extensive-form games will also be applied to small POSGs in order to find locally

optimal policies.

The second key concept is that of Bayesian games. In Bayesian games, players have private

information that is crucial to the decision-making process of other players. These games

use a common prior to implicitly represent the infinite belief/knowledge hierarchy about
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private information and to find a set of best-response policies for all players. Because

Bayesian games will be used as the building blocks of the BaGA algorithm presented in the

following chapter, Section 2.2.1, which described Bayesian games, was very detailed and

an example Bayesian game is presented and solved in Section 2.2.2.



Chapter 3

Approximate Solutions for POSGs with

Common Payoffs

This chapter presents an algorithm for finding approximate solutions to a POSG with com-

mon payoffs that transforms the original problem into a sequence of smaller Bayesian

games that are computationally tractable (Emery-Montemerlo et al., 2004). So long as

each robot is able to build and solve the same sequence of games, the team can coordinate

on action selection. This Bayesian game approximation algorithm (BaGA) allows one to

handle finite horizon problems of indefinite length by interleaving planning and execution.

Before presenting the BaGA algorithm, it will be shown how the alternating-maximization

algorithm of the previous chapter can be used to find locally optimal solutions to the full

POSG. It is, however, only appropriate for very small problems due to its computational

overhead.

3.1 Alternating-Maximization Approximation

In Section 1.3, a POSG was formally defined as a tuple (I, S,A, Z, T,R,O). Accompany-

ing this definition was a decision-theoretic analysis for finding optimal solutions for POSGs

with common payoffs; however, a POSG can also be analyzed from a game-theoretic view.

While the POSG tuple parameters are a very compact representation, a POSG can be more

intuitively thought of as an extensive-form game.1 In this representation, a game tree is built

1As mentioned in Chapter 2, the major difference between extensive-form games and POSGs is that the

latter includes state in its definition. This state information, however, can be folded into the game tree.

69
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up in which robots sequentially make decisions about what actions to take and a player rep-

resenting Nature is used to generate the different possible observation histories for each

robot.

In this extensive-form representation of a POSG, identification of the different information

sets is very important to properly represent what information is known to each robot at

each of its decision nodes. If a robot has only access to its own observations of the global

state and its own actions (i.e., no communication and no knowledge of the actions taken

by other robots through observation of the reward function etc.), then at timestep t it has

|Ai|
t−1|Zi|

t different possible information sets. Over the entire tree, it has
∑T

t=1 |Ai|
t−1|Zi|

t

information sets, each of which has well defined relationships between itself and the other

sets (such as which information sets are children of other information sets). Finding a

solution to such an extensive-form game is not trivial: converting it to a normal-form game

and then solving the resulting game would require as much computation as the exhaustive

search over all possible joint policies described in Section 1.3. However, as discussed in

Section 2.1.5, one can find a locally optimal solution to a common-payoff extensive-form

game by converting it to the sequence form and applying alternating maximization.

Given the information sets of a POSG described above, each robot has
∑T

t=1 |Ai|
t|Zi|

t or

O
(

(|Ai||Zi|)
T
)

possible sequences. Defining a starting policy (i.e., realization plan xi) for

each robot takes exponential time as it requires a weight, xi(σua), to be assigned to each

possible sequence σua (i.e., O
(

n(|Ai||Zi|)
T
)

). Note that this set of sequences includes all

sub-sequences, and not just those of length T . Once this is done, alternating maximization

requires that every joint sequence of length T be evaluated in order to find the best actions

for robot i to take at the final timestep. Those values are then backed up using dynamic

programming.

The expected value of a joint sequence is the sum of expected rewards for its associated

joint actions at each timestep, multiplied by the probability of the joint sequence itself

occurring (note that this definition does not take into account any future reward if the se-

quence is smaller than length T ). Provided that the set of possible sequences of length t are

constructed incrementally from the set of sequences of length t − 1, then these expected

rewards and probabilities can also be calculated incrementally. Given that it takes O(|S|2)

to calculate these values for each joint sequence of length t, finding the expected value

of all joint sequences of length T has an overall cost of O(
(

|S|2
(

|A∗||Z∗|
)nT )

. During the

second, dynamic-programming, part of the alternating-maximization algorithm, constraints

on information sets are used to evaluate the expected future value of sequences of length

t < T . As a result the computation time required by one iteration of alternating maxi-
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mization has two parts: the first is O
(

|S|2
(

|A∗||Z∗|
)nT )

, which allows the best sequences

of length T to be found, while the second is O
(

(|A∗||Z∗|)
t+1

)

, which backs the values at

timestep t+ 1 up to timestep t.2

Assuming that a bounded number of iterations of policy evaluation is required to find a

fixed-point set of best-response policies, then overall this algorithm isO
(

|S|2
(

|A∗||Z∗|
)nT )

and, therefore, requires time exponential in the horizon and number of robots to find a lo-

cally optimal solution. This procedure is repeated a constant number of times with random

starting policies in order to search the space of locally optimal solutions.

In contrast, the exhaustive search approach to solving POSGs presented in Section 1.3

is O(|S|2|Z∗|
nT |A∗|

n|Z∗|T ) and therefore requires time doubly exponential in the planning

horizon. This exhaustive search, however, is guaranteed to find the globally optimal solu-

tion rather than just a locally optimal one. It is possible to guarantee that the alternating-

maximization approximation also finds the globally optimal solution by restarting it suffi-

ciently many times. However, the resulting algorithm would become doubly exponential in

the planning horizon because all combinations of possible starting policies would need to

be considered.

3.2 Bayesian Game Approximation

In the previous section, locally optimal policies were found by using the sequence form and

applying alternating maximization to the entire POSG at once. This use of the sequence

form results in a large computational savings over exhaustive search; however, it is possible

to define an approximation algorithm for POSGs that requires even less computational time

by interleaving planning and execution.

When the POSG is thought of as a large tree, then an optimal path through the tree is found

by finding the best action to take at the leaves and then backing up those values through the

tree, taking care to obey the constraints of information: robots must make the same decision

at all points in the tree between which they cannot distinguish. Once the values have been

backed up through the tree, the optimal policy can then be found in a forward fashion by

2To find out which sub-sequence is best for each of the information sets at timestep t, the algorithm

must evaluate each of the (|A∗||Z∗|)
t sequences. The value of each sequence is its immediate value plus the

expected value of each possible next sequence. In general, this means looking at the payoff generated by each

of its |A∗||Z∗| child sequences. Bookkeeping, however, can be used to look only at those child sequences that

have positive probability of being played. This approach reduces the calculation of expected future payoff to

O
(

|Z∗|
)

, and reduces the overall complexity of this calculation by a factor of |A∗| to O
(

|A∗|
t|Z∗|

t+1
)

.
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myopically selecting the best action for each information set. This action selection involves

game-theoretic reasoning about the actions taken by the other members of the team.

This approach, however, whether done approximately through alternating maximization or

exactly, requires all actions to be evaluated at the leaves of the tree and their values to be

backed up even if an action choice at an early timestep means that huge parts of the tree

will not be visited. That is, even for finding locally optimal solutions, a lot of computation

time is spent evaluating the effects of actions for information sets that will ultimately never

be reached.3 If one could instead solve the game in a forward fashion, then computation

time could be focused on only the relevant parts of the game tree. Of course, without loss

of optimality, this would require a utility function that returns the exact value of the internal

nodes of the tree which is impossible unless one has already solved the entire game tree.

However, solutions that are locally optimal with respect to a given utility function can still

be found.

This thesis proposes a Bayesian game approximation (BaGA) algorithm that generates a

solution to a POSG by myopically selecting actions at each timestep using heuristic values

for the internal nodes rather than their true values. Interleaving planning and execution,

a Bayesian game is constructed for each timestep in the problem and solved, with the

resulting policies, πt, concatenated together to form an overall policy π for the problem.

This transformation is similar to the classic one-step lookahead strategy for fully observable

games (Russell & Norvig, 2002): the robots perform full, game-theoretic reasoning about

their current knowledge and first action choice, but then use a predefined heuristic function

to evaluate the quality of the resulting outcomes. A very similar approach, proposed by Shi

& Littman (2001), is used to find near-optimal solutions for a scaled-down version of Texas

Hold’Em.

In Figure 3.1 a high-level diagram of the BaGA algorithm is shown. If one considers the

full POSG game tree to be represented by the large triangle, then the BaGA algorithm

works by constructing a smaller game at each timestep that approximates the optimal pol-

icy. Using information common to the team, such as problem dynamics (e.g., T andO) and

the policies found at previous timesteps, the robots are able to ignore parts of the tree that

3The degree to which a child (or grandchild etc.) information set affects the action taken at a parent

information set depends on the ratio of the immediate expected reward that the action yields the parent, to

any resulting future reward from the appropriate children. For many problems, there are parts of the game tree

that can be safely ignored without worrying about their effect on parent information sets. For example, if a

team of robots is operating in an environment with a clearly identifiable flight of stairs, then no policy should

direct a member of the team to take an action that would lead it to fall down the stairs. All child information

sets that would follow from such a decision can clearly be ignored during policy construction because they

have essentially no effect on immediate expected reward: once a robot is dead, it is dead.
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full POSG
one-step 
lookahead game
for timestep t

Figure 3.1: A high level representation of the BaGA algorithm for approximating POSGs.

If all agents know every other agent’s history of observations and actions at timestep t, then

each one-step game would be represented as a triangle. As this is not the case, each one-

step game is depicted as a trapezoid. Some pruning of the game tree, however, is possible

because of common knowledge about the policies found at earlier timesteps.

would never be visited due to previous decisions. In this way, each game models a subset

of the possible experiences occurring up to that point and then finds a one-step lookahead

policy for each robot contingent on that subset.

The solution to a POSG is a set of policies that guarantee that the robots are fully coordi-

nated during task execution. Each robot individually constructs the same game and solves

it using the same algorithm resulting in the same set of policies for the entire team. In order

for the BaGA algorithm to guarantee that robots will remain coordinated, it must ensure

that each robot builds and solves the exact same sequence of Bayesian games. This con-

straint is especially important as information about previous policies is used to keep future

games small: should robots not construct the same game at timestep t, then each will use

a different set of policies πi,t to build a new game at timestep t + 1, leading to a different

game being constructed and further compounding future differences.

3.2.1 Conversion from a POSG to a Series of Bayesian Games

In order to model each timestep of the full POSG as a Bayesian game, the conversion be-

tween the two frameworks must be defined. In order to model a single timestep of the game

it is necessary to be able to represent each sub-path through the tree up to that timestep as

a single entity. A single sub-path through the tree corresponds to a specific set of obser-

vations and actions up to timestep t for all robots in the team. If all robots know that a
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specific path has occurred, then the problem becomes fully observable and the payoffs of

taking each joint action at timestep t are known with certainty. This is analogous to how

utility in Bayesian games is conditioned on specific joint types, which is why a Bayesian

game, rather than a game of imperfect information, has been selected as the model for each

smaller game.

Each path in the POSG of length t is represented as a specific joint type, θt, with the

type of each robot, corresponding to its own observations and actions, as the type θt
i . A

single θt
i may appear in multiple joint types. With this definition of the type space in the

Bayesian game, robots are able to condition their policies on their individual observation

and action histories as they do in the original POSG. There are, however, still two pieces of

the Bayesian game model left to define before these policies can be found.

First, the Bayesian game model requires robots to have a common prior over the joint-type

space Θ. If it is assumed that all robots have common knowledge of the starting conditions

of the original POSG, i.e., a probability distribution P (so) over possible starting states,

then the algorithm can iteratively find both Θt+1 and P (Θt+1) using information from Θt,

P (Θt), A, T , Z and O. Additionally, because the solution of a game, π, is a set of policies

for all robots, each robot not only knows its own next-step policy but also those of its

teammates, and this information can be used to update the joint-type space. That is, any

type θt
i that has robot i perform a different action at timestep t − 1 than the action given

by the policy πt−1
i can be removed from Θt

i because it has zero probability of occurring.

Because the set of all possible histories at timestep t can be quite large, the initial BaGA

algorithm discards all joint types (or joint histories) with prior probability less than some

threshold and then renormalizes P (Θt). By using the prior probability, it can be guaranteed

that all robots discard the same set of joint histories.

The final piece of the Bayesian game model that must be defined is that of the utility func-

tion u that represents the payoff of actions conditioned on the joint-type space. Ideally,

a utility function should represent not only the immediate value of a joint action but also

its expected future value because, in general, POSGs are used for multi-step problems. In

finite horizon MDPs and POMDPs, these future values are found by backing up the value

of actions at the final timestep through time. In BaGA, finding these values corresponds to

finding the solution to the Bayesian game representing the final timestep T of the problem,

using that as the future value of the game at timestep T − 1, solving that Bayesian game

and so-on until the first timestep is reached. Unfortunately, this approach is intractable: it

requires BaGA to do as much work as solving the original POSG because a specific prob-

ability distribution over ΘT is not known until the game is solved for timesteps 0 through
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T − 1. In addition, unlike the proposed algorithm that interleaves planning and execution,

no advantage could be taken of any reduction in the size of Θt that would arise through

applying common knowledge from πt−1. Instead, BaGA performs a one-step lookahead

using a heuristic function for u, resulting in policies that are locally optimal with respect

to that heuristic. BaGA uses heuristic functions that try to capture some notion of future

value while remaining tractable to calculate. Those heuristics are domain-dependent.

Now that all parameters of the Bayesian game have been defined, the robots can iteratively

build and solve these games for each timestep. The t-th Bayesian game is converted into

its corresponding sequence form and a locally optimal Bayesian-Nash equilibrium is found

using alternating maximization.4 Once a set of best-response strategies is found at timestep

t, each robot i matches its true history of observations and actions, ht
i, to one of the types in

its type space Θt
i and then selects an action to execute based on its policy πt

i and type θt
i .

5

BaGA runs in parallel on all robots in the team as shown in Figure 3.2. So long as a

mechanism exists to ensure that each robot finds the same set of best-response policies

πt, then each robot will maintain the same joint-type space for the team as well as the

same probability distribution over that joint-type space without having to communicate.

This condition ensures that the common prior assumption of the Bayesian game model is

always met. Shading is used in Figure 3.2 to indicate which steps of the BaGA algorithm

should result in the same output for each robot. Robots run the algorithm in lock-step

and a synchronized random-number generator is used to ensure that all agents come up

with the same set of best-response policies using the alternating-maximization algorithm.

It is assumed that the robots have some sort of locker-room agreement that provides this

synchronization. Locker-room agreements can be used to eliminate or reduce the need for

communication by specifying how agents will act in a certain scenario (Stone & Veloso,

1999). For example, if two joint actions in a decentralized MDP have the exact same

value, a locker-room agreement would specify which of the two actions should be taken

(e.g., select the action that occurs first in an agreed ordering). In this case, the locker-

room agreement specifies either the pseudo-random number generator seed or sequence of

random numbers to be used for any randomization calls in BaGA.

Only common knowledge arising from the policies for previous timesteps or domain spe-

cific information (e.g., robots might always know the position of their teammates from a

4Note that this instance of alternating maximization is not the same as the alternating-maximization ap-

proximation of Section 3.1, which was applied to the entire POSG at once. This instance of alternating

maximization is applied only to the Bayesian game representation of timestep t.
5If the robot’s true history has been pruned, then the actual history is mapped to the nearest non-pruned

history using Hamming distance. A better method of mapping will be defined in Chapter 4.



76 Chapter 3. Approximate Solutions for POSGs with Common Payoffs

Make observation

h
t

1 = z
t

1 U a
t-1

1    U h
t-1

1   

Match history to type

θ
t

1 = bestMatch(h
t

1,Θ
t

1)

Execute action

a
t

1=π
t

1(θ
t

1)

Initialize
t=0, h

0

1={},Θ0,P(Θ0
)

π
0
=solveGame(Θ

0
,P(Θ

0
))

Propagate forward

Θ
t+1

,P(Θ
t+1

)

Find policy for t+1
π

t+1
=solveGame(Θ

t
,P(Θt))

t = t+1

Make observation

h
t

2 = z
t

2 U a
t-1

2    U h
t-1

2   

Match history to type

θ
t

2 = bestMatch(h
t

2,Θ
t

2)

Execute action

a
t

2=π
t

2(θ
t

2)

Initialize
t=0, h

0

2={},Θ0,P(Θ0
)

π
0
=solveGame(Θ

0
,P(Θ

0
))

Propagate forward

Θ
t+1

,P(Θ
t+1

)

Find policy for t+1
π

t+1
=solveGame(Θ

t
,P(Θt))

t = t+1

Make observation

h
t

n = z
t

n U a
t-1

n    U h
t-1

n   

Match history to type

θ
t
n = bestMatch(h

t

n,Θ
t
n)

Execute action

a
t

n=π
t

n(θ
t
n)

Initialize
t=0, h

0

n={},Θ0,P(Θ0
)

π
0
=solveGame(Θ

0
,P(Θ

0
))

Propagate forward

Θ
t+1

,P(Θ
t+1

)

Find policy for t+1
π

t+1
=solveGame(Θ

t
,P(Θt))

t = t+1

Robot 1 Robot 2 Robot n

Figure 3.2: A diagram showing the parallel nature of BaGA. Shaded boxes indicate steps

that have the same outcome for each robot.
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common observation signal) is used to update individual- and joint-type spaces. This in-

cludes pruning of types due to low probability because pruning thresholds are common to

the team. The shaded boxes of Figure 3.2 indicate steps in which robots will have the same

outcome: they all solve the same Bayesian game and find the same policy πt+1. The non-

shaded boxes of Figure 3.2 indicate steps in which robots will have different outcomes:

each robot will match its true observation and action history, ht
i, to a type modeled in the

game and then execute the action given by that type, at
i = πt

i(θ
t
i).

3.2.2 Implementation Issues

In practice there are two possible difficulties with using the BaGA algorithm for approxi-

mating the full POSG. The first is that the joint-type space Θt can be extremely large, and

the second is that it can be difficult to find a good heuristic for u. A system designer can

exert some control over the size of the joint-type space through the selection of the proba-

bility threshold for pruning unlikely histories. The benefit of using such a large type space

is that it can be guaranteed that each robot has sufficient information to independently con-

struct the same set of joint histories given by Θt and the same probability distribution over

Θt at each timestep t. In the following chapters, two additional approaches are described

for reducing the size of Θt while still doing a good job of representing the true distribution

over joint histories.

Finding a good utility function u that allows to Bayesian game to find high-quality actions

is more difficult because it depends on the system designer’s domain knowledge. For real

robot problems, good results have been achieved with a QMDP heuristic (Littman et al.,

1995). QMDP is a very simple to calculate POMDP approximation. In the QMDP utility

function, u(a, θ) is the value of the joint action a when executed in the belief state defined

by θ, assuming that the problem becomes fully observable after one timestep. This is equiv-

alent to the QMDP value of that action in that belief state. To calculate the QMDP values it

is sufficient to find Q-values for a fully observable version of the problem. These Q-values

can be found by dynamic programming or Q-learning with either exact or approximate

Q-values, depending upon the nature and size of the problem.

Perhaps a better utility function is one that is based on the POMDP solution of a version

of the problem in which the robots can share all observations. That is, instead of assuming

that the problem becomes fully observable in the next timestep, it is assumed that the robots

have full communication on the next step while retaining the partially observable quality

of the world. However, even the smallest of the robot problems examined in this thesis
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are too large to solve using approximate POMDP techniques such as those of Pineau et al.

(2003a). Section 3.4.1.2, however, presents experimental results comparing a variety of

different heuristics for a small problem in which the POMDP solution could be found for

the joint-action and -state spaces. Hand-coded heuristics are compared with those that make

use of a POMDP solution that assumes the robots will be able to share all observations after

the current timestep.

3.3 Algorithms for the Bayesian Game Approximation

Algorithms showing how to implement BaGA are given in Algorithms 3.1 and 3.2. Algo-

rithm 3.1 takes the parameters of the original POSG (the initial joint-type space is generated

using the initial distribution over S) and builds up a series of one-step policies, π t. In par-

allel, each agent will: solve the Bayesian game for timestep t to find πt; match its current

history of experiences to a specific type θt
i in its type space; match this type to an action

as given by its policy πt
i ; and then execute that action. Algorithm 3.2 provides an imple-

mentation of how to solve a Bayesian game given the dynamics of the overall POSG and a

specific joint-type space and distribution over that space. It also propagates the joint-type

space and its prior probability forward one timestep based on the the solution to that game.

Note that the quantity P (z, a|θ) in Algorithm 3.2 is the probability of an observation z and

an action a occurring as the one-step extension to the type θ and will therefore depend both

on problem dynamics as well as the policy just found for the team.

Additional variables used in these algorithms are: r is the reward to the team, rs is a random

seed, σi is a generic strategy, φ a generic type, and superscripts refer to the timestep under

consideration. The function beliefState(θ) returns the belief state over S given by the joint

history of observations and actions defined by the joint type θ. In Algorithm 3.2, a QMDP

heuristic for calculating utility is used, but any other heuristic could be substituted.

For alternating maximization, shown in its dynamic-programming form in Algorithm 3.3,

random restarts are used to move the solution out of local maxima. In order to ensure

that each agent finds the same set of policies, BaGA synchronizes the random number

generation of each agent. For each Bayesian game, alternating maximization is applied for

only a single timestep and so, unlike Section 3.1, it is not necessary to back up values from

timestep t+ 1 to t.
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Algorithm 3.1: PolicyConstructionAndExecution
I,Θ0, A, P (Θ0), Z, S, T,R,O
Output: r, st, πt,∀t

begin

hi ←− ∅,∀i ∈ I
r ←− 0
initializeState(s0)
for t← 0 to tmax do

for i ∈ I do (in parallel)

setRandSeed(rst)
πt,Θt+1, P (Θt+1)← BayesianGame(I,Θt, A, P (Θt), Z, S, T,R,O, rst)
hi ← hi ∪ z

t
i ∪ a

t−1
i

θt
i ← matchToType(hi,Θ

t
i)

at
i ← πt

i(θ
t
i)

/*all agents execute their action at
i */

st+1 ← T (st, at
1, ..., a

t
n)

r ← r +R(st, at
1, ..., a

t
n)

end

3.3.1 Computational Complexity

For a problem in which the type space of a robot consists of its history of observations of

the global state and actions up to timestep t (i.e., robots cannot observe the actions of their

teammates), then the size of that type space, |Θt
i|, would be |Ai|

t−1|Zi|
t if no pruning of the

game tree was done. BaGA, however, does prune away parts of the game tree that all agents

know will never be visited in the future due to previous policy decisions. Basically, because

BaGA ensures that policies are deterministic, for all types θt−1
i ∈ Θt−1

i , only those one-step

extensions of type θt−1
i that include the action given by πt−1

i (θt−1
i ) will be included in the

type space at timestep t. This constraint makes the size of its type space have an upper

bound of |Θt
i| ≤ |Zi|

t as further pruning may be possible due to problem constraints or

other common knowledge such as a pruning threshold.

Each timestep of the BaGA algorithm requires a Bayesian game to be solved, which, us-

ing the sequence form and alternating maximization, has a computational complexity of

O
(

(|A∗||Θ
t
∗|)

n
)

. Due to pruning, this complexity has an upper bound of O
(

|A∗|
n|Z∗|

nt
)

.

Solving this game, however, also requires that the utility function for each {θt, a} pair to

be defined. With a heuristic like QMDP , this procedure requires |S| operations per joint se-

quence, leading to an overall complexity of O
(

|S||A∗|
n|Z∗|

nt
)

. Finally, for each timestep

of the algorithm t 6= T , the joint-type space and the probability distribution over it must be

generated for t + 1. Generating the new joint-type space requires iterating over all possi-

ble (|A∗||Z∗|)
n one-step extensions of each Θt−1 and calculating the probability of such an
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Algorithm 3.2: BayesianGame
Input: I,Θ, A, P (Θ), Z, S, T,R,O, randSeed

Output: π,Θ′, P (Θ′)

begin

setSeed(randSeed)
for a ∈ A, θ ∈ Θ do

u(a, θ)← qmdpV alue(a, beliefState(θ))

π ← findPolicies(I,Θ, A, P (Θ), u)
Θ′ ←− ∅
Θ′

i ←− ∅, ∀i ∈ I
for θ ∈ Θ,z ∈ Z, a ∈ A do

φ← θ ∪ z ∪ a
P (φ)← P (z, a|θ)P (θ)
if P (φ) > pruningThreshold then

θ′ ← φ
P (θ′)← P (φ)
Θ′ ← Θ′ ∪ θ′

Θ′

i ← Θi ∪ θ
′

i,∀i ∈ I

end

Algorithm 3.3: findPolicies
Input: I,Θ, A, P (Θ), u

Output: πi,∀i ∈ I

begin

for j ← 0 to maxNumRestarts do

σi ← random, ∀i ∈ I
while !converged(π) do

for i ∈ I do

for θi ∈ Θi do

σi(θi)← argmax[
∑

θ
−i∈Θ

−i
P (θ−i|θi)ui(σi(θi), σ−i(θ−i), (θi, θ−i))]

if bestSolution then

πi ← σi,∀i ∈ I

end
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extension requires O(|S|2) operations.

If the horizon of the problem is T , then altogether the BaGA algorithm has an upper bound

on complexity of O
(

|S|2|A∗|
n|Z∗|

nT
)

, which is at least a factor of An(T−1) less than that of

performing alternating maximization on the entire POSG at once. In practice, this factor

can be even larger due to any further reductions in the size of the type space.

It is important to note that for many problems, the size of the global state space, |S|, actu-

ally serves as a fairly loose upper bound in these calculations due to problem constraints.

For example, consider a robotic tag problem in which the type of each robot specifies

its actions, position, and any observations of its teammates and the opponent. I.e., Zi

includes the position of robot i. Rather than iterate over all states in S, for each joint

type θt, only those elements of S that are consistent with the associated robot positions at

timestep t need to be considered when determining the probability and utility of θt. If S

is the cross-product of the robots’ positions (RT) and the opponent’s position (Opp), i.e.,

|S| = |RT |n|Opp|, then the upper bound on the complexity of the problem would actually

be O
(

|Opp|2|A∗|
n|Z∗|

nT
)

, which is much smaller than O
(

|S|2|A∗|
n|Z∗|

nT
)

.

3.3.2 BaGA for POSGs with Limited Communication

While POSGs can model problems with any degree of communication, in this chapter, and

the one following it, the BaGA algorithm is developed for solving POSGs without com-

munication. The addition of periodic communication can only improve the performance of

the team as it would allow robots to share their specific information histories and therefore

make decisions conditioned on the true joint history of the team rather than a probability

distribution over the set of possible joint histories. In this way, POSGs with no commu-

nication provide a lower bound on the performance of a robot team while those with full

communication, modeled as POMDPs for a larger meta-agent, provide an upper bound. A

POSG with arbitrary, but limited communication, will have performance somewhere be-

tween the two.

If a POSG has a fixed communication policy in which robots share their observations at

periodic intervals then the BaGA algorithm can be modified to incorporate this commu-

nication by treating the communicated information as common knowledge that is used to

affect the set of joint types Θt and the probability distribution over them P (Θt). For ex-

ample, if the team communicates every x timesteps, then for t = cx, the set of joint types

would contain just one element, the true joint history of the team θt, and this element would
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have probability of 1.0 of occurring.6

The generation of dynamic communication policies, in which robots make decisions to

communicate based on specific observation histories, is a much harder problem and will be

examined in more detail in Chapter 5.

3.3.3 Levels of Approximation

In BaGA, there are two main levels of approximation used to find the solution to the original

POSG. First, alternating maximization is used to find a locally optimal Bayesian-Nash

equilibrium of the one-step game representing the current timestep. This equilibrium is

not guaranteed to be the Pareto-optimal Bayesian-Nash equilibrium because only a limited

number of random restarts are used to move out of local maxima. Unless one were to

exhaustively search the space of all policies, one cannot guarantee that the Pareto-optimal

equilibrium has been found, nor place useful bounds on how much worse the expected

payoff of a locally optimal policy is than that of the Pareto-optimal policy. Worst-case

bounds could be found by comparing the optimal joint action given full observability to

the expected value of the found equilibrium point; however, in practice, the Pareto-optimal

Nash equilibrium would not be able to achieve this fully observable value due to partial

observability.

If the expected future value of actions, given the current timestep, were known with cer-

tainty, then using alternating maximization to find the one-step policy would be the only

place in which approximation was introduced into the algorithm; however, as this function

is not known (it would involve solving the original problem), further approximation is in-

troduced through the use of heuristics to estimate this function. Again, error bounds on

performance introduced through this second level of approximation cannot, in general, be

found. Assumptions can be made on the problem domain that render the heuristics correct,

such as robots being able to share all observations on the following timestep. An example

would be problems with some sort of delayed communication; robots have full communi-

cation but the communicated information takes one timestep to reach the rest of the team.

In practice, however, these assumptions are not valid in many interesting problems.

The effects of these two levels of approximation can be mitigated at the expense of greater

computation. First, alternating maximization can be replaced with an algorithm that has

6If robots can only share partial information then this information is simply treated as common knowledge

and used to update the common prior over the set of possible joint types as appropriate.
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guarantees on the global optimality of the found policies, such as an exhaustive search

method that would iterate over all possible joint policies. For common-payoff games, mov-

ing from a (Bayesian) Nash equilibrium to a correlated equilibrium solution concept does

not reduce the complexity of this search. Although a correlated equilibrium that maximizes

the payoffs to all robots can be found in polynomial time through linear programming, con-

structing the constraints of this linear program still involves enumerating over all possible

joint policies.7

The effect of the second level of approximation is affected by the quality of the heuristic

used. Improving the quality of the heuristic can involve more off-line computation, such

as solving smaller horizon versions of a problem in order to estimate the future value of

actions rather than relying on a QMDP heuristic. Regardless of heuristic quality, BaGA is

effectively doing a one-step lookahead in order to evaluate the effects of taking an action.

Using the same heuristic, solution quality could be improved, at an increase in on-line

computational costs, by moving to multi-step lookahead.

In multi-step lookahead, rather than doing game-theoretic reasoning over only the current

action choice, robots would find locally optimal policies of length n. Given a type space

equal to the set of all possible joint histories at timestep t, robots would consider sequences

of actions for the next n timesteps as the building blocks of their policies rather than just

single actions. These sequences can best be thought of as n-step policy trees: the root of

the tree gives the immediate action for a robot to take while action choices for the next

n − 1 steps are conditioned on possible future observations. The expected value of such a

policy tree would be the expected sum of the immediate rewards over the n steps plus the

expected future value of the last action (leaf of the tree) as given by a heuristic. A policy π t

now tells robots which policy tree to follow for each of their possible types at timestep t.

To select an action, a robot uses πt
i to find the policy tree which is assigned to its (true) type

θt
i and then implements the action given by the root of that policy tree. At timestep t + 1,

robots construct a new game to find a new policy of length n rather than re-using any of the

previously found policy trees because the expected value of the new policy tree provides a

more accurate estimate of the expected payoffs of actions at timestep t+ 1. This approach,

sometime called receding-horizon control, reduces the negative effects of approximating

7It actually requires enumeration over all joint strategies where a strategy is an assignment of an action to

each possible type. For general-sum problems, a strategy is deterministic whereas a policy is not and so the

set of all joint policies is much larger than the set of joint strategies. For a common-payoff problem, however,

there is no need to randomize over actions and so only deterministic policies are considered. In this case,

policies and strategies can be thought of as equivalent and so the set of all possible joint policies is equal in

size to the set of all joint strategies.
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the future value of actions as n→ T , the horizon of the problem.

In addition to these two main kinds of approximation, the pruning of low-probability joint

histories (i.e., joint types) results in additional approximation because all possible joint

histories are no longer represented by BaGA. However, unlike the other two levels of ap-

proximation, the effects of low-probability pruning can be easily negated by reducing the

pruning threshold to zero. Alternatively, more principled methods for reducing the number

of joint histories that are maintained by BaGA can be applied. These methods are the focus

of Chapter 4.

3.3.4 Sub-Game Perfect Equilibria

In Section 2.1.7, the notion of a sub-game perfect equilibrium was introduced. In sub-game

perfect equilibria, the strategies of robots are guaranteed to best responses to each other at

all parts of the tree, even in those sub-games that can not be reached due to earlier deci-

sions.8 While alternating maximization is able to find a locally optimal equilibria for the

full POSG, in general, it is not able to find a sub-game perfect equilibria. This property re-

sults from the combination of using the sequence form and dynamic programming to solve

the problem. In the sequence form, the expected value of a joint sequence that has zero

probability of occurring is 0.0. Therefore, during a dynamic-programming back-up, the al-

gorithm cannot distinguish between a joint sequence that has zero probability of occurring

but would result in optimal reward if it could occur and one that also has zero probability

but has a lower reward. As a result, it will select between the two in an arbitrary fash-

ion. Even if the dynamic-programming algorithm were to result in a set of strategies that

are a sub-game perfect equilibrium (due to how random choices were made), those strate-

gies will have the same expected value as any other set of strategies that are the same for

the reachable portions of the tree (but different for the unreachable parts). The algorithm

therefore, cannot identify which of the two sets of strategies is superior.

The BaGA algorithm also does not find sub-game perfect equilibria. By definition, a sub-

game perfect equilibrium will define a set of best-response strategies for every sub-game of

the tree. But, BaGA only generates strategies for reachable sub-games of the tree. Indeed,

8The only reason that an equilibrium point for a multi-stage game would not satisfy sub-game perfection

would be if it was found by solving a normal or sequence-form version of the original game. As explained

in Chapter 2, in these two forms a sub-game perfect equilibrium policy and a policy that is identical for

reachable sub-games of the tree but different for non-reachable sub-games, have identical evaluations and so

both satisfy the the equations for finding best-response policies. Differences between the two policies would

therefore be apparent only to a human and not a machine.
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part of its computational savings results from pruning out parts of the tree that are com-

monly known to be unreachable. Therefore, because it does not define actions to take for

unreachable sub-games, it cannot, by definition, find sub-game perfect equilibria. Further-

more, because of that pruning, if something were to occur that would make an unreachable

sub-game of the tree suddenly possible, BaGA would not be able to properly represent

the problem. However, for the type of problems examined in this thesis, the inability of

BaGA to find sub-game perfect equilibria is not important because unreachable portions

of the game tree remain unreachable. If there is the possibility of noisy actions (e.g., in a

real robot problem), then that noise is taken into account in the problem dynamics.9 This

property allows BaGA to retain the appropriate joint types and still generate valid solutions.

3.4 Experimental Results

In this section, experimental results are presented for three different domains. The first is

that of the Lady and the Tiger, which is a 2-agent problem for which the full POSG can

be solved for small time horizons. The solution quality and computational complexity of

BaGA is compared to that of the full POSG. Additionally, the effects of different utility

functions on the performance of BaGA is analyzed. The second domain looked at is that

of the Multiple Access Broadcast Channel. Like the Lady and the Tiger, the full POSG of

this n-agent problem can be solved for small time horizons. It is included to demonstrate

how BaGA handles problems with more than two agents. The final domain is an abstract

2-robot Tag problem and is much larger in size than the previous two problems. The full

POSG cannot be constructed for Robotic Tag and so, instead, the performance of BaGA is

compared to that of well known heuristics.

3.4.1 Lady and The Tiger

The Lady and the Tiger problem is a multi-agent version of the classic tiger problem (Kael-

bling et al., 1998) created by Nair et al. (2003). In this two-state, finite-horizon problem,

two agents are faced with the problem of opening one of two doors. One door has a tiger

behind it, and the other a treasure. Whenever a door is opened, the location of the tiger

is randomly reset and the game continues until the fixed time has passed. The crux of the

9This is somewhat related to the notion of “trembling hands” which can be used to resolve the sub-game

perfect equilibrium problem (Selten, 1975). However, applying “trembling hands” unilaterally to BaGA

would result in greatly reduced pruning and so noisy action execution is only modelled as necessary.
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Lady and The Tiger problem is that neither agent can see the actions or observations made

by its teammate, nor can it observe the reward signal and thereby deduce that the game has

been reset. It is, however, necessary for each agent to reason about this information.

The set of states is S = {tiger-left, tiger-right}, which indicates whether or not the tiger

is behind the left or right door. The initial distribution over S is {0.5, 0.5}. Each agent

has three actions, Ai = {listen, open-left, open-right}, and two possible observations,

Zi = {hear-left, hear-right}. The transition, reward and observation emissions functions,

T , R and O are given in Table 3.1. The reward function is such that it is always better

for the agents to select the same action; a POMDP formulation of the problem in which

agents can share their observations leads to only the actions <listen, listen>, <open-left,

open-left> and <open-right, open-right> being used (i.e., the remaining joint actions are

dominated). If agents cannot communicate, then they must reason about what action is best

to take given what observations and actions their teammate may have taken. For example,

if a door is opened by Agent 1 at timestep t, then the problem is reset, drastically changing

the emission probabilities for Agent 2. If Agent 2 does not reason about the possibility that

a door was opened, it will place too high a weight on its observation at timestep t during

future decision making.

3.4.1.1 Comparison to Full POSG

While the Lady and the Tiger problem is small, it allows the policies constructed by build-

ing the full extensive-form game version of the POSG to be compared to those from the

BaGA approximation. It also shows how even a very small POSG quickly becomes in-

tractable. Table 3.2 compares performance and computational time for this problem with

various time horizons. The full POSG version of the Lady and the Tiger was solved us-

ing the dynamic-programming version of alternating maximization on the sequence form

with 20 random restarts. Increasing the number of restarts did not result in higher valued

policies.

For the BaGA algorithm, each agent’s type at timestep t consists of its entire observation

and action history up to that point. For example, a possible type at timestep 4 is <lis-

ten, hear-left, listen, hear-right, listen, hear-right>. Each joint type θ completely defines

a belief bθ over world state. Joint types with probability less than 0.000005 are pruned

during the construction of the type space Θt and the probability distribution over the joint-

type space renormalized. If an agent’s true history is pruned, then for action selection it

is assigned the closest matched type in Θt
i. This match is found using Hamming distance.
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Table 3.1: Transition, reward and observation emission functions for the Lady and the

Tiger problem. All functions are symmetric with respect to the agents and so only half of

the joint actions have been shown (e.g., <open-left, open-right> and <open-right, open-

left> result in the same outcome). Because opening the door resets the tiger’s position,

useful observations are only made if both agents perform the listen action at the same time.

State Action tiger-left tiger-right

tiger-left <listen, listen> 1.0 0.0

tiger-right <listen, listen> 0.0 1.0

* <open-left, *> 0.5 0.5

* <open-right, *> 0.5 0.5

(a) T

State Action Reward

* <listen, listen> -2.0

tiger-left <open-left, listen> -101.0

tiger-left <open-right, listen> 9.0

tiger-left <open-left, open-left> -50.0

tiger-left <open-left, open-right> -100.0

tiger-left <open-right, open-right> 20.0

tiger-right <open-left, listen> 9.0

tiger-right <open-right, listen> -101.0

tiger-right <open-left, open-left> 20.0

tiger-right <open-left, open-right> -100.0

tiger-right <open-right, open-right> -50.0

(b) R

State Action hear-left hear-right

tiger-left <listen, listen> 0.85 0.15

tiger-right <listen, listen> 0.15 0.85

* <open-left, *> 0.5 0.5

* <open-right, *> 0.5 0.5

(c) O
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Table 3.2: Computational and performance results for the Lady and the Tiger. Expected

reward and computation time is shown for the full POSG solution. For the BaGA algorithm,

rewards are averaged over 100000 trials with 95% confidence intervals shown. Timing

experiments were performed on a Intel Pentium 4, 2.80 GHz machine. Memory, rather

than computation requirements, prevented the full POSG from being solved for the horizon

7 problem.

Time Horizon Full POSG BaGA

Expected Reward Time(ms) Average Reward Time(ms)

3 5.19 50 5.18 ± 0.15 1

4 4.80 1000 4.77 ± 0.07 5

5 7.02 25000 7.10 ± 0.12 20

6 10.38 900000 10.28 ± 0.21 50

7 − − 10.00 ± 0.17 200

8 − − 12.25 ± 0.19 700

9 − − 15.28 ± 0.26 3500

10 − − 15.07 ± 0.23 9000

At each timestep alternating maximization with 20 random restarts is used for policy con-

struction. The heuristic used to calculate the utility of actions for the results shown in

Table 3.2 was experimentally hand-tuned to maximize performance and makes use of the

performance of policies found for shorter horizons. This heuristic is actually a collection

of heuristics with the one that maximized performance being used for each horizon. In

the following section, the effects of specific heuristics on performance is investigated more

closely.

For those timesteps for which the full POSG could be solved, BaGA was able to find

policies that resulted in similar performance but at a fraction of the computation time. For

those timesteps in which the full POSG was not solved, the overall performance of BaGA

could not be directly evaluated. One could come up with an estimation of the expected

performance of the full POSG by splitting up a problem with a horizon of n into two or more

smaller horizon problems and then applying their policies consecutively. For example, a

problem with a horizon of 9 could be considered as three consecutive instances of the

horizon 3 problem or as an instance of the horizon 4 problem followed by a horizon 5

problem. Policies that concatenate together smaller policies in this way can be represented

by the chosen type space, and therefore can make up part of valid solutions to this problem.

