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Abstract—In a smart community infrastructure that consists of
multiple smart homes, smart controllers schedule various home
appliances to balance energy consumption and reduce electric-
ity bills of customers. In this paper, the impact of the smart
home scheduling to the electricity market is analyzed with a
new smart-home-aware bi-level market model. In this model, the
customers schedule home appliances for bill reduction at the com-
munity level, whereas aggregators minimize the energy purchasing
expense from utilities at the market level, both of which consider
the smart home scheduling impacts. A game-theoretic algorithm
is proposed to solve this formulation that handles the bidirectional
influence between both levels. Comparing with the electricity mar-
ket without smart home scheduling, our proposed infrastructure
balances the energy load through reducing the peak-to-average
ratio by up to 35.9%, whereas the average customer bill is reduced
by up to 34.3%.

Index Terms—Dynamic pricing, electricity market, energy bal-
ancing, game theory, smart home scheduling.

I. INTRODUCTION

SMART home scheduling provides management over the

home appliances in the smart grid infrastructure. All the

home appliances in a smart home are connected to a smart home

scheduler and the power line, which is further connected to the

local distribution network, as shown in Fig. 1. The data depicted

in Fig. 2 indicate that the energy price at different time slots

would be significantly different even in a single day. For this

reason, the smart home scheduler controls home appliances and

operates them at the time slots when energy is not expensive,

thus reducing the monetary cost. This enables the customers
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Fig. 1. In a smart home, the home appliances are connected to the smart home
scheduler by communication network and connected to the distribution system
by power line.

Fig. 2. Dynamic energy price provided by Ameren [4].

to shift heavy consumption load from peak price time slots to

nonpeak price time slots [1]. With an appropriately designed

pricing scheme, both the monetary costs of the customers and

the peak-to-average ratio (PAR) of energy demand could be

significantly reduced [2]. This implicitly helps balance the

energy generation and reduces the generation capacity, which

lessens the need of large-scale power plants, thus saving a large

amount of construction cost. As shown from the U.S. Energy

Information Administration, the total capital cost of building

an advanced pulverized coal plant with a nominal capacity

of 650 MW is about 2.1 billion U.S. dollars [3]. Utilizing

smart home scheduling techniques could largely reduce peak
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energy demand, leading to the significant investment savings in

building power generation units.

Research on smart home scheduling focuses on both single

customer smart home and multiple customer smart homes. In

terms of single customer smart home scheduling, Chen et al.

formulated a linear programming problem for smart home

scheduling considering the uncertainty of energy consumption

in [1]. In [5], Kim and Poor proposed a Markov chain model of

the scheduling problem and developed the backtrack algorithm

to solve it based on a decision threshold. In [6], a dynamic

programming algorithm was proposed to schedule home ap-

pliances for a single customer considering multiple power

levels. In [7], a mixed-integer programming method was used

to handle the constraints such as uninterruptable setting and

sequential operations in the smart home scheduling problem. In

[8], L1 regulation was deployed to transform a mixed-integer

problem into a convex programming problem in order to find

the solution of smart home scheduling more efficiently. All of

these works focus on smart home scheduling for a single cus-

tomer. However, in a community, there are multiple customers,

and all the customers compete to use energy in nonpeak price

time slots, which could result in the accumulation of energy

load in these time slots. For this reason, interactions among

multiple customers need to be considered.

Most of the existing multiple customer smart home schedul-

ing techniques are based on game theory, which include [2],

[9], and [10]. In addition, Ibars et al. formulated the distributed

load management problem as a congestion game and proposed a

dynamic pricing strategy to discourage the energy consumption

at peak hours in [11]. In [12], the vehicle-to-aggregator game

was modeled to regulate the frequency in the power grid as a

potential service in the future vehicle-to-grid market. In [13]

and [14], pricing strategies were deployed by local aggregators

to control the energy load. Since the residential energy load

is shifted by smart home scheduling, an impact propagates to

the electricity market, which is never studied in the existing

literatures.

On the other hand, electricity market modeling is a well-

studied research topic. In [15], the electricity market in

Northern Europe was modeled considering various generation

resources and transmission protocols. In [16], the agent-based

simulation method was used via the Electricity Market Com-

plex Adaptive System to investigate the influence of price

probing strategies on the electricity price and generation profit.