For example, a policy calculated for a horizon of 6 is shown in Figure 3.3 (a). The equilib-
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rium point with highest expected value found for both the full POSG and the BaGA with the

complex heuristic is made up of an identical policy for each agent that can be described by

the policy tree in Figure 3.3 (a). In this policy each agent performs the listen action twice,

and then, if it receives the same observation twice in a row it opens the appropriate door,

and otherwise it chooses listen again. Regardless of what action was selected on the third

timestep, the agents listen on the fourth and fifth timesteps. Then, using only observations

gathered on those two timesteps, each agent will open the door if its last two observations

are the same. In other words, even if the agent does not open a door on the third timestep,

it still ignores the observations it receives on that timestep because the event that at least

one agent has opened a door has high enough probability to make this a bad observation

upon which to condition decisions. Because the agents ignore this information, one might

interpret this overall policy as the agents following their horizon 3 policy tree for three steps

and then, on the fourth timestep, simply re-starting at the root of this policy tree.

Using a less complex heuristic, such as some of those discussed in the next section, a

different local optimum was found in which each agent listens for the first five timesteps

and then, if it hears four or five of the same observations, opens the appropriate door. This

policy is shown as a policy tree in Figure 3.3 (b). This policy illustrates one of the downfalls

of using a heuristic to evaluate the future value of actions. In this case, the heuristic used

is overly optimistic because agents assume they will be able to share all observations in the

future. Therefore, when making a decision at timestep 3, agents believe they will be able

put off opening the door for another timestep (in order to make a more informed decision

about which door to open), but still have enough time to get the observations needed to

open a door on the final timestep. However, once the fourth timestep is reached, the agents

have a better estimate of the fact that opening a door now and then performing a listen on

the fifth timestep will not yield enough information to open a door on the final step. As

a result they do not open the door on the fourth or fifth timesteps either. With a better

heuristic, agents are able to evaluate the benefits of opening a door twice, each time on the

basis of less information (and therefore with lower expected reward), against opening the

door only once but with higher quality information.

BaGA required much less time to arrive at the 6-step policy than performing alternating

maximization over the full POSG because it had to keep track of a fraction of the num-

ber of observation histories. In the full POSG, there were over a thousand information

sets in its tree representation. Thus, the evaluation of the leaves (all policies of length

6) required evaluating roughly nine million joint sequences before that information could

be backed up to earlier timesteps. In contrast, BaGA resulted in type spaces with size
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of |Θt
i| ={1,2,4,8,16,32} for each agent meaning that the most expensive alternating-

maximization step, which was on the final timestep, only had to evaluate 1024 joint se-

quences.

As the horizon of the problem increases, the pruning threshold of 0.000005 starts to reduce

the number of joint types, which in turn reduces the number of individual types for each

agent. For example, while the upper limit on the type space of a 10-step problem is |Θt
i| =

2t−1, in practice the sizes of the type spaces were |Θt
i| ={1,2,4,8,16,32,52,104,208,416}

which helped to keep the problem manageable.

3.4.1.2 Heuristic Function Evaluation

In order to evaluate the effects of the heuristic function upon performance, four different

utility functions were used in the BaGA algorithm. A selfish version of each of these

heuristics was also implemented in order to judge how performance is improved by doing

a full step of game-theoretic reasoning on the current action selection. In a selfish policy,

each agent constructs a belief state using only its own observations and then uses that belief

state to evaluate the expected reward of actions given the current heuristic. The agent then

implements what it believes to be the best action.

The first of the four utility functions, simple-heuristic, is a simplified version of the heuristic

used the previous section. This heuristic is also based upon the performance of policies

found for shorter time horizons, but has not been hand-tuned for each horizon value (i.e.,

rather than have a different heuristic for each horizon, the single heuristic that performed

best for the most horizons was picked). This heuristic makes the assumption that, after the

current timestep, the agents will play according to a previously found approximate solution.

The second utility function, coop-POMDP, uses a heuristic that assumes that the agents

will be able to fully communicate after the next timestep. This heuristic was calculated

using the publicly available pomdp-solve (Cassandra, 1999) to solve the POMDP in which

a meta-agent has an action and observation space equal to the joint-action and -observation

space of the original problem. The utility of a joint-action, joint-type pair, {a, θ}, is the

expected immediate reward for that joint action given the belief bθ, plus the sum over the

expected future value of each possible outcome of the joint action as given by the POMDP

solution. For the selfish application of this heuristic, each agent simply constructs its current

belief and then applies its part of the best joint action as given by the POMDP solution. This

approach is an example of an extremely optimistic heuristic, which results in sub-optimal

policies such as the one shown in Figure 3.3. The over-estimation of future reward causes
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Figure 3.3: Example policies generated for a 6-step version of the Lady and the Tiger problem. The policies generated using

alternating maximization on the full POSG were the same for each agent and so only one is shown (as a policy tree) in (a). While

BaGA is able to find the same policy trees using the heuristic described in Section 3.4.1.1 and the single-POMDP (pessimistic)

heuristic of Section 3.4.1.2, other heuristics result in a locally optimal policy in which both agents have a policy given by the

policy tree in (b). The action and observations sets are shown using <L,OL,OR> and <HL,HR> respectively in order to save

space.



92 Chapter 3. Approximate Solutions for POSGs with Common Payoffs

the agents to not open a door at a (riskier) earlier step but rather to put off opening the

door until they become more confident about the tiger’s location. Due to the misconception

that future observations will be pooled (and therefore, not as many steps will be needed to

determine the tiger’s new position), the agents believe they still have time to open the door

twice even though it is no longer true.

The final two utility functions, single-POMDP (optimistic) and single-POMDP (pessimistic),

make the assumption that while the agents will not be able to communicate after the next

step, the other agent will be passive. As with coop-POMDP, the utility of a joint-action,

joint-type pair is the expected immediate reward for the joint action, plus the sum of the

expected value of each possible outcome of the joint action given the POMDP solution for

each resulting belief. The POMDP formulation used to construct these utility functions

only uses the individual action set of an agent and its observations (and associated emis-

sion probabilities). The reward function used, however, reflects whether or not the second

agent is assumed to pick the same action (optimistic) or only pick listen (pessimistic). In

the former case, the reward function is overly optimistic because it assumes that the agents

will always open doors together, while in the latter it is overly pessimistic as it assumes

the agents will never open a door together. What makes the single-POMDP (optimistic)

utility function different from that of coop-POMDP is that only individual observations

and their emission probabilities are used to solve the POMDP. For the POMDP solution,

it means more listen actions are required to generate beliefs for which opening a door is

optimal, and for BaGA it means that agents are not as prone to over-estimating the amount

of reward that they can receive in a small number of timesteps.

For these problems BaGA ran with 200 random restarts as time was not an issue. The

single-POMDP (pessimistic) utility function was also run with a quasi additional step of

lookahead. It was not a true 2-step lookahead version of BaGA. Instead, the function,

when evaluating the expected future value of a <listen,listen> action, propagates forward

all possible observations and then, rather than converting those directly into belief states

and looking up their value in the POMDP solution, calculates what happens in the true

reward space if the agents are able to coordinate in the next timestep. Regardless of what

action is taken in this hypothetical second step, the outcomes are converted into belief

states and their expected future values are looked up in the POMDP solution. The result is

a fifth utility heuristic that falls somewhere between coop-POMDP and single-POMDP: it

assumes that the agents will be able to communicate (and therefore coordinate) on the next

timestep but will not be able to communicate with each other after that.

As shown in Figure 3.4, in all but the single-POMDP (pessimistic) case, BaGA clearly
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performs better than the selfish policy that uses the same utility function. The one step of

game-theoretic reasoning over the observations and action selection of other agents sub-

stantially improves the quality of the resulting policy. As expected, the selfish implemen-

tation of single-POMDP (pessimistic) does much better than the other selfish implementa-

tions, because the single-POMDP (pessimistic) utility function provides a decent estimate

of how well a single player can do. The POMDP solution is constructed using only a sin-

gle agent’s observation emission probabilities and uses a reward function that assumes the

other agent will never open a door. As a result, a selfish agent is much more conservative

(performs more listen actions before opening a door) when using this heuristic than it is in

the other three cases. While no one instance of BaGA outperformed the selfish heuristic,

BaGA achieved better performance on alternate timesteps with either the basic heuristic or

with a version that simulated another lookahead in reward space. This result reflects the

cyclical nature of the problem and how on certain timesteps it pays to be more conservative

when estimating future reward than on others (see the discussion in Section 3.4.1.1 on the

optimal 6-step policy for an example).

These results, however, do not mean that the BaGA approach is invalid, it just emphasizes

that the choice of heuristic is important to the overall solution quality. Even with a lower

quality heuristic (e.g., one that overemphasizes future coordination), BaGA can result in

much higher performance than a selfish approach in which there is no attempt to model the

decision-making process of the other agents.

3.4.2 Multiple Access Broadcast Channel

The Multiple Access Broadcast Channel problem (MABC) is designed to simulate a com-

munications network in which there are multiple nodes, each of which can receive and

transmit messages. In this network, only one message can be transmitted at a time and the

overall goal of the system is to maximize the throughput, or number of messages success-

fully transmitted. Each node has a buffer that is limited to contain only one message. If

node i’s buffer is empty at timestep t, then a new message will arrive on timestep t+1 with

probability pi. There is no communication available to the nodes and so each node must

independently decide when to transmit a message. However, nodes receive (possibly noisy)

observations about whether or not a message is successfully transmitted: they are informed

if a collision occurred, if a message was successfully transmitted or if the system was idle

(no node transmitted a message). If a collision does occur, then any messages involved in

the collision are lost.
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Figure 3.4: Comparison of different utility functions for the Lady and the Tiger. For all

cases, joint types with probability less than 0.000005 were pruned and performance was

averaged over 100000 trials with 95% confidence intervals shown. In (d), the performance

of both the basic utility function and one that attempts to simulate a 2-step lookahead in the

reward space are shown. BaGA used 200 random restarts to find each policy.
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Table 3.3: The local transition function for the Multiple Access Broadcast Channel prob-

lem. This function governs the transitions between the local state of agent i with new

message rate pi.

Local State Local Action full empty

full transmit pi 1.0-pi

full idle 1.0 0.0

empty idle pi 1.0-pi

This canonical decentralized MABC problem was formulated by Ooi & Wornell (1996)

and later recast as a fully cooperative POSG by Hansen et al. (2004). In this latter version,

nodes are only informed if a collision occurred or did not occur; they cannot distinguish

between the system being idle and a successful transmission by a single node. It is this

reduced observation set that is used in this thesis. This problem has been included because

it is an example of a n-agent POSG.

The state space for this domain is the cross-product of the buffer states of each of the

n agents, Si = {full,empty}, which has a size of 2n. In this version of the problem,

the initial global state is unknown. Each agent has two possible observations, collision

and no-collision, in addition to full knowledge of its own local state. The observation

space is Zi = {collision,no-collision} × {full,empty} except for the first timestep in which

Zi = {full,empty} as no observation about collisions has yet been received. This problem

is implemented with no noise in the observations and so each agent receives an identical

observation of either no-collision or collision. The problem, however, is still partially ob-

servable because, in addition to having only knowledge of its local state and own action, an

observation of no-collision does not, by itself, allow a single agent to distinguish between

a teammate successfully sending a message or no one sending a message.

Each agent has two possible actions, Ai = {transmit, idle}; however, if an agent has a

local state of empty, it can only choose the idle action. This restriction is used to reduce

the overall number of action choices that must be represented and reflects the fact that the

transmit action has no effect on an empty buffer. The local state transition of each agent

is shown in Table 3.3. The team receives a reward of 1 for each message successfully

transmitted and otherwise it receives nothing.

Like the Lady and the Tiger problem, MABC is small enough to allow the full POSG to

be constructed and solved for short time horizons. The full POSG was solved using the
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dynamic-programming version of alternating maximization on its sequence form with 10

random restarts. Table 3.4 compares performance and computational time for this problem

with various numbers of nodes, time horizons and two sets of new message rates pi.

For the BaGA algorithm, each agent’s type at timestep t consists of its entire observation

and action history up to that point. For example, a possible type at timestep 3 is <{full,

transmit}, {no-collision, empty, idle}, {no-collision, full}>. Each joint type θ completely

defines a state in S, sθ, because the problem is collectively fully observable. Observations

are therefore used as common knowledge to help prune impossible joint types. For exam-

ple, it is common knowledge that all agents receive the same observation and so any joint

type with conflicting observations has zero probability. Furthermore, if the policy found

at timestep t − 1 has only one agent transmitting, then it is impossible for a collision to

have occurred and so any joint type with the observation collision can be cut. Additionally,

joint types with probability less than 0.000001 are pruned during the construction of the

type space Θt and the probability distribution over the joint-type space renormalized. If an

agent’s true history is pruned, then for action selection it is assigned the closest matched

type in Θt
i. This match is found using Hamming distance. At each timestep alternating

maximization with 20 random restarts is used for policy construction

Three different heuristic functions were considered for evaluating the utility of actions.

The most simple of the heuristics, greedy, defines the value of a joint action a to be only its

immediate value given the global state defined by the joint type θ. This heuristic is defined

entirely by the reward function. The second heuristic function, fully-cooperative, assumes

that after the current timestep, the agents will have full communication. The utility of a

joint action, joint type pair, {a, θ}, is therefore the immediate reward for that joint action

given the state sθ, plus the sum over the future value of each possible next global state s′θ
as given by the solution to a fully observable version of the problem.

The final heuristic, no-communication, makes no assumptions on the information available

to the team after the current timestep. As with fully-cooperative, the expected value of

{a, θ} at timestep t is defined to be the immediate reward given the global state sθ plus

the sum over the expected value of each possible next state s′θ. Unlike fully-cooperative,

this expected value of s′θ does not come from the fully observable problem, but rather

from the solution to the full POSG with starting conditions s′θ and a horizon of t − 1.

The solutions to full POSGs representing all possible starting conditions and time horizons

were precalculated in order to implement this heuristic. It was possible to do so because this

heuristic does not require the most computationally expensive conditions of {n = 3, T =

4} or {n = 4, T = 3} to be calculated for each possible global states, but rather only for
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{n = 3, T = 3} and {n = 4, T = 2}.

As with Lady and The Tiger, a selfish version of each heuristic function was also evaluated.

For the selfish policy, each agent constructs a belief state over the the global state S based

on its own local state and the new message rates of its teammates, p−i. Using that belief

state, the agent chooses the joint action with highest expected reward, given the appropriate

heuristic for evaluating utility, and then implements its part of that joint action.

Using the no-communication heuristic for a utility function, BaGA is able to perform sim-

ilarly to the full POSG, but at a fraction of the computational cost. As seen in Table 3.4,

the savings in time is a direct effect of the smaller set of joint types that are represented in

the BaGA algorithm. Unlike the full POSG, BaGA interleaves planning and execution, and

so it is able to prune away large parts of the game tree due to early decisions. It also does

not need to represent joint types that it knows to be impossible such as those that include

a collision observation even though only one node transmitted. If the new message rates,

pi, are such that one node has a much higher probability of receiving a message than the

other nodes, then the optimal solution to the POSG has only that one node transmitting.

The other nodes are always idle in order to avoid a collision. This type of policy allows

BaGA to prune away more joint types than in the case where pi = pj for all i 6= j. The

sequence form for the full POSG, however, cannot benefit from this pruning.

The no-communication heuristic is very accurate: it uses smaller versions of the full POSG

to evaluate the future expected value of taking actions. As anticipated, as the heuristic used

for the utility function increases in accuracy, the overall performance of BaGA also in-

creases. This fact can be seen in Table 3.5 in which the performance of the three heuristics,

greedy, fully-cooperative, and no-communication are compared. Results for the selfish im-

plementation of each policy are also included to show how one step of game-theoretic rea-

soning improves performance over blindly applying the base heuristic. The greedy heuristic

is the least accurate of the three heuristics because it only uses immediate reward to eval-

uate actions, but it is also the easiest to evaluate. The fully-cooperative heuristic is more

accurate because it includes an estimation of future expected reward. It can therefore iden-

tify when it is advisable for a node to hold off on transmitting on the current timestep in

order to transmit on a future timestep. The estimate of future expected reward, however,

assumes that the nodes will have full communication after the current timestep. It is there-

fore less accurate than no-communication, in which the future expected value is calculated

using the original problem dynamics. However, it is much easier to evaluate the solution to

a fully-cooperative version of the game than it is to solve the full POSG with horizon T −1

for each possible global state.
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Table 3.4: Computational and performance results for MABC when the initial global state

is unknown. Expected reward and computation time is shown for the full POSG solution.

For the BaGA algorithm, rewards for the no-communication utility heuristic are averaged

over 10000 trials with 95% confidence intervals shown. The average number of joint types

at each timestep is shown for BaGA and, unless stated otherwise, 95% confidence intervals

were 0.005 or smaller. Timing experiments were performed on a Intel Pentium 4, 2.80 GHz

machine.

Parameters Full POSG BaGA

Exp.

Reward

Time(ms) |Θt| Avg.

Reward

Time(ms) |Θt|

n = 2, T = 5,

p = {0.4, 0.4}
2.96 243000 {4, 100,

2704,

73984,

2027776}

2.96 ±
0.02

35 {4, 12, 36,

107.99 ±
0.01, 323.96

±0.04}
n = 2, T = 5,

p = {0.7, 0.3}
3.77 243000 {4, 100,

2704, 73984,

2027776}

3.77 ±
0.02

30 {4, 12, 32,

80, 239.91 ±
0.04}

n = 3, T = 3,

p = {0.4, 0.4, 0.4}
1.82 36000 {8, 1000,

140608}
1.84 ±

0.02

90 {8, 36, 144}

n = 3, T = 3,

p = {0.75, 0.5, 0.25}
2.44 36000 {8, 1000,

140608}
2.40 ±

0.01

85 {8, 36,

136.92 ±
0.16}

n = 3, T = 4,

p = {0.4, 0.4, 0.4}
2.61 6960000 {8, 1000,

140608,

20123648}

2.62 ±
0.02

370 {8, 36, 144,

576.99

±0.01}
n = 3, T = 4,

p = {0.75, 0.5, 0.25}
3.31 6960000 {8, 1000,

140608,

20123648}

3.31 ±
0.01

330 {8, 36,

128.05

±0.02,

480.12 ±
0.06}

n = 4, T = 3,

p = {0.4, 0.4, 0.4, 0.4}
1.90 5570000 {16, 10000,

7311616}
1.91 ±

0.01

6700 {16, 144,

864}
n = 4, T = 3,

p = {0.8, 0.6, 0.4, 0.2}
2.60 5570000 {16, 10000,

7311616}
2.58 ±

0.01

1800 {16, 108,

575.72 ±
0.08}



3
.4

.
E

x
p

erim
en

ta
l

R
esu

lts
9
9

Table 3.5: Comparison of three different utility functions for MABC: greedy, fully-cooperative and no-communication. For all

cases, joint types with probability less than 0.000001 were pruned and performance was averaged over 10000 trials with 95%

confidence intervals shown. The average sum of joint types over each timestep is shown for BaGA with 95% confidence intervals.

Results are also included for the selfish application of each heuristic.

Parameters greedy fully-cooperative no-communication

BaGA selfish BaGA selfish BaGA selfish

Avg.

Reward

P

|Θt| Avg.

Reward

Avg.

Reward

P

|Θt| Avg.

Reward

Avg.

Reward

P

|Θt| Avg.

Reward

n = 2, T = 5,

p = {0.4, 0.4}
2.40 ± 0.02 1364.00 ± 0.00 2.38 ± 0.02 2.96 ± 0.02 483.98 ± 0.02 2.34 ± 0.02 2.96 ± 0.02 484.85 ± 0.05 2.41 ± 0.02

n = 2, T = 5,

p = {0.7, 0.3}
3.74 ± 0.02 367.32 ± 0.11 2.90 ± 0.02 3.77 ± 0.02 367.89 ± 0.05 2.90 ± 0.02 3.77 ± 0.02 367.91 ± 0.04 2.90 ± 0.02

n = 3, T = 3,

p = {0.4, 0.4, 0.4}
1.77 ± 0.02 272.18 ± 0.03 1.29 ± 0.02 1.76 ± 0.02 272.00 ± 0.00 1.27 ± 0.02 1.84 ± 0.02 188.00 ± 0.00 1.29 ± 0.02

n = 3, T = 3,

p = {0.75, 0.5, 0.25}
2.41 ± 0.01 181.06 ± 0.16 1.22 ± 0.17 2.40 ± 0.01 180.93 ± 0.16 1.22 ± 0.02 2.40 ± 0.01 180.92 ± 0.16 1.21 ± 0.02

n = 3, T = 4,

p = {0.4, 0.4, 0.4}
2.53 ± 0.02 1137.84 ± 0.24 1.72 ± 0.02 2.63 ± 0.02 763.99 ± 0.01 1.71 ± 0.02 2.62 ± 0.02 763.99 ± 0.01 1.74 ± 0.02

n = 3, T = 4,

p = {0.75, 0.5, 0.25}
3.24 ± 0.02 694.79 ± 0.74 1.63 ± 0.02 3.32 ± 0.01 652.12 ± 0.07 1.63 ± 0.02 3.31 ± 0.01 652.17 ± 0.08 1.61 ± 0.02

n = 4, T = 3,

p = {0.4, 0.4, 0.4, 0.4}
1.89 ± 0.02 1024.00 ± 0.00 1.03 ± 0.02 1.89 ± 0.02 1024.00 ± 0.00 1.03 ± 0.02 1.91 ± 0.02 1024.00 ± 0.00 1.03 ± 0.02

n = 4, T = 3,

p = {0.8, 0.6, 0.4, 0.2}
2.58 ± 0.01 699.73 ± 0.08 0.75 ± 0.01 2.59 ± 0.01 699.69 ± 0.09 0.74 ± 0.01 2.58 ± 0.01 699.72 ± 0.08 0.74 ± 0.01
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The lower performance of the greedy heuristic compared to the other two is most noticeable

in the case when all nodes have the same new message rate. Unlike the case in which one

node has a much higher pi than the rest (and therefore leads to a policy in which it is

the only node to transmit), all nodes have equal status and so the future effects of actions

becomes more important. Additionally, because pi is set fairly low, it is now possible for a

solution to have policies in which two nodes transmitting messages on the same timestep.

These policies do not actually result in a lot of collisions because the probability that both

nodes have a full buffer (and therefore actually transmit at the same time), is very low.

For the most part, the fully-cooperative and no-communication heuristics perform similarly

with the only exception being the n = 3, T = 3, pi = 0.4 case in which no-communication

outperforms the other two heuristics. This result is promising because the fully-cooperative

heuristic is easier to compute and so it can be more easily be extended to problems with

longer time horizons as will be done in the following chapter.

In all the results presented, the network starts out with an unknown global state. This leads

to policies in which, if one node has a much higher new message rate, it is the only one

which ever implements a transmit action. If BaGA (or alternating maximization on the

full POSG) is started with a known global state (such as all nodes having full buffers),

then the optimal policy changes. For example, if n = 3, T = 3 and all nodes start with

full buffers, then regardless of the new message rate of each node, a different node will

transmit on each timestep leading to a guaranteed reward of 3. In this fashion, BaGA is

able to generate policies that performed equivalently to the results in Hansen et al. (2004)

for n = 2, p = {0.9, 0.1}, T ≤ 4, and a known initial global state (e.g., all buffers full).

3.4.3 Robotic Tag

The Robotic Tag domain is a 2-robot version of Pineau et al.’s (2003a) Tag problem. In

this problem, two robots have 100 timesteps to herd and capture an opponent that moves

with a known stochastic policy in the discrete environment shown in Figure 3.5. Once the

opponent is herded into the goal cell, the two robots must coordinate on a tag action in

order to receive a reward and finish the task.

The state space for this problem is the cross-product of the two robot positions, ri =

{s0, . . . , s28}, and the opponent state op = {s0, . . . , s28, stagged}. The size of the state

space S = r1 × r2 × op is 25230 states. All three agents start in independently selected

random positions and the game is over when op = stagged. Each robot has five actions,
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Ai = {north, south, east, west, tag}, and all actions have deterministic effects (e.g., an

action of east will always move the robot right a cell unless the robot is at the eastern

boundary of the environment). A shared reward of -1 is imposed for each robot’s motion

action while the tag action results in a reward of +10 to the team if both robots select tag

and the conditions shown in Figure 3.5 are met. Otherwise, this action results in a reward

of -10 to the team.

Each robot is able to detect its current cell position with certainty and so has full observ-

ability of its own local state. Each robot however, is only able to sense only its current cell

and so the position of the opponent is completely unobservable unless the opponent is in

the same cell as the robot. Two versions of this problem are considered: in the first, the

position of the two robots are fully observable to each other (known-teammate-position)

and in the second, a robot only observes its teammate’s position if they are in the same cell

(unknown-teammate-position). There is no communication between the robots and so they

cannot share observations, nor their position in the case of unknown-teammate-position.

The starting position of each robot is, however, always known with certainty. The oppo-

nent always selects actions with full knowledge of the positions of the robots and has a

stochastic policy that is biased towards maximizing its distance to the two robots. In this

fashion, even though multiple agents can be located in the same cell, the robot team can

still move in such a way as to influence the position of the opponent.

This problem is interesting with respect to decentralized decision making for several rea-

sons. First, it is a much larger problem than that traditionally looked at in the POSG lit-

erature. Second, because the opponent is attempting to maximize its distance to the robot

team the robots must coordinate their actions in order to ‘herd’ the opponent towards the

goal cell. This coordinated herding is necessary even in a fully observable version of the

problem and is only made harder by the robots having such limited sensors. Finally, the

robots must also coordinate on selecting the tag action at the same time and in the right

place in order to win.

A fully observable policy was calculated for a robot team that could always observe the op-

ponent using dynamic programming and assuming an infinite-horizon version of the prob-

lem with a discount factor of 0.95. The Q-values generated for this policy were then used

as a QMDP heuristic for calculating utility in the BaGA algorithm. This utility function as-

sumes that, after the game-theoretic reasoning of the current timestep, the robots will have

full observability of the problem.

In the first version of the problem, known-teammate-position, the set of types, Θi, for each
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Figure 3.5: Abstract Wean Hall environment for Robotic Tag. This picture shows the en-

vironment in which the two robots are trying to capture the opponent. They can only

successfully tag the opponent if it is in the cell marked with the star and at least one of the

robots is also in that cell with the other robot in one of Cells 25, 27 or 28.

robot consists of all possible histories of observations of the opponent. It is not necessary

to include information about the actions taken by each robot because their positions are

completely known to the team and actions are deterministic (and therefore, any joint history

that has an action for a robot given by πt that is inconsistent with the robot’s position at

timestep t + 1 can be pruned).10 While this version of the problem has a branching factor

with an upper bound of three (on each timestep there are as many as three times the number

of possible joint histories, or types, as there were on the previous timestep), in practice

many fewer types are kept at each timestep. The common knowledge of teammate position

allows any type for which the policy assigns an action that does not match the robot’s

current position to be pruned from further consideration. Because of this pruning, the size

of the type space for a robot rarely got above 20 in the experimental runs and was frequently

much smaller. As a result, each robot actually has a fairly good idea of what observations

its teammate has made.

10Alternatively, one can consider the local state of each robot to be part of its observations about the global

state of the problem and augment the type space accordingly. All types that do not conform to the true local

state of the robot, however, will be pruned because in the known-teammate-position version of this problem

this local state information is known to be common knowledge.
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In unknown-teammate-position, a history tracks the robot’s position and action taken at

each timestep as well as its observations of its teammate and the opponent. This information

allows the probability distribution over joint types to be modified both by using the policies

πi computed by BaGA and through mutual observations (or lack thereof). This version of

the problem also has a branching factor with an upper bound of three (due to perfect sensing

of both the teammate and opponent); however, there is no longer that common knowledge

of teammate position to keep the size of the type space bounded. Instead, over time, the

size of the type space grows. In the experimental runs, a higher pruning threshold of 0.0025

was used for the unknown-teammate-position condition but still, the total number of types

was about an order of magnitude greater than that of the known-teammate-position variant.

For either version of the problem, each joint type θ contains enough information to define a

belief state bθ over the position of the opponent in the environment and the positions r1 and

r2. It is possible, however, that θ is not a valid joint history and so during the construction

of the set of possible joint histories at timestep t + 1, any joint history that does not result

in a valid belief state is pruned (i.e., its probability of occurring is zero). For example, two

histories that have the robots seeing the opponent in two different cells cannot combine to

create a valid joint history. If observations of the teammate are part of the histories, then

a valid joint history will have teammate observations that are consistent with the robot’s

position as given by their histories. Note that this is a direct consequence of the sensor

model being used in this domain and is not true for all problems.

Given a valid joint type, θ, the utility of taking the actions a1and a2 is:

u(a1, a2, θ) =
∑

s∈sop

bθ(s)Q({r1, r2, s}, {a1, a2})

where Q({r1, r2, s}, {a1, a2}) is the Q-value of taking the joint action {a1, a2} in the state

given by the positions r1, r2 and op = s. Because the definition of a Q-value is the reward in

the current state plus the discounted future reward (assuming an optimal policy is followed

from then on), this heuristic combines the immediate expected reward of taking the actions

a1 and a2 with the future expected reward rather than calculating them separately. For this

problem, joint histories with probability less than 0.00025 were pruned from consideration

in the known-teammate-position case and 0.0025 in the unknown-teammate-position case.

If a robot’s true history is pruned away then it implements the action for the type with

which it has the smallest Hamming distance. In the next chapter, a better method for type

matching is discussed.



104 Chapter 3. Approximate Solutions for POSGs with Common Payoffs

Two common heuristics for partially observable problems were implemented in addition

to BaGA. In these two heuristics, each robot maintains an individual belief state based

only upon its own observations and uses that belief state to make joint action selections. It

then implements its half of the joint action it selected. In the case of unknown-teammate-

position, each robot also maintains a believed position of its teammate that it updates by

assuming that its teammate will implement the other half of the joint action it selects at

each timestep and by using any positive observations of its teammate (the only information

about action selection to which it has access). That believed position is then used as the

value for r−i in its action-selection process.

In the Most Likely State (MLS) heuristic, a robot selects the most likely opponent state

from its belief state and then implements its half of the best joint action for that state as

given by the fully observable policy. In the QMDP heuristic, the robot implements its half

of the joint action that maximizes its expected reward given its current belief state. This

QMDP heuristic is similar to the selfish application of the Lady and The Tiger’s utility

functions in that each robot implements the action given by the BaGA utility function but

for its independently constructed belief state.

Table 3.6 compares the performance of MLS, QMDP and BaGA for both the known-

teammate-position and unknown-teammate-position conditions. Success is the percentage

of trials in which the opponent is caught within 100 timesteps. Also included is how a team

with full individual observability of the problem performs. While this is an upper bound

on performance in this domain, it is not intended as a realistic estimate of how the opti-

mal solution to this problem, given the true individual partial observability, would perform.

A more realistic bound would be found by solving the fully cooperative POMDP version

of this problem; however, the problem is too large to do so using current approximation

techniques.

With an opponent that tries to maximize its distance from the team, a good strategy is for

each robot to go towards different ends of the main corridor and then ‘herd’ the opponent

towards the goal cell. Herding can be accomplished without ever actually making a positive

identification of the opponent’s position. For example, using the BaGA policy, each robot

makes its way down to one of the two ends of the corridor and then waits a couple of

timesteps until its teammate reaches the other end. By this time, it is highly likely that, if

the opponent was in this corridor, it would have started to make its way towards the middle.

The robots then start to move towards the middle of the corridor in lock-step, driving the

opponent up into the room at the top. The robots then move into this room in such a way

as to force the opponent into the upper right corner.
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Table 3.6: Results for Robotic Tag in the Wean Hall environment. Average cumulative

reward for the team as well as average number of iterations to capture the opponent are

shown with results averaged over 10000 trials with 95% confidence intervals shown. %

success is the percentage of trials in which the opponent was successfully tagged within 100

timesteps. Results are also shown for the performance of the fully observable policy under

full observability. In the known-teammate-position variation, joint types with probability

less than 0.00025 are removed from the type space and in the unknown-teammate-position

this threshold was raised to 0.0025.

Algorithm Average Reward Average Iterations % Success

known-teammate-position condition

Fully Observable -17.61 ± 0.24 14.80 ± 0.12 100.0%

BaGA -73.26 ± 1.32 39.24 ± 0.59 86.8%

MLS -106.32 ± 1.51 54.72 ± 0.11 74.2%

QMDP -168.70 ± 1.48 78.88 ± 0.57 41.0%

unknown-teammate-position condition

BaGA -88.15 ± 1.52 45.69 ± 0.67 77.5%

MLS -186.85 ± 1.63 82.74 ± 0.64 23.4%

QMDP -202.04 ± 0.81 96.23 ± 0.33 4.9%

Depending on the starting conditions of the two robots, BaGA does not always follow this

policy exactly. For example, consider the robot trajectories shown in Figure 3.6. In this

case, the two robots start near the top room, and so they move towards the goal cell in an

attempt to quickly catch the opponent (Figure 3.6 (a)). If the opponent was there then it

would be captured; however, it is not, and so the robots move back down into the corridor

(Figure 3.6 (b)) and start herding the opponent towards the goal (Figures 3.6 (c) through

(f)). While this sort of strategy pays off enough to make it worth while in expectation, if

the opponent is not in the top room initially, the discovery of this fact usually comes at the

cost of a failed tag action initiated by the robot that is not in the goal cell.

In other runs, because the opponent’s behaviour is only biased towards moving away from

the team, the low-probability event of the opponent not moving away from the end of a

corridor causes the robot that is handling that end of the corridor to start to move towards

the middle without herding the opponent in front of it. If the robot sees the opponent it is

able to correct its policy; otherwise, once this it discovered through a miscoordination of

the tag action at the goal cell, the robots go back and are successful. A robot, however, does

wait multiple timesteps at the end of a corridor, which minimizes the probability that the

opponent will not move. Overall, the robots are able to capture the opponent about 87% of
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the time within 100 steps, averaging 40 timesteps on successful trials.

With the MLS heuristic, the robots will only pick coordinated actions if they have similar

belief states. If they do have similar beliefs, then they will both select similar states as

the most likely position for the opponent and follow a similar herding strategy to the one

above, but modified to take into account where they think the opponent actually is. For

example, if they start in the middle of the corridor, then the belief about the opponent’s

position quickly becomes tri-modal as the opponent will move away into either the room

or opposing ends of the corridor. Depending on which mode has higher probability, the

robots will either sweep towards the ends of the hall or into the room directly. As more

observations are made, the distribution over the modes will shift, which can cause a robot

to decide that a new location is more likely. For example, if a robot is moving towards the

left end of the corridor because it believes one of those positions to be the most likely state

for the opponent but then switches to believing the room is more likely, it will not go right

to the end of the corridor but instead turn around. Therefore, if the opponent was actually

at the end of the corridor, it will not be herded. Furthermore, if the robots start in very

different locations, their belief states will still be multi-modal, but can be quite different

from each other, leading each robot to select a different position for the opponent and as a

result be less effective with its herding. Eventually, as more time passes, the belief states

of the robots will become more accurate, allowing them to capture the opponent. It takes

about 15 more timesteps on average for MLS to do so than it does BaGA.

QMDP also results in robots creating multi-modal beliefs about the opponent’s position;

however, because each robot will pick the joint action with highest expected reward, this

heuristic can fall into the common trap of using such an approach. As discussed by Cas-

sandra (1998), QMDP assumes that any uncertainty will disappear after the current action

is executed and so if there is one action that is essentially reward neutral (receives similar

reward for each possible state), then it will be selected by QMDP because the algorithm

thinks it can still do well on the future (fully observable) steps. But of course, if that action

has little or no effect on the belief state then it will continue to be selected, causing a lack

of progress towards the goal. For Robotic Tag, if the best action for each mode of the belief

is very different, then no single action is best for all cases and so actions which have the

robots stay in their current positions or move towards the center of the environment appear

better (i.e., are reward neutral). As a result there are certain robot positions or sequences

of actions that lead the team to stop moving or to oscillate between two locations. This

behaviour is reflected in the much lower success rate of QMDP . MLS does not fall into this

same trap because the robots always choose actions that are best for a single position. Un-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Example of a BaGA policy for the known-teammate-position variation of

Robotic Tag. The trajectories taken by the robots demonstrate how the team coordinates

to capture the opponent without any communication. The robots first search the top room

and then move out into the ends of the corridors. Members of the robot team are shown as

the solid circles.
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less this most likely opponent position rapidly flip-flops between two locations, the robots

are able to make progress. While BaGA does use QMDP as its heuristic, for the most part,

the additional step of game-theoretic reasoning on top of QMDP prevents the robots from

engaging in this type of behaviour. There is, however, one configuration that does cause the

robots to stop moving or oscillate. It occurs when one robot is in Cell 7 and the other in Cell

20 and and is caused by how the cell configuration, sensor model and the opponent’s policy

interact with each other to create belief states. The majority of the trials in which the team

does not catch the opponent seem to be caused by the robots entering this configuration,

and not being able to leave it.

The unknown-teammate-position modification highlights the importance of reasoning about

the actions and experiences of others. With MLS and QMDP , the robots assume that their

teammate will implement the other half of the joint action they select and use that assump-

tion to update a believed position of the teammate used for future action selection. This

incorrect assumption makes the believed position of the teammate quickly diverge from the

true position with only positive observations of the teammate able to rectify the situation.

In this problem, however, robots rarely move into the same cell. Furthermore, each robot

must use this believed location of its teammate to propagate its belief about the opponent’s

position because the opponent is trying to move away from the team. As a result, unlike in

the known-teammate-position version, robots might actually hold a belief about the oppo-

nent’s position that is totally inconsistent with its true position. For example, a robot might

believe that the opponent is in the top room because it is at one end of the corridor and it

believes its teammate is at the other. In reality, if the teammates are beside each other (but

in separate cells), there is also a high probability that the opponent is just at the other end

of the corridor rather than the low (or sometimes zero) probability believed by the robot.

This is a self-reinforcing problem: as the belief state of the two robots starts to diverge, the

joint actions they select differ leading them to update the believed position of the teammate

incorrectly, which in turn causes their belief states to diverge from each other even more.

As the believed teammate and opponent position becomes more and more incorrect, the

joint action selected by a robot becomes less appropriate and less likely to match the one

selected by its teammate, which leads to sub-optimal behaviour. For example, in MLS

and QMDP robots frequently go down the same branch of the hallway because they both

incorrectly make the assumption that their teammate will go down the other branch.

With BaGA and its maintenance of a probability distribution over joint types, however,

the robots are able to better track the true position of their teammate, allowing them to

effectively maintain consistent belief states over the opponent’s position and therefore co-
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ordinate their actions. As a result, while MLS and QMDP controllers for the unknown-

teammate-position case show a huge degradation in performance, BaGA does not. Instead,

it performs much more similarly to how it did in known-teammate-position, both with re-

spect to the percentage of successful runs and average reward. If one examines the joint

type that is most probable given the true type of a robot, that joint type will usually reflect

the true position of its teammate even though the robots have never seen each other (aside

from common knowledge of starting positions). Because each robot has a very good idea

about where its teammate is, they are still able to perform the herding maneuver required

to sweep the opponent into the goal cell.

An example of a BaGA policy for the unknown-teammate-position case is shown in Figure

3.7. In Figures 3.7 (a) and (b), the members of the team make their way to the ends of the

corridors. This drives the opponent out of the right-hand corridor and up towards the top

room. After a few timesteps, the robots start to make their way back towards the center

of the environment (Figures 3.7 (c) and (d)), and then up into the top room. Finally, they

coordinate on trapping the opponent and tagging it (Figure 3.7 (f)).

3.5 Summary

In this chapter, two algorithms for finding approximate solutions to POSGs with common

payoffs were presented. The first, an alternating-maximization algorithm, is used to find

locally optimal solutions to an entire POSG at once. While it can be used to find solutions

for small problems like the Lady and the Tiger and MABC, this algorithm still has high

memory and computational costs, making it inappropriate for bigger problems like Robotic

Tag.

The second algorithm presented, BaGA, is the core contribution of this thesis. BaGA finds

approximate solutions to a POSG by transforming the original problem into a sequence

of Bayesian games representing each timestep. In each of these smaller games, the robots

reason about all possible joint histories of observations and actions that might have occurred

in order to find policies for each member of team. Each policy is a mapping from a robot’s

set of possible individual histories to its sets of actions. So long as each robot builds and

solves the same sequence of games, the team can coordinate on action selection even in

the absence of communication. Heuristic evaluations of expected future reward and the

pruning of low-probability joint histories are used to help keep computation tractable. This

process results in policies that are locally optimal with respect to the heuristic function
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Example of a BaGA policy for the unknown-teammate-position variation of

Robotic Tag. The trajectories taken by the robots demonstrate how the team coordinates

to capture the opponent even when the robots do not know where their teammate is with

certainty. Members of the robot team are shown as the solid circles.
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used.

This basic BaGA algorithm is able to find solutions for Lady and the Tiger and MABC that

perform comparably to those generated by alternating maximization. For the larger Robotic

Tag domain, the trajectories taken by BaGA-controlled robots demonstrate how BaGA re-

sults in better coordination than two common heuristics for decision-theoretic control. Over

the next two chapters, additional refinements will be made to BaGA in order to further im-

prove its efficiency and performance.





Chapter 4

Improving Efficiency with Clustering

The benefit of using BaGA over the full POSG for robot controllers is that it calculates

a good approximation of the optimal policy tractably. The overall desirability of this ap-

proximation is therefore closely tied to how fast BaGA can construct these policies. The

required computation time, however, is directly related to the number of individual and

joint histories that are maintained in the type and joint-type spaces. Limiting the algorithm

to use only a representative fraction of the total number of histories is key to improving the

overall efficiency of BaGA and, therefore, to applying this approach to real robot problems.