In [17], a single buyer market model and a pool market model

are compared in terms of generation revenue. In [18], different

game-theory-based market models were compared in terms of

their market performance. The existing works on electricity

market modeling use statistical data rather than the actual

behavior on energy consumption of customers [19]. However,

there is no guarantee that the statistically estimated energy

consumption of customers can be actually achieved during

power system operation. It means that the feasibility of these

models cannot be guaranteed.

It is worth noting that demand-side management (DSM) and

smart home scheduling are different. As a top-down energy

load management technique, the traditional DSM, or precisely

direct load control (DLC), intends to balance the energy load

Fig. 3. Suppose that a peak energy load is created between 7:00 P.M. and
9:00 P.M. due to a live TV football game. It cannot be shifted since it will
be missed otherwise.

through enabling the utilities to control the energy consumption

of the customers. However, as shown in Fig. 3, if most home

appliances can only be operated during a specific time period,

energy load will accumulate to peak there anyway, and the

majority of the energy consumption cannot be shifted at all.

It means that the strategies of market to schedule the energy

consumption are not applicable without considering the specific

requirements from customers. In contrast to DLC, smart home

scheduling provides a more desirable solution of this problem in

the bottom-up fashion. It encourages the customers to allocate

the energy consumption evenly over the time horizon through

dynamic pricing, which is widely accepted today. Therefore, an

electricity market model considering smart home is crucial in

analyzing the modern power system.

Energy scheduling is influenced by the market pricing strat-

egy, which, in turn, affects the electricity price. This forms a

feedback loop and imposes more challenge to the modeling

of electricity market. The bidirectional interaction between

utilities and end users need to be considered. Due to such a

feature of the electricity market, a feedback control system is

widely deployed to model the interaction between the suppliers

and the consumers. In [20], Voice et al. proposed a feedback-

loop-based strategy to manage the microstorage system, where

the suppliers use adaptive pricing to interact with the storage
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Fig. 4. Simplified power system model consisting of generators, utilities aggregators, and customers.

agents. In [13], Kishore and Snyder formulated a Stackelberg

game to model the competition between the customers and the

retailers for energy load controlling. In [21], Ramchurn et al.

designed the control mechanism for green energy considering

the feedback between the autonomous energy storage system

and the green energy supplier operation. In [22], Kok et al. com-

pared several existing techniques to use the end-user feedback

in smart grids, including automated decentralized control of

distributed generation and demand response and control for grid

stability and islanding operation. In contrast to these works, our

proposed electricity market model incorporates game theory

into the feedback loop to model the competition at both the

market and community levels.

To the best of our knowledge, this paper presents the first

study of the impact of smart home scheduling to electricity mar-

ket. A bi-level model is proposed, which takes into considera-

tion smart home scheduling and competitions among customers

at the community level and among multiple communities at the

market level. Our contributions are listed as follows.

1) This paper is the first work addressing the impact of smart

home scheduling to the electricity market.

2) A bi-level game is formulated, where each customer

competes to minimize its individual monetary cost in

the community-level game and each aggregator competes

to minimize the monetary cost of its community in the

market-level game. The bidirectional interaction between

the market level and the community level is also modeled.

3) To solve the game formulation, an energy demand

partition-based market purchasing algorithm is proposed,

and a top-level algorithm to modulate the market purchas-

ing and smart home scheduling is also proposed.

4) Simulations are conducted using a test case consisting

of two utilities and five communities, where each com-

munity contains 400 customers. The simulation results

demonstrate that comparing with the technique with-

out smart home scheduling, the average monetary cost

of each customer is reduced by 31.8% and 34.3% for

weekdays and weekends, respectively. The PAR is re-

duced by 35.9% and 24.9% for weekdays and weekends,

respectively. It is also observed that the generation is

balanced over the time horizon. The capacity of a power

generator is reduced by 29.8% and 24.9% for weekdays

and weekends, respectively.

This paper is organized as follows. In Section II, the pre-

liminaries of the smart home scheduling infrastructure are pre-

sented. In Section III, the proposed electricity market models

and corresponding algorithms are described. In Section IV, the

results of simulations are presented and analyzed. A summary

of work is given in Section V.

II. PRELIMINARY

A power system consisting of customers, aggregators, util-

ities, and generators is depicted in Fig. 4. Let the community

level refer to the interaction between customers and aggrega-

tors, and let the market level refer to the interactions among

aggregators, utilities, and generators.

A. Community Level

1) Aggregators: The aggregator provides management over

the community. In the community level, the aggregator receives

the electricity price from the market and delivers it to the

customers. It also collects the energy demand request of each

customer and broadcasts it to all others.

2) Customers: The customers are equipped with smart home

schedulers, which also exchange information with the aggrega-

tor. The mechanisms of the smart home scheduler are provided

in Section III. The home appliances of the customers can

generally be divided into three categories as follows. 1) The

first category contains home appliances with multiple power

levels that are automatically schedulable such as washing ma-

chines, cloth driers, plug-in electric vehicles (PHEVs), and

dish washers. For this type of home appliances, power levels

could be adjusted subject to the constraints on start time and

deadline, in which start time is the time point that a home

appliances can start to work and deadline is the time point

that a home appliance has to finish working. 2) The second

category contains manually controlled home appliances such

as TV sets and computers. 3) The third category contains

home appliances turned on all day long such as refrigerators.

The smart home scheduling technique controls these home

appliances with different strategies according to their features.
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B. Market Level

Here, the market activities are discussed, including the trad-

ing between utilities and generators and the trading between

utilities and aggregators. In terms of the trading between util-

ities and generators, two types of markets, including forward

market and wholesale market [23], are modeled. In different

types of markets, the utilities and generators have a different

trading price, which is also a reference for the utilities to set the

selling price to the aggregators.

1) Utilities Versus Generators: Utilities make profits

through purchasing electricity energy from generators and sell-

ing it to aggregators. In the forward market, each utility has a

contract with its local generator, according to which the utility

purchases a certain amount of energy from the local generator

with a fixed total price. The energy amount is defined as the

forward limit. If the requested amount exceeds the forward

limit, the utility purchases the rest of the energy demand in

the wholesale market, where the price is much higher. In that

situation, the utility can choose to purchase from either the

local generator or remote generators according to the locational

marginal price (LMP) [24].

2) Utilities Versus Aggregators: In the trading between util-

ities and aggregators, an aggregator purchases energy from

utilities to satisfy the total energy demand of the community.

Among all the available utilities, the aggregator chooses the

ones with the lowest prices to minimize the total monetary cost

of the community. The specific pricing strategy is presented in

Section III.

III. PROPOSED MODEL AND ALGORITHMS

Here, the analytical models in community and market levels

are proposed. In terms of smart home scheduling and market

trading, two optimization problems are formulated, respec-

tively, based on which the bi-level game is developed. A bi-level

algorithm consisting of a smart home scheduling algorithm

and a market purchasing algorithm is proposed to solve the

optimization problems. Throughout this paper, the index of

communities is denoted by n ∈ {1, 2, . . . , N}, the index of

utilities is denoted by m ∈ {1, 2, . . . ,M}, and the index of time

slots is denoted by h ∈ {1, 2, . . . , H}. In the community n, the

index of customers is denoted by q ∈ {1, 2, . . . , Qn}. Notations

are summarized in Table I.

A. Community-Level Model

The community-level model used in this paper adopts the

one from our previous work [25]. For completeness, we include

some details as follows. In the community n, the total monetary

cost is defined as a convex function of the total load at each

time slot in order to discourage the accumulation of energy

load in any single time slot. There are various pricing models

in existing literature, including the quadratic pricing model in

[10], the linear pricing model in [1], the piecewise convex

pricing model in [26], and the piecewise linear pricing model

provided by British Columbia Hydro Corporation [10]. The

quadratic function Ch,n = ah,nL
2

h,n is adopted in this paper

TABLE I
LIST OF NOTATIONS

[10]. At the time slot h,Ch,n is the total monetary cost in the

community n,Lh,n is the total energy load, and ah,n is the unit

energy price, which converts energy consumption to monetary

cost. Among the customers in this community, the expense is

shared based on the individual energy consumption such that if

the energy consumption of the customer q is lq,h at the time slot

h, the monetary cost is Ch,nlq,h/Lh,n.

For the customer q, denote the set of home appliances by Aq.