In this chapter, different ways of limiting the number of histories maintained in the joint-

type space by the BaGA algorithm are compared. The simplest of these methods is the

pruning used by BaGA to remove joint types from Θt that have probability lower than some

threshold. While this scheme is an efficient means of keeping the number of types, or histo-

ries, low, it generates a crude approximation of the real joint-history space. Common sense

dictates that better performance would be achieved by grouping together similar histories;

after all, when humans make decisions they do not consider the exact sequence of actions

and observations they have made since birth, but only those features that are relevant to

their current decision. BaGA-Cluster captures that intuition by grouping together histories

that result in the same decisions being made now and in the future (Emery-Montemerlo

et al., 2005).

For example, in the Lady and the Tiger problem, BaGA applied to a 6-step version of the

problem results in a policy in which an agent listens twice, opens a door if it receives the

same observation of the tiger’s position, listens twice again and then again opens a door if it

received the same two observations of the tiger’s position. For all histories in which Agent

1 opens a door on the third timestep, by the time the last timestep is reached, the best action

113
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for it to take will not be based on any of the observations it made in timesteps 1 through

3, because, if a door is opened, then the tiger’s position is reset and those observations

provide no useful information. This notion extends to Agent 2’s action selection. Agent 2

does not have to worry about the actual observations made by Agent 1 before timestep 3:

given Agent 1 opened the door, those observations have no bearing on the current position

of the tiger and so they all lead to the same joint belief when combined with any one Agent

2’s own individual histories. Therefore, they also all have the same impact on the expected

value of actions. The only important thing from Agent 2’s perspective is, given one of its

observation histories, what is the probability that Agent 1 opened a door on timestep 3?

This quantity can be found by summing the conditional probabilities of all of Agent 1’s

histories in which it does open the door.

This idea can be extrapolated to any sequence of observations and actions that ends with

a door being opened. Regardless of what those observations were, for all those histories

the agent currently believes that the tiger has just reset its position. For any instantiation

of those past observations and actions, the same action would be now be selected by the

agent: to listen. These histories also have similar effects on the decision-making process of

the teammate. A great deal of computational savings could be made if, instead of reasoning

about all of those possible histories, the agent (and its teammate) could group them together.

Of course, stating that similar histories should be grouped together is a nebulous statement

that requires a formal definition of what is meant by ‘similar’.

4.1 Low-Probability Pruning

In the original implementation of BaGA, the number of types maintained per robot was

kept manageable by pruning out low-probability joint types. If the probability of a joint

type, P (θt), was below some threshold, it was cut and the probability over the remaining

joint types, P (Θt), renormalized. The allowable individual types for each robot were then

taken to be those that existed in the set of remaining joint types.

At run time, a robot’s true individual history may be represented by one of the types that

was pruned. In this case, the best match to the true history is found amongst the retained

types, and the robot acts as if this best match was the history of observations and actions that

occurred instead. In BaGA, this match was originally made using the Hamming distance.

There are better ways to define the best match. A simple one that works well is to look at

reward profiles: the reward profile for an individual type θt
i is the vector rθt

i whose elements
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are:

r
θt
i

a = E(u(a, θt)|θt
i). (4.1)

That is, r
θt
i

a is the robot’s belief about how much reward it will receive, both now and in

the future, when the team performs the joint action a, given its history as represented by θt
i

and the utility function u. This expectation is calculated using the conditional probability

distribution P (Θt|θt
i) induced over the set of joint types by θt

i . Similarly, if there is a true

history ht
i for which there is no associated θt

i because of low-probability pruning, its reward

profile rht
i can be found. This approach, however, requires more work as the probability

distribution P (Θt|ht
i) must be calculated.

Given the reward profiles for the true history ht
i and some candidate match θ′i, the two are

compared using their worst-case reward difference:

max
a∈A

|r
ht

i
a − r

θ′i
a | (4.2)

and the match that has the smallest worst-case reward difference from the true history

selected. At run time, the robot executes the action given by πt
i(θ

′

i) if θ′i is the best match

according to this criterion. Reward profiles are used because a history should only be

matched to a type for which the same action would be selected now and in the future. In

comparison, directly comparing the expected rewards of types (i.e., the reward generated

by the best individual action to take for each type) does not meet this requirement because

different actions can lead to the same payoffs. For example, in the Lady and the Tiger

problem, the types {listen, hear-left, listen, hear-left} and {listen, hear-right, listen, hear-

right} both lead to an agent opening a door. The immediate expected value of opening

the (best) door is the same for both types, and the expected future reward is also the same

because, in both cases, the position of the tiger will be reset. The actual door to open,

however, is very different. If an agent’s true history is {listen, hear-left, listen, hear-left},

and it uses only expected reward to match that history to one of these two types, then the

agent could match its history to the wrong one and end up opening the left door, even though

it should open the right door. By comparing reward profiles, however, this difference would

be identified.
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4.1.1 Limitations of Low-Probability Pruning

Low-probability pruning is a very simple way to reduce the number of types maintained at

each timestep of the BaGA algorithm. It requires no additional steps to the basic algorithm

given in Algorithm 3.2, which already includes a pruningThreshold parameter. This kind of

pruning can be effective in small domains such as the Lady and The Tiger because relatively

few joint histories have to be pruned to keep computation manageable; however, it is a

crude approximation to pretend that a history’s importance for planning is proportional to

its probability. When there are a large number of histories that each have a low probability

of occurring but together represent a substantial fraction of the total probability mass, low-

probability pruning can remove all of them and cause a significant negative change in the

predicated outcome of the game.

4.2 Clustering

Instead of blindly removing low-probability histories, it is necessary to make sure that

each history that is pruned can be adequately represented by some other similar history

that is retained in the set of types. That is, histories need to be clustered into groups that

have similar predicted outcomes, and then a representative history for each group used to

build up the type space for each robot. If done properly, the probability distribution over

these clusters should be an accurate representation of the true distribution over the original

histories. As the experimental results will show, making sure to retain a representative type

from each cluster of observation histories can yield a substantial improvement in the reward

achieved by the team over retaining only higher probability types. In fact, improvement is

seen even in runs in which the robots’ true histories were not pruned: the performance of

the team depends not just on what the robots have seen but also on how well they reason

about what they might have seen.

At each timestep t, the BaGA-Cluster algorithm starts with the set of joint types, Θt−1 and,

using the associated joint history represented by each θt−1, constructs all one-step exten-

sions by appending each possible joint action and observation. From these joint histories

of length t, all possible individual histories for each robot are identified. Clustering is then

performed on these individual histories to produce a final set of history clusters C t
i for step

t. Each history cluster cti is represented by an exemplar history ht
i (generally the individual

history within the cluster with highest probability), and this set of representative individ-

ual histories becomes the type space Θt
i for each robot. Unlike low-probability pruning,
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clustering operates on individual histories rather than joint types. This way, each robot can

determine, without communication, to which cluster its true history belongs. The corre-

sponding representative joint histories, or joint-type space Θt, is the cross product of all of

the exemplars for each history cluster.

Once clustering has been completed, a reduced Bayesian game is constructed using those

histories that now make up Θt. It is solved to find a policy for each robot that assigns an

action to each of its history clusters. As with low-probability pruning, at run time, worst-

case reward difference is used to match the true history of a robot to one of its clusters and

select an action (with a quick, first pass done to see if a robot’s true history directly matches

one of the exemplar histories exactly).1

There are many different types of clustering algorithms (Everitt et al., 2001), but in this

thesis a version of agglomerative clustering is used. In BaGA-Cluster, each history starts

off in its own cluster and then similar clusters are merged together until a stopping criterion

is met. The final set of clusters becomes the type space Θt
i for the robot. Similarity between

clusters is determined by comparing the reward profiles either of representative elements

from each cluster (i.e., its exemplar history) or of the clusters as a whole. The reward profile

for a cluster ci, r
ci is defined by a straightforward generalization of Equation 4.1:

rci

a = E(rhi

a |hi ∈ ci) = E(u(a, h)|ci).

If each cluster ci is initialized to contain only one history hi then rci = rhi and P (ci) =

P (hi). This initialization allows the reward profile of the larger cluster ci ∪ c
′
i to be calcu-

lated as:

r
ci∪c′i
a = [P (ci)r

ci

a + P (c′i)r
c′i
a ]/[P (ci) + P (c′i)].

Worst-case reward difference, as defined in Equation 4.2, could be used for determining the

similarity two clusters. However, because there is information about the prior probability of

both clusters, i.e., P (ci) and P (c′i), worst-case expected loss is used instead (the probability

1Alternatively, the algorithm could keep track of all histories that are contained within each cluster and use

that information to match a robot’s true history to a cluster at run time. However, in order to keep this match-

ing process a simple look up, the set of histories making up each cluster would have to be propagated forward

for each timestep. While there would still be computational savings from using only the exemplars for build-

ing and solving the Bayesian game at each timestep (and for generating the next set of clusters), maintaining

the set of all possible individual histories and their associated clusters requires O(|Ai||Zi|) operations for

each of the O(|Zi|
t−1) possible individual histories of each robot.
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Algorithm 4.1: High-level overview of the BaGA-Cluster algorithm. Elements shown in

bold are those that represent changes from the basic BaGA algorithm of Chapter 3.

1: Construct all possible joint histories from the set of individual exemplar histories given by Θt−1
i and

the policy πt−1. Update the probability distribution over the set.

2: For each robot construct the set of all individual histories H t
i and their probability distribution.

3: Cluster together all individual histories with similar expected reward profiles until no more

clustering can be done.

4: Construct and solve the corresponding Bayesian game, BGt, using the final clusters, Ct
i , as the type

space Θt
i.

5: Find the best match to the true history ht
i from the set Ct

i . The robot’s matching type θt
i is the type

representing cti.
6: Implement the action given by the solution, at

i = πt
i(θ

t
i).

of a robot’s true observation history is not available at run time and so worst-case reward

difference is still used for matching a true history to a cluster). Worst-case expected loss

between two histories hi and h′i is defined to be:

max
a∈A

(

[P (hi)|r
hi

a − r
hi∪h′

i
a | + P (h′i)|r

h′
i

a − r
hi∪h′

i
a |]/P (hi ∪ h

′
i)
)

.

Worst-case expected loss between two clusters is defined analogously in terms of r
ci∪c′i
a :

max
a∈A

(

[P (ci)|r
ci

a − r
ci∪c′i
a | + P (c′i)|r

c′i
a − r

ci∪c′i
a |]/[P (ci) + P (c′i)]

)

.

Worst-case expected loss is a good measure of the similarity of the reward profile for two

clusters because it indicates how much loss in reward one could expect by merging the

clusters together. As with histories, it is important to determine if two clusters have sim-

ilar reward profiles (rather than just similar expected reward) because robots will end up

performing the same action for each element of the cluster. Furthermore, augmenting a

comparison of expected reward with a check to make sure it was generated by the same

action is not sufficient. The expected value of non-optimal actions can give an indication

of whether or not there are some other differences between the histories worth preserv-

ing, especially as the quality of the heuristic used for calculating the future expected value

of actions in u degrades. A high-level overview of the clustering algorithm is shown in

Algorithm 4.1.

Two different algorithms for selecting and merging pairs of clusters were considered. These

algorithms are low-probability clustering and minimum-distance clustering. Low-probability

clustering is designed to be similar to the low-probability pruning algorithm, while minimum-

distance clustering is designed to produce a better clustering at a higher computational cost.



4.2. Clustering 119

4.2.1 Low-Probability Clustering

In low-probability clustering, the set of clusters (each one containing a single history) is

ordered randomly and then a single pass is made through the list of clusters. Each cluster

is tested to determine whether its probability is below a threshold; if so, it is removed from

the list and merged with its nearest remaining neighbour as determined by the worst-case

expected loss between their exemplar histories. The neighbour’s exemplar history stays the

same, and its probability is incremented by the probability of the cluster being merged in.

This clustering method relies on randomization, so the synchronization of the random num-

ber generators of the robots is crucial to ensure that each robot performs the same series of

clustering operations and arrives at identical final clusters. This synchronization require-

ment, however, is already met by the original BaGA algorithm because of the alternating-

maximization algorithm’s dependence on randomization.

Low-probability clustering has some similarities to low-probability pruning. In both ap-

proaches, a history is considered as a candidate for pruning or clustering if it is less likely

to occur. As a result, a robot’s true history is much more likely to match one of the exem-

plar histories at execution time. Like low-probability pruning, low-probability clustering

has the drawback that all low-probability histories must be matched to another cluster even

if they are far away from all other candidates. Unlike pruning, however, it maintains a

distribution over joint histories that more closely matches the original distribution. By ran-

domly ordering the set of candidate clusters, it is also possible that individual histories that,

on their own, have too low a probability to keep, will have other low-probability histories

matched with them and therefore survive to the final set of histories.

4.2.2 Minimum-Distance Clustering

Like low-probability clustering, minimum-distance clustering does not operates on clusters

of joint histories but rather groups of individual histories. In minimum-distance clustering,

the two most similar clusters are repeatedly found and merged together. The similarity

measure used is that of worst-case expected loss between the two reward profiles. The

algorithm stops when the closest pair of clusters is too far apart, or when a minimum

number of clusters is reached. By setting the maximum-allowable distance between clusters

for which merging will still occur, a tradeoff between the amount of loss in reward one is

willing to incur and computational speed (minimizing the number of clusters) can be made.
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The exemplar history for each cluster is simply the highest probability individual history in

that cluster. This representative element is only used for generating the set of all possible

joint histories at the next timestep; cluster merging and matching of the true observation

history to a cluster are both done using the clusters’ reward profiles.2 That is, at run time,

each robot matches its true history ht
i to the type with which it has the minimum worst-case

reward difference:

arg min
θt
i
∈Θt

i

(max
a∈A

|r
ht

i
a − r

θt
i

a |)

where each type θt
i corresponds to a cluster cti and rθt

i = rct
i .

Unlike single-pass low-probability pruning, minimum-distance clustering is a multi-pass

algorithm and therefore requires more computation time than low-probability pruning. It

does, however, result in a more accurate representation of the original type space because

outliers in reward-profile space, regardless if they are high or low probability, are still

maintained. With respect to picking one of these two types of clustering, one must trade off

between the speed of clustering with the quality of the resulting clusters. It is also possible

to combine clustering with low-probability pruning by removing any joint history with

probability less than some threshold from the set of all possible joint histories of length t

before constructing the set of clusters.

Table 4.1 provides a comparison of low-probability pruning, low-probability clustering and

minimum-distance clustering. The key difference between pruning and clustering is that the

former operates on joint histories while the latter operates on the set of individual histories

for each robot. BaGA-Cluster, therefore, requires each robot to cluster not only its own

histories, but also those of its teammates in order to guarantee that each robot constructs

and solves the same Bayesian game at timestep t.

2With respect to implementation, the matching process actually has a first pass in which each exemplar

history is compared to the true observation history to see if they are identical. If this pass is unsuccessful,

then the reward profile for the true observation history is generated and reward profile matching performed.

Generating this reward profile, however, is expensive and so the success of the first pass is maximized by

setting the exemplar of each cluster to be its highest probability individual. Theoretically, other alternatives,

such as the history that minimizes intra-cluster expected loss, could be used.
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Table 4.1: Comparison of the different methods for limiting the size of the joint-type space. Low-probability pruning, low-

probability clustering and minimum-distance clustering are compared with respect to the space upon which they act, the parameter

used to select an element of that space for pruning/clustering, the outcome of the operation, the complexity of the operation

and, finally, the advantages and disadvantages of each approach. In all cases, the matching of the true observation history to a

maintained history is done by finding the best match in reward-profile space.

Method Space Parameter Outcome Complexity Advantages Disadvantages

Low-Probability

Pruning

Joint

histories

Prior probability of

joint history θ, i.e.,

P (θ) given P (Θ)

Joint history not meeting

parameter threshold is

removed from space

No additional costs, occurs

during generation of all

possible joint histories

Fast Poor approximation of

original distributions,

Low-probability events

still have impact on

expected performance

Low-Probability

Clustering

Individual

histories

Prior probability of

individual history θi,

i.e., P (θi) given

P (Θ)

Individual history not

meeting parameter

threshold is merged with

nearest neighbour in

reward space

Single pass once set of all

individual histories created

from set of joint histories

Single pass,

Groups of low-probability

histories that are close

enough can cluster

together and survive

Low-probability outliers in

reward-profile space can

be lost

Minimum-Distance

Clustering

Individual

histories

Maximum expected

loss between two

history clusters c1 and

c2

If distance between two

closest clusters is below

parameter threshold, then

clusters are merged

Multi-pass once set of all

individual histories created

from set of joint histories

Outliers in reward-profile

space remain even if low

probability,

More intuitive parameter

to set

Multi-pass



122 Chapter 4. Improving Efficiency with Clustering

Algorithm 4.2: BayesianGameWithClustering
Input: I,Θ, A, P (Θ), Z, S, T,R,O, randSeed

Output: π,Θ′, P (Θ′)

begin

setSeed(randSeed)
for a ∈ A, θ ∈ Θ do

u(a, θ)← heuristicV alue(a, beliefState(θ))

π ← findPolicies(I,Θ, A, P (Θ), u)
Θ′,P (Θ′)←−MinimumDistanceClustering(I,Θ, A, P (Θ), π, u, Z, S, T,R,O)

end

4.3 Algorithms for Minimum-Distance Clustering

Algorithms for the implementation of minimum-distance clustering are shown in Algo-

rithms 4.2, 4.3 and 4.4. As with BaGA, the outer loop of BaGA-Cluster is given by

Algorithm 3.1; however, Algorithm 3.2, BayesianGame, is replaced with Algorithm 4.2,

BayesianGameWithClustering. The function matchToType is also assumed to use reward-

profile space matching rather than Hamming distance as it did in Chapter 3. In the al-

gorithm BayesianGameWithClustering, a Bayesian game is constructed and solved using

the dynamics of the overall POSG, a specific joint-type space Θ, and the probability dis-

tribution over that space P (Θ). The final step in the algorithm is to create the joint-type

space and distribution over that space for the next timestep of the problem. In this case,

minimum-distance clustering is used to create of this space.

Algorithm 4.3, MinimumDistanceClustering, generates all possible one-step extensions of

each joint type θ ∈ Θ and stores them in the set of proposed joint types Γ and proposed

individual types Γi. A cluster cx is then created for each of a robot’s types γi ∈ Γi. The

exemplar history for cluster cx is set to γi and the cluster’s reward profile rcx calculated (η

is used in these calculations to represent a generic member of Γ). Then, Algorithm 4.4 is

used to repeatedly identify the two closest clusters, c1 and c2, by finding the pair of clus-

ters within set Ci with the smallest maximum expected loss that would occur if they were

merged. If this maximum expected loss is smaller than a specified threshold, threshold,

the two clusters are merged together. If c1 has higher probability of occurring, then the ex-

emplar history c1 is adopted as the exemplar history of the merged cluster. Otherwise, the

exemplar history of cluster c2 is used. When this algorithm terminates, the exemplar histo-

ries in each of the remaining clusters and the probability distribution over them is copied

into the set of final types Θ′
i and final joint types Θ′.

If low-probability clustering were to be used instead of minimum-distance clustering, Al-
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Algorithm 4.3: MinimumDistanceClustering
Input: I,Θ, A, P (Θ), π, u, Z, S, T,R,O

Output: Θ′, P (Θ′)

begin

Γ←− ∅
Γi ←− ∅, ∀i ∈ I
for θ ∈ Θ,z ∈ Z, a ∈ A do

γ ← θ ∪ z ∪ a
P (γ)← P (z, a|θ)P (θ)
Γ← Γ ∪ γ
Γi ← Γi ∪ γi,∀i ∈ I

/*initializing clusters */

for i ∈ I do

x← 0
Ci ← 0
for γi ∈ Γi do

cx ← γi

P (cx)←
∑

η∈Γ,ηi=γi
P (η)

for a ∈ A do

rcx
a ←

∑

η∈Γ
P (η|γi)ui(a, η)

Ci ← Ci ∪ cx
x← x+ 1

/*performing clustering */

for i ∈ I do

while minDist < threshold do

c1,c2,minDist← TwoClosestClusters(Ci, r)
if P (c1) < P (c2) then

P (c1)← P (c1) + P (c2)
for a ∈ A do

rc1

a ← (P (c1)r
c1

a + P (c2)r
c2

a )/(P (c1) + P (c2))

Ci ← Ci − c2
P (c2)← 0
for c−i ∈ C−i do

P (c−i ∪ c1)← P (c−i ∪ c1) + P (c−i ∪ c2)
P (c−i ∪ c2)← 0

else

P (c2)← P (c2) + P (c2)
for a ∈ A do

rc2

a ← (P (c1)r
c1

a + P (c2)r
c2

a )/(P (c1) + P (c2))

Ci ← Ci − c1
P (c1)← 0
for c−i ∈ C−i do

P (c−i ∪ c2)← P (c−i ∪ c1) + P (c−i ∪ c2)
P (c−i ∪ c1)← 0

Θ′ ← C
P (Θ′)← P (C)

end



124 Chapter 4. Improving Efficiency with Clustering

Algorithm 4.4: TwoClosestClusters
Input: C, r

Output: c1, c2,minDist

begin

minDist← 0
for cx ∈ C do

for cy ∈ C do

expectedLoss← 0
for a ∈ A do

r
cx∪cy

a ← (P (cx)rcx
a + P (cy)r

cy

a )/(P (cx) + P (cy))

expectedLoss← max{expectedLoss, P (cx)|rcx
a − r

cx∪cy

a |+ P (cy)|r
cy

a − r
cx∪cy

a | }

if expectedLoss < minDist then

minDist← expectedLoss
c1 ← cx
c2 ← cy

end

gorithm 4.3 would be modified to perform a single pass through the set of possible clusters

Ci of each robot. If a cluster cx is below the pruning threshold, then its closest match cy

is found in the set Ci. Any probability mass is transferred to cy and cx is removed from

Ci. Low-probability pruning occurs during the construction of all one-step extensions of

the joint types of timestep t. If a proposed new joint type γ has probability lower than the

threshold, it is simply not added into the set Γ.

4.3.1 Computational Complexity

All three ways of reducing the number of types requires the enumeration of all possible

one-step extensions to the joint-type space of the previous timestep, which has a cost of

|Θt−1||Z||A| or an upper bound ofO(|Θt−1|
(

|Z∗||A∗|
)n

) (reminder, the subscript ∗ denotes

the biggest set of any one robot). Low-probability pruning does not require additional

computation, as it prunes during the construction of Γ. Clustering, however, does.

Minimum-distance clustering requires the reward profile of each cluster to be calculated.

As each cluster is initialized with one of a robot’s possible types, each robot starts with

|Γi| = |Θt−1
i ||Zi||Ai| clusters. The algorithm must then iterate over all possible types in Γ−i

in order to calculate the reward profile for a cluster leading to an overall cost of |Γ∗|
n. Each

iteration of clustering itself requiresO
(

|C∗|
2) operations to find the two closest clusters. On

the first iteration, |C∗| = |Γ∗| and on the k-th iteration |C∗| = |Γ∗|−k+1. In the worst case,

there will be only one final cluster and so |Γ∗|−1 iterations will be required. As a result, the
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upper bound on the cost of minimum-distance clustering is |Γ∗|
n + n

(
∑|Γ∗|−1

k=1 (|Γ∗| − k)2
)

which is O
(

|Γ∗|
n + n|Γ∗|

3
)

.

Low-probability clustering also requires the reward profile of clusters to be calculated;

however, only a single pass will done through the set of clusters for each robot. This

procedure results in a cost of O
(

|Γ∗|
n + n|Γ∗|

2
)

.

4.3.2 Additional Issues

It is possible to construct problems in which there will be two clusters with identical (or

nearly identical) reward profiles that should not be merged together. This situation would

occur if the two clusters lead to very different conditional probability distributions over

teammates’ clusters because it suggests that, in the future, differences between the two

clusters need to be preserved. For example, consider the case where Robot 1 has two clus-

ters, a and b, and Robot 2 has two clusters c and d. Clusters a and b have identical reward

profiles; however, while the joint types {a,c} and {b,d} are valid, the joint types {a,d} and

{b,c} are not because they are made up of individual types that are inconsistent with each

other. For example, in Robotic Tag a joint type in which the robots observe the opponent in

different cells or observe a teammate in a cell that does not correlate to the teammate’s true

position is not valid. A validity vector can be defined for each cluster in which a one or a

zero is assigned to each possible set of teammates’ clusters indicating whether or not the

robot’s current cluster results in a valid or non-valid joint type in combination with them.

Generally, non-valid joint types do not exist in the set of all possible joint types because

they have zero probability of occurring. It is only during the clustering process that one

starts to consider them because the final set of joint types is the cross-product of the final

set of clusters for each robot. So, if clusters a and b are merged together, because their

reward profiles are the same, then (assuming that a becomes the exemplar of the cluster)

both {a,c} and {a,d} would have to be considered valid joint types or some information

will be lost. Clearly, the solution is to not merge a and b, leading to to an additional check

during the clustering process in which, if two clusters do not have the same validity vector,

then they cannot be a candidate for merging no matter how similar their reward profiles are.

This problem is actually not just limited to whether or not two clusters lead to similar

validity vectors, but whether or not the two clusters lead to similar conditional probabil-

ity distributions over joint types. However, one can think of these validity vectors as a

thresholded approximation of these probability distributions. To fully address this issue,
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agglomerative clustering could be replaced with divisive clustering in which clusters are

repeatedly split if elements within the clusters lead to different reward profiles or differ-

ent probability distributions over the clusters of others.3 Divisive clustering would require

multiple passes, not just within the set of clusters for each robot but also over the set of

robots because splitting one robot’s cluster may lead to splits in another robot’s clusters.

It should be note that in the types of problems examined in this thesis, clusters with similar

reward profiles generally do have similar distributions over the clusters of others. Usually,

unless a problem has been specifically constructed to highlight this issue, differences in

probability distributions translate into differences in expected reward and reward profiles.

For this reason, agglomerative clustering has been used, with the additional validity vector

check for the MABC and robotic tag domains.

4.4 Experimental Results

In order to test the effectiveness of BaGA-Cluster, the algorithm was implemented in two

domains: the Lady and the Tiger and the Multiple Access Broadcast Channel problems

of Section 3.4. In this section, the performance of policies using low-probability pruning,

low-probability clustering and minimum-distance clustering is analyzed.

4.4.1 Lady and The Tiger

Table 4.2 shows the performance of BaGA and BaGA-Cluster for a 10-step version of the

Lady and the Tiger. In all cases, the simple-heuristic of Section 3.4.1.2 was used to evaluate

the future expected value of actions and alternating maximization was run with 200 random

restarts. BaGA was first run with no pruning or clustering to determine the total number of

joint types maintained over the 10 steps of the problem. It took about 30 minutes on an In-

tel Pentium 4, 2.8 GHz machine to generate a solution that had an average reward of 10.68

to the team. In Table 4.2, the percentage of true histories retained indicates what fraction

of the time an agent’s true history of observations was present in its set of types. As the

low-probability pruning threshold is raised from 0.000001 to 0.001, it can be seen that re-

moving too many joint types from consideration negatively impacts performance. Negative

3This type of clustering can be thought of as an extension of the work on model minimization in MDPs

(Dean & Givan, 1997) and POMDPs (Pineau et al., 2003b) to Bayesian games because it groups together

types with the same action payoffs and induced probability distributions over the types of others.
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outcomes occur even if the actual observations of the agents always match exactly to one

of the retained histories such as the case where the threshold is 0.000005. As previously

discussed, this situation is due to low-probability events that do not necessarily occur in

practice, but can still impact decision making.

If low-probability clustering is applied, many fewer histories can be maintained without

compromising performance. For example, low-probability clustering with a threshold of

0.05 (i.e., a type is pruned if it occurs with probability less than 0.05) results in about 2%

of the total number of possible joint types. Each agent’s true history of observations can be

found amongst the retained types about 70% of the time with reward profile matching used

the other 30%. The resulting performance is still equivalent to that of the full algorithm,

but at a fraction of the computational cost. If the probability threshold is set too high,

however, performance does start to degrade. The distribution over joint types is no longer

being approximated well because histories that are too different are being aliased together.

Minimum-distance clustering is able to avoid this problem at a higher level of clustering

because it lets the system cluster more histories together while still representing the joint-

history space well. Using BaGA-Cluster, the total number of joint types can be dropped to

as low as 109, with only 55% of the true observation histories appearing as exemplars in

the type space, without loss in performance. An additional advantage of minimum-distance

clustering is that its parameter, maximum-allowable expected loss, is easier to interpret than

the probability threshold used in low-probability clustering. For example, if the minimum-

distance threshold is set to 0.1 it means that one is willing to accept up to 0.1 per timestep

in lost reward in return for savings in computation time.

With this domain, it is not possible to see that low-probability clustering, for the same

number of candidate types, runs faster than minimum-distance clustering; however, in the

tag problems looked at in Chapter 6, it is indeed the case.

In Figure 4.1, an example of the computational and space savings of BaGA-Cluster is

shown for a 6-step version of the Lady and the Tiger. At the first timestep, each agent only

has one possible history, and therefore one cluster, because it has no observations about

the world. After performing a listen action, the agent now has two possible observations

histories: {listen, hear-left} and {listen, hear-right}. Again, no clustering can be done

because these two histories have very different reward profiles. On the third timestep, how-

ever, some histories can be clustered together with no loss of expected reward. Because the

agent knows that its teammate has listened on the first two timesteps (from π1 and π2, which

only include listen actions), the only important piece of information for decision making is

whether or not it heard the same observation twice and, if so, which one observation it was.
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Table 4.2: Clustering and performance results for a 10-step version of the Lady and the

Tiger problem. Results are averaged over 100000 trials with 95% confidence intervals

shown. The number of joint histories is the sum of all of the joint histories maintained

over the 10 steps. Policy computation time is the percentage of time taken to compute a

solution relative to the first condition in which all histories are maintained (a running time

of 199018ms). The % of true histories retained is the percentage of steps in which the true

agent’s history is present in the set of retained history. Performance is not dependent on this

value but rather on how well the entire set of possible histories is approximated. Timing

experiments were performed on a Intel Pentium 4, 2.80 GHz machine.

Condition Reward # Joint Types Computation Time % True History Retained

All possible joint histories maintained 10.68 ± 0.10 231205 100.00% 100.0%

Low-prob. pruning with cutoff of 0.000001 10.66 ± 0.10 74893 56.28% 100.0%

Low-prob. pruning with cutoff of 0.000005 9.89 ± 0.13 34600 51.98% 100.0%

Low-prob. pruning with cutoff of 0.001 5.32 ± 0.26 1093 1.54% 93.8%

Low-prob. clustering with threshold 0.01 10.69 ± 0.09 7715 4.81% 91.3%

Low-prob. clustering with threshold 0.05 10.68 ± 0.10 563 0.25% 71.2%

Low-prob. clustering with threshold 0.1 6.38 ± 0.21 201 < 0.10% 63.3%

Min.-distance clustering with max. loss 0.01 10.58 ± 0.10 335 < 0.10% 56.4%

Min.-distance clustering with max. loss 0.1 10.72 ± 0.09 177 < 0.10% 56.1%

Min.-distance clustering with max. loss 0.5 10.69 ± 0.10 109 < 0.10% 55.1%

If the agent hears two different observations, it does not matter at this point in which order

those observations were made, and so the histories {listen, hear-left, listen, hear-right} and

{listen, hear-right, listen, hear-left} are grouped together.

For timestep 4, rather than generate all possible one-step extensions of the original four

histories from timestep 3, only those extensions of the final set of clusters for timestep 3

need to be propagated forward. So, instead of starting the next step of clustering with all

of the eight possible histories of length four, there are only six candidates. If a door is

opened, as it is with four of the possible types at timestep 4, the problem is reset, so the

observation received by the agent is irrelevant. This situation allows, without any loss in

expected reward, for all of those types to be grouped together. Furthermore, regardless of

what the teammate’s type is, any one of those four types result in the same joint belief. The

last two candidate types cannot be grouped together because they lead to different joint

beliefs and therefore different reward profiles.

On the fifth timestep no clustering can be done, although clustering on previous timesteps

has reduced the number of types to six from the sixteen possible histories of length five.

What is perhaps not obvious is why the types {listen, hear-right, listen, hear-left, listen,

hear-right, listen, hear-left} and {listen, hear-right, listen, hear-left, listen, hear-left, listen,
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Figure 4.1: Clustering example for a 6-step version of the Lady and the Tiger. These

are the clusters that are generated for each timestep during the generation of the policy

tree shown in Figure 3.3, with the cluster exemplar shown in each case. In order to save

space, the observation and action set are shown as <HL,HR> and <L,OL,OR> respec-

tively with ∅ as the empty observation set. Without clustering, the size of the type space is

|Θt
i| ={1,2,4,8,16,32} and with clustering it is |Θt

i| = {1, 2, 3, 3, 6, 9}.
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hear-right} have not been grouped together; after all, each one has two instances of each

possible observation and at timestep 2, observation order was found not to matter. On this

timestep, however, order does matter because these two types lead to very different beliefs

when paired with a teammate’s type in which a door is opened on the third timestep. In

this case, the only relevant observation of the tiger’s current position is the last observation,

which is different in the two cases. However, two types of length 5 that do have the same

observation on the last timestep are also not grouped together: if either is paired with a

type in which the teammate does not open a door, then all observations can be valid and

a different joint belief will occur. These differences in joint beliefs lead to differences in

reward profiles, which prevent the clustering from being done.

By the last timestep, there are only twelve surviving candidate types rather than the 32

possible histories of length six. These types can be grouped into nine clusters as now,

regardless of whether paired with a type in which a door is opened or not, the specific order

of the last two observations no longer matters.

4.4.2 Multiple Access Broadcast Channel

Table 4.3 shows the performance of BaGA-Cluster for various conditions of the Multiple

Access Broadcast Channel problem. In all cases, the full-cooperative heuristic of Section

3.4.2 was used to evaluate the future expected value of actions and alternating maximization

was run with 20 random restarts. While no-communication was found to be a slightly more

accurate heuristic for utility evaluation, it was not used for BaGA-Cluster because of the

prohibitive cost of precalculating the required values for T < 9 that would have been

necessary for the problems with time horizon 10. As the purpose of this experiment is

to analyze how the performance of BaGA-Cluster changes as the number of joint types is

decreased, the specific heuristic used is not as important as is the consistent use of the same

heuristic.

In Table 4.3, low-probability pruning with a threshold of 0.000001 is compared to that

with a threshold of 0.01. While low-probability pruning with the higher threshold is able to

generate solutions faster, as evidenced by the smaller number of total joint types maintained

by BaGA, those solutions are not as high quality, because the remaining joint types are

no longer representative of the true distribution over possible joint types. This effect can

especially be seen in the case of n = 4, T = 10, pi = 0.4 in which, for about 85% of

trials, low-probability pruning with a threshold of 0.01 resulted in all possible joint types

being pruned before the final timestep. This result occurs when, based upon the joint types
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Table 4.3: Comparison of different clustering results for MABC using the fully-cooperative utility function. Performance is

averaged over 10000 trials with 95% confidence intervals shown. The average sum of joint types over each timestep is shown for

BaGA with 95% confidence intervals. Pruning refers to low-probability pruning with a cutoff as shown while clustering refers

to minimum-distance clustering with a maximium-allowable expected-loss threshold as shown. If memory restrictions prevented

the calculation of a solution for a certain clustering condition, it is indicated with a “−”.

Parameters pruning, cutoff 0.000001 pruning, cutoff 0.01 clustering, max. loss zero clustering, max. loss 0.01

Avg. Reward
P

|Θt| Avg. Reward
P

|Θt| Avg. Reward
P

|Θt| Avg. Reward
P

|Θt|

n = 2, T = 5,

p = {0.4, 0.4}
2.96 ± 0.02 483.98 ± 0.02 2.97 ± 0.02 112.00 ± 0.00 2.95 ± 0.02 138.96 ± 0.02 2.96 ±0.02 20.00 ± 0.00

n = 2, T = 5,

p = {0.7, 0.3}
3.77 ± 0.02 367.89 ± 0.05 3.62 ± 0.02 114.00 ± 0.00 3.77 ± 0.02 76.00 ± 0.00 3.79 ±0.02 20.00 ± 0.00

n = 3, T = 3,

p = {0.4, 0.4, 0.4}
1.76 ± 0.02 272.00 ± 0.00 1.65 ± 0.02 58.00 ± 0.00 1.77 ± 0.02 196.92 ± 0.01 1.56 ± 0.02 24.00 ± 0.00

n = 3, T = 3,

p = {0.75, 0.5, 0.25}
2.40 ± 0.01 180.93 ± 0.16 2.37 ± 0.01 64.00 ± 0.00 2.39 ± 0.01 24.00 ± 0.00 2.40 ± 0.01 24.00 ± 0.00

n = 3, T = 4,

p = {0.4, 0.4, 0.4}
2.63 ± 0.02 763.99 ± 0.01 2.61 ± 0.02 96.00 ± 0.00 2.60 ± 0.02 458.36 ± 1.55 2.60 ± 0.02 32.00 ± 0.00

n = 3, T = 4,

p = {0.75, 0.5, 0.25}
3.32 ± 0.01 652.12 ± 0.07 3.24 ± 0.02 96.00 ± 0.00 3.31 ± 0.01 32.00 ± 0.00 3.30 ± 0.01 32.00 ± 0.00

n = 3, T = 10,

p = {0.4, 0.4, 0.4}
− − 7.31 ± 0.03 256.02 ± 0.01 − − 7.29 ± 0.03 80.00 ± 0.00

n = 3, T = 10,

p = {0.75, 0.5, 0.25}
− − 8.38 ± 0.03 315.05 ± 0.02 8.63 ± 0.02 80.00 ± 0.00 8.62 ± 0.02 80.00 ± 0.00

n = 4, T = 3,

p = {0.4, 0.4, 0.4, 0.4}
1.89 ± 0.02 1024.00 ± 0.00 1.59 ± 0.02 50.00 ± 0.00 1.87 ± 0.02 868.02 ± 0.96 1.67 ±0.02 48.00 ± 0.00

n = 4, T = 3,

p = {0.8, 0.6, 0.4, 0.2}
2.59 ± 0.01 699.69 ± 0.08 2.55 ± 0.01 69.99 ± 0.00 2.60 ± 0.01 507.20 ± 0.20 2.59 ± 0.01 48.00 ± 0.00

n = 4, T = 4,

p = {0.4, 0.4, 0.4, 0.4}
− − 2.02 ± 0.03 96.01 ±0.00 2.67± 0.02 4581.54 ± 3.80 2.33 ± 0.03 64.00 ± 0.00

n = 4, T = 4,

p = {0.8, 0.6, 0.4, 0.2}
− − 3.38 ± 0.01 99.25 ± 0.02 3.46 ± 0.01 1494.59 ± 1.23 3.48 ± 0.01 64.00 ± 0.00

n = 4, T = 10,

p = {0.4, 0.4, 0.4, 0.4}
− − 6.88 ± 0.10a 213.29 ± 0.08 − − 6.72 ± 0.06 160.00 ± 0.00

n = 4, T = 10,

p = {0.8, 0.6, 0.4, 0.2}
− − 8.70 ± 0.03 307.49 ± 0.09 − − 9.11 ± 0.02 159.76 ± 0.03

a85% of the runs using this condition actually resulted in all joint types being pruned and so results are averaged over the remaining 15%.
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that are believed possible by BaGA, an ‘impossible’ observation is received by at least one

agent. Of course, such an observation is not really impossible; it is the result of too many

joint types being pruned from consideration. While the remaining 15% of the trials for this

pruning threshold and parameters did result in viable solutions to the problem, this example

underlines how important it is to maintain a good approximation of the true set of possible

joint types.

If minimum-distance clustering is used instead of low-probability pruning, then a smaller

number of joint types can be represented without adversely affecting the quality of the so-

lutions. The MABC domain has an interesting property that, unless a maximum-allowable

expected-loss threshold of zero is used, each agent has only two clusters per timestep: one

to represent all types with a full buffer at that timestep and one to represent all those with an

empty buffer (i.e., this type of clustering occurs whether the expected loss parameter is set

to 0.01 as in Table 4.3 or 0.0001, etc.). This characteristic produces an extremely compact

representation of the type space. It does, however, lead to some loss in performance, es-

pecially when all agents have the same new message rate, because different types with the

same current buffer state for an agent can still lead to different probability distributions over

the types of others based on the agent’s previous buffer states. In turn, these differences in

probability distributions lead to differences in expected reward profiles. Even with this loss

in performance, the resulting clusters are a much more compact and intuitive representation

of the true joint-type space of the problem than that achieved by low-probability pruning

with a threshold of 0.01. With a single exception (n = 3, T = 3, pi = 0.4), minimum-

distance clustering with a threshold of 0.01 also outperforms this low-probability pruning

condition.

If a maximum-allowable expected-loss threshold of zero is used, only those types with

identical expected reward profiles will be merged, and no loss in performance is observed

compared to low-probability pruning with a threshold of 0.000001. The amount of clus-

tering done by BaGA-Cluster with this threshold varies based upon the new message rates

of the agents. If one agents has a higher new message rate then more clustering occurs.

Indeed, in the case of n = 3, p = {0.75, 0.5, 0.25}, the types are clustered into those with a

full buffer on the current timestep and those with an empty buffer as they were for BaGA-

Cluster with a maximum-allowable expected loss of 0.01. This type of clustering is why

BaGA-Cluster with a maximum-allowable expected loss of zero can generate a solution to

the n = 3, T = 10, p = {0.75, 0.5, 0.25} scenario but not that of n = 3, T = 10, pi = 0.4,

which would require too many clusters to be computationally viable. While this BaGA-

Cluster condition results in excellent performance, overall it uses a much higher number of
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clusters than minimum-distance clustering with a threshold greater than zero and so cannot

be applied to the largest problems such as n = 4, T = 10. As such, the relatively small loss

in reward generated by increasing the maximum-allowable expected loss seems a worth-

while tradeoff for the increase in computational and space savings. BaGA-Cluster with a

maximum-allowable expected loss of 0.01 also has the benefit that the number of clusters

per agent is time invariant unlike the other pruning and clustering conditions examined in

this section. This invariance would allow it to be applied to problems of indefinite length.

4.5 Summary

In this chapter, the efficiency of BaGA was improved through the addition of history clus-

tering. Rather than reason over the set of all possible histories, BaGA-Cluster groups to-

gether sets of histories that have the same, or similar, expected reward profiles. Policies for

the robots are now conditioned on these clusters of histories. Computational savings are

achieved because BaGA no longer has to reason over all possible histories but instead does

so over a reduced number.

Three different methods were implemented for achieving this reduction: low-probability

pruning, low-probability clustering and minimum-distance clustering. While each method

has its own advantages and disadvantages, minimum-distance clustering generates the set

of clusters that best represents the overall history space.

The computational savings of clustering is phenomenal. BaGA-Cluster is able to generate

solutions to Lady and The Tiger in less than 0.1% of the processing time required by BaGA,

without any loss in performance. Similar results are observed in MABC.





Chapter 5

Extending BaGA to Robot Teams with

Communication

In this chapter, communication is used to both improve the performance of a robot team

and to further reduce the computational costs of the BaGA algorithm. While the BaGA

algorithm, as presented in Chapters 3 and 4, solves problems in which no communication

is available to the team, it can be applied to a wider range of communication problems.

The previous focus was on problems without any communication; the addition of commu-

nication can only improve performance of the team as it allows the robots to synchronize

their observation histories. Aside from fixed communication policies, the BaGA algorithm

can also be used to generate run-time communication policies because it helps to deter-

mine both when to communicate and what to communicate. In this chapter, a modification

of BaGA-Cluster is presented in which a few, but critically placed, communication acts

greatly improve the overall performance of the system at a fraction of the computational

cost of the full POSG solution.

In order to make the most efficient use of bandwidth, the questions of when and what to

communicate must be answered. Communication acts that improve the quality of decision

making are desirable, while those that do not share important information between robots

are not necessary. If communication policies are not efficient, then the overall system will

suffer from scalability problems; while the current bandwidth might be sufficient to handle

full communication between robots, increasing the number of robots will place too large

a burden on the communication framework. A dynamic communication policy that makes

run-time decisions in a principled manner is better able to exploit the gains in performance

afforded by specific communication acts than a static policy.

135
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5.1 Run-Time Communication Policies

The most obvious way to generate optimal communication policies for a POSG is to aug-

ment the action set A to include communication actions in addition to domain actions.

These communication actions may take the place of domain actions (or-communication)

or they can be chosen in combination with domain actions (and-communication). In this

thesis, only and-communication is considered: that is, robots will always select a domain

action at each timestep but are also free to communicate. At timestep t, robots first decide

whether or not to communication and then, if any communication action should take place,

all robots on the team are able to implement a domain action conditioned on the specific

information received. Otherwise, robots will implement a domain action conditioned on

their own observation history.

A globally optimal run-time communication policy can be found by building a POSG

that represents all possible and-communication acts at each timestep and then solving that

POSG exactly. The result is a policy tree (or conditional plan) for each robot that, given an

observation history ht
i, tells the robot whether or not to communicate and then tells it what

action to take in response to each possible set of communicated information that the robot

can receive from its teammates. This optimal policy allows for multiple robots to commu-

nicate at once or for no robots to communicate at all depending on what observations are

actually made. By finding such a policy in a backward fashion (i.e., sub-game perfection),

communication actions are only taken if they result in higher expected payoff to the team.

While the inclusion of communication actions into the action set seems a relatively straight-

forward way to generate communication policies, it is also not feasible to find the corre-

sponding globally optimal policy. POSGs are already computationally intractable; increas-

ing the size of the action set to include communication actions only makes the problem

harder. Furthermore, directly applying the BaGA-Cluster algorithm to such a POSG does

not address the difficulties that arise through the increased action set. As discussed in previ-

ous chapters, the computational requirements of each Bayesian game are dominated by the

number of histories (or clusters of histories) represented in the type space. The inclusion

of communication actions via and-communication increases the total number of possible

histories by a factor exponential in the number of agents because each history must now

also include an instantiation of the possible information received from each teammate at

timestep t (with a null placeholder, ∅, to indicate no communicated information received).1

1It is possible that there are domains in which the size of the type space will remain small enough to allow

for BaGA-Cluster to be performed directly. In general, most of the histories generated at timestep t will not
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Instead, the BaGA-Comm algorithm computes domain policies and the expected value of

those policies both with and without communication. In this approach, robots no longer

create universal communication policies (i.e., a communication policy conditioned on each

possible history) but rather determine, at run time, if communication of their current ob-

servation history will make a difference in the performance of the team. If communication

is warranted based upon a given criterion (e.g., increase in expected performance), then

the robot transmits information to the rest of the team. Upon receiving any communi-

cated information, each robot creates and solves a final Bayesian game that reflects any

shared information. Section 5.2.1 discusses the complexity of using this BaGA-Comm

approach, and compares it to using BaGA-Cluster to solve a POSG that includes all and-

communication acts.

Finally, with all communication policies there are two questions that must be answered:

what to communicate and when to communicate. Generally, the second question is easier

to answer and in many implemented systems the communicated information is left overly

inclusive in order to avoid leaving out any important information (e.g., Gutmann et al.

(1999); Brusey et al. (2001); Emery et al. (2001); Khoo & Horswill (2002)). This approach

is not the most effective use of bandwidth and the clustering version of the BaGA-Cluster

algorithm offers a simple, yet elegant, solution to the problem of bandwidth utilization.

5.1.1 What To Communicate

The purpose of clustering is to group together sets of observation and action histories that

lead to similar expected reward profiles when combined with the histories of other robots.

That is, it identifies a set of groups that are distinct in some important way (e.g., expected

reward profiles). If robots transmit the cluster (i.e., the identifying number of the type θ t
i

to which their observed history best matches), rather than the observed history itself, two

problems are solved. First, transmitting an identifying type number takes less bandwidth

than transmitting a history of all observations and actions made since the last communi-

cation act (especially as the length of the problem increases). It is guaranteed that a finite

number will be used by limiting the maximum number of clusters that can be generated

and therefore the size of the type space |Θt
i|.

survive to timestep t + 1 because only those extensions that include the information actually communicated

at timestep t will have positive prior probability. The problem is that each surviving history still has an

exponential number of possible one-step extensions. Domains with a high level of additional constraints

(e.g., knowing the position of all teammates) may still remain manageable.
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Second, via its construction, each cluster encapsulates all information pertinent to decision

making and allows the robots to ignore any aspects of history that are irrelevant. For ex-

ample, consider the Lady and the Tiger problem in which an agent is deciding what to do

two timesteps after it has opened a door. The observations it received before opening the

door are now irrelevant to the decision-making process as they give no information about

the current position of the tiger; only the observations made on a following listen action

may have relevance.2 As a result, when implementing the BaGA-Cluster algorithm all pos-

sible histories fall into only one of two clusters: the agent either received the observation

hear-left or the observation hear-right after its most recent listen action.

By making use of the work already done by BaGA-Cluster, it is not necessary to decide

what subset of an agent’s observation history will lead to the largest information gain.

Instead, the agent only transmits the information that makes a difference with respect to

policy generation and expected reward: the cluster, or type, number. With the Lady and the

Tiger problem, this approach allows a teammate to ignore the irrelevant information: what

observations were made before the door was opened, and focus on the relevant information:

the robot has since performed a listen action and heard observation x. This approach is not

the only way to answer the question of what to communicate (for example see Rosencrantz

et al. (2003) and Nettleton et al. (2003)), but it is a way to answer the question that leverages

work already done by BaGA-Cluster.

Communication acts are assumed to be broadcast to the entire team and not just robot-to-

robot. They do not, however, force a synchronization between the entire team: if robot i

informs the team of its history’s cluster, the rest of the team does not have to inform i of

their histories’ clusters.

5.1.2 When To Communicate

Informally, the BaGA-Comm algorithm has each robot find a policy for the team given

communication is not possible and the policy for the team given everyone knows its true

cluster. The robot then compares those two policies and communicates its cluster number

if appropriate. BaGA with clustering is used to build and solve each of these two games.

In BaGA-Cluster, at timestep t, robots construct the set of all possible joint histories based

on an exemplar history from each cluster at timestep t − 1, the policy πt−1 and any infor-

mation communicated at timestep t − 1. Minimum-distance clustering is then performed

2In turn, their relevance depends on whether or not the teammate opened a door at the same time.
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on each set of possible individual histories to construct the final set of clusters for each

robot, Ct
i . A Bayesian game BGt is constructed using the set C t as its joint-type space Θt

and a proposed policy πt found. If no communication is permitted, a robot would match

its observed history ht
i to the most appropriate cluster in C t

i and then implement the action

given by its policy for the corresponding type, at
i = πt

i(θ
t
i). This process is then repeated at

timestep t+ 1.

Instead, with BaGA-Comm, the robots decide if communicating with their teammates is

beneficial. As before, each robot matches its observed history ht
i to one of its clusters cti in

Ct
i . It then creates a new Bayesian game, BGC t

i , using the set {cti, C
t
−i} as the joint-type

space Θt. In this Bayesian game, robot i has only one possible type, its current cluster,

while the other robots still have all of their possible clusters. The probability distribution

over this subset of joint types is found by normalizing the probability distribution over

the set of joint types in which i’s component is equal to ct
i. This game is smaller than

the original Bayesian game and therefore faster to solve. The outcome of this game is a

proposed policy, σi,t, for the entire team. A superscript of i has been added to indicate that

each robot will construct a different game BGC t
i and therefore find a different proposed

policy σi,t.

After finding σi,t each robot decides, based upon πt and σi,t, whether or not to communi-

cate. This communication decision can be based on many different factors but only four

types of communication policies will be considered here. The first is a fixed communication

policy in which robots communicate every x steps. This type of policy does not actually

require the generation of both πt and σi,t. Instead, each robot can wait to receive the type

number of each of its teammates and then construct a Bayesian game consisting only of

those types. In fact, this game is no longer a Bayesian game but a regular normal-form

game because the joint-type space contains only one element.

For this fixed communication policy, if a robot has only one cluster and therefore type,

there is no need to transmit that information as all the robots will already know its type. In

practice, it means that the total number of communication acts for each robot under such a

policy can be fewer than T/x where T is the total number of timesteps in the problem.

The first of the dynamic communication policies considered is that in which a robot de-

cides to communicate if the difference between the expected value of the policies σ i,t and

πt, given the cluster its current observation history falls into, is greater than the cost of com-

munication. If the robot’s true history ht
i falls into the cluster cti, which is in turn represented

by the type θt
i then this decision is equivalent to deciding if:
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|E
(

u(σi,t
i (θt

i), θ
t)|θt

i

)

− E
(

u(πt
i(θ

t
i), θ

t)|θt
i

)

| > commCost.

This expected-value-difference communication policy, EVD, is able to trade off the ex-

pected gain in performance to the team with the cost of communication. As with the fixed

communication policy, nothing is communicated if the robot only has one cluster. While

this robot does not have to construct BGC t
i , all of its teammates will unless they too only

have one possible type.

The second dynamic communication policy considered is that in which a robot communi-

cates if it calculates a policy σi,t that is different from the policy πt for either itself or any

of its teammates. In other words, communication is prompted if either πt
i(θ

t
i) 6= σi,t

i (θt
i)

or πt
j(θ

t
j) 6= σi,t

j (θt
j), ∀j ∈ −I and ∀θt

j ∈ Θt
j . This rule is a policy-difference, or PD,

communication decision. It does not take into account the cost of communication but looks

only at differences in actions. The motivation for the use of PD is that BaGA-Comm uses a

heuristic to calculate the expected future value of policies: should that heuristic not be accu-

rate enough to properly evaluate the true difference in expected value between policies σ i,t

and πt (and therefore determine if that difference is really greater than the communication

cost), but still be accurate enough to maintain the proper ordering between the two (i.e.,

that E(σi,t) 6= E(πt)), then this type of communication decision still makes appropriate

decisions.

The final type of dynamic communication policy is one that looks at the computational

costs associated with finding πt and it can be used in combination with EVD or PD. If

|Ct
i |, the final number of clusters for robot i at timestep t, is greater than some threshold k,

then the robot communicates its best-matched cluster’s number to the team. Because the

time required to solve a Bayesian game is directly related to the number of different history

clusters tracked for each robot, this decision generates communication policies that trade

off bandwidth constraints with computation constraints.

Once all communication decisions have been made, those robots that have decided to com-

municate broadcast their current type to the team. In BaGA-Comm a robot must commu-

nicate information to the entire team and not just to a subset of its teammates in order to

satisfy the assumption of this thesis that communication is a source of common knowl-

edge. Because BaGA-Cluster requires that only common knowledge be used during the

construction of the Bayesian game at each timestep, if only a subset of the robots know a

piece of information, it cannot be used by them to modify the prior probability over the set

of possible joint types.
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Algorithm 5.1: High-level overview of the dynamic communication decision algorithm for

BaGA-Comm. Elements shown in bold are those that represent changes from the BaGA-

Cluster algorithm of Chapter 4. The criterion for communication used is an increase in

expected reward (EVD).

1: Construct all possible joint histories from the set of history clusters given by Θt−1
i , the policy πt−1, and

any communicated information at timestep t− 1. Update the probability distribution over the set.

2: For each robot, construct the set of all individual histories H t
i and its probability distribution.

3: Cluster together all individual histories with similar expected reward profiles until no more clustering

can be done.

4: Construct and solve the corresponding Bayesian game, BGt, using the final clusters, Ct
i , as the type

space Θt
i.

5: Find the best match to the true history ht
i from the set Ct

i and calculate the expected reward for the

cluster cti.
6: Construct and solve a new Bayesian game, BGC t

i , in which robot i has only one type θt
i = cti but

all other robots have the type set given by Θt
−i = Ct

−i.

7: If the expected reward for the new game (including communication costs) is greater than that

found in Step 6, communicate θt
i to the rest of the team.

8: If any communication takes place, construct and solve a final Bayesian game, BG′t, using

communicated types and the modified probability distribution that the communicatd knowledge

induces over the joint set Θt.

9: Implement the action given by the solution, at
i = π′t

i (θt
i).

Provided that there is at least one communication act, each robot constructs a final Bayesian

game BG′t using a joint-type space based on the set {ct
j, C

t
l }, where j is the set of robots

that communicated their cluster number and l is the set of robots that did not. The solution

to this game is the final policy π′t and each robot executes its action at
i = π′t(θt

i). If no new

information is received by a robot, BG′t does not have to be constructed, as the final policy

π′t is simply equal to the policy πt. The process is then repeated at timestep t+ 1.

Algorithm 5.1 gives a high-level overview of this communication algorithm. With respect

to implementation, this type of communication can be thought of as having two phases:

each robot plans, waits a (short) set length of time to see if it will receive any new infor-

mation and then either implements its original, no-communication policy or uses the new

information to re-plan. If such a wait time is not feasible for the domain, then robots simply

use their no-communication policies. The resulting run-time communication policies are

robust to communication failures so long as the robots are able to detect that communica-

tion failed.3 The robustness follows because the robots not receiving the communication

will use πt by default and the communicating robot, upon realizing the failure of its team-

mate to receive its message, can switch back to using πt. The POSG framework allows the

3Examples of such a robust communication protocol can be found in Stone & Veloso (1998), Barbuceanu

& Fox (1995) and Emery et al. (2002). Using these protocols, robots are able to detect failed communication

acts. A similar system could be used in BaGA-Comm.
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robots to continue to make use of their observations, even if communication fails.

5.2 Algorithms for Run-Time Communication

Algorithms 5.2 through 5.5 detail how BaGA-Comm finds run-time communication poli-

cies. At each timestep a Bayesian game is constructed and solved using BaGA-Cluster to

generate a proposed policy πt, and joint-type space for the next timestep Θt+1. Each robot

then finds the best match to its current history, θt
i , in reward-profile space. Using θt

i , it

then makes a communication decision ωt
i . If ωt

i is true, then robot i communicates θt
i to

all the other robots in the team. Each robot maintains a vector, ψi,t, of any types that have

been communicated to it and, upon receipt of any θt
j , each robot updates ψi,t to include θt

j .

Finally, if any robot communicated, then Algorithm 5.5 is used to find a new policy and

joint-type space for the team that takes into account any communicated information. Each

robot then implements the action given by policy πt
i for type θt

i .

Algorithm 5.3 is responsible for making the communication decision and, as shown, does

so using the policy-difference condition. It first constructs a set of joint types using the set

of clustered types Θt passed into it, as well as the known type of robot i, θt
i (which is passed

into Algorithm 5.3 as the parameter ψi). The new set of joint types, Γ, only includes those

joint types that have θt
i as an element. η is used to represent a generic element of Γ during

probability renormalization over the final set of joint types. Algorithm 5.4 is then used to

find a proposed policy σ using Γ. JustSolveBayesianGame (Algorithm 5.4) is used rather

than BayesianGameWithClustering because the proposed type space for the next timestep,

Γ
′
, is never going to be used by Algorithm 5.2 and so it does not need to be generated.

If the policy σ is different than the one found without the team members knowing robot

i’s type, then i’s decision is to communicate and so ωi is set to true. Obviously, the PD

condition can be replaced with any other run-time decision such as EVD or even a fixed

communication decision such as communicating every x timesteps.

Finding the final policy is very similar to making the communication decision, only Algo-

rithm 5.5 takes in an entire vector of any communicated individual types and uses all of

them to construct a new set of possible joint types Γt. Given this set and the probability

distribution over it, BayesianGameWithClustering is used to find a policy σ and the joint-

type space Γ′ for the next timestep. Finally, Algorithm 5.2 uses this information to set the

joint-type space Θt+1 equal to Γ′ and policy πt equal to σ.
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Algorithm 5.2: PolicyConstructionAndExecutionWithCommunication
I,Θ0, A, P (Θ0), Z, S, T,R,O
Output: r, st, πt,∀t

begin

hi ←− ∅,∀i ∈ I
r ←− 0
initializeState(s0)
for t← 0 to tmax do

for i ∈ I do (in parallel)

setRandSeed(rst)
/*set all known types to null */

for j ∈ I do

ψi,t
j ← ∅

πt,Θt+1, P (Θt+1)←
BayesianGameWithClustering(I,Θt, A, P (Θt), Z, S, T,R,O, rst)

hi ← hi ∪ z
t
i ∪ a

t−1
i

θt
i ← matchToType(hi,Θ

t
i)

at
i ← πt

i(θ
t
i)

ωt
i ← CommunicateDecision(I, i, θt

i ,Θ
t, A, P (Θt), Z, S, T,R,O, πt, rst)

if ωt
i = true then

/*broadcast θt
i to all other robots */

for j ∈ I do

ψj,t
i ← θt

i

for i ∈ I do (in parallel)

if ∃i such that ωt
i = true then

setRandSeed(rst)
πt,Θt+1, P (Θt+1)← FindFinalPolicy(I, ψi,t,Θt, A, P (Θt), Z, S, T,R,O, rst)
at

i ← πt
i(θ

t
i)

st+1 ← T (st, at
1, ..., a

t
n)

r ← r +R(st, at
1, ..., a

t
n)

end

5.2.1 Computational Complexity

These communication policies have two levels of approximation with respect to the optimal

communication policy described at the start of Section 5.1. First, BaGA-Comm makes use

of heuristics for calculating the future value of actions rather than backing up the optimal

policy. Secondly, rather than each robot generating a Bayesian game approximating the t-th

step of a POSG that models all possible communication and domain actions (and therefore

all possible combinations of communication and no communication), each robot generates

two Bayesian games: one with no communication factored in and one in which all its

teammates know its cluster but it receives no information from them. Therefore, if the
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Algorithm 5.3: CommunicateDecision
Input: I, i, ψi,Θ, A, P (Θ), Z, S, T,R,O, π, randSeed

Output: ωi

begin

ωi ← false
Γ← ∅
/*add all joint types to Γ that have ψi as an individual type for i */

for θ ∈ Θ do

if θi = ψi then

γ ← θ
P (γ)← P (θ)
Γ← Γ ∪ γ

for γ ∈ Γ do

P (γ)← P (γ)/
∑

η∈Γ
P (η)

/*note that Θ, and therefore Γ, already clustered */

σ ← JustSolveBayesianGame(I,Γ, A, P (Γ), Z, S, T,R,O, randseed)
if σ ! = π then

ωi ← true

end

Algorithm 5.4: JustSolveBayesianGame
Input: I,Θ, A, P (Θ), Z, S, T,R,O, randSeed

Output: π

begin

setSeed(randSeed)
for a ∈ A, θ ∈ Θ do

u(a, θ)← qmdpV alue(a, beliefState(θ))

π ← findPolicies(I,Θ, A, P (Θ), u)

end
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Algorithm 5.5: FindFinalPolicy
Input: I, ω, ψ,Θ, A, P (Θ), Z, S, T,R,O, randSeed

Output: σ,Γ′, P (Γ′)

begin

Γ← ∅
/*add all joint types to Γ that contain any individual types given by

ψ */

for θ ∈ Θ do

add← true
i = 0
while add = true && i < |I| do

if ψi ! = ∅ && θi ! = ψi then

add← false

i← i+ 1

if add then

γ ← θ
P (γ)← P (θ)
Γ← Γ ∪ γ

for γ ∈ Γ do

P (γ)← P (γ)/
∑

η∈Γ
P (η)

/*Need to find σ but also generate set of types for next time-step */

σ,Γ′, P (Γ′)← BayesianGameWithClustering(I,Γ, A, P (Γ), Z, S, T,R,O, randseed)

end

performance of the team can only be improved by all robots communicating and not just

one, that communication policy will not be generated.

The calculation of these run-time communication policies are, however, computationally

efficient compared to the optimal communication policy: at worst three Bayesian games

must be constructed and solved, BGt, BGCt
i and BG′t. BGCt

i is smaller than BGt

and BG′t is guaranteed to be no larger than BGt. The solution to BGt is found using

a sequence-form representation of the Bayesian game and alternating maximization. As

described in Section 2.2.1, for an arbitrary Bayesian game, each robot will have |Ai||Θi|

different possible sequences. If the utility function requires linear time to compute, then

alternating maximization has computational complexity of O(
(

|A∗||Θ∗|
)n

).

Solving BGt has an upper bound on computational complexity of O
(

(|A∗||C
t
∗|)

n
)

where

|Ct
∗| the size of the largest set of clusters of any robot (in general |C t

∗| is exponential in

t).4 Alternatively, if one tried to construct a Bayesian game representing a timestep of the

POSG that includes all possible and-communication actions, then the number of possible

4Note that this formula is the computational complexity for solving BGt and does not include the cost of

finding the types/clusters for timestep t+ 1. See Section 3.3.1 for more details.
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sequences for each robot is increased by a factor exponential in the number of robots. This

Bayesian game would actually be solved as a 2-step game: the resulting policy tells each

robot whether to communicate its cluster or not, and then, based on whatever informa-

tion it receives from the team, what domain action to do. As described in Section 2.1.5,

such a multi-step game requires a sequence to be created and evaluated for every possible

path through the ‘game-tree’. Constraints are then used during policy construction to en-

force the requirement that robot i must make the same communication decision for every

sequence that includes the same cluster ct
i. In this case, a single robot’s path includes a

communication and action decision for every possible {cluster, information received from

teammates} pair. If teammate j has |C t
j| possible clusters, it can either broadcast one of

those cluster numbers or not broadcast any information leading to
∏

j∈−I(|C
t
j| + 1) differ-

ent possible combinations of received information for i. As a result, robot i has an upper

bound on its number of possible {cluster, information received from teammates} pairs of

|Ct
i |(|C

t
∗|+1)n−1. With two possible communication actions and |Ai| domain actions, each

robot has at most (2|Ai|)[|C
t
i |(|C

t
∗|+1)n−1] different possible sequences, resulting in an up-

per bound on the computational complexity for finding the solution of O
(

(2|A∗|)
n|Ct

∗|
n2

)

.

This quantity is a factor of 2n|Ct
∗|

n greater than the computations performed by BaGA-

Comm for the same timestep of the problem.

As a final note, the computational savings by BaGA-Comm’s myopic approach does mean

that robots cannot make use of ‘negative information’. In the optimal communication pol-

icy, if a robot does not communicate then that information is used by the team to adjust the

probability distribution over future possible observation histories (i.e., the team can ignore

histories for which that robot would have communicated as it is common knowledge that

they have not occurred). In order for BaGA-Comm to make similar use of this negative

information, each robot would have to know whether or not each of its teammates would

communicate for each one of their possible clusters (i.e., find a cluster-to-communication

mapping). This approach would require each robot to not only build the gameBGC t
i to find

its own communication decision, but to also build and solve the series of games BGC t
j in

which all robots know that robot j’s history is in cluster cj . Each robot then applies the com-

munication criterion to BGt and each BGCt
j to come up with a cluster-to-communication

policy for each of its teammates. So long as the algorithm is constructed such that each

robot finds the same policies, the team can now incorporate both positive and negative in-

formation. Like before, if a robot communicates its cluster number at timestep t, then only

those joint histories that include that cluster will have non-zero prior probability timestep

t+ 1. However, if a robot does not communicate, then all joint histories that correspond to
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clusters for which it would communicate, will have zero prior probability at timestep t+ 1.

While this approach would allow for negative information to be included, instead of just

solving one game of the form BGC t
i , each robot must now solve BGC t

j for all its possible

clusters and for all of its teammates’ possible clusters. This increase raises the number of

games to be solved from 1 toO(|C t
∗|

n), bringing the complexity of such an algorithm closer

to that of applying BaGA-Cluster to the POSG that includes and-communication acts. For

this reason, negative information is not used in BaGA-Comm.

5.3 Experimental Results

In order to test the effectiveness of the dynamic communication policies generated by

BaGA-Comm, the algorithm was tested in two domains: the Lady and the Tiger prob-

lem and the Robotic Tag problem of Section 3.4.3. In this section, the performance of both

fixed and run-time communication policies in these domains is analyzed.

5.3.1 The Lady and The Tiger

A fixed communication policy in which agents communicate their cluster number every

x steps was first implemented. Communication is assigned a cost of 1.0 (i.e., the same

as a listen action) and agents do not communicate on the first timestep of the problem

(because they have no observations), nor if they only have one cluster. An x of ∞ is

used to represent the case of no communication. Performance was compared to a selfish

implementation, also using the fixed communication policy, for both the simple-heuristic

and coop-POMDP utility functions. Results can be seen in Figures 5.1 and 5.2 respectively.

In both cases, BaGA-Comm was implemented using minimum-distance clustering with a

maximum-allowable expected-loss threshold of 0.01. A communication act in the selfish

version consists of transmitting all observations and actions since the last communication

act; however, it is assumed to have the same cost as transmitting a cluster number.

With this type of fixed communication policy, both BaGA-Comm and the selfish imple-

mentation perform best with full communication and worst with no communication, even

when the costs of communication are factored into reward. With BaGA-Comm, however,

the agents are still able to properly reason about the other agent’s actions and observations

in between communication acts and therefore performance does not drop off as quickly as

x increases in value, as it does with the selfish version. With the coop-POMDP heuristic,
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average reward does not decrease monotonically as x is increased. For the selfish version,

performance is definitely better with certain values of x, while BaGA-Comm does better

with x = 5 than it does with x = 4.

This result makes sense because, in this domain, communicating at certain times can be

better than others. For example, if an agent is about to open a door, then sharing observa-

tions with its teammates will either cause both agents to open the same door or neither to

open a door. Overall, this behaviour will increase average reward. If the value of x is such

that agents do not happen to communicate on these kinds of timesteps, then lower perfor-

mance occurs. As expected, this effect on performance is most apparent with the selfish

application of the coop-POMDP heuristic because, for this heuristic, selfish agents open

doors the most frequently. Therefore, they will be impacted the most by the correlation

between different values of x and on which timesteps they open doors.

If it is the case that when and not just how often an agent communicates affects perfor-

mance, then run-time communication decisions become very important. Table 5.1 shows

the performance of the EVD and PD communication decisions for BaGA-Comm. BaGA-

Comm was implemented with minimum-distance clustering with a maximum-allowable

expected-loss threshold of 0.01. EVD and PD result in similar performance and number

of communication acts to each other. For the Lady and the Tiger domain, the policy σ i,t

tends to satisfy both the EVD and PD conditions at the same time. The result of such a

communication act is to either coordinate the agents on opening the same door or to inform

them that they have conflicting observations and that no door should be opened.

If one were to look at the policies generated by simple-heuristic or coop-POMDP in the

absence of communication, they are actually quite similar. Each agent needs to receive a

majority of observations of one kind before it will commit to opening a door, and each agent

will listen for many more timesteps in a row than it does in the communicating policies.

Because each agent cannot directly pool its observations with its teammate, it can only in-

fer a probability distribution over the set of all possible joint-observation histories and will

therefore be more conservative and require higher quality evidence of its own before com-

mitting to opening a door. It is therefore interesting that, when communication is added,

coop-POMDP performs better than simple-heuristic. This is, however, a result of how the

two utility functions estimate the future expected value of actions. While coop-POMDP is

very optimistic, simple-heuristic does not assume that in the future agents will be able to

share their observations. As a result, simple-heuristics leads to policies in which agents are

more conservative about when they would open doors because it does not overestimate the

number of times that they will be able to open doors in the remaining timesteps. If commu-
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Figure 5.1: Fixed communication policy results for a 10-step version of the Lady and

The Tiger. The BaGA-Comm and selfish algorithms used the simple-heuristic for estimat-

ing the future value of actions. Each fixed communication policy communicates every x

steps, with x = ∞ meaning never communicate. BaGA-Comm was implemented with

minimum-distance clustering with a threshold of 0.01 and used 200 random restarts for

alternating-maximization calls. The average cumulative reward to the team without com-

munication costs factored in is shown in (a), while the average reward with communication

costs included in shown in (b). (c) shows the average number of communication acts for

the team over the 10 timesteps. The difference in the number of communication acts for

the x = 1 case is caused by a BaGA-Comm controlled agent not needing to communicate

on those timesteps in which it has only one type. All results are averaged over 10000 trials,

and 95% confidence intervals are shown as error bars.
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Figure 5.2: Fixed communication policy results for a 10-step version of the Lady and The

Tiger. The BaGA-Comm and selfish algorithms used coop-POMDP for estimating the fu-

ture value of actions. Each fixed communication policy communicates every x steps, with

x = ∞ meaning never communicate. BaGA-Comm was implemented with minimum-

distance clustering with a threshold of 0.01 and 200 random restarts used for alternating-

maximization calls. The average cumulative reward to the team without communication

costs factored in is shown in (a), while the average reward with communication costs in-

cluded in shown in (b). (c) shows the average number of communication acts for the team

over the 10 timesteps. The difference in the number of communication acts for the x = 1
case is caused by a BaGA-Comm controlled agent not needing to communicate on those

timesteps in which it has only one type. All results are averaged over 10000 trials, and 95%

confidence intervals are shown as error bars.
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Table 5.1: Run-time communication policy results for a 10-step version of the Lady and the

Tiger. BaGA-Comm was implemented with minimum-distance clustering with a threshold

of 0.01 and 200 random restarts for each instance of alternating maximization. All re-

sults are averaged over 10000 trials with 95% confidence intervals shown. Figures 5.3 and

5.4 compare the performance of BaGA-Comm with EVD to various fixed communication

policies.

Algorithm # Comm. Acts Reward Reward+Comm.Costs Average # Clusters

simple-heuristic

EVD 5.16 ± 0.02 38.97 ± 0.30 33.81 ± 0.30 20.59 ± 0.05

PD 5.13 ± 0.02 39.05 ± 0.31 33.92 ± 0.31 20.62 ± 0.05

selfish, just about to open door 4.94 ± 0.01 39.74 ± 0.10 34.80 ± 0.10 n.a.

coop-POMDP

EVD 9.79 ± 0.01 57.53 ± 0.54 47.74 ± 0.54 16.92 ± 0.03

PD 9.79 ± 0.01 57.79 ± 0.53 48.00 ± 0.53 16.93 ± 0.03

selfish, just about to open door 9.71 ± 0.01 58.45 ± 0.17 48.74 ± 0.17 n.a.

nication is allowed, however, the assumptions governing the coop-POMDP utility function

become more realistic as agents will be able to share future observations. coop-POMDP’s

run-time communication policies are therefore more aggressive and involve more commu-

nication.

For example, with coop-POMDP, the agents communicate their cluster number after re-

ceiving a single observation. If their observations match then they both open the appropri-

ate door. At best, the agents will be able to open five doors over the 10 steps of the problem.

Even though opening doors based on the evidence of just two observations is riskier than

gathering more evidence, the average performance of such a policy is quite high. With

simple-heuristic, the agents wait until they have received two observations before commu-

nicating. If three out of these four total observations are the same, then the agents will

open the appropriate door. With this policy, the agents will only have three chances to open

the door and so do not have as many opportunities to achieve high reward. They do, how-

ever, act upon higher quality information (as it incorporates more evidence) and so the loss

in average reward compared to coop-POMDP is less than that which would be gained by

opening one more door.

BaGA-Comm with either simple-heuristic or coop-POMDP is very aggressive in the num-

ber of communication acts it makes with both EVD and PD. As a result, the type space

of each agent stays very small and it was not necessary to implement any communica-

tion decisions based on the size of this space. With simple-heuristic, because each agent

communicates after two listen actions, the size of the type space of each agent does not
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grow above three for any single timestep, while for coop-POMDP the type space has a size

limited to two.

Regardless of the utility function chosen, each policy takes the form of an agent gathering

some amount of information (that amount being dependent on the utility function chosen)

and then sharing that information with its teammate to decide whether or not to open a door.

The agents, as a result, always select the same action: they either both listen or both open

the same door. These joint actions correspond to the joint actions that are non-dominated

in a POMDP version of the problem in which all observations are shared between the team

(by non-dominated, it is meant that, in such a POMDP, only these joint actions will ever be

executed). The same is not true of BaGA-Cluster when the agents could not communicate.

However, intuitively, as more communication is added into the POSG model, the agents

should start to act more and more as they would in the POMDP version of the problem

with full communication. As expected, the BaGA-Comm policies satisfy this intuition.

The policies generated by BaGA-Comm inspired a communication heuristic for selfish

agents in which an agent will communicate its observation history to its teammate if it

has received enough information to be willing to open a door. That way, so long as it does

not have conflicting information, the teammate will also open that door. If the teammate

does have conflicting observations (for example, it has heard the tiger behind the left door

twice while the other agent heard it behind the right door twice), then it generally has also

decided to open a door and so will communicate that information to the original agent as

well. In this case, the two agents would then both pick the listen action in order to gather

more evidence. In other words, agents will always perform the same action. This commu-

nication heuristic, when combined with the selfish implementation of either utility function,

performs extremely well. The average reward achieved by the team, once communication

costs have been factored in, is the same or similar than how it did with full communi-

cation (x = 1) but with less than half the number of communication acts needed. Even

without communication costs factored in, this communication heuristic outperformed the

fixed communication policy with any value of x greater than 1. This heuristic is also able

to achieve performance equal or better than that of BaGA-Comm using either the EVD

or PD communication decision at a fraction of the computational cost. Of course, this

heuristic does not attempt to make any tradeoffs between communication costs and per-

formance; however, it does show that run-time communication policies generated through

BaGA-Comm can be used to inspire communication heuristics that work very well.
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Figure 5.3: Effects of varying the communication costs for a 10-step version of the Lady

and The Tiger. The performance of both fixed communication policies and EVD are com-

pared. All policies use simple-heuristic for estimating the future value of actions. Each

fixed communication policy is to communicate every x steps, with x = ∞ meaning never

communicate. BaGA was implemented with minimum-distance clustering with a threshold

of 0.01 and 200 random restarts used for alternating maximization. The average cumula-

tive reward to the team with communication costs factored in is shown in (a). (b) shows the

average number of communication acts for the team over the 10 timesteps. All results are

averaged over 10000 trials but the error bars representing 95% confidence intervals have

been omitted in order to improve clarity.

5.3.1.1 Varying Communication Cost

Up to this point, communication costs have been held fixed at 1.0. Figures 5.3 and 5.4

graph the effects of varying communication costs. The performance of both fixed com-

munication policies and BaGA-Comm with the EVD condition are compared for a 10-step

version of the Lady and the Tiger. As the cost of communication increases, BaGA-Comm is

able to reduce the number of communication actions it takes until it starts to perform more

similarly to BaGA without communication (indicated by the x = ∞ case). The fixed com-

munication policies, however, are not able to take the cost of communication into account

and so their performance drops off drastically.

Figure 5.3 (a) shows the average reward, including communication costs, generated by

these policies using the simple-heuristic utility. The average number of communication
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Figure 5.4: Effects of varying the communication costs for a 10-step version of the Lady

and The Tiger. The performance of both fixed communication policies and EVD are com-

pared. All policies use coop-POMDP for estimating the future value of actions. Each fixed

communication policy is to communicate every x steps, with x = ∞ meaning never com-

municate. BaGA was implemented with minimum-distance clustering with a threshold of

0.01 and 200 random restarts used for alternating maximization. The average cumulative

reward to the team with communication costs factored in is shown in (a). (b) shows the

average number of communication acts for the team over the 10 timesteps. All results are

averaged over 10000 trials but the error bars representing 95% confidence intervals have

been omitted in order to improve clarity.
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acts is shown in Figure 5.3 (b). The fixed communication policy of communicate every

step but the first, i.e., x = 1, averages 10.87 communication acts per run (rather than the

expected 18.00), because agents do not need to communicate if they have only one possible

type.

The simple-heuristic utility was designed for the case of no communication and as a result,

does not accurately model future expected reward when the agents are able to communi-

cate frequently. Therefore, the fixed communication policies of x = 1 and x = 2 do better

than EVD when communication costs zero or 1.0 per act. EVD, however, performs simi-

larly to the x = 3 case for these communication costs, even though it performs one fewer

communication act per run. As the cost of communication increases to 2.0, EVD starts

to perform as well as the x = 2 case, and by the time communication costs have reached

3.0, it is performing similarly to the x = 1 case. It is postulated that the slight increase in

communication acts when communication costs 3.0 is caused by EVD communicating at

different timesteps for certain sets of observations (e.g., if EVD pushes off communication

at an earlier timestep, this will effect what actions are taken later and, for certain histories,

actually end up triggering the EVD condition more often).

By the time communication costs are increased to 5.0, EVD is barely communicating and it

stops entirely when the costs are raised to 10.0. At this point its performance is equivalent to

BaGA-Cluster without any communication. BaGA-Cluster without communication (x =

∞) does not entirely provide a lower bound on the performance of EVD (as seen when

communications costs 5.0), because of EVD’s myopic nature and the use of a heuristic for

the utility function. EVD’s success is dependent on being able to accurately compare an

expected increase in performance with the cost of communication. At some point, however,

unless the heuristic used to calculate this distance is exact, EVD will err and result in either

more or fewer communication acts than is ‘optimal’. For simple-heuristic, this point seems

to occur when communication costs 5.0. Once the cost is raised to 10.0, these inaccuracies

have less effect.

A comparison of the performance of these policies was also made using the coop-POMDP

heuristic function, and can be seen in Figure 5.4. As coop-POMDP is a much better esti-

mate of future reward when agents can communicate, EVD performs similarly to the x = 1

case for communication costs of 1.0, 2.0 and 3.0. As communication costs increase above

3.0, EVD outperforms all of the fixed communication policies. By this point, EVD has re-

duced its average number of communication acts by about three. As with simple-heuristic,

the performance of BaGA-Cluster without communication does not entirely provide a lower

bound to the performance of EVD. When communication costs 10.0, EVD still communi-
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cates 1.92 times on average. However, by the time communication has increased in cost to

15.0, EVD stops communicating and behaves like the x = ∞ case.

5.3.2 Robotic Tag

Communication policies were also implemented for the unknown-teammate-position ver-

sion of Robotic Tag. This variant was selected because BaGA requires a large number of

types in order to find good solutions without communication, and so it is a good candidate

for communication decisions designed to reduce computational costs. BaGA-Comm was

used with a combination of low-probability pruning with a cutoff of 0.00025 and minimum-

distance clustering with a threshold of zero, except for the case of no communication in

which these parameters were 0.0025 and 0.0001 respectively (in this latter case, the lack of

communication required that the pruning/clustering parameters be raised in order to keep

the joint-type space manageable).

First, the fixed communication policy of broadcasting information every x timesteps was

implemented with results shown in Figure 5.5 for both BaGA-Comm and the MLS and

QMDP heuristics. As with the Lady and the Tiger domain, communication is assumed to

have a cost of 1.0 regardless if it is the broadcast of a cluster number or, as in the case of

MLS and QMDP , the history of observations and actions made since the last communica-

tion act. In BaGA-Comm, even for x = 1, a robot does not communicate every timestep

because there is no need to do so if it only has one cluster. For this reason, the number of

communication acts performed by BaGA is always less than twice the number of iterations

taken to capture the opponent. MLS and QMDP , however, do not have anything similar of

which to take advantage and thereby reduce overall communication.

MLS and QMDP , after an initial increase in average reward (with communication costs

included), experience a rapid drop-off in performance as the number of communication

acts decreases. As discussed in Section 3.4.3, the coordination of the team becomes com-

promised if the robots do not have an accurate idea of where their teammate is located.