For home appliance i ∈ Aq , denote the set of power levels by

Ei. At the time slot h, the home appliance i ∈ Aq works in the

power level xh
i ∈ Ei, which denotes the energy consumption in

a single time slot. The home appliance i is operated between

the earliest start time tsi and the latest end time tei, whereas

the required energy consumption is wi. Since each customer

aims to minimize its individual monetary cost, the optimization

problem of customer q in community n is formulated as [25]

min

H
∑

h=0

Ch,nlq,h
Lh,n

s.t.

tei
∑

h=tsi

xh
i ≥ wi

∑

i∈Aq

xh
i = lq,h

Qn
∑

q=1

lq,h = Lh,n

xh
i ∈ Ei. (1)

B. Market-Level Model

The market competition is modeled here. At each time slot,

the aggregators purchase electricity energy from the utilities

based on the energy demand of the customers.

1) Market Operation of Utility: The selling pricing of utili-

ties is based on the buying price from the generators. For this

reason, the revenue of the utilities could be divided into two

parts, including the estimated cost and the expected profit. For

the utility m, when the amount of energy sold is equal to the
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Fig. 5. Revenue and local buying cost of utility m versus energy demand
corresponding to (2).

forward limit drefm,h, it is expected to make a profit as much as

brefm,h, which is called the reference profit. As shown in Fig. 5,

phm is the buying cost on the forward contract, and ahm(dh·,m)2 is

the estimated buying cost when the amount of purchased energy

exceeds the forward limit. Given the total energy demand dh·,m,

the pricing function of utility m is defined as

Rh
m =

⎧

⎪

⎨

⎪

⎩

phm +
dh
·,mbref

m,h

dref

m,h

, dh·,m ≤ drefm,h

ahm(dh·,m)2 +
dh
·,mbref

m,h

dref

m,h

, dh·,m > drefm,h.
(2)

In order to make Rh
m a continuous function of dh·,m, set phm =

ahm(drefm,h)
2. When energy demand dh·,m ≤ drefm,h, the utility m

could purchase this amount of energy in the forward market

and sell it to the aggregators. The buying cost for the utility m
to keep the forward contract is phm with the expected profit of

dh·,mbrefm,h/d
ref

m,h. When dh·,m > drefm,h, the utility m estimates the

buying cost as ahm(dh·,m)
2
, which is the generation cost of the

local generator. The expected profit is dh·,mbrefm,h/d
ref

m,h.

While the buying price from the generators within the for-

ward limit is always phm, beyond the forward limit, the trading

between utilities and generators is operated based on the LMP

with discrete bidding as discussed in [24]. Each generator posts

a price table based on the incremental price. A generator needs

to satisfy the total request of the local utility before supplying

the request of utilities in remote areas. The details are provided

in [24, Ch. 4.3.1.5].

2) Market Operation of Aggregator: In the market level, ag-

gregators purchase electricity energy from the utilities to meet

the energy demand of their communities. The amount of energy

purchased by aggregator n from utility m is denoted by dhn,m
such that dh·,m =

∑N
n=1

dhn,m. Similar to within a community,

if multiple aggregators purchase from utility m, they share the

total expense proportionally based on the trading amount with

m. The total demand of an aggregator is denoted by dhn,·, where

dhn,· =
∑M

m=1
dhn,m. With the aforementioned definitions, the

monetary cost minimization problem is formulated as

min

M
∑

m=1

dhn,m
∑N

n=1
dhn,m

Rh
m

s.t.

M
∑

m=1

dhn,m = dhn,·. (3)

C. Game Formulation

Here, the competitions in the community and market levels

are modeled as a bi-level game. At the community level,

each customer competes to reduce its individual monetary cost

through selecting the power levels. At the market level, each

aggregator competes to reduce the total monetary cost of its

community through planning purchasing from the utilities. The

complete game model is formulated as follows.

Bi-Level Game Model

Community Level:

1) Players: Customers.

2) Payoff functions: −
∑H

h=0

Ch,nlk,h

Lh,n

3) Optimization problem:

min

H
∑

h=0

Ch,nlq,h
Lh,n

s.t.

tei
∑

h=tsi

xh
i = wi

∑

i∈Aq

xh
i = lq,h

Qn
∑

q=1

lq,h = Lh,n

xh
i ∈ Ei

where Ch,n = ah,nL
2

h,n

4) Decision Variables: xi

Market Level:

1) Players: Aggregators.

2) Payoff functions: −
∑M

m=1
(dhn,m/

∑N
n=1

dhn,m)Rm

3) Optimization problem:

min
∑M

m=1

dhn,m
∑N

n=1
dhn,m

Rm

s.t.
∑M

m=1
dhn,m = dhn,·

where

Rh
m =

⎧

⎪

⎨

⎪

⎩

phm +
dh
·,mbref

m,h

dref

m,h

, dh·,m ≤ drefm,h

ahm
(

dh·,m
)2

+
dh
·,mbref

m,h

dref

m,h

, dh·,m > drefm,h

4) Decision Variables: dhn,m

As mentioned in Section II-A, each customer aims to re-

duce the electricity bill through assigning the working power

levels of the home appliances given the electricity price in the

community level. Note that the scheduling of each customer

impacts the electricity bills of each other. This naturally leads

to the competition between them modeled by the community-

level game. Similarly, each aggregator determines the energy

purchasing from each utility to minimize the total monetary
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Fig. 6. Bi-level game model.

cost of the local community. It is formulated as a game since

the purchasing of each aggregator impacts each other as well.

The two levels interact based on the electricity pricing and

energy demand. The electricity pricing in each community is

determined by the aggregator resulting from the competition

of the market-level game. In return, the market-level game

is based on the real-time energy demand in each community,

which is the result of the competition in the community-level

game. For each level, a pure strategy Nash equilibrium exists.

The Nash equilibrium of the community-level game has been

proved by several existing works, including [10] and [27]. In

this paper, we prove the existence of Nash equilibrium of our

market-level game in two steps. In the first step, we show that

there exists a global optimal solution of dhn,m, which minimizes

the total monetary cost of all the aggregators. In the second

step, we show a closed-form solution of the pure strategy Nash

equilibrium for our problem.

1) Step 1: There exists a global optimal solution of dhn,m that

minimizes the total monetary cost of all the aggregators.

In our formulation, the aggregators determine the en-

ergy purchasing dhn,m to minimize the individual mone-

tary cost. Given the energy demand of each community

at each time slot h, the monetary cost of each aggregator

m is
∑M

m=1
(dhn,m/

∑N
n=1

dhn,m)Rm. The total monetary

cost of all the aggregators is calculated as

N
∑

n=1

M
∑

m=1

dhn,m
∑N

n=1
dhn,m

Rm =

M
∑

m=1

Rm, (4)

while dhn,m is constrained by

M
∑

m=1

dhn,m = dhn,·. (5)

Note that Rm is a convex function of dhn,m, the linear

combination of multiple such functions is also convex.

Since the constraint conditions are linear, there exists a

solution of dhn,m that minimizes the total monetary cost
∑M

m=1
Rm due to the convexity of the problem.

2) Step 2: A closed-form solution of the pure strategy Nash

equilibrium is shown for the aforementioned problem.

In order to provide a closed-form solution, we solve the

market-level game based on the assumptions as follows

for simplicity.

a) The forward limit is set as drefm,h = 0. Without loss of

generality, we can handle the problem similarly when

drefm,h �= 0.

b) At time slot h, the two aggregators have the same

energy demand that dh1,· = dh2,· = · · · = dN,·.

Based on the aforementioned assumptions, each ag-

gregator aims to minimize the individual monetary cost.

However, one can show that the solution of problem

min
M
∑

m=1

Rm

s.t.

M
∑

m=1

dhn,m = dhn, (6)

is a Nash equilibrium of the market-level game. In order

to simplify the analytical presentation, assume N = 2 and

M = 2. However, the solution can be generalized to any

N and M . Using Lagrangian relaxation, the problem (6)

is rewritten as

min ah1
(

dh1,1+dh2,1
)2
+ah2

(

dh1,2+dh2,2
)2

+ λ1

(

dh1,·−dh1,1−dh1,2
)

+λ2

(

dh2,·−dh2,1−dh2,2
)

. (7)

It is easy to derive

dh1,1 + dh2,1 =
a2

(

dh1,· + dh2,·
)

ah
1
+ ah

2

dh1,2 + dh2,2 =
a1

(

dh1,· + dh2,·
)

ah
1
+ ah

2

dh1,1 + dh1,2 = dh1,·

dh2,1 + dh2,2 = dh2,·. (8)

Thus, the energy purchasing dhn,m can minimize the total

monetary cost as long as the constraints (8) are satisfied.