While communication is able to re-sync the believed position of the teammate with its true

position, in between communication acts these positions will start to drift apart again. As

x increases, the robots spend more of their time uncoordinated and therefore performance

suffers.

For values of x greater than 1, BaGA-Comm is able to reason about histories in between

communication acts. If one looks at the average reward with communication costs factored
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in, BaGA-Comm (and, to a limited extent, the other two heuristics) performs better with

fewer communication acts. In fact, BaGA-Comm is fairly stable with respect to average

reward and number of iterations taken to capture the opponent, even as the number of

communication acts decreases. It is, however, a result of using a fixed communication

policy, because the robots do not necessarily communicate at key points in the problem.

For this domain, a critical decision-making point is when the two robots are positioned to

tag the opponent in the goal cell but the opponent is not actually there. One of the robots

will be aware of this fact and the communication of this piece of information makes a

difference to the overall performance of the game. While a fixed communication policy

cannot make the decision to communicate at this critical time, a run-time communication

policy can.

The first type of run-time communication examined is that of EVD. The EVD communi-

cation policy takes about three timesteps more to capture the opponent than a fixed com-

munication policy with x = 1, but it leads to a higher average reward once the cost of

communication is factored in. With EVD, the average number of communication acts per

trial is less than one (compared to about 23 for the x = 1 policy). If one looks at when

the robots do communicate using EVD, the primary time they do so is when the robots

are set up to tag the opponent and one robot is in the goal cell. If the opponent is there,

it is not necessary for the robot in that cell to transmit that information to its teammate

so long as the policy for the teammate, πt
−i, has it also performing a tag action with high

probability. If the tag action will not be performed with high enough probability, then the

robot in the goal cell does transmit the relevant information (i.e., its cluster number that en-

capsulates that information) so that they will both do tag. If the opponent is not there, but

the teammate will be performing a tag action with high probability according to π t
−i, then

the robot tells its teammate its cluster number and the miscoordination of the tag action is

avoided. Because miscoordinating on the tag action has a penalty of 10 while the cost of

communication is 1.0, these types of scenarios trigger the EVD condition. EVD will also

be triggered if a robot is in the same cell as the opponent during an early timestep of the

problem.

EVD was also combined with the computational-tradeoff decision in which robots com-

municate if their current number of clusters exceeds a threshold of k = 20. Adding the

additional cluster-threshold condition to EVD does not result in the team catching the op-

ponent faster, but it does greatly reduce the total number of clusters maintained by each

robot, which translates to faster planning. On its own, the cluster-threshold condition does

perform better than no communication at all, but not nearly as well as EVD or PD, which
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Figure 5.5: Fixed communication policy results for the unknown-teammate-position vari-

ation of Robotic Tag. Each fixed communication policy communicates every x steps, with

x = ∞ meaning never communicate. BaGA-Comm was implemented with a combination

of low-probability pruning with a cutoff of 0.00025 and minimum-distance clustering with

a threshold of zero (i.e., two clusters are only merged if they have identical reward pro-

files), except for the case of x = ∞ in which those parameters were 0.0025 and 0.0001,

respectively (the parameters were raised in this latter case to help keep the joint-type space

manageable). The average cumulative reward to the team without communication costs

factored in is shown in (a), while the average reward with communication costs included is

shown in (b). (c) shows the average number of communication acts for the team over the

length of the task, while (d) shows the average number of timesteps taken to capture the

opponent. All results are averaged over 10000 trials with 95% confidence intervals shown.



5.3. Experimental Results 159

Table 5.2: Run-time communication policy results for the unknown-teammate-position

variation of Robotic Tag. All results are averaged over 10000 trials with 95% confidence

intervals shown. The average number of clusters is the average of the summed number

of clusters maintained by a robot at each timestep, i.e.,
∑

t |C
t
i |. BaGA-Comm was im-

plemented with a combination of low-probability pruning with a cutoff of 0.00025 and

minimum-distance clustering with a threshold of 0.00 except for the case of no communi-

cation, in which case those parameters were 0.0025 and 0.0001, respectively. Results for

fixed communication policies are included for comparison purposes.

Policy Capture Time # Comm. Acts Reward Reward+Comm.

Costs

Average #

Clusters

% Success

BaGA-Comm

no comm. 45.69 ± 0.67 n.a. -88.15 ± 1.52 n.a. 1032.81 ±
27.86

77.5%

fixed, x = 1 38.67 ± 0.61 23.06 ± 0.21 -67.06 ± 1.29 -90.11 ± 1.40 50.20 ± 0.67 85.6%

fixed, x = 2 40.23 ± 0.24 16.57 ± 0.17 -72.71 ± 1.34 -89.28 ± 1.42 62.14 ± 0.74 84.7%

EVD 41.73 ± 0.64 0.89 ± 0.02 -73.65 ± 1.36 -74.53 ± 1.37 742.46 ± 26.91 82.1%

EVD +

|Ci| > 20
41.41 ± 0.64 2.43 ± 0.04 -72.94 ± 1.36 -75.37 ± 1.37 248.02 ± 3.45 82.5%

PD 38.91 ± 0.61 6.45 ± 0.08 -67.51 ± 1.28 -73.96 ± 1.31 171.27 ± 3.42 85.7%

PD + |Ci| > 20 38.86 ± 0.61 6.57 ± 0.08 -67.41 ± 1.28 -73.98 ± 1.32 152.19 ± 2.49 86.0%

|Ci| > 20 42.84 ± 0.63 2.38 ± 0.04 -80.32 ± 1.39 -82.70 ± 1.41 287.98 ± 3.66 82.5%

Selfish Heuristic

MLS, no comm. 82.74 ± 0.64 n.a. -186.85 ± 1.64 n.a. n.a. 23.4%

MLS, fixed

x = 1
39.63 ± 0.52 79.26 ± 1.03 -68.02 ± 1.07 -147.28 ± 2.10 n.a. 93.5%

MLS, fixed

x = 2
40.61 ± 0.53 41.12 ± 0.53 -72.74 ± 1.17 -113.61 ± 1.70 n.a. 92.4%

MLS,

unexpected - no

sync

64.16 ± 0.66 7.21 ± 0.12 -131.98 ± 1.66 -139.19 ± 0.12 n.a. 60.1%

MLS,

unexpected -

forced sync

48.84 ± 0.60 4.40 ± 0.07 -89.81 ± 1.29 -94.21 ± 1.34 n.a. 85.5%

QMDP , no

comm.

96.23 ± 0.34 n.a. -202.05 ± 0.81 n.a. n.a. 4.9%

QMDP , fixed

x = 1
36.93 ± 0.60 73.93 ± 1.19 -63.44 ± 1.25 -137.37 ± 2.44 n.a. 87.3%

QMDP , fixed

x = 2
39.12 ± 0.58 39.73 ± 0.58 -70.85 ± 1.24 -110.59 ± 1.81 n.a. 86.6%

QMDP ,

unexpected - no

sync

76.35 ± 0.61 14.78 ± 0.18 -159.78 ± 1.41 -174.57 ± 1.54 n.a. 46.3%

QMDP ,

unexpected -

forced sync

56.28 ± 0.65 8.10 ± 0.14 -110.14 ± 1.41 -118.23 ± 1.46 n.a. 70.6%
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was the second type of run-time communication policy tested.

PD results in similar performance to communicating every timestep but at a quarter of

the number of communication acts. With communication costs factored in, its average

cumulative reward is similar to that of the EVD communication policy. This result is a

reflection of how the EVD policy actually trades off communication costs and expected

increase in reward whereas the PD policy does not. Again, adding the additional cluster-

threshold condition to PD did not greatly affect performance, but it reduced the average

number of total clusters maintained by each robot, thereby improving computation time.

While PD is triggered by every situation in which EVD would be triggered (as a policy

difference is what leads to an expected difference in performance), it will also be triggered

by cases in which a policy difference would occur as the result of communication but

with no restrictions on the resulting difference in expected reward. These additional cases

are why PD results in about six times the number of communication acts. For example,

PD will be triggered if a robot is in the goal cell, regardless of whether the opponent is

there or not, or it will be triggered if both robots appear in Cell 24 at the same time. It is

postulated that this last event results in a policy change because it is one of the few positions

in the grid in which robots sometimes appear simultaneously. While each robot will see

its teammate, it is not assumed to be common knowledge (i.e., that robot i knows that its

teammate sees it and that its teammate knows that i knows that its teammate sees it and so

on), therefore by establishing this information as common knowledge (achieved by sharing

cluster numbers), the probability distribution over the set of joint types is changed so much

that policy changes would also occur.

The conditions under which EVD and PD lead to communication acts were used to create a

run-time communication heuristic for MLS and QMDP . Essentially, this heuristic captures

the idea that in BaGA-Comm robots communicate when something unexpected happens.

For example, if the opponent is not in the goal cell but the joint-type space of the team is

such that a miscoordination on the tag action is likely to occur, then both EVD and PD will

communicate. Rather than just have the communication heuristic be specific to unexpected

events concerning the goal cell, it was expanded. For example, if a robot following the MLS

heuristic orQMDP heuristic determines that the most likely position for the opponent on the

next timestep is cell y but, upon moving into that cell itself, does not detect the opponent,

it will communicate. Similarly, a robot moving into the goal cell that does not detect the

opponent would broadcast its observation and action history to its teammate (it would not

have moved into that cell unless it believed with high probability that the opponent was

there). Other unexpected events are when a robot does not detect its teammate in the cell



5.4. Summary 161

in which it believes its teammate to be in.

This unexpected communication heuristic was implemented both with and without a forced

synchronization between the robots. If a robot decides to communicate, it tells its teammate

its observation and action history. In the forced-sync case, its teammate must then tell its

own history back. Both approaches resulted in better performance than if there is no com-

munication available to the team. As anticipated, the forced-sync version of the heuristic

worked better for both MLS andQMDP because many of the unexpected events that trigger

a communication decision actually involve a robot needing information (such as its team-

mate’s true position given that the robot’s believed position of it must be wrong). For both

MLS and QMDP , the forced-sync communication heuristic resulted in performance similar

or better than any of the fixed communication policies once the cost of communication is

factored in. Without communication costs factored in, they both performed similarly to the

x = 5 case, but with fewer than half the number of communication acts. If synchroniza-

tion is not forced, the communication heuristic does not lead to such good performance.

Only the case of x = 1 is now outperformed with respect to average reward including

communication costs.

5.4 Summary

In this chapter, BaGA is extended to handle robot teams with communication. In order

to find optimal run-time communication policies it is necessary to include communication

acts in the action set. Unfortunately, doing so increases the number of histories that must

be tracked by the BaGA algorithm by a factor exponential in the number of robots. Rather

than find such an optimal universal plan, BaGA-Comm generates run-time communica-

tion decisions myopically: each robot computes domain policies both with and without

communication and, based on their differences, communicates.

Various criteria can be used to determine when to communicate, BaGA-Comm includes

decisions based on expected improvements in performance as well as decisions based on

computational requirements. These run-time communication policies not only improve the

performance of the robot team in domains like Lady and the Tiger and Robotic Tag, but

also reduce computational costs. By using run-time communication decisions rather than

fixed communication policies, robots can adapt their behaviour to accommodate different

communication costs.





Chapter 6

Real-Time Robot Controllers

This chapter discusses how the BaGA algorithms can be used to implement real-time robot

controllers. Realistic robot problems generally require more sophisticated state transition

and observation models in order to take into account noisy sensors and actuators. As a

result, a large number of observation and action histories must be tracked by the BaGA

algorithm. In order to examine the effects of more complex models, a game of robotic tag

in the Gates Building at Stanford University is presented. Several versions of the game are

considered, which gradually increase in realism.

In these games, a robot team is trying to coordinate and tag an opponent that is moving

around an office building. Even if only one robot is required to tag the opponent, the team

is penalized for movement, and so robots must still coordinate their searches. The robots

only have 100 timesteps in which to tag the opponent in any location in the environment.

6.1 Simple Gates Tag

In the most abstract version of this problem, the A Wing of the Gates Building is converted

into a grid world by discretizing the free space into a series of cells that are roughly 1.0m×

3.5m. Two robots are hunting for an opponent within this grid world as shown in Figure

6.1(a). The state space for this problem is the cross-product of two robot positions r1 =

r2 = {s0, . . . , s25} and the opponent state op = {s0, . . . , s25, stagged} and has a total of

18252 states. All three robots start in randomly selected cells and the game is over when

op = stagged. Each robot has five actions Ai = {north, south, east, west, tag} and all

actions have deterministic outcomes. A shared penalty of −1 is incurred for each motion
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action. The tag action results in a reward of +10 to the team if the robot performing the

tag action is in the same cell as the opponent (ri = op and ai =tag), otherwise it results in

a penalty of -10. The opponent moves with Brownian motion and at each timestep either

does not move or moves into one of its adjacent cells with known probability.

Each robot is able to observe the opponent only if they are in the same cell; otherwise it re-

ceives a null observation of the opponent leading to an observation setZi = {s0, . . . , s25, ∅}.1

For this variation of Gates Tag, the robots have no communication and so cannot share ob-

servations of the opponent, but they do know the exact position of themselves and their

teammate.2 As a result, a history θi for a robot includes only the observations it has made

of the opponent. After constructing the policy πt, any joint histories that have a robot im-

plement an action from this policy that is not consistent with its current position can be

removed from consideration at timestep t+ 1.

As with the Robotic Tag problem of Chapter 3, the utility function for BaGA comes from

the Q-values for the fully observable version of the problem, which were found using dy-

namic programming for an infinite-horizon version of the problem with a discount factor of

0.95. The value of taking a set of actions {a1, a2}, given the joint history θ and the resulting

belief state bθ it induces over the position of the opponent in the environment, is:

u(a1, a2, θ) =
∑

s∈sop

bθ(s)Q({r1, r2, s}, {a1, a2})

where Q({r1, r2, s}, {a1, a2}) is the Q-value of taken the joint action {a1, a2} in the state

given by the positions r1, r2 and op = s.

With respect to the number of joint histories that must be tracked by the BaGA algorithm

at each timestep, Simple Gates Tag has an upper bound on the branching factor of three.3

That is, the number of possible joint histories at timestep t + 1 is at most three times that

1Technically, Zi is actually the cross-product of the two robots’ positions and the observation set

{s0, . . . , s25, ∅} because each robot knows both its own position and that of its teammate: the notation has

been abused for simplicity. However, it is important to remember that |Zi| is actually much greater than 27

when considering upper bounds on |Θt
i| such as those discussed in Sections 3.3.1 and 4.3.1.

2In all of the domains examined in this chapter, the assumption is made that robots can always identify

their current cell with certainty. This assumption is valid for these real-world problems because the local-

ization algorithm used in the high-fidelity simulation and on the real robots is very accurate (Montemerlo

et al., 2002). In all experiments run for this chapter, the mapping between a robot’s localized position in the

continuous world and a discrete grid cell was always correct.
3Due to constraints on observations with respect to the positions of each robot (for example, if both robots

are in the same cell, then they must have the same observation of the opponent or, if they are in different cells,

they cannot both see the opponent), the branching factor is not four.
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Figure 6.1: The Gates Building environment for robotic tag. The discrete environment used

for obtaining statistical results is shown in (a). The opponent can be caught by either robot

in any cell. A map of a portion of the physical Gates Building that was used for simulation

and physical robot runs is shown in (b) and one of the Botrics Obot d100 robots used for

the real-robot runs is shown in (c).
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Table 6.1: Results for Simple Gates Tag in the grid world environment. BaGA was imple-

mented with a low-probability pruning with a cutoff of 0.001. Average cumulative reward

and the average number of iterations to capture the opponent are shown. % success is the

percentage of trials in which the opponent was successfully tagged within 100 timestep.

Results are also included for the performance of the fully observable policy under full ob-

servability. All results are averaged over 10000 trials with 95% confidence intervals shown.

Algorithm Average Reward Average Iterations % Success

Fully Observable 1.18 ± 0.11 5.41 ± 0.06 100.00%

BaGA -18.22 ± 0.55 15.10 ± 0.27 99.86%

MLS -21.04 ± 0.56 16.52 ± 0.28 99.95%

QMDP -38.56 ± 1.11 25.01 ± 0.54 95.40%

at timestep t. For this reason, the BaGA algorithm can be implemented with just low-

probability pruning with a cutoff of 0.001. To farther cut down on the number of joint

types tracked, any joint type that leads to a policy in which a robot implements the tag

action while in the same cell as the opponent at timestep t − 1 was cut from any future

possible types. Actions are deterministic and observations never noisy and so if a robot did

execute the tag action in this situation, then the problem would have ended. As the problem

has continued on to another timestep, this event could not have happened. Because it is

mutual knowledge that the task is not complete, this common knowledge can be used to

update the set of possible joint types.

In addition to the BaGA controller, the MLS and QMDP heuristics were also implemented

for this environment in an identical fashion as how they were done for Robotic Tag in

Section 3.4.3. Results for the three controllers can be found in Table 6.1, as can the results

for a fully observable version of the problem using the policy given by taking the joint

action with highest Q-value for each state. The random nature of the opponent means that

all the controllers are almost always able to complete the task within 100 timesteps because,

even if the robots were to never move, the opponent would eventually stumble into them.

The performance differences, therefore, come from how the controllers make the robots

explore the environment.

In BaGA, the robots split the environment between them, with robots exploring different

ends of the hallway. Furthermore, while one robot moves around the loop in the right-hand

side of the environment, the other robot will move back and forth in front of the intersection

to that loop. If the opponent is in the loop, then either it will be discovered by the robot
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moving around the loop or by the robot ‘guarding’ the entrance to the loop. Because only

one robot is necessary to tag the opponent, splitting up the environment in this fashion is

efficient.

With the MLS heuristic, the robots have a tendency to follow each other around. Provided

that the two robots generate a similar belief state, they will both select similar locations as

the most likely position for the opponent. By then treating the problem as fully observable,

it is logical for both robots to move towards the same location because the reward function

is such that the team wants to minimize opponent capture time. However, as the problem

is not really fully observable, this scheme is not an efficient use of resources leading to a

slightly longer capture time than BaGA.

TheQMDP heuristic takes longer on average to capture the opponent than other approaches

because the robots have a tendency to get ‘trapped’ in cells near the middle intersection.

During a trial, the robots will move towards this intersection and then stop moving because

a multi-modal belief state leads no single action to have highest expected reward. A similar

misbehaviour arose with the QMDP heuristic in the Robotic Tag problem of Section 3.4.3.

The reason, however, that QMDP manages to successfully capture the opponent most of

the time in this problem is because the opponent is not moving away from the team but

rather moving randomly. In cases where the robots do not get trapped near the middle

of the environment, QMDP does result in robots splitting the environment between them

and adopting similar paths to those taken by BaGA. This behaviour is expected because

BaGA uses QMDP as its utility function for actions. Unlike QMDP , however, BaGA rarely

gets trapped because the one step of game-theoretic reasoning allows robots to avoid these

situations.

6.1.1 High-Fidelity Simulation and Physical Robot Results

After testing the controller in the discretized version of the environment, policies were then

executed in both a high-fidelity simulator and on physical robots. The mapping between

the grid world and the real Gates Building and two Botrics Obot d100 robots was done

using the Carmen software package for low-level control (Montemerlo et al., 2002). In

this mapping, observations and actions remain discrete and there is an additional layer that

converts from the continuous world to the grid world and back again. Figure 6.1 (b) shows

a screen shot from the simulator and Figure 6.1 (c) shows one of the robots used.

Localized positions of the robots within the map of the Gates Building are used to calcu-

late their specific grid-cell positions. Robots navigate by converting the actions selected
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by BaGA into goal locations. In order to ensure robots always plan and execute actions in

lockstep (because in the grid-world model robots move at the same time), robots will not

execute their next actions until a message has been received by a central controller indicat-

ing that all robots had reached their last goal location. For runs in the real environment,

no opponent was used in order to observe how the team coordinated to search the area.

The robots, therefore, always received a no-opponent-present observation. As a result, the

robots would continue to hunt for an opponent until stopped by a human operator.

Figures 6.2, 6.3 and 6.4 show the trajectories taken by robots in a simulation of this envi-

ronment as they attempt to capture and tag a (non-existent) opponent while controlled by

three different controllers. The reward function for this problem has not been designed to

encourage the robots to efficiently cover the environment in the search for the opponent, but

rather to minimize opponent capture time. However, when there is no opponent actually

present in the environment, one can get a feel for how well the robot team actually searches

for the opponent as opposed to taking advantage of the random nature of the opponent. It

should be noted that, given the sensor limitations imposed on the robots for this problem

and the structure of the environment, it is impossible for two robots to cover the environ-

ment in such a way as to guarantee capture of an opponent (specifically, moving into the

middle corridor allows an opponent to ‘sneak’ by the team).

In the simulation runs, both robots started at the far right of the top corridor (Cells 22 and

23). With these starting conditions, the two robots will initially have very similar belief

states about the opponent’s position and this condition will persist so long as they remain

physically close. With the MLS controller, shown in Figure 6.2, the two robots follow

each other across the top corridor, down the middle corridor and into the bottom corridor.

The robots almost go entirely into the far left side of the corridor before turning around to

traverse the loop on the right-hand side of the environment. If they have still not found the

opponent, they then move back into the upper corridor and then start to retrace their steps.

The robots do not go entirely into the ends of the corridor with MLS because generally, by

the time they get into Cells 23 and 1, the probability that the opponent is in Cell 24 or 0

is low enough that some other cell is picked as the most likely position causing the robots

to turn around. This type of behaviour is also exhibited by QMDP and BaGA; however, as

time progresses and the opponent has still not been found, the controllers are more likely

to move into the end cells.

The trajectory forQMDP under these starting conditions, shown in Figure 6.3, demonstrates

how this controller causes the robots to stop moving. After following each other out of the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Example of MLS-controlled robot trajectories for Simple Gates Tag. The MLS

heuristic results in paths where the robots follow each other and so do not cover the space

well. In this, and all following figures, the current goal location of each robot is shown by

the pale circles. Robots themselves are represented by darker circles with a line indicating

heading.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Example of QMDP -controlled robot trajectories for Simple Gates Tag. With the

QMDP heuristic, the robots start to cover the space well but, after a few moves, the robots

get trapped and do not make any more progress.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Example of a BaGA-controlled robot trajectories for Simple Gates Tag. With

the BaGA algorithm, the robots do a better job of covering the space than they did when

controlled with MLS or QMDP .
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upper corridor, one robot moves down the middle corridor while the other one stays near

the top intersection. Once its teammate reaches the bottom of the middle corridor, the

robots effectively stop moving (with some oscillation in the position of the bottom robot

between Cells 6 and 5). With an opponent that is moving randomly, these are relatively

good positions to be in as, with high probability, the opponent will eventually cross one of

these intersections.

BaGA starts off similarly to QMDP , however, the robot that stays at the top continues to

move into the loop while its teammate oscillates between Cells 5 and 6 at the bottom of

the middle corridor (Figures 6.4 (a) and (b)). Once its teammate has almost completely

traversed the loop, this robot then moves into the bottom corridor. The other robot finishes

traversing the loop before moving back up the middle corridor towards the upper left cor-

ridor (Figure 6.4 (c)). If the opponent has still not been found, the robot in the bottom

corridor turns around and starts to traverse the loop counter-clockwise, while its teammate

clears the upper corridor and then moves back down to ‘guard’ the lower intersection of the

middle corridor (Figure 6.4 (d) and (e)). It will finally move into the bottom corridor when

its teammate finishes traversing the loop and moves into the upper corridor (Figure 6.4 (f)).

Runs on the physical robots generated similar paths for the same initial conditions. A

slight modification to the interleaving of planning and execution was made with respect to

the physical robots in order to improve the running time of BaGA. After the first timestep,

robots construct the set of possible joint types and solve the corresponding Bayesian game

for timestep t + 1 while executing the action found for timestep t. If for some reason the

action fails to execute properly (e.g., the low-level controller cannot calculate a path from

one cell to another so the robot does not move), the robots reconstruct the set of possible

joint types, taking their true current positions into account, and then re-plan. This approach

allows a robot to use a policy that was constructed assuming deterministic actions in a

world where actions fail a small fraction of the time. It only worked, however, because

the robots always knew their teammates’ true positions. In order to properly model any

non-deterministic effects of actions in real robots, the model must be enriched to include

noisy actions. This and other changes lead to the Realistic Gates Tag problem, described

next.
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6.2 Realistic Gates Tag A and B

These two variants of Realistic Gates Tag capture the fact that each physical robot used for

experiments has only one laser range finder and so while each robot can see forward (and

to some extent to the sides), it cannot see backwards. This addition to the model results

in a much larger state and observation space: each robot’s state now includes both its cell

location and a discrete heading (orientation). Along a corridor, a robot can face in either

direction, while at an intersection it can have a heading in all four cardinal directions. The

opponent is still modelled as in Simple Gates Tag. This additional state variable for each

robot increases the size of the problem from the 18252 world states of Simple Gates Tag to

97200 states.

Robots can no longer move in the four cardinal directions but instead have the action set

Ai = {do-nothing, move-forward, turn-clockwise, turn-counterclockwise, tag}. As ex-

pected, the do-nothing action results in no change in the robot’s state, while move-forward

moves the robot forward one cell in the direction it is facing unless there is a wall in the

way. The turn-clockwise and turn-counterclockwise actions cause the robot to turn in place

and change its heading. Along a corridor, these two actions have the same effect, while at

an intersection they allow the robot to select the direction it rotates. If a robot wishes to

turn 180o at an intersection, it must select either turn-clockwise or turn-counterclockwise

twice in a row. The tag action and the opponent policy are as in Simple Gates Tag. Unlike

Simple Gates Tag, however, all actions except for tag have a known, non-zero probability

of failing.

To take into account the effects of heading on observations, a robot can now sense its

current cell location and the cell immediately in front of it. This model corresponds to

robots that have a sensing range of about 5m. As with Simple Gates, robots still have

perfect knowledge of their own cells.

In the first variation of this problem, Realistic Gates Tag A, observations are noisy. The

robots still know the state of their teammate (both position and heading), but they may

not sense the opponent even if it is within their visible range. Positive detections of an

opponent, however, are always correct. This type of observation noise was chosen because

it models the fact that the robot’s lasers only have a 180o field of view and so, if the opponent

moves into a cell behind a robot, the robot may not see it. If the opponent is detected by

the laser, however, it is really there. This observation model, in combination with noisy

actions, results in an upper bound on the branching factor of joint histories of seven. That

is, at timestep t+1 there is at most seven times the number of possible joint types that there
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were at timestep t. This number is more than twice the branching factor of Simple Gates

Tag.

The second variation of this problem, Realistic Gates Tag B, looks at the effects of not

knowing the location of one’s teammate. The robots’ sensors are not noisy in this version

(helps keep the problem more manageable), but the robots do not know the state of their

teammate, beyond its initial state, unless they sense it. The assumption is made that sensing

the teammate provides enough information to infer both its heading and its cell location.

This combination results in a branching factor of up to twenty, making Realistic Gates Tag

B substantially larger than variation A.

The fully observable policy of Section 6.1 was recalculated to take into account the effects

of noisy actions. The Q-values generated by this policy were used for the utility function of

BaGA as well as for the MLS and QMDP controllers. In the case of variation B, these two

heuristic controllers require the robots to maintain an estimated position of their teammate.

This estimate is updated using the joint action selected by the controller for the robot at

each timestep (i.e., the robot assumes its teammate will implement the same joint action as

it) and any positive observations of the teammate.

Due to the larger size of these problems, BaGA-Cluster was used to reduce the number of

histories tracked at each timestep and therefore keep the controllers operating in real time or

better. For Variation A, low-probability pruning, low-probability clustering and minimum-

distance clustering were all implemented. The threshold parameter used for each condition

was selected such that similar performance was generated for all three cases. The resulting

parameters, however, generated a very different number of histories being maintained for

each robot over the problem. As shown in Table 6.2, minimum-distance clustering with a

maximum-allowable expected-loss threshold of 0.05 was the most computationally efficient

of the three conditions, as each robot maintained, on average, about 50 histories over the

entire problem. In comparison, low-probability pruning (with a threshold of 0.00025) had

to maintain about 167 types per robot to achieve the same performance. All three BaGA-

Cluster conditions outperformed the MLS and QMDP conditions given random starting

locations for the robots and opponent.

BaGA-Cluster and QMDP do better in Realistic Gates Tag A than they did in Simple Gates

Tag. In Variant A, the robots can now see the opponent if it is in the cell in front of them and

not just their own cell. This addition helps reduce the number of configurations in which

robots get ‘trapped’ due to the multi-modal nature of the belief state, which in turn impacts

overall performance. As a result, BaGA-Cluster caught the opponent in about two fewer
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steps on average while QMDP improved dramatically by almost 10 steps. MLS, however,

performed about the same. It has less to gain from the increased observation capabilities

than BaGA-Cluster and QMDP because, in both types of tag, the MLS-controlled robots

follow each other around rather than taking different paths from each other.

Realistic Gates Tag B is a much larger problem with respect to the number of histories

that must be tracked for each robot. As a result, BaGA-Cluster was implemented with

a combination of low-probability pruning with a cutoff of 0.0005 and minimum-distance

clustering with a threshold of 0.001 in order to keep the number of maintained histories

manageable. Furthermore, because the resulting controller runs in real time (and not faster

as in Variation A), only one starting condition was used: one robot starts in Cell 6 looking

down and the other in Cell 18 facing right with the opponent in Cell 12.4 In about 3% of

the trials, however, BaGA-Cluster still ran out of memory before the task was completed.

The results shown in Table 6.2 for this condition are therefore averaged over the remaining

successful trials. This starting condition is very difficult for the MLS and QMDP heuristics

which is reflected in their poor performance in comparison to BaGA-Cluster. In the next

section, example trajectories are given that show how this starting condition exposes the

weaknesses in the two heuristics.

With both Realistic Gates Tag A and B, minimum-distance clustering had the effect of

grouping together observation and action histories that were similar with respect to reward.

The results of this clustering is similar to how a human would manually group together

histories. For example, a history in which a robot in Cell 10 facing west sees an opponent

in Cell 9 is clustered together with a history in which a robot in Cell 22 facing east sees the

opponent in Cell 21. In both cases, the robot must move forward to capture the opponent.

They both also have a similar distance to an intersection point and therefore similar future

actions should the opponent move away from the robot. By increasing the maximum-

allowable expected-loss threshold, histories with robot positions that are only similar in the

short term will also be grouped together. For example, a robot in Cell 19 facing east seeing

an opponent in Cell 18 will only generate similar actions to a history in which a robot is in

Cell 7 facing west and seeing an opponent in Cell 6 for immediate timesteps.

Communication was also added to Realistic Gates Tag B at a cost of 1.0 per communi-

cation act (i.e., the same cost as a move action) in order to improve the computational

requirements of this controller. In addition to fixed communication policies of communi-

4The number of trials required to generate statistically significant results for randomized starting condi-

tions is much greater than that required if only one starting condition is used. Because this controller runs at

real time, it was not feasible to run the required number of trials.
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Table 6.2: Realistic Gates Tag results with 95% confidence intervals shown. Results are

averaged over 10000 trials except for minimum-distance clustering in Realistic Gates Tag

B, which is over 1000 trials. Average iterations is the number of steps it takes to capture

the opponent. Total number of types per robot is the average number of individual types

or clusters maintained for each robot. The number of histories not retained is the average

number of timesteps either robot’s true history was not in the maintained set. The initial

robot positions for Realistic Gates Tag B has one robot starting in cell 6 facing down and the

other in cell 18 facing right. The opponent starts in cell 12. BaGA-Cluster used alternating

maximization with 200 random restarts to find policies.

Algorithm Reward Iterations # Types Per Robot # Histories Not Retained

Realistic Gates Tag A: know teammate state, noisy observations, random starting positions

Fully Observable -2.51 ± 0.15 6.91 ± 0.08 n.a. n.a.

BaGA, low prob. pruning,

cutoff 0.00025

-15.19 ± 0.43 13.09 ± 0.21 166.73 ± 4.17 0.31 ± 0.05

BaGA, low prob.

clustering, threshold 0.0025

-15.48 ± 0.43 13.24 ± 0.22 118.68 ± 2.71 0.32 ± 0.03

BaGA-Cluster, min.dist.

clustering, max. loss 0.05

-15.20 ± 0.43 13.10 ± 0.21 50.45 ± 0.87 1.54 ± 0.08

MLS -21.13 ± 0.51 16.02 ± 0.25 n.a. n.a.

QMDP -19.91 ± 0.58 15.45 ± 0.29 n.a. n.a.

Realistic Gates Tag B: do not know teammate state , noise-free observations, fixed starting positions

Fully Observable -3.68 ± 0.08 7.45 ± 0.04 n.a. n.a.

BaGA-Cluster, low prob.

pruning 0.0005,min.dist.

clustering, max. loss 0.001,

-12.84 ± 1.46 11.57 ± 0.51 463.40 ± 78.41 5.13 ± 0.79

MLS -58.92 ± 0.52 32.30 ± 0.21 n.a. n.a.

QMDP -72.82 ± 1.00 41.44 ± 0.48 n.a. n.a.
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Table 6.3: Realistic Gates Tag B communication results. Results are averaged over 10000

trials with 95% confidence intervals shown. Reward is the average reward with commu-

nication costs of 1.0 per communication act factored in. Average iterations is the number

of steps it takes to capture the opponent. Total number of clusters per robot is the average

number of clusters maintained for each robot. BaGA-Comm used alternating maximiza-

tion with 200 random restarts to find policies and a combination of low-probability pruning

with a threshold of 0.0005 and minimum-distance clustering with a maximum-allowable

expected-loss threshold of 0.001.

Communication Decision Algorithm Reward Iterations # Comm. Acts # Clusters Per Robot

Fixed starting conditions, robots in cells 6 and 18, opponent in cell 12

Communicate every BaGA-Comm -35.11 ± 0.52 11.53 ± 0.12 23.02 ± 0.25 43.06 ± 0.45

timestep MLS -93.24 ± 0.59 26.30 ± 0.16 52.31 ± 0.30 n.a.

QMDP -35.08 ± 0.49 11.54 ± 0.12 23.09 ± 0.25 n.a.

Communicate every BaGA-Comm -19.89 ± 0.30 11.33 ± 0.11 8.22 ± 0.08 97.53 ± 0.95

third timestep MLS -60.88 ± 0.43 26.70 ± 0.16 18.46 ± 0.11 n.a.

QMDP -21.93 ± 0.36 12.10 ± 0.14 8.74 ± 0.09 n.a.

|Ct
i |>20 BaGA-Comm -15.09 ± 0.25 11.24 ± 0.11 3.59 ± 0.03 119.95 ± 1.33

PD BaGA-Comm -18.72 ± 0.44 11.30 ± 0.11 6.97 ± 0.08 103.62 ± 1.47

bad match BaGA-Comm -13.70 ± 0.26 11.75 ± 0.12 1.23 ± 0.03 301.40 ± 4.37

Random starting conditions

Communicate every BaGA-Comm -35.49 ± 0.79 11.65 ± 0.19 23.20 ± 0.38 46.50 ± 0.72

timestep MLS -42.73 ± 0.90 13.51 ± 0.22 27.03 ± 0.45 n.a.

QMDP -35.61 ± 0.72 11.68 ± 0.18 23.36 ± 0.36 n.a.

Communicate every BaGA-Comm -19.19 ± 0.50 11.06 ± 0.19 8.07 ± 0.12 101.35 ± 1.75

third timestep MLS -26.13 ± 0.62 13.64 ± 0.23 9.79 ± 0.15 n.a.

QMDP -20.80 ± 0.49 11.66 ± 0.18 8.47 ± 0.12 n.a.

|Ct
i |>20 BaGA-Comm -15.94 ± 0.44 11.43 ± 0.19 4.03 ± 0.07 142.49 ± 2.48

PD BaGA-Comm -20.37 ± 0.89 11.46 ± 0.19 7.61 ± 0.15 138.19 ± 2.76

bad match BaGA-Comm -14.47 ± 0.39 11.91 ± 0.18 2.12 ± 0.05 347.87 ± 7.22
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cating every timestep or every third timestep, three run-time communication decisions were

also implemented. The first was the cluster-threshold condition in which a robot communi-

cates if it has more than 20 history clusters on the current timestep (|C t
i | > 20). The second

is the policy-difference (PD) condition in which a robot communicates if doing so would

result in a different policy for either itself or its teammate. Finally, a third communication

decision was implemented in which a robot initiates a forced synchronization if there is

no good match between its true history and one of its retained histories. This ‘bad match’

condition is triggered if the difference between the reward profiles of the true history and

its best match amongst the history clusters is larger than a specific threshold. Unlike the

previous communication decisions, if the bad match condition is triggered, a robot does not

tell its teammate the cluster to which its true history belongs. Rather it tells its teammate

its true history and, in turn, its teammate tells it the teammate’s true history. This sharing

results in the robots having identical information about the current situation (i.e., one joint

type). While it is a more expensive operation, each robot still only incurs a cost of 1.0

each if such a forced synchronization occurs. This communication condition was consid-

ered because it can help compensate for the aggressive low-probability threshold used for

BaGA-Comm: if a robot’s true history has effectively been pruned from consideration then

it can ‘re-initialize’ the set of possible individual and joint types. Experimental results are

not included for expected value difference (EVD) for this problem because it resulted in

communication so rarely (i.e., communication does not have a big effect on performance

in this domain so EVD was rarely triggered), that the trials took too long to run. EVD

was run in combination with the communicate if |C t
i | > 20 condition for the fixed starting

conditions; however, this latter condition triggered all of the communication acts and the

outcome was essentially identical to simply applying communicate if |C t
i | > 20 by itself.

While for the initial starting configuration, communication of any kind does not result in

BaGA-Comm capturing the opponent any sooner, as seen in Table 6.3, it does result in

many fewer clusters being tracked for each robot. Without communication, each robot

must maintain about 450 clusters over the course of the problem. When communication is

added, this number drops to as low as 43 for the communicate-every-time-step condition.

It is not surprising, however, that adding communication does not affect the time taken to

capture the opponent. Unlike the Robot Tag problem of Section 5.3.2, only one robot is

required to tag the opponent and the opponent is moving randomly. Therefore, knowing

the cluster to which its teammate’s true history belongs has less of an impact on a robot’s

decisions than it did in the Robotic Tag case.

The results shown in Table 6.3 factor the cost of communication into the average reward
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achieved by each algorithm for the team. The bad-match communication decision, while

retaining the greatest number of histories and therefore being the most computationally

expensive, also results in the least number of communication acts and therefore has the

highest average reward for any of the BaGA-Comm communication conditions. Out of all

the conditions, |C t
i | > 20 is able to strike a good balance between computational require-

ments and number of communication acts.

MLS and QMDP are more affected than BaGA-Comm by the addition of communication

every timestep or every third timestep. Without communication, it takes MLS about 32.3

iterations to catch the opponent but with a fixed communication policy this performance

improves to about 26 iterations. QMDP shows an even more drastic improvement from

an average of 41.4 timesteps to about 12. For both of these heuristics, communication di-

rectly affects the belief state built up by each robot and therefore has a bigger impact on

action selection than it does for BaGA-Comm. For example, with this specific starting con-

dition, QMDP without any communication suffers from the oscillating problem previously

described as a weakness ofQMDP in general. By sharing observations from the very begin-

ning, robots are able to avoid the belief state that leads to this problem and make progress

towards the goal.

The resulting speed-up in planning generated by adding communication allows BaGA to be

run for random starting conditions and not just the single fixed starting conditions tested in

the no-communication case. As with the fixed starting conditions, BaGA-Comm was run

with low-probability pruning and minimum-distance clustering with parameters of 0.0005

and 0.001, respectively. For the fixed communication decisions, BaGA-Comm performs

as well as, or better than QMDP , and much better than MLS. This finding makes sense

because BaGA-Comm is usingQMDP as its utility function for approximating the expected

future value of actions. As with the fixed starting conditions, the run-time communication

decision of |C t
i | > 20 represents a good compromise between computational requirements

and overall performance. While it cannot be verified, it is believed that, as with the fixed

starting conditions, communication does not have a great impact on the overall time taken

to capture the opponent for this domain, but instead just reduces the number of clusters

tracked by the algorithm. This reduction directly translates to a reduction in algorithm’s

computational overhead, allowing the controllers to run faster.
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6.2.1 High-Fidelity Simulation and Physical Robot Results

As with Simple Gates Tag, the BaGA controller was executed in both a high-fidelity simu-

lator and on physical robots using the Carmen software package for low-level control. As

in Simple Gates Tag, an additional layer was used to map between the grid world and con-

tinuous world. The heading of each robot, as determined by its localized position within

the map of the Gates Building, was converted into one of the allowable cardinal direc-

tions as given by its corresponding cell in the grid world. While actions were modelled

as noisy in the grid-world version of this problem, no artificial noise was added into ac-

tions in the simulator or on the real robots. For the specific starting conditions used for

Realistic Gates Tag, actions rarely failed in the simulator and never on the physical robots.

Therefore, while the robots still tracked histories in which actions failed, robots rarely

had true histories for which this occurred. This does not negate the validity of modelling

non-deterministic actions: previous experience with Simple Gates and the physical robots

indicate that modelling this noise is important in general.

Overall, the BaGA controllers for Realistic Gates Tag A and B show some similar be-

haviour to those of Simple Gates Tag. For example, one robot will ‘guard’ the intersection

while the other one traverses the loop. Figures 6.5, 6.6 and 6.7 show the trajectories taken

by the robot team in simulation for the fixed initial starting conditions of Realistic Gates

Tag B with no communication. The opponent is not present in this specific set of runs as it

allows one to understand how the team searches the space for the opponent.

This starting condition is very difficult for the MLS and QMDP heuristics. With MLS, the

two robots have somewhat similar starting belief states and so follow each other around.

As a result, they continue to have similar belief states and continue to follow each other. As

seen in Figure 6.5, the two robots move into the bottom left corridor before retracing their

steps to the intersection and moving around the loop. Finally, they move into the upper

left corridor. Unless the opponent starts in the bottom left corridor, this path is a fairly

inefficient way to move around the space and gives the opponent lots of ways in which to

move around the environment without encountering a robot.

With the QMDP heuristic, shown in Figure 6.6, the two robots turn to face the center of the

environment and then never move again. They each now have a multi-modal belief state

that results in the do-nothing action having the best expected reward. In part, this starting

condition was chosen because it so clearly shows this flaw of the QMDP heuristic.

While BaGA-Cluster usesQMDP as a utility function, the additional step of game-theoretic

reasoning allows the robots to overcome this ‘trap’ as shown in Figure 6.7. Instead, the
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Example of MLS-controlled robot trajectories for Realistic Gates Tag B (no

communication). The MLS heuristic results in paths where the robots follow each other

and so do not cover the space well.
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(a)

,

(b)

(c) (d)

(e) (f)

Figure 6.6: Example of QMDP -controlled robot trajectories for Realistic Gates Tag B (no

communication). With the QMDP heuristic the robots stop moving after they turn to face

each other and do not make any more progress.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Example of a BaGA-controlled robot trajectories for Realistic Gates Tag B (no

communication). With the BaGA algorithm, the robots coordinate to do a better job of

covering the space than they did when controlled with MLS or QMDP .



184 Chapter 6. Real-Time Robot Controllers

top robot turns to face the center of the environment and ‘guards’ that intersection, while

the other robot moves around the loop in a counter-clockwise direction (Figures 6.7 (a)

through (c)). Once it reaches the top intersection, it continues into the upper left corridor

while its teammate moves down and into the lower left corridor (Figure 6.7 (d)). It is

a more effective way to cover the environment than the trajectories generated by MLS.

Under BaGA-Cluster control, the robots still do not perfectly cover the environment (it

is impossible given the sensor range and the number of robots), but they seem to leave

fewer openings for a randomly moving opponent to escape detection by splitting the work

between them.

Runs on the physical robots generated similar paths for the same starting conditions. Runs

were made both with and without the presence of the opponent. If the opponent starts

in Cell 12, then BaGA-Cluster will catch it the fastest because it sends the bottom robot

around the loop while ‘guarding’ the top intersection with the other one. The opponent

can therefore not pass by either robot without being captured. With MLS, depending on

how the opponent moves, the time to capture can vary but is, on average, longer than with

BaGA-Cluster because the robots are less efficient about searching the space. With QMDP ,

the robots must wait for the opponent to randomly move into one of the cells occupied by

the robots because they never move on their own.

6.3 Team Gates Tag

In this version of Gates Tag, the robot team is expanded to three robots to show how BaGA

scales to a 3-robot controller. Each robot has the same local state, action and observation

space as in Realistic Gates Tag, but both actions and observations are now considered to be

deterministic rather than noisy (unlike the case of Simple Gates, none of the simulator or

physical robot runs examined in this section resulted in cases where this assumption was

violated). The addition of a third robot increases the size of the problem from 93600 states

in Realistic Gates Tag to 5832000 states. As with Realistic Gates Tag B, the robots do

not know the position of their teammates with certainty but instead receive observations of

their teammates.

In Team Gates Tag, the opponent no longer moves with Brownian motion but instead fol-

lows a known, stochastic policy in which it tries to maximize its distance to the robot team.

This change was made because, in Realistic Gates Tag, the QMDP controlled-robots were

still able to successfully tag the without moving simply because the opponent would even-
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tually wander past one of them. Furthermore, tagging the opponent now requires at least

two of the robots to coordinate on the tag action. Similarly to Robotic Tag (Sections 3.4.3

and 5.3.2), one of the tagging robots must be in the same cell as the opponent with at least

one other teammate in the same or adjacent cell. Robots must now coordinate on both the

tag action as well as on finding the opponent and ‘herding’ it to a location in which it can

be tagged by multiple team members. Unlike Robotic Tag, the opponent can be captured in

any cell.

As with Realistic Gates Tag B, BaGA-Comm was used with both low-probability pruning

and minimum-distance clustering to keep the number of histories for each robot manage-

able. Communication, with a cost of 1.0 per act, was also permitted between team members

to ensure real-time controllers. Because actions are deterministic, Team Gates Tag has a

branching factor on the number of joint types with an upper bound of seven rather than

the twenty of Realistic Gates Tag B.5 However, the increased number of robots, possible

joint actions and average length of time to capture the opponent makes this problem more

computationally expensive to solve.

The utility function for BaGA-Comm comes from the Q-Values for a fully observable

version of the problem. These were found using dynamic programming on an infinite-

horizon version of the problem with a discount factor of 0.95. In order to find this policy,

the assumption was made that, in the fully observable problem, the robots are effectively

interchangeable. That is, it is assumed that if the global state {r1 = (12, north), r2 =

(15, west), r3 = (21, east), op = 25} results in an optimal joint action of {move-forward,

do-nothing, turn-clockwise}, then the global state {r1 = (21, east), r2 = (12, north), r3 =

(15, west), op = 25} will result in an optimal joint action of {turn-clockwise, move-

forward, do-nothing}. This assumption reduces the state space over which a fully ob-

servable policy must be calculated from 5832000 to 1021140.

Unlike Simple Gates Tag and Realistic Gates Tag, MLS rather than QMDP was used as the

heuristic for evaluating the utility of actions in BaGA-Comm. The value of taking a set of

actions {a1, a2, a3}, given the joint history θ and the resulting belief state bθ it induces over

the position of the opponent in the environment, is now:

u(a1, a2, a3, θ) = Q({r1, r2, r3, smax}, {a1, a2, a3})

5Because each joint type highly constrains what observations of opponents and teammates are possible at

t+ 1, the majority of the 273 possible one-step extensions will not occur. Thus, the branching factor is only

seven.
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where smax is the most likely state in sop given the belief bθ, and its associated Q-value

is Q({r1, r2, r3, smax},{a1, a2,a3}). During experimental runs, it was found that for this

problem the MLS heuristic greatly outperformed the QMDP heuristic. Because the overall

performance of BaGA depends on the strength of the heuristic used for evaluating utility,

the decision was made to use MLS. It is important to note, however, that if BaGA-Comm

uses QMDP to evaluate utility, it is still able to improve on the performance of the QMDP

heuristic applied without any game-theoretic reasoning.

Figure 6.8 shows the performance of BaGA-Comm, MLS and QMDP for fixed commu-

nication policies. BaGA-Comm was run with a combination of low-probability pruning

with a cutoff of 0.000005 and minimum-distance clustering with a maximum-allowable

expected-loss threshold of zero, except for the case of x = 5 in which case the parame-

ters were 0.0005 and 0.001, respectively. Unlike Realistic Gates Tag B, communication

has a positive effect on performance. Because the opponent’s policy is dependent on the

positions of the robot team and because at least two robots must coordinate to tag the op-

ponent, it is now necessary to cooperate on more than just covering the environment. Any

communicated information can only improve that cooperation.

For all but the case of full communication, BaGA-Comm was able to catch the opponent

in the fewest number of iterations. If the cost of communication is factored into the av-

erage reward achieved by the team, then BaGA-Comm always performs better than the

two heuristics. Because it is unnecessary for a robot to transmit its type if it has only one,

fewer communication acts were required by BaGA-Comm than MLS, even when they took

similar numbers of iterations to tag the opponent. With respect to reward and number of

iterations, BaGA-Comm’s performance varied slightly less than MLS as the number of

communication acts decreased. This stability is because BaGA-Comm-controlled robots

are better able to reason about the observations of teammates and their locations than those

controlled by MLS. In MLS andQMDP , performance is tied to how well the robots are able

to coordinate their belief states about the opponent’s position, which in turn is positively

affected by communication.

The effects of run-time communication decisions are shown in Table 6.4. Policy difference

(PD) and expected value difference (EVD) were run in combination with the |Ci| > k de-

cision, which places an upper bound on the computational requirements of the algorithm,

as well as the bad-match decision in which the robot team synchronizes on the true joint

history if any one member’s true history does not have a good match with any of its possible

types. As expected, limiting computation through the use of the |Ci| > k communication

decision alone does not have as positive an impact on performance as it does in combi-
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Figure 6.8: Fixed communication policy results for Team Gates Tag. Each fixed commu-

nication policy is to communicate every x steps. BaGA-Comm was implemented with a

combination of low-probability pruning with a cutoff of 0.000005 and minimum-distance

clustering with a threshold of zero (i.e., two clusters are only merged if they have identical

reward profiles), except for the case of x = 5 in which those parameters were 0.0005 and

0.001, respectively. The average cumulative reward to the team without communication

costs factored in is shown in (a) while the average reward with communication costs in-

cluded in shown in (b). (c) shows the average number of communication acts for the team

over the length of the task while (d) shows the average number of timesteps taken to cap-

ture the opponent. All results are averaged over 10000 trials with 95% confidence intervals

shown.
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Table 6.4: Run-time communication policy results for Team Gates Tag. Results are aver-

aged over 10000 trials with 95% confidence intervals shown. The average number of clus-

ters is the average of the summed number of clusters maintained by a robot at each timestep,

i.e.,
∑

t |C
t
i |. BaGA-Comm was implemented with a combination of low-probability prun-

ing with a cutoff of 0.000005 and minimum-distance clustering with a threshold of zero.

Results for two of the fixed communication policies are included for comparison purposes.

Communication Decision Capture Time # Comm. Acts Reward Reward+Comm.

Costs

Average #

Clusters

EVD + |Ci| > 20 + bad match 14.81 ± 0.15 4.66 ± 0.04 -32.40 ± 0.45 -37.06 ± 0.48 94.30 ± 0.86

EVD + |Ci| > 10 + bad match 14.89 ± 0.15 5.80 ± 0.05 -32.64 ± 0.45 -38.44 ± 0.49 62.66 ± 0.53

PD +|Ci|> 50 + bad match 15.00 ± 0.15 11.65 ± 0.10 -32.88 ± 0.45 -44.54 ± 0.52 64.37 ± 0.79

PD + |Ci|> 20 15.00 ± 0.16 11.88 ± 0.11 -32.95 ± 0.48 -44.83 ± 0.56 52.80 ± 0.52

Fixed, x = 1 15.28 ± 0.15 21.21 ± 0.16 -33.70 ± 0.46 -54.91 ± 0.58 24.50 ± 0.20

Fixed, x = 2 15.51 ± 0.15 14.41 ± 0.34 -34.43 ± 0.50 -48.71 ± 0.59 32.71 ± 0.28

|Ci| > 8 15.88 ± 0.16 6.47 ± 0.05 -35.83 ± 0.51 -42.30 ± 0.55 64.18 ± 0.51

|Ci| > 12 + bad match 16.16 ± 0.15 5.53 ± 0.04 -36.49 ± 0.45 -42.03 ± 0.50 79.67 ± 0.63

nation with PD or EVD. PD, however, requires more communication acts to achieve its

performance and so once communication costs are factored in, PD and |Ci| > k perform

more comparably to each other with respect to reward. With respect to the length of time it

takes to capture the opponent, PD and EVD take about one timestep fewer to accomplish a

successful tag than |Ci| > k alone.

EVD in combination with |Ci| > 10 strikes the best balance between performance and

computational costs. While it only averages about one more communication action per run

than EVD with |Ci| > 20, each robot has about 30 fewer clusters on average, which lets

the controller run faster. EVD with |Ci| > 10 generates a similar number of clusters and

communication actions to |Ci| > 8; however, it has a much better performance with respect

to reward and capture time.

In comparison to fixed communication policies, the PD and EVD conditions perform sim-

ilarly or better to the fixed communication cases of x = 1 and x = 2 (both with respect

the number of iterations taken to capture the opponent and reward); however, they require

fewer communication acts to do so. With EVD and PD, the robots are actually evaluating

when communication is useful as opposed to following a fixed schedule. The |Ci| > k con-

ditions, which serves to bound computational costs, perform similarly to the x = 3 fixed

communication case, but track a higher number of possible types for each robot.
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6.3.1 High-Fidelity Simulation

As with the 2-robot examples, the BaGA controller for Team Gates Tag was executed in

a high-fidelity simulator. The mapping between the discrete and continuous worlds is the

same as for Realistic Gates Tag B. BaGA-Comm with both the EVD and PD run-time

communication decisions was used to control the simulated robots. For the two example

trajectories shown in Figures 6.9 and 6.10, |Ci| > 40 was also included as a communication

decision; however, in these cases it was never triggered. BaGA-Comm was implemented

with low-probability pruning with a cutoff of 0.000005 and minimum-distance clustering

with a maximum-allowable expected-loss threshold of zero.

Figure 6.9 illustrates how in this problem one robot will ‘trap’ the opponent in a corner until

one of its teammates arrives to coordinate on a tag action. For this simulation run, the robots

were controlled using BaGA-Comm with the EVD communication decision. A member of

the robot team starts in the far left of each of the left-hand corridors, while a third member

of the team is located along the top corridor, just to the right of the middle intersection. All

three robots start to move towards the middle corridor. When the bottom robot senses the

opponent (Figure 6.9 (b)), it lets the opponent pass it and takes up a fixed position. Because

the opponent has a policy that tries to maximize its distance to the robot team, this fixed

position effectively traps the opponent at the end of the bottom left corridor. At the same

time, sensing the opponent triggers the EVD condition for this robot and it broadcasts its

type to the rest of the team.

After the ‘trapping’ robot broadcasts its type, its closest teammate makes its way to the

bottom left corridor to help it tag the opponent. The ‘trapping’ robot maintains its fixed

position until its teammate draws near, at which point it turns (Figure 6.9 (d)) and moves

into the end of the corridor and the two robots coordinate to capture the opponent without

any communication. The third robot remains in its position in the top left corridor be-

cause it is unnecessary to accomplish a successful tag. By not moving, it also maintains

a constant effect on the opponent’s policy. For this entire run, only one communication

act was performed by any robot and that was to indicate that the opponent had been seen.

For these starting conditions, BaGA-Comm with a fixed communication policy generates

similar robot paths but with many more communication acts.

An example of BaGA-Comm using the PD condition is shown in Figure 6.10. In this case,

all three robots start in the upper left corridor of the environment, while the opponent is on

the far right side of the right-hand loop. When the first two robots reach the intersection

with the middle corridor, one continues straight while the other one starts to turn down. Just
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Example of BaGA-Comm robot trajectories for Team Gates Tag. These tra-

jectories demonstrate how the robots coordinate to capture the opponent using the EVD

communication decision. Members of the team start in three different parts of the environ-

ment and are dark while the opponent starts in the far left of the bottom left corridor and

is light. The only communication act in this run takes place when the team member on the

lower left observes the opponent in (b). That team member then traps the opponent in the

end of the far left corridor until a teammate arrives in (d), at which point they coordinate

on the tag action without the need for any additional communication.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.10: Example of BaGA-Comm robot trajectories for Team Gates Tag. These tra-

jectories demonstrate how the robots coordinate to capture the opponent using the PD com-

munication decision. The members of the robot team start in the top right corridor while

the opponent starts in the middle of the far right portion of the loop. Key communication

acts occur in (b), when neither of the two robots at the intersection see the opponent; in

(e), when the team member of the top right sees the opponent; and in (f), when the team

member is in the same cell as the opponent. This communication act allows the bottom

right teammate to coordinate with the robot on the tag action even though that teammate

cannot observe the opponent itself.
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before these robots move out of the intersection, the PD condition is triggered for both of

them (Figure 6.10 (b)). As no opponent has been sighted, the two robots continue on their

way, approaching the right-hand loop from both sides. Meanwhile, the third robot stays

close to the middle corridor, placing it in a good position to support its bottom teammate

for an opponent capture in the bottom left corridor should the opponent prove not to be in

the loop.

When the robot in the top right side of the loop senses the opponent, it broadcasts its type

to the rest of the team (Figure 6.10 (e)). It again broadcasts its type when it is located in the

same cell as the opponent (Figure 6.10 (f)). This information allows its teammate, located

at the bottom right of the loop, to coordinate on the tag action with it, even though that

teammate cannot sense the opponent itself (although it is in an adjacent location, it is facing

the wrong way to observe the opponent). While communication acts were also triggered by

PD in some other locations, overall the BaGA-Comm controller behaved similarly to how

it would with full communication but with fewer communication acts.

6.4 Real-World Operation

Robust control of a team of robots in the physical world requires an algorithm to meet sev-

eral criteria that do not arise in abstract problems. In order to be appropriate for real-world

use, a multi-robot software framework must demonstrate inter-robot coordination, compu-

tational feasibility and scalability, robustness to uncertainty and robustness to failures and

malfunctions (Dias & Stentz, 2003; Dias et al., 2004). This section discusses how POSGs

and BaGA are able to meet these criteria despite the fact that these frameworks are based

on relatively abstract notions of control and optimality.

6.4.1 Inter-Robot Coordination

By using POSGs to model problems, the resulting robot controllers use game- and decision-

theoretic principles to achieve coordination in tightly-coupled problems. Robots do not

individually select the best joint action for the team at each timestep, but rather find a

set of complementary policies that dictate what action each member of the team will pick

for each of its possible observation histories. While each robot does not know the exact

observations made by teammates, it does know exactly what they will do in every possible

case and therefore has an accurate probability distribution over their action choices, even
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in the absence of communication. These best action choices are found simultaneously

with those of all other robots. In this thesis, coordination has been defined as finding a

(Pareto-optimal) Nash equilibrium because, in the resulting policies, the robots pick actions

conditioned on both their observations of the world and their (implicit) beliefs of what their

teammates will do. Therefore, it is believed that Nash equilibrium policies for POSGs with

common payoffs result in robot controllers that provide full inter-robot coordination.

While alternating maximization can be used on problems of limited size to find locally

optimal Nash equilibria for POSGs (and therefore guarantee coordination), it is not fea-

sible in real-world problems. Instead, BaGA can be used at the cost of another layer of

approximation. This algorithm finds one-step lookahead policies by doing one full step of

game-theoretic reasoning over expected action payoffs that are estimated using a heuristic.

The resulting policies attempt to maximize performance of the team (i.e., the level of coor-

dination) with respect to this heuristic rather than the true expected future value of actions.

However, because each robot is using the same heuristic function, these policies are still

in a Nash equilibrium with respect to the robots’ viewpoints and therefore, with respect to

game theory, result in controllers that are in full coordination.

It can be argued that Nash equilibria are not necessarily the best solution to a game (and

therefore to the question of coordination) because, while a Nash equilibrium is stable in

that no one player would wish to change its policy, it is possible that each player could

gain greater reward if multiple players were to simultaneously switch their policies. As

discussed in Section 2.1.6, correlated equilibria allow for agents to come up with correlated

probability distributions over their sets of actions that generate higher payoffs than the

independent probability distributions found in Nash equilibria. This correlation requires

some sort of signal between players on which to condition action selection and, while it can

be hard to motivate the use of such a signal in arbitrary games, it is easy to do so in common-

payoff games where players are working towards the same goals. However, in a common-

payoff game, the Pareto-optimal Nash equilibrium solution corresponds to the equilibrium

in which all robots receive their highest payoff and so, unless it simplifies the search for

this equilibrium, it is not necessary to move to a different type of solution. Therefore, it is

believed that the Nash equilibrium solution concept used in this thesis is an appropriate way

to define optimal coordination between team members. While guarantees cannot be made

about playing a Pareto-optimal Nash equilibrium, a large number of random-restarts was

used in both alternating maximization and BaGA to ensure that, under the same conditions,

an identical high-quality solution is found.
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6.4.2 Computational Feasibility

POSGs with common payoffs are computationally intractable as shown by their NEXP-

completeness (Bernstein et al., 2002); however, the BaGA algorithm has been used to gen-

erate real-time controllers for robot teams. This computational feasibility does come at

the cost of trading bounded-error in solution quality for the computational savings gained

through the use of heuristics (bounds are only on one-step regret). Further computational

savings can be made by allowing robots to transmit their observation histories (clusters)

should that number exceed some threshold. Experimentally, this type of communication

had a significant impact in the time taken by the controllers to find an appropriate action

in the Realistic and Team Gates Tag problems, but without introducing a large number of

additional communication acts. While the majority of problem domains in this thesis as-

sumed no communication is available to the team, in real-world problems this constraint

can be relaxed so that the team tries to minimize bandwidth use in order not to overwhelm

the system.

If computational time permits, BaGA can be extended to a multi-step lookahead rather than

just its current one-step lookahead. Indeed, an any-time algorithm can be constructed that

generates higher quality solutions as more time is made available to the team for compu-

tation. As discussed in Section 3.3.3, in an n-step lookahead robots find locally optimal

policies of length n. These policies can be thought of as policy trees with their expected

value being the expected sum of the immediate rewards over the n steps plus the expected

future value of the last action given the heuristic function used. The policy π now tells

robots which policy tree to follow for each of their clusters of histories and so, at run time,

robots would implement the action given by the root of the appropriate policy tree. At

timestep t+ 1, robots find a new policy of length n and use it to pick their next action.

An anytime version of BaGA would not re-use computation in the traditional sense because

it cannot reuse calculations made during the construction of a (n − 1)-step policy in the

calculating of an n-step policy. Instead, some of that computation could be reused at future

timesteps by giving robots the option of continuing to use a policy calculated in a previous

timestep rather than compute a new policy. In this anytime algorithm, each robot finds a

series of n-step lookahead solutions for the first timestep. Depending on how much time

is available, robots will solve for increasing values of n, starting with one (i.e., the current

BaGA algorithm), until no more computation time is available. A robot now has a policy

of length n that dictates a policy tree to be used for each of its clusters and implements the

action given by the root of the appropriate policy tree.
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If there is enough time (and assuming sufficient space), the robots find the full T -step

policy on the first timestep and no further computation is necessary. Otherwise, at timestep

t + 1, a robot will again construct its n-step lookahead policies for increasing values of

n until time runs out. It, however, does not necessarily have to start with n = 1 because

an m-step policy at timestep t is equivalent to a (m − 1)-step policy at timestep t + 1.

For example, if a 2-step policy σi was found at timestep t, a robot knows that the action

given by σi(h
t
i ∪ ot

i) would be equivalent to the action that would be found for a 1-step

policy conditioned on histories of length t + 1. Therefore, a robot can start constructing

n-step policies with n = m where m is the maximum value of n reached at the previous

timestep. In the worst case, only a 1-step policy can be found at each timestep and no

computation reuse can be made; however if more computation time is available robots can

increase the quality of their solutions. This approach allows for a nice tradeoff between the

approximations made by BaGA and the computational overhead of a longer, more accurate

policy. It is, however, crucial to the algorithm that all robots come up with policies of the

same depth at each timestep or else it cannot be guaranteed that they remain coordinated.

The assumption needs to be made that robots either have similar computational resources to

each other (and therefore would be able to find policy trees of depth m in the same time) or

that some function exists for relating time to policy-tree depth and robots use this to pick an

appropriate depth for which to solve (a similar approach is taken by Noh & Gmytrasiewicz

(2005) and is discussed in Section 7.3.1).

6.4.3 Scalability

In order to be applied to large real-world robot teams, an algorithm must demonstrate

good scalability as the size of the team increases. Obviously, scalability is a concern

for BaGA because it has a strong exponential dependence on the number of robots in the

team. As discussed in previous chapters, BaGA-Cluster has a computational complexity of

O
(

|S|2(|A∗||C∗|)
n
)

with |C∗| ≤ |Z∗|
t. Therefore, solving each timestep of a problem with

BaGA will always be exponential in the number of robots and, if no clustering can be done,

in the time horizon (the use of the sequence form prevents it from being doubly exponential

in time).

While BaGA does not scale as well as heuristic approaches, it has been shown in this

thesis that it significantly outperforms common heuristic methods. Furthermore, it scales

better than the use of the full POSG: BaGA is able to take advantage of problem dynamics

to reduce the number of histories that must be maintained for each robot and therefore
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reduce the effects of the time horizon on computation. For example, in the Multiple Access

Broadcast Channel problem, BaGA-Cluster was able to generate clusters for each agent

that were independent of the timestep, i.e., |C t
i | = |Ck

i | ∀t, k.

6.4.4 Uncertainty

POSGs provide a decision- and game-theoretic way to reason about uncertainty in world

state and stochastic motion (i.e., noisy actuators) as well as the actions of teammates. Un-

certainty in world state can be caused by parts of the environment not being accessible to

the team or individual members of the team (e.g., wrong type of sensors, sensor aliasing),

as well as through sensor error. No limitations are placed on the type of uncertainty in

observations or motion so long as it can be modelled through a probabilistic function (i.e.,

a model is required). Furthermore, the POSG model places no assumptions on the type of

partial observability to be modelled: members of the team do not have to receive the same

observations of world state nor do they have to share them with each other. These obser-

vations, however, will be correlated due to the fact that there is some probabilistic function

governing them which is conditioned on the true world state.

In BaGA, robots are able to condition their action selection on individual observation his-

tories despite the fact that their teammates do not know them with certainty. They are able

to do so in a way that takes into account what observation histories their teammates might

have seen without having to explicitly represent the associated infinite belief hierarchy.

Therefore, BaGA-controlled robots are not only robust to incomplete information about

the environment, sensor error and actuator error, they are also robust to uncertainty in the

observations, and therefore specific action choices, of their teammates.

6.4.5 Robustness To Failure

There are three major types of failure in a robotic system: communication failure; a partial

robot malfunction in which the robot is still operable but in a reduced capacity or with actual

errors in how it executes actions; and complete robot failure in which the robot ceases to

operate (Dias et al., 2004). There is no reason in theory why a POSG model cannot include

these failures as part of its world state although, in practice, size of the problem plays a

limiting factor. While none of the problems in this thesis have modelled these types of

failures, this section discusses how to add them to BaGA.
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In POSGs and BaGA, communication is not required for robots to condition their action

choices on their own observation histories; however, if communication is present, perfor-

mance can be improved both with respect to quality and computation. In this thesis, the

assumption has been made that communication is global and essentially failure free. But,

as briefly mentioned in Section 5.1.2, a communication protocol can be introduced with

robots reverting to their no-communication policy if a failure is indicated. Theoretically,

if communication is not guaranteed (i.e., failure free), then common knowledge about an

event cannot be achieved through any finite series of acknowledgements about the receipt of

information (Fagin et al., 1999). Instead, approximate common knowledge can be achieved

through the use of robust communication languages and protocols such as those described

in Stone & Veloso (1998), Barbuceanu & Fox (1995) and Emery et al. (2002). These sorts

of finite protocols result in both the sending and receiving robot being mutually aware that

either there was successful communication or, if there was a problem, in the appropriate

robots knowing that a failure occurred.

The questions of partial robot malfunction and total robot failure can be addressed by

adding components representing failure into the state of each robot. For example, the state

of a robot can include a bit representing whether or not it has a malfunctioning motor, com-

munication system, and so on. Histories would now include information about these added

components and the standard BaGA algorithm applied. While communication provides the

most reliable source of information about the failure of others, BaGA still works even if

it is not present: both communication and observations of teammates (e.g., gathered using

opponent or teammate modelling (Kaminka & Tambe, 2000; Browning et al., 2002)), can

be used as a source of common knowledge for updating the prior probability over joint

types. Additional parameters, such as a function that relates elapsed time to the probability

of certain failures, can also be incorporated.

Clearly augmenting state to include failure increases both the size of the state and obser-

vation spaces for each robot. As a result, the number of possible types for each robot will

increase because each of its types must now include observations of the status of its team-

mates. In general, those types that include a malfunctioning status will tend to have low

probability and so using minimum-distance clustering will be most effective at representing

the true distribution over histories while keeping these low-probability outliers in reward

space.
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6.5 Summary

In this chapter, it is shown that BaGA is not limited to controlling robots in simple grid-

world problems, but can also be used to control physical robots in real time. BaGA,

BaGA-Cluster and BaGA-Comm were used to generate real-time controllers for robots

in a series of tag problems that gradually increased in realism and size. These controllers

were implemented in both a high-fidelity simulator and on physical robots. In all cases,

the BaGA-controlled robots outperformed those controlled by two common heuristics for

decision-theoretic problems.

Robust control of a team of robots in the real world requires that a framework demonstrates

inter-robot coordination, computational feasibility and scalability, robustness to uncertainty

and robustness to failures and malfunctions. Although POSGs and BaGA are relatively

abstract notions of control, they still meet these requirements both in theory and, as shown

in this chapter, in practice.
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Related Work

This chapter discusses various approaches taken to solving the problem of decentralized

control of a robot team. The majority of the chapter is devoted game- and decision-theoretic

frameworks and how they, and their solution techniques, relate to POSGs and the BaGA

algorithm. This discussion includes a comparison of BaGA-Comm to existing algorithms

for generating run-time communication policies for POSGs with common payoffs.

Several other major multi-robot frameworks are also introduced and analyzed with respect

to how robots take teammates into account during decision making. While theories of

teamwork, behaviour-based approaches and market-based approaches do not make use of

game theory in the same way that POSGs do, such an analysis is still useful because it can

help identify what parts of problems require game theory to model teammates and what

parts do not.

7.1 Related Frameworks

In this section, a variety of frameworks that are related to the POSG model and its sub-

classes are discussed. This discussion is fairly in-depth and is designed to show that al-

though some of these frameworks were originally formulated with respect to their rela-

tionships to MDPs and POMDPs, they are all sub-classes of POSGs. The order of pre-

sentation was selected to move roughly from those POSG sub-classes that are the most

restrictive to those that are the most general. For example, the first framework, MMDPs

(Boutilier, 1999), assumes full individual observability of the problem while I-POMDPs

(Gmytrasiewicz & Doshi, 2004) make no assumptions on collective observability and are

199
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Figure 7.1: POSG sub-classes.

able to handle agents with arbitrary objective functions. An approximate continuum of

where these models fall with respect to POSG sub-classes is shown in Figure 7.1.

7.1.1 Multi-Agent Markov Decision Processes

The multi-agent Markov decision process (MMDP) is an extension of the single-agent

MDP to the multi-agent case (Boutilier, 1996). Agents are assumed to share the same

reward function R and to have full observability of world state. Optimal joint-action poli-

cies can be found in such a system by solving the corresponding MDP in joint-action and

-state space. MMDPs are perhaps the most restrictive sub-class of POSGs.

While optimal joint-action policies can be found for MMDPs in either a centralized or

decentralized fashion (with each agent solving the same copy of the MMDP), execution

of these policies can still result in miscoordination if there are multiple optimal joint ac-

tions. This problem is related to the problem of choosing a single Nash equilibrium to

play from the set of all Nash equilibria: if there are multiple optimal joint action choices

and each agent selects a different one to play, the resulting joint action can be arbitrarily

bad. Boutilier (1999) looks at incorporating coordination mechanisms into the MMDP in

order to solve this problem. These coordination mechanisms are protocols that restrict the

focus of agents to a subset of the optimal joint actions. States in the expanded MMDP now

include system state and the state of a coordination mechanism. In BaGA and alternating

maximization, locker-room agreements about the random number generators are used as

a coordination mechanism and, should multiple actions have the same values, robots will
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always select the action that comes first in the action set.

In a MMDP, structure can be exploited to find optimal or near-optimal solutions in a more

efficient way than evaluating every possible joint action. In these approaches, the joint value

function is broken up into a set of local value functions for each agent that are dependent

on only a subset of the action and state space of the entire team (Guestrin et al., 2001,

2002; Guestrin & Gordon, 2002). Depending on the problem, the combination of these

local value functions are either exact or approximate. Using its local value function, an

agent then decides which parts need to be optimized jointly and which do not (e.g., through

a coordination graph). Joint optimization does not always require communication between

agents (Kok et al., 2005).

Alternatively, MMDPs can be thought of as stochastic games with common payoffs. In

these games, agents find individual actions to play at each state by solving a normal-form

game representation of that state. For a game with common payoffs, there is a Pareto-

optimal Nash equilibrium for each state that corresponds to the optimal joint action of

the MMDP. Stochastic games are frequently used as a way to model agents learning poli-

cies in the presence of other agents, be they teammates or opponents, in model-free set-

tings. Examples include Nash Q-learning (Hu & Wellman, 2003), Friend-or-Foe Q-learning

(Littman, 2001), Correlated Q-learning (Greenwald & Hall, 2003) and Joint Action Learn-

ing (Claus & Boutilier, 1998).

7.1.2 Factored Decentralized MDPs and POMDPs

Factored DEC-MDPs (Becker et al., 2003) are POSGs in which the global state is the cross

product of the local state of each agent, and the transition function for each agent’s local

state is independent of the local state and actions of the other agents. Furthermore, each

team member has full observability of that local state leading to collective full observabil-

ity. Unlike the transition function, the reward function is not decomposable and remains

dependent on the global state and the joint action of the agents. This type of problem is still

NEXP-complete (Bernstein et al., 2002); however, it is possible to exploit the structure that

results from transition independence.

In a 2-agent factored DEC-MDP, each agent creates an augmented MDP that is its under-

lying local MDP but with a modified reward function. This new reward function is based

on the original reward function, including any joint-reward structure, and a policy for the

other agent. In other words, it is conditioned on a policy for the other agent and so multiple
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reward functions may exist. As a result, each agent actually needs to define a set of aug-

mented MDPs that are parameterized based on the modified reward function, find the set of

optimal policies (the optimal coverage set) for the set of augmented MDPs, and then do an

exhaustive search in the joint optimal coverage set to find the optimal joint policy. While by

definition there are an infinite number of augmented MDPs (although only a finite number

correspond to augmented MDPs that represent a valid policy of the other agent), the op-

timal coverage set is kept small because many augmented MDPs share an optimal policy.

The actual determination of the optimal coverage set for each agent is done using a geo-

metric representation. The search for the optimal joint policy is therefore reduced from a

search through all possible joint policies to a search through only those joint policies within

the joint optimal coverage set. At a loss of global optimality, an alternating-maximization

style algorithm could be applied to a set of augmented MDPs to find a locally optimal joint

policy.

One could use a factored DEC-MDP as a way of approximating a POSG that does not

have transition independence. The resulting solution could then be used as a heuristic

for evaluating the future value of actions in the BaGA approximation. Unlike the QMDP

heuristic, which assumes that the agents will know the global state with certainty on the

following timestep, this heuristic would assume that the agents only know their own state

with certainty (e.g., in the Gates Tag problems, each robot’s local state could be defined to

be its own position and the position of the opponent).

The factored DEC-MDP model can be extended to include partial observability of each

agent’s local state. This factored DEC-POMDP model, however, still assumes that the

global state space is the cross-product of each agent’s local state and that both action tran-

sition functions and observation emission probabilities are independent of other agents’

states and actions (Goldman & Zilberstein, 2003). In other words, agents do not have any

observations of the local state of others.

7.1.3 Finite-State Dynamic Games

In finite-state dynamic games with asymmetric information (Fershtman & Pakes, 2004),

each agent is characterized by a vector of state variables that evolve over time according

to the player’s actions (i.e., there is transition independence of local state). Some state

variables are publicly observable while others are private, and agents can have arbitrary

reward functions. Agents select actions at each timestep and their payoffs are dependent on

the state variables of all agents and the joint action. This framework is more general than
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factored DEC-POMDPs because, while local state is still factored, agents now have partial

observability of the local state of other agents in addition to full observability of their own

state. It is commonly used for problems from the Industrial Organization literature, which

are known as capital accumulation games.

Fershtman & Pakes (2004) present a simple algorithm for calculating the Markov Perfect

equilibria of these games. A Markov strategy is a strategy in which actions are conditioned

only on payoff-related variables rather than just any state variable. A perfect equilibrium

is the same as a sub-game perfect equilibrium: even for parts of the game tree that can

never be reached due to earlier decisions, the strategies for each agent define actions that

are in equilibrium. Their algorithm for finding Markov perfect equilibria calculates simple

sufficient statistics such that, if agents maximize their action choice with respect to them,

then this action choice is the same as if the Markov Perfect equilibrium strategy was played.

In this model, these statistics turn out to be somewhat equivalent to the utility function used

in Bayesian games: they are the expected discounted payoff given the possible outcomes

of an agent’s action choice, and are computed conditioned on the private information of all

the other agents (i.e., the possible state of the game as given by each agent’s state vector

and any other common knowledge). Like Bayesian games, if the distribution over possible

state vectors is known, then the statistics can be calculated; however, if it is unknown, then

the authors show it can be approximated by a reinforcement-learning algorithm.

This approach is similar to that taken by BaGA: if the expected future value of actions was

known with certainty, then the actions selected by the algorithm would be the same as the

actions given by the optimal solution. In BaGA, a heuristic is used to approximate that

value function, while in this work reinforcement learning is used.

7.1.4 Decentralized POMDPs

DEC-POMDPs are a generalization of POMDPs to the distributed agent case (Bernstein

et al., 2002). In its formalization, a DEC-POMDP is equivalent to a POSG with common

payoffs. If the global state can be uniquely determined from the observations of all agents

together, then the problem is of the special case of decentralized MDPs (DEC-MDPS). Un-

like the factored versions of these problems discussed in Section 7.1.2, the state space is not

limited to the cross-product of the local states of agents and the transition and observation

probabilities are not assumed to be factored. Communication does not explicitly appear

within the DEC-POMDP model.
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Perhaps the biggest contribution of the work on the DEC-POMDP model is the computa-

tional complexity analysis performed by Bernstein et al. (2002), which shows that DEC-

POMDPs are NEXP-complete and therefore require solution techniques other than search-

ing for a conversion to a POMDP.

7.1.5 Communicative Multi-Agent Team Decision Problem

The Multi-agent Team Decision Problem (MTDP) is essentially the same model as a POSG

with common payoffs (Pynadath & Tambe, 2002) as it applies only to problems in which

all members of the team share a reward function. Like a POSG, actions are conditioned

on sequences of observations (despite the somewhat confusing terminology of belief state

used to refer to these observation histories), and the model parameters include an explicit

definition of the set of all possible joint sequences of any length. Like POSGs, MTDPs

place no restriction on the type of observability available to the team: in general, collective

partial observability is assumed.

The MTDP model is extended to the Communicative MTDP (COM-MTDP) in order to

explicitly model communication actions. The COM-MTDP model includes a parameter

to represent the set of all possible communication messages (the cross-product of the in-

dividual agent’s communication message sets) and the reward function R is now assumed

to be factored into two independent parts: one coming from the domain-level actions and

the other from communication. The belief states of the agents are now sets of sequences

of observations and received communication messages. Pynadath & Tambe (2002) break

the decision-making process into two rounds: first, the agents use their pre-communication

belief states to select a communication action and then use an updated post-communication

belief state to select a domain-level action. As a result, COM-MTDP is designed for and-

communication. The authors also assume that communication is instantaneous and noise-

free, which is similar to the assumptions made by BaGA-Comm.

As it is computationally intractable to find optimal domain-level and communication poli-

cies in the COM-MTDP framework (aside from the case of free communication), the au-

thors are only able to present a theoretical way of constructing optimal communication

policies. They therefore use the framework as a tool for the analysis of the optimality of

team performance for problems in which a domain-action policy is given and a communi-

cation policy can be constructed from models of teamwork. This topic will be discussed in

more detail in Section 7.4.
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An extension of COM-MTDP that takes advantage of the use of roles for reducing the

complexity of action selection and sets of domain-level actions is presented in R-COM-

MTDP (Jung et al., 2002). In this model, a set of possible roles is identified for each

agent. An agent’s actions are now role-taking (the agent takes on a specified role) or role-

execution actions. It is assumed that the set of role-execution actions for a specific role

are a subset of the full set of possible domain actions and this restriction in actions can

lead to computational savings. While this model allows for the analysis of different types

of team formation and reorganization, it also shows that role decomposition can provide

significant reductions in computational complexity. With completely decomposable roles,

this approach is similar to factored DEC-POMDPs.

7.1.6 Interactive POMDPs

Unlike DEC-POMDPs and COM-MTDPs, interactive POMDPs (I-POMDPs) are designed

to model agents with arbitrary objectives (Gmytrasiewicz & Doshi, 2004). This property

makes them more similar to POSGs with arbitrary reward functions than to those with

common payoffs. In I-POMDPs, each agent models the problem as a POMDP in which,

instead of maintaining a belief over physical states of the world, the agent maintains a

belief over interactive states. An interactive state is a combination of a physical state and

an instantiation of a set of models for each of the other agents in the problem. These

models are designed to express how the other agents will perform and therefore allow for

prediction about their behaviour. By modelling the other agents in the problem, solutions

to I-POMDPs are not restricted to equilibrium policies as they are in POSGs. Instead,

they allow agents to condition policies on beliefs about expected behaviour. That is, if an

agent believes all other agents will act according to an equilibrium then it too will play that

equilibrium; however, if it has reason to believe that the other agents will diverge from the

equilibrium then it can optimize its own behaviour accordingly.1 This distinction, however,

is not important when agents are in a team and it can be assumed that they are all Bayesian

rational (i.e., play according to an equilibrium policy).

A general model of an agent is a function that maps from possible observation histories of

that agent to a probabilistic prediction of its action choice. However, if all agents are known

1This idea ties into the notion that a game-theoretic equilibrium is only a ‘good’ solution if all agents are

rational. If an agent is not playing rationally, then the other agents could do much better by exploiting that

information. For example, in Rock-Paper-Scissors the equilibrium solution is to play each of the three actions

randomly with equal probability. However, if the opponent only ever plays rock then one can do much better

by always playing paper instead of the equilibrium solution.
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to be using I-POMDP for decision making, then the models of them should reflect this fact.