A possible solution is

dh1,1 = dh2,1 =
a2

(

dh1,· + dh2,·
)

2
(

ah
1
+ ah

2

)

dh1,2 = dh2,2 =
a1

(

dh1,· + dh2,·
)

2
(

ah
1
+ ah

2

) . (9)

With this solution, the individual monetary cost of each

aggregator is also minimized. Suppose that aggregator 1

aims to change the purchasing amount dh1,1 and dh1,2 to
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dh1,1+∆d and dh1,2−∆d, respectively. Thus, the individual

monetary costs before and after making this change are

Cost1= ah1
(

dh1,1+dh2,1
)

dh1,1+ah2
(

dh1,2+dh2,2
)

dh1,2 (10)

Cost′1= ah1
(

dh1,1+dh2,1+∆d
) (

dh1,1+∆d
)

+ ah2
(

dh1,2+dh2,2−∆d
) (

dh1,2−∆d
)

(11)

respectively.

Through changing the energy purchase by ∆d, the

individual monetary cost is increased by

Cost′1 − Cost1 =
(

ah1+ah2
)

∆d2+∆d
(

ah1d
h
2,1−ah2d

h
2,2

)

+ 2∆d(ah1d
h
1,1 − ah2d

h
1,2)

=
(

ah1 + ah2
)

∆d2 > 0. (12)

Thus, each aggregator cannot unilaterally decrease

the individual monetary cost in this situation. Thus,

(dh1,1, d
h
1,2, d

h
2,1, d

h
2,2) is a pure strategy Nash equilibrium

of the market-level game. One can similarly extend this

proof for any value of N and M .

D. Community-Level Algorithm

At the community level, the customers schedule their home

appliances in order to minimize their individual monetary costs.

Given the electricity price, each customer solves the optimiza-

tion problem (1) to set power levels and operation time of

each home appliance. The dynamic programming algorithms

proposed in our previous work [25] are used to solve the smart

home scheduling problems among multiple customers.

E. Market-Level Algorithm

At the market level, each aggregator purchases electricity

energy from the utilities in order to minimize the monetary cost

and satisfy the total demand of its community. Since the total

selling price of a utility is based on the total energy demand, the

trading amount of one aggregator with a utility influences the

monetary cost of the other aggregators. A distributed market

purchasing algorithm is proposed to provide the solution of

purchasing for each aggregator. With the feedback from the

utilities, the aggregator n computes dhn,m that minimizes the

monetary cost of its own community assuming the purchasing

of the other aggregators is fixed. This is repeated until there is

no change in the monetary costs of the aggregators. For each

utility, the pricing function Rm is a piecewise convex function

such that it is a quadratic function when the total energy demand

exceeds the forward limit, and it is linear otherwise. This

makes the objective function of each aggregator more complex.

To handle the optimization problem of aggregators flexibly,

an energy demand partition technique is used in the market

purchasing algorithm.

The energy demand partition-based market purchasing al-

gorithm is given in Algorithm 1. Within each iteration, the

aggregator n divides the total demand dhn,· into Kn pieces,

where each piece is dhn,·/Kn. The aggregator n maintains

[dhn,1, d
h
n,2, . . . , d

h
n,M ] as the decision array. Each time, the

aggregator chooses a utility to purchase the energy piece

k ∈ {1, 2, . . . ,Kn} to minimize the current monetary cost. As-

suming that the aggregator n purchases the kth piece of energy

from utility m, the pricing of utility m is changed according to

(2). Thus, the aggregator n chooses the current cheapest utility

to purchase the (k + 1)th piece of energy. This is repeated

until the total amount of energy demand is placed. A com-

plete description of the algorithm is presented in Algorithm 1.

In order to implement the aforementioned procedure, we in-

troduce a bidding array [dn,1, dn,2, . . . , dn,M ] and temporary

monetary cost [tc1, tc2, . . . , tcM ] as temporary variables.

The algorithm initializes in lines 1 and 2. In line 7, the

aggregator places the energy piece k to each utility and obtains

the corresponding temporary monetary cost tcm in line 8.

In line 11, the aggregator chooses the utility m̂ with the min-

imum temporary monetary cost to purchase the energy piece k.

Subsequently, the decision array is updated in line 12.