This goal is accomplished by using an intentional model in which the modelled agent is

assigned a type and assumed to be Bayesian rational. The type of the agent is defined to

be a combination of its belief (both over physical states of the world and the models of

all other agents) and the remaining parameters of its I-POMDP. This type is used in the

Bayesian game sense: an agent’s beliefs are private information upon which decision mak-

ing is based. Because each agent does not necessarily know the specific parameters of the

other agents’ I-POMDPs, then it must maintain a distribution over these models, much as a

player maintains a distribution over the type space of other players in a Bayesian game. Un-

fortunately, the types of an intentional model involve possibly infinitely nested beliefs over

others’ types and their beliefs about others, leading to computationally infeasible solutions

for I-POMDPs.

I-POMDPs are related to the recursive modelling method (RMM) in which agents try to

maximize their expected utility given their beliefs (Gmytrasiewicz & Durfee, 1995). In

RMMs, an agent constructs a payoff matrix that represents its beliefs about the environ-

ment, its capabilities and its utility function. In order for an agent to characterize what

it thinks others will do, it also models the other agents in terms of their payoff matrices.

A recursive nesting of these models, however, results because, for decision making, an

agent needs to model the fact that other agents are modelling it and so on. In practice, like

I-POMDPs, only a finite nesting of models is used.

In Rathnasabapathy & Gmytrasiewicz (2003), the authors propose using an I-POMDP for

a common-payoff problem with socially rational agents in which agents are restricted to

models with second-order beliefs (however, no experimental results are provided). That

is, they propose using a model of a teammate that captures that teammate’s belief about

its physical state and about other agents’ beliefs about their physical state. While this

finite level recursion can result in sub-optimal behaviour, it is necessary to trade off the

computational costs associated with deepening the belief hierarchy with the expected gain

in performance. Noh & Gmytrasiewicz (2005) perform this kind of analysis for RMMs by

using off-line machine learning to find a function that associates the amount of information

included in the model of other agents (model depth) with expected performance gain. At

run time, an agent calculates the value of time and then uses the learned function to select

the appropriate model depth to use for action selection.

Given intentional models with Bayesian rationality and a shared reward function, I-POMDPs

(and RMMs) can be considered equivalent frameworks to POSGs with common payoffs so

long as the model nesting or belief hierarchy is infinite. Otherwise, they are approxima-
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tions of POSGs.2 The POSG model gets around the infinite recursion in the belief hierarchy

by not explicitly representing a knowledge hierarchy. Approximation methods for POSGs

only need to worry about the effects of truncating the belief hierarchy too early if they ex-

plicitly represent it. Otherwise, their approximations will come from other sources. For

example, in the BaGA algorithm, the belief hierarchy is represented implicitly in the com-

mon prior over all possible joint histories at timestep t. In fact, it is essential to build up

the BaGA in such a way as that the common prior assumption is not invalid in order not

to use an explicit representation of such a belief hierarchy: work done by Sakovics (2001)

shows that in order not to have a common prior assumption in a Bayesian game, knowledge

hierarchies of this form must be explicitly represented (in his work, each player models its

opponents as having a finite-order belief hierarchy one layer shorter than its own).

7.2 Exact Dynamic-Programming Algorithm for POSGs

In Hansen et al. (2004), a dynamic-programming algorithm for POSGs is presented that

combines dynamic programming for POMDPs and iterated elimination of dominated strate-

gies from normal-form games. One way to solve POSGs is to convert them into normal-

form games and to then iteratively eliminate very weakly dominated strategies from this

game until a reduced set remains.3 A solution is then found from this reduced set of strate-

gies. Unfortunately, because the strategy set of each agent in a POSG is O
(

|Ai|
|Zi|T

)

,

this solution technique is computationally intractable. Instead, dynamic programming, us-

ing the policy-tree representation of agent strategies, is used to eliminate the very weakly

dominated strategies without having to construct the full normal-form game. For com-

mon payoff games, this algorithm is exact and results in optimal solutions (for general-sum

games, the removal of very weakly dominated strategies is not necessarily a good idea as

randomization between payoff-equivalent strategies could be beneficial).

2The degree to which one agent models another gives its level: a k-level agent models its teammates as

(k − 1)-level agents and 0-level agents do not reason directly about others at all (Vidal & Durfee, 1997).

For example, the second-order finite model for I-POMDPs proposed in Rathnasabapathy & Gmytrasiewicz

(2003) results in 2-level agents. Assuming common knowledge of the game and rationality, game-theoretic

agents are considered∞-level even though they do not explicitly construct a model of teammates (Wellman

& Wurman, 1998). This result, means that an agent in a POSG is only equivalent to an agent in an I-POMDP

if that agent is also an∞-level agent. Creating an∞-level agent for an I-POMDP, however, requires infinite

model nesting.
3Strategy A is weakly dominated by Strategy B if, regardless of what strategies C are picked by others,

the expected payoff for B is at least as good as A and, for one instance of C, strictly better. Strategy A is very

weakly dominated by Strategy B if B is at least as good as A regardless of C (i.e., the strict dominance not

required).
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In the multi-agent dynamic-programming operator, each backup step involves a set of depth

t policy trees (if t = T , then the trees are just one-step trees) for each agent and a corre-

sponding sets of value vectors. Based on the parameters of the POSG, each tree is exhaus-

tively backed up to form a new set of policy trees and their value vectors. Any dominated

tree is then pruned because, as the authors prove in this paper, if a sub-tree is very weakly

dominated then the entire tree is actually very weakly dominated. That is, if at the last

timestep all but one action is very weakly dominated, then any full-length policy tree that

does not have that action as its last step will also be very weakly dominated. The final set

of policy trees is the reduced set of strategies in which there are no very weakly dominated

strategies. The problem of selecting an equilibrium amongst this reduced set of strategies

still exists, but it is now possible to construct this subset without having to iterate over all

possible full length strategies.

For common-payoff games, this approach is an exact algorithm that results in a globally

optimal solution unlike approximation methods for POSGs that result, at best, in locally

optimal solutions (e.g., in the case of BaGA the solution is locally optimal with respect to

the heuristic used). While this dynamic-programming algorithm does allow larger problems

to be solved than without it, they are still relatively small problems. Hansen et al. (2004)

discuss pruning policy trees that are almost very weakly dominated as a way to farther

reduce the number of policy trees in exchange for bounded sub-optimality. Unlike BaGA,

this algorithm could place guarantees on the performance of the resulting policies.

It would be possible to make use of this multi-agent dynamic-programming operator within

the BaGA algorithm as a way to extend its single step of game-theoretic reasoning over the

current action selection into n steps of lookahead. As discussed in Section 3.3.3, at each

timestep robots would construct a Bayesian game that represented the next n-steps of the

problem rather than just one step. Rather than using alternating maximization, however,

Hansen et al. (2004)’s algorithm would be used to reduce the set of pure strategies over

these n steps and then a search method would be applied to find the optimal joint policy.

Robots would then implement the first step of their resulting policies and re-plan. This

n-step lookahead would allow robots to trade off speed in calculating the future value of

actions with accuracy.
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7.3 POSG Approximation Methods

In this section, a variety of algorithms for finding approximate solutions to POSGs and its

sub-classes are presented. Figure 7.2 presents a high-level overview of these algorithms

showing how they roughly relate to the BaGA algorithm. This figure also includes algo-

rithms discussed in Section 7.1. Algorithms for generating run-time communication poli-

cies for sub-classes of POSGs are not included in this section or the diagram, but will be

discussed in Section 7.4. Figure 7.3 provides a high-level comparison of the size of prob-

lem that has been addressed by each of the different solution techniques for POSGs with

common payoffs presented in Section 7.3.1.

7.3.1 POSGs with Common Payoffs

This section summarizes different algorithms for finding solutions to POSGs with common

payoffs. As BaGA falls into this class, a high-level comparison of the different algorithms

and the size of problem to which they have been applied is shown in Figure 7.3. This

comparison is based on published experimental results for each of the algorithms.

Rather than using value-based methods to find locally optimal policies to POSGs with com-

mon payoffs (called POIPSGs by the authors), Peshkin et al. (2000) use gradient descent

to perform policy search in the space of limited-memory finite-state controllers. The as-

sumption is made that the best joint controller in this restricted set of controllers can be

represented as a factored controller. While it is not necessarily true of the globally optimal

joint policy, it allows each agent to independently perform gradient descent on its own por-

tion of the controller with the resulting joint controller being the same as if joint gradient

descent had been done. Therefore, agents find the best factored controller for a domain

even if it is known a priori that a factored controller is sub-optimal.

Furthermore, unlike the BaGA algorithm, knowledge of the world model is not assumed,

and so stochastic gradient descent is used in which the algorithm samples from the dis-

tribution of observation histories by interacting with the world and uses those samples to

calculate an estimate of the gradient. The resulting policy is locally optimal and, while

every Nash equilibrium solution to the POSGs is a local optimum, the reverse is not true.

Agents, therefore, might not play policies that form an equilibrium. In contrast, every set of

policies found in the BaGA algorithm is an equilibrium solution given the heuristic function

used for calculating utility.
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(Nair et al., 2003) 
Exhaustive-JESP
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(Nair et al., 2003) DP-JESP
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Q-POMDP

(Noh & Gmytrasiewicz, 2005)
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(Khoussainov & Kushmerick, 2003)

(Guestrin & Gordon, 2002)

(Becker et al., 2003)

(Bernstein et al., 2005 )

Figure 7.2: Continuum of algorithms for approximating solutions to POSGs. The policy

axis is used to indicate the generalness of both assumptions made about policy structure

but also the degree of approximation of the resulting solution. Therefore, an approach that

places restrictions on the structure of policies but tries to find locally optimal versions of

those policies (e.g., Peshkin et al. (2000)) is placed lower than an approach that has no

restrictions on policy but a higher level of approximation (e.g., I-POMDP approaches that

truncate the belief hierarchy (Rathnasabapathy & Gmytrasiewicz, 2003)), but higher than

an approach that also also places restrictions on policy form but makes more approxima-

tions (e.g., Chades et al. (2002) who approximate a non-stationary transition function as

stationary). The models discussed in Section 7.1 are included (light text), with the optimal

policy for each model considered the most general type of policy for that class. Zero-sum

POSGs are considered to be slightly more general than POSGs with common payoffs but

less so than those with arbitrary payoffs, hence the related solution techniques fall some-

where between the DEC-POMDP and I-POMDP models with respect to the sub-class axis.
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Figure 7.3: Comparison of the size of problems addressed by various algorithms for POSGs

with common payoffs. The degree of approximation of these algorithms ranges from exact

(Hansen et al., 2004) to RMMs with heuristics (Durfee, 1999). Rough categories of robot

problems are included for reference. Problem size comes from published experimental

results, with the Lady and the Tiger problem considered larger than MABC because, despite

its smaller state space, it has been solved for larger time horizons (and with collective partial

observability) than MABC.
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Peshkin et al. (2000) also trade off the memory that can be stored within the factored con-

trollers for computational tractability. In the worst case, this approach results in reactive

policies in which agents condition their action choice on only the most recent observations.

The BaGA algorithm does not explicitly trade off between history length (i.e., memory)

and computation; however, the clustering of histories in BaGA-Cluster can be thought of

as a way of limiting memory because it groups together similar histories. Especially for

physical robot problems, this approach tends to reduce the effects of early observations on

later decision making.

The approximations in the solutions found by BaGA and POIPSGs come from different

sources. POIPSGs limit the amount of memory used in policy construction and the scope

of the policy search to factored controllers. Gradient descent is then used to find locally

optimal controllers within this subset of controllers. BaGA introduces approximations

through the use of a heuristic for evaluating the future value of actions and the alternating-

maximization algorithm to find a local optimum.

Another approach that uses finite-memory controllers is that taken by Bernstein et al. (2005)

for approximating solutions to infinite-horizon POSGs. The policy for such a POSG is

represented as a joint stochastic controller, which is made up of a local controller for each

agent. Unlike other work with common-payoff POSGs, these policies allow agents to take

stochastic actions at each timestep. With stochastic policies, correlated equilibria tend to

generate higher payoffs to the team than Nash equilibria, and so a correlating device is

included in the definition of the joint controller. This correlating device allows agents

to correlate behaviour (i.e., achieve a correlated equilibrium) without any communication

during execution. An example of such a correlating device is shared randomness, which

is equivalent to the synchronization of random number generators required by BaGA. In

Bernstein et al. 2005’s work, a joint controller is found through policy iteration and the

algorithm guarantees that on each iteration the performance of the controller will be at

least as high as on the previous iteration. The authors compare results for different sized

controllers and find that larger controllers usually lead to better solutions.

Nair et al. (2003) present a dynamic-programming-style algorithm for finding locally opti-

mal policies for the full POSG that is very similar to the alternating-maximization algorithm

used in this thesis, but with a different representation of the policy than the sequence form.

At the core of their work is a joint equilibrium-based search for policies (JESP) that finds

locally optimal policies from the set of all possible policies with finite planning horizons.

That is, unlike Peshkin et al. (2000), no restrictions are placed on the structure of the policy.

This planning is centralized and so the problem of selecting a policy from a set of multiple
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local optima is avoided. While an exhaustive version of JESP can be performed, a compu-

tationally tractable dynamic-programming version (DP-JESP) is preferable. DP-JESP first

finds the best set of policies for the last timestep and then backs these values up, using an

alternating-maximization-like approach.

Like alternating maximization and the BaGA algorithm, DP-JESP is designed to work for

POSGs with common payoffs. Its policy representation requires slightly less space than

alternating maximization and so it can be used to solve the full POSG of the Lady and

the Tiger problem with a planning horizon one larger than that which can be solved with

alternating maximization alone (a horizon of 7 vs. a horizon of 6). BaGA, however, can

solve this problem with an even larger horizon. Nair et al. (2003) also tend to use very

few random restarts in conjunction with DP-JESP (e.g., only three) and so make limited

attempts to move out of local optima.

In their work on creating run-time communication policies, Roth et al. (2005) present a

Q-POMDP heuristic for multi-agent POMDPs, which is analogous to the QMDP approx-

imation of POMDPs (Littman et al., 1995). This algorithm requires agents to maintain a

probability distribution over all possible joint histories that might have occurred up to that

timestep and then implement their part of the joint action that has highest expected reward

given the resulting distribution over joint beliefs. The value of taking an action given a spe-

cific joint history (and therefore joint belief) is defined to be its value in a fully cooperative

POMDP solution to the problem that has been solved off-line. That is, this heuristic acts as

if in the next timestep the robots will have full communication. This algorithm guarantees

that the team will remain coordinated in the sense that the joint actions selected will never

be one of those that are dominated in the fully coordinated version of the problem (e.g., in

the Lady and the Tiger problem, a joint action that has the robots doing different actions

will never be selected) .

Like BaGA, in Q-POMDP agents must maintain the same probability distribution over all

possible joint histories. Unlike BaGA, the reason for this choice is to guarantee that the

agents all select the same joint action. Because agents only pick one joint action at each

timestep, they cannot integrate their true observation histories into the decision-making

process unless communication can occur. Without communication, the agents make de-

cisions conditioned only on the problem dynamics because Q-POMDP does not create

conditional plans. This Q-POMDP heuristic is therefore actually intended to be used in

conjunction with an algorithm for run-time communication decisions (see the discussion of

DEC-COMM in Section 7.4) and is not designed for use in problems in which no commu-

nication is available to the team.
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The coop-POMDP utility function used for the Lady and the Tiger problem of Section

3.4.1.2 has some similarities to the Q-POMDP heuristic in that both use a fully cooperative

version of the problem to find a POMDP solution in which all agents can share all observa-

tions. In Q-POMDP, agents will then select the best joint action given that the problem will

have full communication on the next timestep. If coop-POMDP is used as a utility function

for BaGA, the agents come up with a set of conditional plans that specify the best individ-

ual action for each agent to take for each of its possible histories assuming that the agents

have full communication on the next timestep. The best individual action to take for a his-

tory is the one with maximum expected reward given the distribution over all possible joint

histories (and therefore joint beliefs) that is induced by that history. Unlike Q-POMDP, this

approach allows the robots to condition their action selection on observed information even

if communication is not available to the team.

Q-POMDP guarantees that agents will always remain coordinated in the sense that they

will always choose the same joint action to implement and that that joint action will not be

one that is dominated in a version of the problem with full communication. The definition

of coordination in a POSG (and therefore a BaGA), however, is different: being coordi-

nated means that agents will implement policies that are from the same set of best-response

policies. This difference in the notion of what it means to be coordinated comes from the

use of the joint-action space versus the individual-action space of the agent in policy defini-

tion. Communication also plays a role: if the problem has full communication then a fully

coordinated policy in a POSG is equivalent to that of the Q-POMDP definition. If there

is no communication, then a joint action that is dominated in the full communication case

may no longer be dominated in expectation and so implementing policies that have this

joint action as an outcome could lead to higher expected reward than restricting oneself to

non-dominated joint actions.

Chades et al. (2002) look at a similar type of problem to the Gates Tag problems of Chapter

6: they model a team of robots that are trying to find an evader moving with a random

policy as a POSG with common payoffs. Because of the computational intractability of

this model, the authors use a heuristic approach in which they assume that the problem can

be solved with reactive policies in which robots only condition their action on their most

recent observation. Furthermore, the global reward function is assumed to be broken up into

a sum of local reward functions for each robot (state transitions, however, are not factored

as in the DEC-POMDP model). Using these two assumptions, one can convert the original

reward function into local reward functions that map from observations to rewards.4 The

4Because the Simple Gates Tag and Realistic Gates Tag problems only require one robot to tag the oppo-
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POSG is then converted into several MDPs that are solved concurrently by each robot. This

conversion is done by treating each robot in the problem as being modelled by a subjective

MDP in which the state space is its set of observations in the POSG and the transition

function over these states in the average probability transition between observations. This

last approximation is quite significant because, while the probability transitions between

observations is not stationary, it is being treated as such.

If communication is available to the robot team, then each robot initializes itself to have

a random policy. One randomly selected robot will ask its teammates for their policies,

integrate that information into its subjective MDP (i.e., into the state transitions) and then

find its optimal policy. This procedure is then performed for the next randomly picked robot

until the system settles. The integration of the policies of other agents into a subjective

MDP model is not trivial but can be done.

If no communication is available to the team, Chades et al. (2002) make the further assump-

tion that, because all robots have the same model of the world and the same local goals,

every robot will have the same mapping from observations to actions. This policy is found

in parallel by each member of the team using the following algorithm: 1) initialize with

an identical arbitrary a priori policy for each robot 2) hold all but the last robot’s policy

fixed to πt and find a new policy πt+1 for the last robot 3) reset all the other robot’s policy

to πt+1 and find the new best policy for the last agent. At some point, the algorithm will

terminate at a fixed point (if the state and action spaces are finite) and the robot implements

the resulting policy. Provided that each robot initializes the algorithm with the same initial

policy, all members of the team will find the same policy without communication.

The two approaches to solving POSGs taken by Chades et al. have some analogies to

the alternating-maximization algorithm: the policy of all but one robot is held fixed while

that robot’s policy is optimized. However, unlike alternating maximization, this algorithm

either requires communication or the assumption that all agents will end up with identical

policies. While in some problems this might be true, in general it is not. For example, in

Simple Gates Tag the global reward function can be modelled as the sum of local reward

functions; however, the robots did not end up with identical policies. Indeed, as shown

by the MLS heuristic in which robots essentially follow the same policy given the same

observations, such a policy could do arbitrarily badly. Furthermore, Chades et al. keep

nent, the reward function used for those problems also has this property: it is always the sum of the rewards

to each agent. Team Gates Tag, however, does not have this property because both robots are required to tag

the opponent. While certain parts of the reward function are equivalent to the sums of local rewards, those

parts of the reward function that deal with tag actions cannot be split in this way.
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policy search manageable by using only memoryless policies (giving it some ties to Peshkin

et al. (2000)), which results in further approximations to the globally optimal solution.

As mentioned briefly in Section 7.1.6, Noh & Gmytrasiewicz (2005) approximate the full

belief hierarchy required by a recursive modelling method like I-POMDP by trading off

between available computation time and the depth of the model using a learned function

relating the two. This approximation technique was applied only to problems with common

payoffs rather than the more general arbitrary-payoff case. They also considered another

type of approximation in which, off-line, rules were learned for reducing the action set by

solving randomly generated instances of the problem with a fixed belief-hierarchy depth.

At run time those rules were then applied to reduce the action set to only those actions that

are known not to be sub-optimal. While the same hierarchy depth was still used for solving

the problem on-line, the reduced action set led to faster computation of solutions. This work

applies machine learning to learn functions, or rules, rather than the hand-coded heuristics

used for making coordination practical in RMMs by Durfee (1999). For example, in Dur-

fee’s work, agents use heuristic estimates (based on previous experience) about the impact

of expanding different parts of the nested model to determine whether or not expansion is

necessary for the current situation. Noh & Gmytrasiewicz (2005) instead learn a function

relating model depth to solution quality and then, at run time, trade off between available

time and solution quality. Durfee (1999) also considered prohibiting actions at run time us-

ing organizational constraints imposed on the system as well as the use of communication

to aid in deciding which parts of the models to expand or to reduce uncertainty.

7.3.2 Factored DEC-MDPs

Multi-agent OLPOMDPs take a policy search approach to factored DEC-MDPs in which

distributed agents learn cooperative behaviour without explicit communication (Tao et al.,

2001). The system is modeled as a factored MDP in which agents share a reward function

but make action choices based only on a local parameterized stochastic policy. In order to

climb the gradient of the global average reward, agents do not need access to the network

topology but only their own local information and the reward signal. The authors include

reward shaping in the reinforcement signal in order to penalize behaviour that would not

appear in the optimal solution. This approach, however, is not valid in problems in which

the reward signal is not available to agents (e.g., the Lady and the Tiger) and to a certain ex-

tent requires the system designer to know what actions are undesirable in order to introduce

reward shaping appropriately.
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7.3.3 Non Common-Payoff Problems

In this section, approximation algorithms for POSGs without common payoffs are dis-

cussed. These algorithms are of interest as they allow agents to find policies in the pres-

ence of an opponent who is actively working against them; however, because this is the

most general formulation of a POSG, algorithms cannot take computational advantage of

assumptions such as deterministic policies or of short-cuts in finding equilibria that are a

direct consequence of a common reward function. As a result, they tend to be restricted to

either two agents or two teams, each modeled as a single agent.

Poker is a well known game that can be modelled as a zero-sum POSG. As a result, some of

the approximation techniques for POSGs with common payoffs, such as using alternating

maximization to find a locally optimal solution rather than a more involved linear program

or linear complementarity program, do not apply. Instead, researchers turn to ways of

reducing the overall size of the problem in order to help make it tractable. As discussed

in Chapter 3, at each timestep, BaGA performs full game-theoretic reasoning about the

current action choices of the robots but uses a heuristic function to evaluate the future value

of those actions. Shi & Littman (2001) use a similar approach for finding solutions for

a scaled-down version of Texas Hold’Em with multiple rounds of betting. While these

rounds are not independent, the authors treat them as quasi-independent: for example, in

the first round of betting, players use an expected value for future cards that will be dealt

in order to evaluate their betting strategy. Rather than calculate this value exhaustively,

randomized simulation is performed to estimate the average expected payoff.

The authors also consider the use of abstraction to keep the combinatorial explosion of

possible hands under control. Rather than solve the full game, hands of cards are grouped

together and game play is then conditioned on these groups rather than on specific hands.

Hands are given a rank based upon their strength in poker and grouped into equal sized

bins. Each bin contains hands with similar rankings. The game is then solved using bins:

rather than being assigned hands, players are assigned a bin and compute their betting

strategy appropriately. Shi & Littman (2001) found that using as few bins as 10% of the

total number of possible hands results in near-optimal play at a huge computational savings.

This binning strategy can also be applied in the case where partial, rather than full, hands

of cards are dealt. The relationship between hands and bins is analogous to that between

the full set of histories and clusters in BaGA-Cluster. BaGA-Cluster, however, is a bit more

flexible than the binning strategy because a maximum number of clusters is not given a

priori (except for certain versions of BaGA-Comm). Incorporating a maximum number
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of clusters into BaGA is a possible extension and can be done by increasing the allowable

expected loss between merged clusters until the number of clusters satisfies the maximum

number of clusters allowed.5

There has been quite a bit of work done in the area of multi-agent pursuit-evasion games,

both with respect to robot teams (e.g., Hespanha et al. (2000)) as well as in the classic game-

theory literature (Bernhard et al., 1987; Olsder & Papavassilopoulos, 1988). Frequently,

the assumption is made that the information available to the agents is asymmetric with the

evader being all-knowing (an assumption also made in the tag domains examined in the

thesis). A common approach for robot teams is to model the problem as a team of robots

pursuing a single evader. Rather than treat it as a game with n agents, it is considered a game

between two agents, the evader and the pursuer, with the robot team modelled as a larger

meta-agent that has full inter-robot observability. Therefore, while this overall problem

class does have partial observability over the global state (e.g., the pursuer does not know

the evader’s true position), the robot pursuer team effectively shares a brain, usually due to

the assumption of free communication. The state transition probabilities for the actions of

evaders and pursuers are assumed to be independent of the other player; however, clearly

the observation functions cannot be.

Even assuming an omniscient evader, it is still a challenging problem as it is a zero-sum

POSG. Approaches have ranged from finding optimal feedback controllers for the pursuer

team assuming a known policy for the evader (Prandini et al., 2001), to greedy approaches

that can guarantee that an evader can be found in finite time assuming that the evader’s pol-

icy is known or can be estimated (i.e., it is not trying to actively evade capture) (Hespanha

et al., 1999).

Memoryless policies dependent on probability measures over both possible obstacle maps

and positions of the evader (called evader maps) are proposed in Kim et al. (2001) as a

way of finding a computational feasible solution to the POSG model. In a greedy policy,

the pursuers move the next reachable position that has the highest probability of containing

an evader over all possible evader maps at the next time instant. In a global-max policy

5This procedure can be done automatically by setting the maximum-allowable expected-loss parameter

to be extremely high but setting the minimum number of clusters to be equal to the maximum desired. As

the algorithm will iteratively merge the two closest clusters until the minimum number of clusters is reached,

this approach has the same effect as increasing the maximum-allowable expected-loss parameter until the

number of clusters is below some maximum number. While the first approach does not require the expected

loss parameter to be modified during run-time, it does not allow BaGA-Cluster to ever find a set of clusters

that is smaller in number than the maximum as the algorithm terminates at this point. The second approach,

dynamically adjusting the threshold parameter, may come up with a number of clusters smaller than the

maximum, should the initial clusters be close together.
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the pursuers move to the next reachable position that is closest to the cell in the entire

environment with highest probability of containing the evader. These policies have some

parallels to the MLS heuristic used as a comparison controller in the tag domains analyzed

in this thesis.

A more principled approach is taken to the same problem by Hespanha et al. (2000) in

which agents find greedy one-step policies that approximate the true solution. At each

timestep the pursuer and evader create and solve a one-step general-sum game in which the

pursuers are trying to maximize the probability of capturing the evader in the next timestep

and the evader is trying to minimize this probability (i.e., the heuristic used for the expected

value of actions is their immediate expected value). While the overall problem is zero-sum,

this one-step game is general-sum because the evaders and pursuers have different sets of

information: the expected value of a set of policies for the pursuers and evader would be

evaluated differently by each because the expectation is done using the information known

by each player. Because the evader’s information set includes that of the pursuers, it could

calculate the expected payoff, or cost, function used by the pursuers in addition to its own

and therefore find a Nash equilibrium of the game. The pursuers, however, cannot solve

this problem as they can only estimate the value of a policy to the evader.

Rather than treat this problem as a Bayesian game, in which the pursuers have a probabil-

ity distribution over possible types of the evader (e.g., a type could be the evader’s value

function or some part of its state), a solution is found by treating the problem as the fic-

titious zero-sum game in which the pursuers’ estimate of the evader’s cost is considered

to be correct. It turns out that (assuming the evader knows that this procedure is how the

pursuers will solve the problem), by playing their part of the Nash equilibrium strategy in

this zero-sum game, the pursuers can force a rational evader to play a strategy in response

that is equivalent to a Nash equilibrium solution in the original general-sum game. In order

to avoid the problem of selecting from a set of possible Nash equilibria, at run time it is as-

sumed that the evader will always pick an equilibrium in the zero-sum game that maximizes

its deterministic distance to the team, and therefore pursuers also pick that equilibrium.

These approaches have been applied to problems of impressive size, for example, a team

of three pursuers searching for an evader over a grid of 400 cells leading to a state space

of size 4004. The effects of uncertainty in the evader’s position, however, is dealt with by

estimating the costs for the evader, given a belief about its position held by all members

of the team, and then playing a strategy that would force a rational (omniscient) evader,

to play a best response that turns out to be a Nash equilibrium in the original game. This

approach would not work if the evader did not have access to all information held by the
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pursuers or the pursuers could not share information. Additionally, the value of pursuers’

actions in this game are taken to be their expected immediate value given beliefs about the

evader’s position. Attempts to approximate long term effects of actions are not made.

While this problem class is different from that addressed by BaGA, they are somewhat

complementary. These approaches to pursuit-evasion assume that some means exists with

which to fully coordinate the members of the team allowing them to be treated as a meta-

agent during planning. Instead, one could imagine a two-step approach to these problems

in which, periodically, the robot team makes use of its communication bandwidth to pick

a high-level strategy against the evader as if they were a single agent and then, in between

communication intervals, each robot uses BaGA and the reward function induced by that

high-level strategy to pick individual level actions conditioned on its specific observations.

For example, a high-level strategy might be to pick an area to search while individual

actions deal with actual motion control: in a pursuit problem in all of the Gates Building,

this high-level strategy would be to pick the A-wing for exploration and then BaGA would

be used to actually coordinate the search of A-wing (as in Realistic Gates Tag) without

further communication between team members.

Khoussainov & Kushmerick (2003) model the competition between search engines as a

POSG with arbitrary payoffs and then apply reinforcement learning to find a solution. The

idea in this model is that the utility for a search engine is based on the number of queries

it processes and the resources used to answer them. While specializing in a topic allows

an engine to process queries more effectively (and results in higher quality query results,

causing users to prefer that engine for that topic); its overall performance also depends on

what topics its competitors are indexing. Because an engine does not have access to the

topics indexed by competitors (although observations of this information can be gained by

submitting queries to opponents), there is uncertainty in the actions taken by other engines,

making POSG an appropriate model. As this problem is computational intractable in gen-

eral, the authors make the assumption of bounded rationality in which decision makers do

not act optimally in the game-theoretic sense due to incomplete information about the en-

vironment or limited computational resources. For example, modelling other agents with

a finite hierarchy of beliefs rather than an infinite hierarchy is a case of assuming bounded

rationality. Under bounded rationality, agents would find a solution that is optimal with

respect to the finite hierarchy but not necessarily optimal in the game-theoretic sense.

In this search-engine problem, each agent uses reinforcement learning to find a good be-

haviour strategy against its competitors. Learning is not performed on a model of the game

but rather gradient ascent is performed on the policy space. The resulting policies can
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be non-deterministic and are conditioned on observations. Against competitors playing

fixed policies, an agent is able to find a locally optimal strategy that takes advantage of the

sub-optimal play of the opponents. In self-play there is no guarantee that gradient-based

learning will converge, however, in practice relatively stable solutions are found when two

instances of the algorithm learned simultaneously.

With this reinforcement-learning approach, Khoussainov & Kushmerick (2003) deal with

the intractability of a POSG by converting the problem to that of learning a policy in a non-

stationary environment. If competitors are playing a fixed strategy, then such an approach

will converge to a locally optimal policy; however, if other agents in the environment are

also adapting their policies, then convergence guarantees no longer hold. While this work

is an interesting example of modelling a real-world problem as a POSG, the algorithm

appears more related to work on single-agent learning in non-stationary environments than

approximating POSG solutions. In contrast, the learning algorithms in POIPSGs (Peshkin

et al., 2000) and multi-agent OLPOMDPs (Tao et al., 2001) deal explicitly with the problem

of simultaneous policy adaption and show how their algorithms do converge in situations

in which their assumptions about the game model hold true.

7.3.4 Finding Approximate Solutions to One-Step Games

In BaGA, a Bayesian-Nash equilibrium for each timestep is found using an alternating-

maximization algorithm that makes use of dynamic programming. Singh et al. (2004)

present an algorithm for finding approximate Bayesian-Nash equilibria in (one-step) games

of incomplete information that have sparse graphical models representing the interaction

between agents. In this thesis, the focus has been on tightly-coupled problems; however,

for more loosely-coupled domains with discrete type sets, the Approximate-TreeBNE algo-

rithm would be able to provide guarantees on the time complexity for finding an ǫ-Bayesian

Nash equilibrium.6 That is, not only can the algorithm trade off between computational

costs and the ‘goodness’ of the equilibrium found, the authors can make statements about

the quality of the equilibria found, which cannot be made for BaGA. The representation,

however, scales exponentially with the maximum number of agents involved in any inter-

action. This property would make it only appropriate for POSGs that model problems with

periods of loose interaction (e.g., a problem with robots that only need to worry about tight

coordination while physically close to each other and are otherwise making independent

6An ǫ-best-response strategy for an agent is one in which it can do no better than ǫ by switching its

strategy. It is used in standard definitions of approximate equilibria.
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action selections). Additionally, the algorithm for finding the ǫ-Bayesian Nash equilibrium

has an exponential dependence on the number of types. A strong dependence on the size

of the joint-type space is also present in BaGA and is why BaGA-Cluster was developed.

Similar approaches have been applied to general-sum one-stage games of imperfect infor-

mation with sparse interactions by Kearns et al. (2001). In this work, graphical models are

used to represent the relationship between the reward functions of each agent and approx-

imate solutions are found by only considering neighbouring agents in policy generation.

Vickrey & Koller (2002) use hill-climbing and constraint satisfaction algorithms to find ap-

proximate equilibria in these graphical games. Scalability of such algorithms are dictated

by the degree of interaction between agents and the presence of a communication channel

that would allow agents with dependent actions to interact.

7.4 Run-Time Communication Policies

There are many different types of run-time communication policies that have been imple-

mented for POSGs and its sub-classes. In this thesis, BaGA generates policies that are

conditioned on sets of clustered histories and so the question of what to communicate was

answered by using the identifying numbers of clusters. Differences in expected value or

policy were some of the ways in which the question of when to communicate was ad-

dressed. Many of the approaches discussed in this section use similar ways in which to

answer the question of when to communicate. All of the algorithms are motivated by an

understanding that, in the real world, communication incurs a cost or can reveal that in-

formation to an opponent. Table 7.1 summarizes the algorithms for generating run-time

communication policies that are discussed in this section.

7.4.1 POSGs with Common Payoffs

The COM-MTDP framework (Pynadath & Tambe, 2002) has been used as a way to ana-

lyze the heuristic communication policies given by theories of teamwork such as GRATE*

(Jennings, 1995) and STEAM (Tambe, 1997). The resulting communication policies are

applied to a problem in which agents are trying to achieve a set of goals. The authors then

analyze these policies, in addition to a locally optimal communication policy, to determine

under what conditions they result in optimal behaviour.
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Table 7.1: Summary of algorithms for generating run-time communication policies in

POSGs. Forced sync means that if one robot initiates communication, all robots must

share information. While the models used for communication in COM-MTDP and the

work by Goldman & Zilberstein (2003) do not require forced synchronization (and theo-

retically allow for optimal policies), they discuss approximation algorithms that do require

synchronization.

Approach Model/Sub-Class Forced

Sync

Comm

Type

Comm’d

Information

Comm

Decision

BaGA-

Comm

POSGs w/ Common Payoffs no and-comm # of cluster

to which true

history

belongs

Myopic

expected value

change,

myopic policy-

difference,

# clusters too

high

COM-MTDP

(Pynadath &

Tambe,

2002)

POSGs w/ Common Payoffs no in

general,

yes as

imple-

mented

and-comm in general,

any message

in Σi, as im-

plemented,

goal

achievement

myopic

expected value

change

Dec-Comm

(Roth et al.,

2005)

POSGs w/ Common Payoffs no and-comm history since

last comm

myopic policy-

difference for

any agent

Nair et al.

(2004)

POSGs w/ Common Payoffs yes or-comm history since

last sync

locally optimal

policy i.e.,

comm selected

if best action

using DP-JESP

Xuan et al.

(2001)

factored DEC-MDP yes and-comm local state

(sync on

global state)

myopic

expected value

change,

evaluated with

heuristic

Xuan &

Lesser

(2002)

factored DEC-MDP yes and-comm local state

(sync on

global state)

own action

selection is

ambiguous

Goldman &

Zilberstein

(2003)

factored DEC-POMDP no in

general,

yes as

imple-

mented

and-comm in general,

any message

in Σi, as im-

plemented,

local state

myopic

expected value

change

assuming no

more comm

possible
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In the domain examined by the authors, agents have only one possible communication

message, which indicates that a certain joint goal has been achieved (i.e., the question of

what to communicate has been answered as goal achievement). In GRATE*, an agent

communicates whenever it believes a joint goal to have been achieved, while in STEAM

an agent communicates if an estimated cost of miscoordination is greater than the cost of

communication. Pynadath & Tambe present a locally optimal communication policy that

outperforms those of GRATE* or STEAM. Like STEAM, agents only communicate if the

costs of execution after achieving a goal outweighs the cost of communicating the fact that

the goal has been achieved; however, the true expected cost of miscoordination is used

rather than an estimated cost.

This locally optimal policy is similar to the run-time EVD communication decision used in

BaGA-Comm. However, while agents in COM-MTDP reason about their full action and

observation histories, they can only communicate one part of that history: goal achieve-

ment. If this piece of information is not sufficient for decision making, then this choice

of message for COM-MTDP is not as informative as the messages used in BaGA-Comm.

Furthermore, agents only make a decision about communication if they identify that a goal

has been achieved. In BaGA-Comm agents are free to communicate at any point in the

task. It should be noted, however, that this restriction is specific to the domain and not to

COM-MTDPs in general.

The Dec-Comm algorithm (Roth et al., 2005) makes run-time and-communication deci-

sions in a similar way to BaGA-Comm with the PD decision. Dec-Comm uses the Q-

POMDP heuristic as a way to evaluate the effects of communication. Each robot calculates

the Q-POMDP action given the current distribution over joint histories and then calculates

what the Q-POMDP action would be given the distribution over joint histories induced by

factoring in its true history. If those actions are different joint actions, then it broadcasts

its history to its teammates (i.e., all observations made since it last communicated). The

teammates integrate that information into their distribution over joint histories and each one

calculates a new Q-POMDP action. They also recalculate the Q-POMDP action that would

now occur if they broadcast their history. If it is different, then they do so. This recursive

algorithm is bounded by the number of robots as, in the worst case, one robot decides to

communicate, which causes the next robot to decide to communicate and so on. Because

Dec-Comm can result in multiple instances of communication at each timestep, robots wait

a fixed period of time before acting in order to make sure that no more communication acts

will be received.

As stated, the Dec-Comm approach has similarities to the PD version of BaGA-Comm.
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In PD, if any robot’s part of σi,t is different from that of πt, then robot i will communi-

cate, which is somewhat equivalent to communicating if a joint action is different. As with

BaGA-Comm, if the only way in which a change in joint action would occur is through

a joint communication act, then this event would not be discovered because the recursive

check for communication in Dec-Comm can only be triggered if at least one robot discov-

ers a policy difference. While BaGA-Comm does not implement a recursive communica-

tion check, it could be added (i.e., BC ′t and a BGC ′i,t are also calculated and the result-

ing policies compared repeatedly until no new communication acts are triggered). Unlike

BaGA-Comm, robots using Dec-Comm cannot condition their action choice on individual

observations in between communication acts.

Nair et al. (2004) look at the computational savings gained by enforcing periodic syn-

chronizations of observations in between steps of full game-theoretic reasoning about the

beliefs of others. In this or-communication decision problem, agents communicate at a

minimum of every K steps, but can also communicate more frequently if it would lead

to improvement in performance. This communication algorithm approximates the optimal

communication policy, given the or-communication constraint, for the full POSG by using

DP-JESP (Nair et al., 2003). Unlike the BaGA-Comm approach, this approach would tech-

nically be able to identify cases in which only joint communication actions would yield

an improvement in performance. The authors, however, use a synchronized communica-

tion action, sync, which means that if one robot decides to communicate, all robots will

synchronize their information about the world, leading to a unified joint belief. This con-

straint greatly simplifies the calculation of the expected value of communicating and makes

identifying these joint communication cases a moot point.

In or-communication, the sync action is considered part of the regular action space and

so the only modification that must be made to DP-JESP is in how to evaluate the effects

of a sync during dynamic programming. While performing dynamic programming, a sync

action results in the cost of communication plus the expected value of the possible resulting

synchronized belief states. If the action is not sync then two things can happen: with a

certain probability another agent performs a sync, over-riding this agent’s action choice (as

it must also perform the sync) or no agent performs a sync. As a result, the value of this

domain-level action is some combination of the expected cost of making a sync action (as

calculated before) and the expected immediate reward plus the expected future reward of

the domain-level action under consideration. In order to evaluate these quantities during

DP-JESP, DP-JESP is run for any possible starting joint belief b with t steps to go. This

approach allows the algorithm to slot in the appropriate value for the expected value of a
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synchronized belief state when calculating the value of taking sync at future timesteps.