Algorithm 1 Market Purchasing Algorithm

1: Initialize dhn,m = 0, dn,m = dhn,m
2: Utilities initialize price

3: loop

4: for n = 1 : N do

5: for k = 1 : Kn do

6: for m = 1 : M do

7: dn,m = dhn,m + (dhn,·/Kn)

8: Get temporary monetary cost tcm =
∑M

i=1
(dn,i/

∑N
n=1

dn,i)Ri from utilities according to (2) and (3)

9: dn,m = dhn,m
10: end for

11: m̂ = argmin
m

{tcm}

12: dhn,m̂ = dn,m̂
13: end for

14: end for

15: if No change in monetary costs then

16: Break loop

17: end if

18: end loop

F. Top-Level Algorithm

While the algorithms are provided to solve the smart home

scheduling problem and the market purchasing problem, re-

spectively, the bidirectional influence between the levels should

be considered. The electricity price is needed for the com-

munities to conduct smart home scheduling, and the energy

demand is needed for the trading operation in the market. A

top-level algorithm is proposed to link smart home scheduling

and market purchasing together, which is given in Algorithm 2.

In line 1, ah,n is initialized. From line 3 to line 5, the dynamic

programming algorithm in [25] is called to solve the smart

home scheduling problem under the current pricing. In line 6,

Algorithm 1 is called to solve the market purchasing problem.

Since the aggregators can only obtain the total monetary cost

from the market, it is converted into unit price in line 7.

When the energy load of community n is Lh,n and the to-

tal monetary cost is Ch,n at time slot h, ah,n is updated as
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Fig. 7. Proposed algorithm consists of the smart home scheduling algorithm
in the community level and the market purchasing algorithm in the market
level. The two levels are linked together as a loop to emulate the bidirectional
influence of each other.

ah,n = Ch,n/L
2

h,n, which is to be used in the next iteration.

The complete algorithm flow is shown in Fig. 7.

Algorithm 2 Top-Level Algorithm

1: Initialize community level unit energy price ah,n
2: loop

3: for n = 1 : N do

4: Call Dynamic Programming Algorithm in [25] to com-

pute scheduling in community n
5: end for

6: Call Algorithm 1 to get the pricing in the market

7: Update community level pricing according to ah,n =
Ch,n/L

2

h,n

8: if Not converging then

9: Continue

10: else

11: Exit and keep the current solution

12: end if

13: end loop

IV. CASE STUDY

Here, simulations are conducted, and the impact of smart

homes to the electricity market is analyzed.

A. Simulation Setup

In our generated benchmark, there are two utilities and

five communities, where each community consists of 400 cus-

tomers. Each customer is equipped with both automatically

controlled home appliances and manually controlled home

appliances. The daily energy consumption and execution du-

ration of automatically controlled home appliances are given in

Table II, which is obtained from the data provided by [3], [10],

[28], and [29]. In the simulation, the execution period and en-

ergy consumption are randomly chosen from the corresponding

TABLE II
DAILY ENERGY CONSUMPTION AND RUN TIME OF AUTOMATICALLY

CONTROLLED HOME APPLIANCES

Fig. 8. Background consumption on weekdays and weekends, which are
created by the manually controlled home appliances.

ranges provided in the table with a uniform distribution. For

each customer, the energy consumption of the manually con-

trolled home appliances is fixed, whereas the energy consump-

tion of automatically controlled home appliances is scheduled

by the smart scheduling algorithm. Since the energy consump-

tion profile created by the manually controlled home appliances

is not changeable, it is called background energy consumption.

Two different scenarios, including weekdays and weekends,

are considered in the benchmark. Generally speaking, people

use the home appliances more on weekends than weekdays.

For this reason, in the simulation, more home appliances are

operated on weekends, and the execution durations are longer

than weekdays. Fig. 8 depicts the average background energy

consumption of one customer on weekdays and weekends,

respectively. They are generated according to [3], [28], and

[30]. The peak energy consumption appears from evening to

night when most people are off work at home. There is also

a lower peak energy consumption during the daytime around

the noon. The energy consumption starts to increase from the

morning and reaches the peak around the noon.

For each utility, the parameters in (2) are set according to the

following rules. 1) The purchasing cost pm within the forward

limit is set according to the average energy demand at each time

slot and the generation cost. 2) The purchasing price ahm beyond

the forward limit is set according to the generation cost. For

utility 1, the parameters are set as ph1 = $30, bref
1,h = $10, and
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Fig. 9. Average energy consumption of a customer on weekdays.