DP-JESP can be used in this way to find the locally optimal joint policy without any con-

straints on communication or with the addition of a constraint that enforces synchronization

at least every K steps. With this addition, there can be no observation histories greater than

length K, which in turn limits the space requirements of the algorithm. This constraint is

somewhat similar to the |C t
i | > k decision used in BaGA-Comm in which a robot commu-

nicates its cluster to the team if it has more than k clusters. Like the K-step constraint, this

communication decision is designed to reduce computational requirements of the problem;

however, it is not tied to a specific history length but rather to how much clustering can

occur in a specific domain.

Unlike BaGA-Comm and many of the other approaches for run-time communication de-

cisions discussed in this section, the communication decisions made by Nair et al. are not

myopically greedy. They are still run-time communication decisions, however, because a

robot will only communicate at a timestep if it has received specific observation histories.

The authors, however, only run DP-JESP with one random starting policy and so the quality

of the locally optimal equilibrium policy they find can be poor (the authors acknowledge

this tradeoff between better searching of the space and achieving good timing results).

7.4.2 Factored DEC-MDPs and Factored DEC-POMDPs

Xuan et al. (2001) look at the problem of run-time communication policies in a sub-class

of POSGs similar to the factored DEC-MDP model of Becker et al. (2003). In these types

of problems, because robots have full observability of their local state, the communication

decision is tied to deciding when global information necessary to make progress toward the

goal rather than how to resolve conflicts in belief about the world or how to augment one’s

own belief about the global state. Specifically, they consider a grid-world domain in which

two robots receive a large reward for meeting in any of the grid cells. The robots know the

starting position of their teammate and so can use a fully observable version of the problem

to select a goal cell that minimizes time to meeting. Robot actions, however, are noisy and

so robots need to periodically adjust this goal location. Without communication, they do not

know the position of their teammate and so cannot select a new goal. Communication has a

cost and is assumed to be of the synchronized form. Therefore, if one robot communicates,

both robots know the full global state of the world.

Because the optimal communication policy is intractable, three fixed communication heuris-

tics were considered: never communicate, always communicate or communicate if the cur-
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rent plan is no longer achievable (i.e., a robot knows that it can no longer reach the goal cell

at the right time). In addition, a hybrid policy was examined in which each robot constantly

calculates whether or not there is a better goal state and, if so, the expected gain in reward

from changing to that new goal. If the expected gain is greater than the cost of communica-

tion, then the robot communicates, making this approach similar to the BaGA-Comm EVD

decision. Like BaGA-Comm, a heuristic is also used to evaluate the effects of communi-

cating: the selection of what new goal states to evaluate and what their expected reward

will be are evaluated with a heuristic rather than exactly. As expected, the hybrid approach

has the best performance if communication is not free, otherwise always communicate is

the most appropriate policy to use.

In Xuan & Lesser (2002) the authors take a more principled approach to finding commu-

nication policies for these problems. While a version of the factored DEC-MDP with full

communication can be solved, yielding a centralized policy for the problem (the CP), at

execution time the agents must convert this CP into decentralized policies, or DPs. Com-

munication is essential in order to provide a conversion between the two that allows the

DPs to perform similarly to the CP. Each robot has a copy of the CP and, at run time, it

calculates whether or not its part of the joint action as given by the CP is the same for all

global states consistent with its local state. If its part of the joint action is the same, then

it has no ambiguity on its own action choice and does not need to communicate. If it is

not, then there is ambiguity, which could be resolved by communication. This myopically

greedy communication policy is somewhat similar to the PD condition for BaGA-Comm;

however, robots only consider policy differences in their own action choice and not of those

of their teammates because they use only their part of the joint action for comparison, and

not the entire joint action. They do not consider how their local information might change

the action choice of their teammate as does the PD decision in BaGA-Comm.

While one solution for converting CPs into DPs is for robots to communicate whenever the

local state results in an ambiguity towards action choice, in the worst case this approach

will result in communication at every timestep. Xuan & Lesser (2002) also do hill-climbing

on the mapping between ambiguous states and the communication decision to reduce the

amount of communication. A second way to reduce communication is to generate exact

communication policies for a modified CP instead of the true CP. In a modified CP, robots

effectively merge together sets of local histories for decision making. This view has some

similarities to BaGA-Cluster.

Goldman & Zilberstein (2003) extend the factored Dec-MDP model to cover the sub-case

of POSGs in which agents have partial observability of their state. In their 2-agent factored
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DEC-POMDP-COM model, they examine the NEXP-complete problem of finding domain-

level and communication policies that together optimize a global reward function. An agent

must not only consider the problem of when to communicate, but is also free to select from

any of the messages in a message set Σ. Agents condition action choice on histories of both

observations and previously received communication messages.

The authors do present a formulation of how the optimal policy would be found; how-

ever, because it is computational intractable, they also include an approximate algorithm

in which, at each timestep, agents greedily decide if they should send a message assuming

that no additional communication will be possible: a single-communication policy. That is,

assuming that agents can only communicate once, they greedily decide on what timestep to

do so. However, because agents make this communication decision on each timestep, they

can actually communicate more than once.

The single-communication policies are found by using the optimal policy for a version

of the problem without communication as the expected value of what would happen after

communication takes place. The optimal single-communication policy is to communicate

at the earliest timestep for which the expected cost of communicating and then following

the optimal policy for the no-communication case is less than that of following the no-

communication case from the very beginning. This approach is similar to BaGA-Comm

with the EVD decision because both approaches used a locally myopic greedy policy to

select communication actions based on the difference in expected value. Furthermore, both

approaches evaluate the expected value of policies using heuristics that are based on some

(non-true) assumptions about future communication. While in DEC-POMDP-COM the

heuristic assumes no more communication will be possible, BaGA-Comm was applied to

problems in which the heuristics used for utility varied from assuming full communication

(Robotic Tag) or no communication in the future (simple-heuristic for Lady and The Tiger).

7.5 Other Multi-Robot Frameworks

This section discusses some other important multi-robot frameworks and how they allow a

robot to take the actions of teammates into account during decision making. While frame-

works such as behaviour-based or market-based systems appear very different from POSGs,

they are frequently modelling similar problems (albeit at a different resolution). Indeed,

their solutions can be related to approximate solutions of POSGs by looking at how they

handle the integration of teammates into decision making.
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7.5.1 Theories of Teamwork

Distributed systems have been a subject of research outside of the areas of decision- and

game-theoretic control as they provide a natural way to treat real-world systems. Usually,

there is some natural structure that facilitates the deconstruction of a problem into its com-

ponents, such as a power plant into various turbines and generators. It is, however, not

always intuitive to specify the full set of interactions between components, especially for

low-probability events. Theories of teamwork, such as shared plans (Grosz & Kraus, 1996)

and joint intentions (Cohen & Levesque, 1991), were designed to help resolve brittleness

in systems and their designers’ inability to predict all possible agent interactions. Theo-

ries of teamwork address how agents decide upon mutual goals and implemented systems

then make use of expert-like rules for deciding agent behaviour once sub-goals have been

selected (e.g., GRATE* (Jennings, 1995) and STEAM (Tambe, 1997)).

A simplistic view of joint intentions is that they represent the commitment of a group of

agents to the achievement of a goal. Unfortunately, if one agent believes that the goal is

no longer achievable, it will selfishly abandon its progress towards the goal and not inform

its team. In STEAM, mechanisms exist to ensure that if an agent believes that a joint goal

is no longer achievable, it cannot abandon its intention without also informing the other

agents with which it has the joint intention. This type of coordination requires a commu-

nication channel; however, Tambe (1997) extends joint intentions with decision-theoretic

communication in such a way that agents only communicate information that has high util-

ity with respect to the completion of the plan. For example, a team of helicopters might

not communicate to each other the achievement of each way-point along a route to the goal

because, with a high probability, the fact that a helicopter missed a way-point can be de-

duced from its actions. However, if one helicopter sees an enemy it would communicate

that information to the team because it is a low-probability event that results in high costs.

To a certain extent these theories of coordination were designed to help cut the recursion

of beliefs about what a teammate is doing: if a team has a joint goal, individual mem-

bers do not have to worry about what they believe that their teammates believe (and so on)

about progress towards that goal because they have a joint intention to achieve it. A team-

mate cannot abandon that goal without first informing the team and so agents can make

assumptions about the behaviour of others while choosing their own actions. Theories of

teamwork, therefore, provide a high-level way to take teammates into account during action

selection.
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7.5.2 Behaviour Based

ALLIANCE is a framework for fault-tolerant cooperative control of heterogeneous robot

teams performing loosely-coupled sub-tasks (Parker, 1998). It is a behaviour-based ar-

chitecture that uses the idea of motivations in action selection to facilitate cooperative

behaviour and allows for the re-allocation of tasks in the case of robot failure. Robots

are assumed to be able to detect the effects of their own actions and detect the actions of

other robots (through any available means, communication or observation), although some

uncertainty in this detection is permitted. While communication may be available to the

team, it is not guaranteed and therefore knowledge of robot failure cannot necessarily be

transmitted to the rest of the team.

Within behaviour-based frameworks, the output of lower-level behaviours, such as obstacle

avoidance, can be suppressed by high-level behaviours such as exploring or map building.

If there are a number of competing actions that cannot be implemented in parallel, addi-

tional structure is needed to select which action to achieve. In ALLIANCE, these actions

are grouped into behaviour sets that are either active as a group or hibernating. Each of

these behaviour sets correspond roughly to a sub-task and one behaviour set is selected by

using motivational behaviours (a motivational behaviour tracks how much a robot wants to

perform a task). While only one behaviour set can be active at a time, the robot always has

a motivation for each performing each one. Robots are motivated to continue performing

a task if they are making forward progress towards the associated goal but, if they judge

that progress is no longer being made, their motivation starts to drop. Their motivation for

performing other tasks also increases as time goes by. The motivation for performing a

task increases quickly if no other robot is performing it (impatience) and more slowly if

the robot believes some other robot is working towards the associated goal (acquiescence).

This combination of impatience and acquiescence models allows a robot to start doing a

sub-task if it feels the original robot has failed, but also drives robots to start doing different

tasks.

This impatience and acquiescence within the motivation behaviours provide a rough way

for robots to model their teammates during action selection. It is not an explicit model

and it relies on observations of teammates to determine what progress is being made rather

than an explicit calculation of what actions or behaviour-sets a teammate will select. While

coordination could be thought of as an emergent property of this framework, a robot does

take teammates into account during its decision-making process by allowing their actions to

influence its own motivations. This property makes ALLIANCE an interesting framework
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because it has attempted to capture, through heuristics, some of the intuition behind decen-

tralized decision making that is formalized in POSGs. While the optimality of the resulting

policies cannot be evaluated, ALLIANCE performs well in practice with the quality of so-

lutions being positively affected by how aware robots are of the actions of their teammates.

These experimental results validate the use of more complex models that take into ac-

count the interdependence of action selection through either explicit models of teammates

(RMM) or implicit models (POSGs): the more agents coordinate their action selection, the

higher the quality of the resulting policies.

Move Value Estimation for Robot Teams (MVERT) is a behaviour-based framework in

which teammate modelling becomes more explicit because it is designed to be applied to

tightly-coupled tasks (Stroupe, 2003). In the problems addressed by MVERT, robots need

to coordinate on the selection of movement actions but trade off optimality for computa-

tional efficiency. Actions in MVERT are defined as selecting a pose to move to in the next

timestep. Mathematical value functions that map a state (pose of all robots in the team

and location of any objects in the environment) and potential actions to numerical values

representing progress towards a different tasks are defined. There are no restrictions placed

on these functions, or the tasks they represent, so long as they are a computable mathemat-

ical function. Using the current world state, which can include uncertainty, and models of

teammates’ capabilities, a robot approximates what its teammates’ contributions will be to

the value functions on the next timestep. Given these estimated contributions, a robot then

selects an action for itself that maximizes the value functions. It is assumed that a robot

can obtain information about the pose of teammates through communication or through

observation and inference. Therefore, while there can be uncertainty over the current world

state, robots are assumed to have access to the same information.

While MVERT is a behaviour-based approach, the problem class it deals with is somewhat

analogous to POSGs with common payoffs. It is not quite this full problem class, as there

is the further assumption that robots hold the same beliefs about world state, either through

the communication of their own local state (and any associated uncertainty) or through

observations of each other. While one way to satisfy this assumption is through the use of

communication, MVERT does not also use communication to help resolve action choice or

improve the estimates of actions taken by others.7

MVERT also has some analogies to approximation methods for POSGs that include ex-

plicit teammate modelling. Robots myopically select their next best action while reasoning

7See the discussion of passive coordination in Hoplites (Kalra et al., 2005) in Section 7.5.3 for an example

of how communication can be used to improve the estimate of the action choice of others.



232 Chapter 7. Related Work

about the action selection of their teammates. However, unlike other approaches to team-

mate modelling, robots in MVERT use only a first-order model: teammates are modeled

as selecting actions based only on their beliefs about the world. While this type of de-

centralized problem solving does require the use of a truncated belief hierarchy (because

teammates are explicitly modeled), work done by Noh & Gmytrasiewicz (2005) on the

tradeoff between solution quality and model-depth suggests that a first-order model is only

very approximate.

Behaviour-based methods are attractive for controlling robot teams because of their speed.

However, it is important to understand what parts of the method are approximate because

of the use of behaviours and what parts are approximate because of how they deal with

decentralized decision making. By relating MVERT to solution algorithms for POSGs that

also use finite-order teammate models, insight is gained into what types of approximations

are being made in the decentralized decision making. The problems examined by Stroupe

(2003), however, are much larger than those examined in the POSG literature and are,

therefore, a testament to the computational tractability of MVERT.

7.5.3 Market Based

While market-based, or auction, approaches are usually associated with loosely-coupled

robot systems (e.g., task allocation rather than step-by-step coordination), there has been

work done on applying them to tightly-coupled problems. Unlike the work with POSG-

related models and their approximations, market-based approaches require a communica-

tion system to be available for the auction process itself. A centralized auctioneer is not

always required (Dias & Stentz, 2003; Gerkey & Matarić, 2001); however, robots must be

able to communicate in order to negotiate task allocation. In the TraderBots system (Dias

& Stentz, 2003), robots bid on sub-tasks to execute, and receive rewards for successful task

execution and penalties for consumed resources. As with non-cooperative game theory,

the robots are self-interested in maximizing their expected payoffs; however, the price of

resources and tasks can be hand-crafted to help ensure robots allocate sub-tasks in a way

that also helps maximize the profit of the team as a whole. An individual robot can also try

to create a better joint plan for the entire team (ideally an optimal plan), or subset of robots,

and then sell that plan on the market. This approach, however, is fundamentally meant for

loosely-coupled systems. The Hoplites framework is designed to extend frameworks like

TraderBots to tightly-coupled tasks (Kalra et al., 2005).

In tightly-coupled tasks not only do the robots need to have plans that condition action
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selection on the actions of others (tight coordination), but they also require a solution to the

credit-assignment problem of how the rewards and penalties associated with a task should

be distributed amongst the robots performing the task together. In Hoplites, two types

of coordination, passive and active, are added to the usual market framework. In passive

coordination, rather than select the most profitable tasks, robots select the most profitable

plans (i.e., policies). The value of possible plans are estimated using the actions of others

and the environment, and the most profitable plan transmitted to the rest of the team. Using

this information, each robot can revise its estimated profits (e.g., use the newest set of plans

to evaluate the actions of others) and send out its new best plan. This type of coordination

iteratively incorporates the most recent information in teammates’ plans and as such has

similarities to the alternating-maximization algorithm. Because it is done in a distributed

fashion, however, a fixed point may not be found as multiple robots can change their plan

at once. For example, if the best plan has two robots performing the same action but the

currently proposed plans has one robot performing A and the other B, incorporating this

information could lead to a new set of proposed plans in which the first robot now performs

B while the second A. This type of coordination is therefore only useful in cases where

it is easy to accurately ‘guess’ the actions of others correctly during the first set of plan

evaluations or else when the actions of others have relatively little impact on the robot’s

performance.

In environments where tight coordination is required, active coordination leads to better

performance. If a robot’s best individual plan is not very profitable, it develops a team plan

that specifies actions for each member of the team that would maximize its own profit. The

robot then receives price quotes from teammates that reflect the profit they would require

before they would abandon their own plans to adopt this team plan. If the sum of these

payments is less than the expected profit to the planning robot, it bids for its teammates

participation. The search for this team plan involves a search over joint-action space but

Kalra et al. (2005) do not specify a specific algorithm for Hoplites to use. Rather, they

suggest the use of an algorithm that sacrifices optimality for speed.

The Hoplites approach can be thought of as similar to modeling the problem as a factored

MDP when actions are loosely coupled but then moving to a more accurate framework

such as POSGs with common payoffs when tight coordination is known to be required

(i.e., trade off representational power with computational speed if it is known to be less

important). Market-based techniques are then used to approximate the solution rather than

one of the algorithms of Section 7.3. This relationship between Hoplites and different

POSG sub-classes allows one to identify what types of approximations are being made by
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Hoplites and under what circumstances the plans would be (near) optimal. For example,

in problems that are essentially factored DEC-MDPs, passive coordination could lead to

locally optimal joint plans; however, if the actions are more tightly coordinated, it could

fail to find a fixed point. This insight into the relationship between the frameworks can also

help identify what algorithms could be useful for finding team plans.

7.6 Summary

This chapter has covered a wide variety of frameworks for decentralized multi-robot con-

trol and their relationship to both POSGs and BaGA. The majority of these frameworks

have been decision or game theoretic and, while originally formulated with respect to

their relationship to MDPs and POMDPs, they can all be viewed as sub-classes of POSGs.

DEC-POMDPs (Bernstein et al., 2002) and COM-MTDPs (Pynadath & Tambe, 2002) are

particularly relevant because these frameworks are equivalent to the class of POSGs with

common payoffs.

For POSG-based algorithms, BaGA represents a good compromise between the size of

problem that can be solved and solution accuracy. BaGA can be used to solve much big-

ger problems than game-theoretic algorithms with similar or better accuracy such as Q-

POMDP (Roth et al., 2005), alternating maximization, DP-JESP (Nair et al., 2003) and

exact dynamic programming (Hansen et al., 2004). Furthermore, the real-time robot con-

trollers generated by BaGA in Chapter 6 are for problem domains equivalent in size to

those addressed by Chades et al. (2002) and Noh & Gmytrasiewicz (2005), but with fewer

restrictions or approximations required to generate policies.

In addition to these POSG-related models of multi-robot control, theories of teamwork,

behaviour-based approaches and market-based approaches were also discussed and ana-

lyzed with respect to how robots take their teammates into account during decision mak-

ing. In general, these other multi-robot frameworks are able to handle much larger prob-

lems than those looked at in the POSG literature. However, there are similarities in how

teammates are treated in frameworks like MVERT (Stroupe, 2003) and Hoplites (Kalra

et al., 2005), and in how they are treated in POSG-based algorithms. This relationship

between the different multi-robot frameworks could be used to gain insight into applying

game-theoretic control to larger and more realistic problems.
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Conclusions

This dissertation motivates the use of POSGs for modelling robot teams and, in order to

deal with the computational intractability of such models, presents a set of algorithms for

finding approximate solutions. The resulting policies allow robots to coordinate their action

selection for tightly-coupled tasks in partially observable Markovian environments under

limited communication.

8.1 Modelling Robot Problems as POSGs

In tightly-coupled robot problems, robot policies need to take into account what all robots

are doing because the reward function and state transitions are dependent on joint actions.

If a communication infrastructure exists, then centralized approaches such as MDPs or

POMDPs could be used to model these problems. If a problem is fully observable by each

robot, or each robot has identical observations, then a centralized version of the problem

can be solved off-line and executed in a decentralized fashion without communication.

However, if robots do not receive identical observations and cannot share them through

communication, there is no easy way to reduce these problems to a known class of problems

such as POMDPs or MDPs.

It is obvious that, even with limited communication, robots still need to reason about what

actions will be taken by their teammates when selecting actions, because their payoffs will

depend on them. However, in order to properly capture the fact that teammates are also

taking the robot’s action selection into account when selecting actions, an infinite belief

hierarchy becomes necessary to capture what each robot believes about the other robots and

235
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vice versa. POSGs use game theory to implicitly represent this belief hierarchy about action

selection: the solution to a POSG is a set of policies for each robot that simultaneously

optimizes action selection for each robot with respect to all other robots. Unlike models

that explicitly include models of other robots in the state space of the problem, POSGs

do not require approximate solutions that truncate the belief hierarchy at some finite level.

They are, however, computationally intractable as shown by the NEXP-completeness result

for finite-horizon POSGs with common payoffs (Bernstein et al., 2002).

From a theoretical standpoint, POSGs provide a powerful framework for modelling tightly-

coordinated robot-team problems in partially observable Markovian environments.1 Of

course, their practical applicability to such problems is limited as real robot problems have

continuous state and action spaces and lengthy time horizons. Even if the assumption of

discrete state and action spaces is allowed, as in Chapter 6, these more realistic problems

are still relatively small.

POSGs do provide a way to evaluate the performance of computationally efficient multi-

robot heuristic approaches such as those like MVERT or Hoplites. Generally, such algo-

rithms suffer from the problem that only experimental results are used to validate perfor-

mance because an optimal solution is unknown or (correctly) considered too difficult to

compute. However, for smaller problems, POSGs can be used to calculate, off-line, an up-

per bound on performance for these problems. Even for larger domains, by understanding

what sub-class of POSG the algorithm is modelling and any structure that can be exploited,

it may be possible to evaluate the algorithm’s solution quality and computational trade-

offs in a more principled way than with just experimental validation alone.2 For example,

by realizing that in MVERT a first order model of teammates is used in action selection,

understanding is gained into how this framework relates to more formal POSG models.

It is actually anticipated that for many robot problems, heuristic approaches do a good job

of achieving high performance quality and that in the future this claim will be validated

1POSGs are not limited to modelling only tightly-coupled coordination problems; however, the associated

computational overhead is not necessarily appropriate for loosely-coupled problems. For example, a DEC-

MDP in which the reward function includes no joint-robot structure (global reward is the sum of individual

rewards), could be modelled as a set of totally independent MDPs with no loss in solution quality. If the

only interaction comes from task allocation then a single-stage game could be used to model this part of the

problem and independent MDP or POMDPs used to handle task achievement.
2Gerkey & Matarić (2003) present such a principled analysis of approaches to the multi-robot task allo-

cation problem. By comparing various algorithms to sub-classes of the optimal assignment problem from

Operations Research, a better understanding of their solution quality and computational tradeoffs can be

made than through domain specific experimental validation. Pynadath & Tambe (2002) use COM-MTDP to

perform a similar function for models of teamwork: they characterize several of these frameworks within the

larger context of COM-MTDPs in order to compare their computational costs and performance.
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by comparing such heuristics with the output of a POSG solver. It is also anticipated that

for those parts of robot problems that do require tight coordination, POSG-based solutions

will give insight into appropriate heuristics. For example, BaGA-Comm generated a run-

time communication decision for the Robotic Tag problem that had a robot communicate

if it was in the target cell for opponent tagging but did not see the opponent. Because it

is a low-probability event based on the possible robot histories, this observation inspired

a communication policy for the MLS and QMDP heuristic that had robots communicate

whenever something unexpected happened. The resulting policy improved performance

over a fixed communication policy for these heuristics.

8.2 BaGA Algorithm and Extensions

The primary algorithmic contribution of this thesis is BaGA, which deals with the in-

tractability of POSGs by transforming them into a series of smaller Bayesian games. Each

of these games are then solved to find one-step policies that, together, approximate the

globally optimal solution of the original POSG. The Bayesian games are kept efficient to

solve through pruning of low-probability histories and the use of heuristics to calculate the

utility of actions. This process results in policies for the POSG that are locally optimal with

respect to the heuristic used.

While pruning of low-probability histories is a simple way to keep the size of each Bayesian

game manageable, clustering is an effective way to reduce the number of maintained his-

tories in a principled way. BaGA-Cluster, which includes the addition of clustering to

the basic BaGA algorithm, results in faster computation, which helps make the algorithm

more appropriate as a controller for real-world problems. While low-probability clustering

is a computationally faster operation, minimum-distance clustering is able to find a more

natural set of clusters that best represents the overall history space of each robot.

Another effective way to reduce the number of histories that must be tracked is to permit

communication between robots on the team. If done in a sensible way, robots only need

to communicate infrequently and therefore will not exceed bandwidth limitations. Using

BaGA-Comm for generating run-time communication policies allows one to answer the

question of what to communicate because the BaGA-Cluster algorithm creates clusters

of histories that are grouped together according to their effects of decision making. By

transmitting the identifying numbers of clusters rather than specific histories, robots share

only the relevant portions of these histories. This framework also allows communication
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decisions to be made that reduce the computational burdens of planning. The overall result

is communication policies that lead to similar performance as full communication, but at a

fraction of the number of communication acts.

This game-theoretic approach to controlling robot teams is not just limited to simulated

problems. While POSGs and BaGA are based on relatively abstract notions of control

and optimality, real-time robot controllers can be generated for physical robot teams. In

these problems, BaGA is applied to a discretized version of the problem (that still captures

relevant noise in physical robot problems) and then low-level controllers are used to map

back and forth between the discrete and continuous worlds. By combining clustering and

communication with game-theoretic principles, BaGA is able to meet the requirements for

real-time robust control of a team of robots.

8.2.1 Limitations

BaGA uses three types of approximation in order to solve POSGs with common payoffs.

It uses heuristics to evaluate the expected future value of actions and it uses alternating

maximization to find a locally optimal policy with respect to the heuristic. Although an

exhaustive search would be required to guarantee that the policies found with alternating

maximization are globally optimal, random-restarts are used to move the search out of local

maxima. Finally pruning and/or clustering is performed to keep the number of histories

maintained by BaGA low. Useful performance bounds on the effects introduced by these

approximations cannot be found.

BaGA-Comm generates communication policies that are locally optimal with respect to a

robot and myopic due to the one-step lookahead approximation. Currently robots do not

evaluate the effect of joint communication actions and, if that is the only way to improve

expected reward or effect policy changes, then communication will not happen. The result-

ing communication policies, however, do show a large improvement in performance over

policies without communication, but with a fraction of the number of communication acts

required by a fixed communication policy.

Finally, while BaGA has been applied to problems substantially larger than similar ap-

proaches, these problems are still much smaller than the realistic multi-robot problems that

are solvable with behaviour-based or market-based approaches. To date, robot problems

with fine-grained action and observation space are handled through state, action and ob-

servation abstraction, with local controllers then used for finer motor control. Clustering
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and communication are also used to further minimize computational overhead. However,

if a real problem includes only somewhat limited communication (e.g., communication is

periodic with high frequency or constant but with latency), then BaGA can still be used to

improve action selection over more selfish approaches. This more regular communication

would allow BaGA to only reason about relatively short observation histories and therefore

be applicable even in larger problems.

8.3 Contributions

The BaGA algorithm presents a computationally tractable way to find approximate solu-

tions to POSGs. It is able to solve common problems in the literature, such as the Lady and

the Tiger (2 world states, 9 joint actions, 4 joint observations), for longer planning horizons,

and has been applied, without communication, to versions of robotic tag with 97200 world

states, 25 joint actions and 81 joint observations. While there are some exceptions (e.g., the

work on pursuit-evasion problems (Hespanha et al., 1999, 2000; Kim et al., 2001; Prandini

et al., 2001) although uncertainty in world state is handled quite differently, and work with

poker (Shi & Littman, 2001)), these problems are substantially bigger than those tackled

by other, similar, frameworks.

The BaGA algorithms have been applied, not just in simulation, but on physical robots in

order to show that real-time robot control can be accomplished with what is a relatively

abstract notion of optimal control. Furthermore, BaGA can handle issues that come up

with real-world problems by including models of partial or total robot malfunctions (as

discussed in Section 6.4) within the problem definition.

In BaGA, the quality of the resulting solution is tied to the quality of the heuristic used

for estimating the future value of actions. In this thesis, relatively simplistic heuristics

were used; however, more accurate estimates could be made. Improving heuristics requires

either a more involved off-line computation (e.g., finding an approximate POMDP solution

to the Robotic Tag problem), or more on-line work by increasing the one-step lookahead

to a multi-step lookahead. This framework gives BaGA a certain flexibility and provides

an avenue for future research into analyzing the tradeoff between computation and solution

quality.

The set of all possible observation histories for each robot grows in size exponentially with

time. Clearly representing all possible histories quickly becomes impossible for modern
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computers. BaGA-Cluster is able to provide an automated way of grouping together histo-

ries that have the same (or similar) reward profiles and therefore lead to the same decisions

in action choice. This approach will retain outliers in reward-profile space, even if they have

low probability, and therefore better represent the space of possible histories than methods

that are tied to probability alone.

POSGs are a model of coordination that deserves consideration, not just in abstract game-

theory domains, but also in real-world robot problems. While the argument can be made

that their computational intractability renders them inappropriate for robot control, POSG

approximations such as BaGA show how to reduce computational costs in a principled

way. Furthermore, success in applying these abstract models to concrete examples shows

that this notion of optimal control for decentralized robot teams is not infeasible and that

one day it will be possible to properly evaluate the tradeoff between computational costs

and performance quality offered by heuristic approaches in such domains. After all, it is

only by understanding optimal behaviour that a system designer is able to gain insight into

when it is possible to take computational shortcuts.
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Matarić, M. J. (1995). Designing and understanding adaptive group behavior. Adaptive

Behavior, 4(1), 51–80.

McKelvey, R. & McLennan, A. (1996). Computation of equilibria in finite games. In

H. Amman, P. A. Kendrick, & J. Rust (Eds.), Handbook of Computational Economics,

volume 1 (pp. 87–142). B. V., Amsterdam: Elsevier Science.

Montemerlo, M., Roy, N., & Thrun, S. (2002). Carnegie Mellon robot navigation toolkit.

Software package for download at http://www.cs.cmu.edu/˜carmen.

Nair, R., Roth, M., Yokoo, M., & Tambe, M. (2004). Communication for improving policy

computation in distributed POMDPs. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems (AAMAS), (pp. 1098–1105).

Washington, DC, USA. IEEE Computer Society.

Nair, R., Tambe, M., Yokoo, M., Pynadath, D., & Marsella, S. (2003). Taming decen-

tralized POMDPs: Towards efficient policy computation for multiagent settings. In Pro-

ceedings of the Eighteenth International Joint Conference Artificial Intelligence (IJCAI),

(pp. 705–711). San Francisco, CA, USA. Morgan Kaufmann Publishers, Inc.

Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National

Academy of Sciences of the United States of America, 36(1), 48–49.

Nettleton, E., Thrun, S., Durrant-Whyte, H., & Sukkarieh, S. (2003). Decentralized SLAM

with low-bandwidth communication for teams of airbourne vehicles. In Proceedings

of the International Conference on Field and Service Robotics (FSR 2003). Lake Ya-

manaka, Japan.



248 BIBLIOGRAPHY

Noh, S. & Gmytrasiewicz, P. (2005). Flexible multi-agent decision-making under time

pressure. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and

Humans. To Appear.

Olsder, G. J. & Papavassilopoulos, G. P. (1988). When to use a searchlight. Journal of

Mathematical Analysis and Applications, 136, 466–478.

Ooi, J. M. & Wornell, G. W. (1996). Decentralized control of a multiple access broadcast

channel: Performance bounds. In Proceedings of the 35th IEEE International Confer-

ence on Decision and Control, (pp. 293–298). Piscataway, NJ, USA. IEEE Press.

Owen, G. (1968). Game Theory (First ed.). Philadelphia, PA: W.B. Saunders Company.

Papadimitriou, C. H. & Tsitsiklis, J. N. (1987). The complexity of Markov decision pro-

cesses. Mathematics of Operations Research, 12(3), 441–450.

Parker, L. E. (1998). ALLIANCE: An architecture for fault tolerant multi-robot coopera-

tion. IEEE Transactions on Robotics and Automation, 14(2), 220–240.

Peshkin, L., Kim, K.-E., Meuleau, N., & Kaelbling, L. P. (2000). Learning to cooperate

via policy search. In Proceedings of the Sixteenth Conference on Uncertainty in Arti-

ficial Intelligence (UAI), (pp. 489–496). San Francisco, CA, USA. Morgan Kaufmann

Publishers, Inc.

Pineau, J., Gordon, G., & Thrun, S. (2003a). Point-based value iteration: An anytime

algorithm for POMDPs. In Proceedings of the Eighteenth International Joint Confer-

ence Artificial Intelligence (IJCAI), (pp. 1025–1032). San Francisco, CA, USA. Morgan

Kaufmann Publishers, Inc.

Pineau, J., Gordon, G., & Thrun, S. (2003b). Policy-contingent abstraction for robust robot

control. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intel-

ligence (UAI), (pp. 477–484). San Francisco, CA, USA. Morgan Kaufmann Publishers,

Inc.

Prandini, M., Hespanha, J. P., & Pappas, G. J. (2001). Greedy control for hybrid pursuit

games. In Proceedings of the 2001 European Control Conference. Porto, Portugal.

Pynadath, D. V. & Tambe, M. (2002). The communicative multiagent team decision prob-

lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Re-

search, 16, 389–423.



BIBLIOGRAPHY 249

Rathnasabapathy, B. & Gmytrasiewicz, P. (2003). Formalizing multi-agent POMDP’s in

the context of networking routing. In Proceedings of the 36th Hawaii International

Conference on System Sciences (HICSS’03). Big Island, HI, USA.

Rosencrantz, M., Gordon, G., & Thrun, S. (2003). Decentralized sensor fusion with dis-

tributed particle filters. In Proceedings of the Nineteenth Conference on Uncertainty in

Artificial Intelligence (UAI), (pp. 493–500). San Francisco, CA, USA. Morgan Kauf-

mann Publishers, Inc.

Roth, M., Simmons, R., & Veloso, M. (2005). Decentralized communication strategies

for coordinated multi-agent policies. In A. Shultz, L. E. Parker, & F. Schneider (Eds.),

Multi-Robot Systems: From Swarms to Intelligent Automata: Proceedings of the 2005

International Workshop on Multi-Robot Systems, volume IV (pp. 93–106). Norwell,MA:

Kluwer Academic Publishers.

Russell, S. & Norvig, P. (2002). Section 6.5: Games that include an element of chance.

In Artificial Intelligence: A Modern Approach (Second ed.). Upper Saddle River, NJ:

Prentice Hall.

Sakovics, J. (2001). Games of incomplete information without common knowledge priors.

Theory and Decision, 50(4), 347–366.

Samet, D. (1997). Iterated expectations and common priors. Games and Economic Behav-

ior, 24(1-2), 131–141.

Selten, R. (1975). Re-examination of the perfectness concept for equilibrium points in

extensive games. International Journal of Game Theory, 4, 22–55.

Shapley, L. S. (1953). Stochastic games. Proceedings of the National Academy of Sciences

of the United States of America, 39(10), 1095–1100.

Shi, J. & Littman, M. L. (2001). Abstraction methods for game theoretic poker. In T. Mars-

land & I. Frank (Eds.), Computers and Games, volume 2063 of Lecture Notes in Com-

puter Science (pp. 333–345). London: Springer-Verlag.

Singh, S., Soni, V., & Wellman, M. (2004). Computing approximate Bayes Nash equilibria

in tree-games of incomplete information. In Proceedings of the Fifth ACM Conference

on Electronic Commerce (EC’04), (pp. 81–90). New York, NY, USA. ACM Press.



250 BIBLIOGRAPHY

Stone, P. & Veloso, M. (1998). Communication in domains with unreliable, single-channel,

low-bandwidth communication. In A. Drogoul, M. Tambe, & T. Fukuda (Eds.), Proceed-

ings of the First International Workshop on Collective Robotics, volume 1456 of Lecture

Notes in Computer Science (pp. 85–97). London: Springer-Verlag.

Stone, P. & Veloso, M. (1999). Task decomposition, dynamic role assignment and low

bandwidth communication for real-time strategic teamwork. Artificial Intelligence,

110(2), 241–273.

Stone, P. & Veloso, M. (2000). Multiagent systems: A survey from a machine learning

perspective. Autonomous Robots, 8(3), 345–383.

Stroupe, A. (2003). Collaborative Execution of Exploration and Tracking Using Move

Value Estimation for Robot Teams (MVERT). PhD thesis, Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA.

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research,

7, 83–124.

Tao, N., Baxter, J., & Weaver, L. (2001). A multi-agent, policy-gradient approach to net-

work routing. In Proceedings of the Eighteenth International Conference on Machine

Learning (ICML), (pp. 553–560). San Francisco, CA, USA. Morgan Kaufmann Publish-

ers, Inc.

Vickrey, D. & Koller, D. (2002). Multi-agent algorithms for solving graphical games. In

Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI),

(pp. 345–351). Menlo Park, CA, USA. American Association for Artificial Intelligence.

Vidal, J. M. & Durfee, E. H. (1997). Agents learning about agents: A framework and

analysis. In AAAI-97 Workshop on Multiagent Learning. Providence, RI, USA.

von Stengel, B. (1996). Efficient computation of behavior strategies. Games and Economic

Behavior, 14(2), 220–246.

von Stengel, B. & Koller, D. (1997). Team-maxmin equilibria. Games and Economic

Behavior, 21(1-2), 309–321.

Wang, X. & Sandholm, T. (2002). Reinforcement learning to play an optimal Nash equi-

librium in team Markov games. In Advances in Neural Information Processing Systems

NIPS-15, (pp. 1571–1578). Cambridge, MA, USA. MIT Press.



BIBLIOGRAPHY 251

Weiß, G. (Ed.). (1997). Distributed Artificial Intelligence Meets Machine Learning, volume

1221 of Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag.

Weiß, G. & Sen, S. (Eds.). (1996). Adaption and Learning in Multi-Agent Systems, volume

1042 of Lecture Notes in Artificial Intelligence. Berlin: Springer-Verlag.

Wellman, M. P. & Wurman, P. R. (1998). Market-aware agents for a multiagent world.

Robotics and Autonomous Systems, 24(3-4), 115–125.

Xuan, P. & Lesser, V. (2002). Multi-agent policies: From centralized ones to decentralized

ones. In Proceedings of the First International Joint Conference on Autonomous Agents

and Multiagent Systems (AAMAS), (pp. 1098–1105). New York, NY, USA. ACM Press.

Xuan, P., Lesser, V., & Zilberstein, S. (2001). Communication decisions in multi-agent co-

operation: Model and experiments. In Proceedings of the Fifth International Conference

on Autonomous Agents (Agents), (pp. 616–623). New York, NY, USA. ACM Press.



Index

Aumann (1974), 56, 241

Barbuceanu & Fox (1995), 141, 197, 241

Basar & Olsder (1982), 43, 241

Becker et al. (2003), 201, 226, 241

Bernhard et al. (1987), 218, 241

Bernstein et al. (2002), 35, 38, 194, 201, 203, 204, 234, 236,

241

Bernstein et al. (2005), 58, 212, 241

Bertsekas & Tsitsiklis (1996), 27, 241

Boutilier (1996), 51, 200, 241

Boutilier (1999), 27, 199, 200, 242

Browning et al. (2002), 197, 242

Brusey et al. (2001), 137, 242

Cassandra (1998), 106, 242

Cassandra (1999), 90, 242

Chades et al. (2002), 210, 214, 215, 234, 242

Chu & Halpern (2001), 52, 242

Claus & Boutilier (1998), 201, 242

Cohen & Levesque (1991), 21, 229, 242

Dean & Givan (1997), 126, 242

Dias & Stentz (2003), 21, 23, 192, 232, 243

Dias et al. (2004), 192, 196, 243

Durfee (1999), 211, 216, 243

Emery et al. (2001), 137, 243

Emery et al. (2002), 141, 197, 243

Emery-Montemerlo et al. (2004), 69, 243

Emery-Montemerlo et al. (2005), 113, 243

Everitt et al. (2001), 117, 243

Fagin et al. (1999), 197, 243

Fershtman & Pakes (2004), 202, 203, 243

Fox et al. (1999), 23, 244

Fudenberg & Tirole (1991), 30, 43, 52, 244
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Gerkey & Matarić (2003), 236, 244

Gmytrasiewicz & Doshi (2004), 199, 205, 244

Gmytrasiewicz & Durfee (1995), 206, 244

Goldman & Zilberstein (2003), 202, 223, 227, 244

Greenwald & Hall (2003), 201, 244

Grosz & Kraus (1996), 21, 229, 244

Guestrin & Gordon (2002), 201, 245

Guestrin et al. (2001), 201, 245

Guestrin et al. (2002), 201, 245

Gutmann et al. (1999), 137, 245

Hansen et al. (2004), 95, 100, 207, 208, 211, 234, 245

Harsanyi (1968), 30, 60, 61, 245

Hauskrecht (2000), 28, 245

Hespanha et al. (1999), 218, 239, 245

Hespanha et al. (2000), 218, 219, 239, 245

Hu & Wellman (2003), 201, 245

Jennings (1995), 23, 222, 229, 246

Jung et al. (2002), 205, 246

Kaelbling et al. (1998), 28, 85, 246

Kalra et al. (2005), 231–234, 246

Kaminka & Tambe (2000), 197, 246

Kearns et al. (2001), 222, 246

Khoo & Horswill (2002), 137, 246

Khoussainov & Kushmerick (2003), 220, 221, 246

Kim et al. (2001), 218, 239, 246

Kok et al. (2005), 201, 246

Koller et al. (1996), 44, 54–56, 246

Littman et al. (1995), 77, 213, 247

Littman (2001), 201, 247
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