Fig. 10. Average monetary cost of each customer on weekdays.

ah1 = 0.12$/kWh2. For utility 2, the parameters are set as ph2 =
$33, bref

2,h = $10, and ah2 = 0.13$/kWh2. The scheduling time

is 24 h from 12 A.M. of the current day to 12 A.M. next day,

which is divided into 15-min time slots.

The simulation results for weekdays are presented as follows.

The average energy consumption profile for a customer is

shown in Fig. 9. With smart home scheduling, the energy con-

sumption is balanced over the time horizon. This reduces the

PAR by 35.9%, from 2.23 to 1.43, which is also the reduction

rate of the peak of the total generation requirement. Note that

the monetary cost at a time slot will be even higher as the energy

consumption accumulates. When smart home scheduling is

applied, the energy consumption of the automatically controlled

home appliances is scheduled at the time slots without heavy

background load. Thus, the energy load is shifted off the peak,

which results in balanced energy usage.

As shown in Fig. 10, the average monetary cost of each

customer is also evenly distributed due to the balancing of

Fig. 11. Energy generation of generator 1 on weekdays.

Fig. 12. Energy generation of generator 2 on weekdays.

the energy consumption. The monetary cost of all the cus-

tomers over the whole time horizon is reduced by 31.8%,

from $5.43 to $3.71. Since the total energy cost is independent

of smart home scheduling, the reduction of total monetary

is due to the mitigation of the high purchasing price in the

market.

The energy generation of the two generators over the time

horizon are shown in Figs. 11 and 12. The generated energy is

balanced among all time slots, which demonstrates that smart

home scheduling can implicitly help balance the energy gener-

ation. As obtained from Figs. 11 and 12, the peak generation

of generator 1 is reduced by 36.0%, from 271 to 174 kWh, and

the peak generation of generator 2 is reduced by 29.8%, from

272 to 191 kWh.

Our iterative algorithm is effective in balancing the energy

consumption from iteration to iteration. As an example, the

energy consumption of community 1 in four consecutive iter-

ations is summarized in Fig. 13, which clearly shows that the

energy consumption becomes more and more balanced during

the optimization.
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Fig. 13. Total energy consumption of community 1 in four consecutive iterations.

Fig. 14. Average energy consumption of the customers on weekends.

Fig. 15. Average monetary cost of each customer on weekends.

B. Results for Weekends

Fig. 14 shows the average energy consumption of each cus-

tomer with and without smart home scheduling, respectively.

Similar to the result for weekdays, smart home scheduling helps

balance the energy load. However, comparing with Fig. 9, the

total energy consumption is increased because the home appli-

ances are operated longer. On weekends, the PAR is 1.23 with

smart home scheduling, whereas it is 1.62 without smart home

Fig. 16. Energy generation of generator 1 on weekends.

Fig. 17. Energy generation of generator 2 on weekends.

scheduling, which is a 24.9% reduction. As shown in Fig. 15,

on weekends, the total monetary cost of customer is reduced by

34.3%, from $7.10 to $4.66, by smart home scheduling.

The energy generation of the two generators on weekends is

shown in Figs. 16 and 17. Similar to the results on weekdays,

the generation is more balanced resulting from smart home

scheduling. For generator 1, the peak generation is reduced

by 24.1%, from 253 to 192 kWh. For generator 2, the peak

generation is reduced by 24.9%, from 253 to 190 kWh.
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V. CONCLUSION

In a smart community infrastructure that consists of multiple

smart homes, smart controllers schedule various home appli-

ances to balance energy consumption and reduce the electricity

bills of customers. This paper analyzes the impact of the smart

home scheduling to the electricity market. It also proposes

a new smart-home-driven bi-level market model where the

customers schedule home appliances for bill reduction at the

community level, whereas aggregators minimize the energy

purchasing expense from utilities at the market level, both of

which consider the smart home scheduling impacts. A game-

theoretic algorithm is proposed to solve this formulation, which

handles the bidirectional influence between the community

level and the market level. As demonstrated by simulation

results, the average monetary cost of customers is reduced by

31.8% on weekdays and by 34.3% on weekends. In addition,

the PAR for the energy consumption is reduced by 35.9% on

weekdays and by 24.9% on weekends. Furthermore, the peak

generation requirement can be reduced by 29.8% on weekdays

and by 24.9% on weekends.
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