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We show, for a wide variety of payoff functions, that the expected log optimal portfolio is also 
game theoretically optimal in a single play or in multiple plays of the stock market. Thus there is 
no essential conflict between good short-term and long-run performance. Both are achieved by 
maximizing the conditional expected log return. 
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1. Introduction 

Suppose an investor is faced with a collection of m stocks X = (XI,X2, . . . , Xm) 
drawn according to some known joint distribution function F(x). We shall assume the 
stock values XI are nonnegative. The random variable XI is the value of a one unit in- 
vestment in the ith stock. A portfolio is a vector b = (bl,. . . ,b,) E B = {bERm: b, 2 0, 
C b, = I}, with the interpretation that b, is the proportion of wealth allocated to 
stock i. The random capital S resulting from investment portfolio b is given by 
S = C b,X, = blX. 

We examine the two-person zero-sum game with payoff E+(S1/S2), where + is any 
nondecreasing function, and S1= b:X, S2= b$X are the random capitals resulting from 
portfolio strategies bl and b2 against a market vector X 2 0 drawn according to some 
known distribution F(x). Let g I ,  g2denote random capitals obtained by fair random- 
ization of SI and S2.  How does one outperform another investor according to the 
criterion E+(S~~/&)? 

It will be shown that a certain portfolio b* is the heart of the solution of all such 
games. More specifically, the game with payoff E + ( S " ~ / ~ ~ )  is solved for either player by 
first employing fair randomization to the initial capital, where the randomization 
depends only on the function 6, and then distributing the resultant random capital 
according to the portfolio b*. In this sense b* is competitively optimal for all games 
+(g1/g2). The game theoretic optimal portfolio b* is characterized as that portfolio 
maximizing E In blX. Thus it has optimal asymptotic properties as well. 

Specifically, we consider a two-person zero-sum game with payoff function 
E+(SI/S2). Players 1 and 2 each start with one unit of capital. A strategy for player i 
consists of a choice of a "fair" distribution function G,{w), GXO-) = 0, S wdG,(w) I 1, 
and a choice of portfolio b, E B. Player i then exchanges his unit of capital for the fair 
random variable (r.v.) W, -- G,(w), and distributes the result W, of this gamble across 
the stocks according to portfolio b,. We assume that Wl, W2, and X are independent 
r.v.'s. The payoff to player 1 for the game is defined to be 

We call this the stock market +-game. If 

inf sup E+(Wlb:X/ W2b$X) = sup inf E+(Wlb:X/ W2biX) = v, (1.2) 
b2,G2 blrGl b~ ,GI b2,G2 

then v is the value of the stock market +-game. 
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Let 3, = Wlb',X and g2= W2b$X. It can be seen that all of the following payoff 
functions can be written in the form E ~ ( ~ I I & ) :  > 32), (b) ~ ( $ 1  > t&),(a) P ( ~ I  
(c) ES"~/S"~, e ~ ~ ' ~ (g) E min (S"l/32, a ) ,  an! (d) ~ ~ ~(e) E 1n (S",/,f2), (f) E($~/(S"~ + s2)), 
(h) the expected number of factors (rounded off to the nearest integer) by which SI 
exceeds s2.The payoff function P($ > i2) ,  previously considered and solved in Bell 
and Cover (1980), is obtained when we let 4 be the indicator function of [1, a). 

We first consider in 52 the two-person zero-sum game with payoff function 
E+(Wl/  W2), where Wl and W2 are independent fair random variables (i.e., Wi r 0, 
EWiI1). We denote this the primitive &game because it does not involve a portfolio 
selection. 53 establishes the equivalence of ESIS* I1 for all S E S, and E In S/S* 5 0 
for all SE S, if S is a convex family of random variables. This equivalence is the key to 
the proofs in 554, 5, and 6. 

54 establishes that the minimax strategies for the portfolio &game ( 4 nondecreasing) 
are WTb*'X and Wfb*'X, where WT and Wf are the minimax strategies for the primi- 
tive &game and b* maximizes E In blX. It follows that the solution of the portfolio 
&game factors into two parts: 

(1) a purely game theoretic randomization of the initial capital, depending only on 

$ 9  and 
(2) an allocation of the resulting capital according to b*. 
These results hold up for multistage market games, as shown in 455 and 6. Conse- 

quently, for 6 nondecreasing, the log optimal portfolio b* is the optimal allocation of 
resources for any two-person zero-sum game with payoff function E+(S"~/S"~). Develop-
ment of the optimal asymptotic properties of b* can be found in Finkelstein and 
Whitley (198 l), Thorp (1969), Breiman (196 l), Algoet and Cover (1988) and a critical 
discussion of such portfolios can be found in Samuelson (1 967, 1969). An algorithm for 
calculation b* is described in Cover (1984). A development of robust portfolios is given 
in Cover and Gluss (1986). 

2. Pure Optimal Strategies for the Primitive @-Game 

Consider the primitive &game with payoff function E+(  Wl/ W2), and strategies 
Wl, W2 E W, the set all nonnegative random variables with mean i 1. We shall call W 
the set of fair r.v.'s. As yet, there is no stock market or portfolio selection in the 
problem. We first wish to determine conditions on $I such that no randomization is 
needed to achieve the value of the game. 

In the primitive +game, players 1 and 2 choose independent random variables 
Wl -- GI ,  W2 -- G2, where GI ,  G2 belong to the set G of distribution functions with 
expected value I1 and support set [O, co).The payoff to player 1 is 

Distributions GT and Gf are optimal strategies if they satisfy the saddlepoint conditions 

for all GI ,  G2 E G. The value v, of the game is given by v, = S 4dGTdGf. 

THEOREM The primitive $-game has pure optimal strategies WT = Wf 1 ifand1. = 

only if$~'(l) 2 0 exists and 

for all t > 0. In this case the value of the game is v, = $(I). 
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REMARK. The family of functions &(t) = t", t > 0, satisfies the conditions of 
Theorem 1 if 0 I a 5 1. The value of such a game is 1. We conclude, for example, that if 
two gamblers were to walk into a fair casino with the agreement that player 1 should 
receive E( W1/ W2) - 1 from player 2, then neither should gamble. 

The following proof is not essential for what follows. 
PROOF. Without loss of generality assume that $(I) = 0. Let $(t) = -$~(l/t). Since 

E$( W2) I 0 iff E+(1/ W2) 2 0, we note that the optimal strategies satisfy WT = W?= 1 
iff E@(W,) I 0 for all W, E W and E$( W2) 5 0 for all W2 E W. 

For0  < 6  < 1 andq>O, l e t  

1 - 6, with probability 7/(6 + r), 
W, = and  

{ I  + 7, with probability 6/(6 + n),  

1 - 1 + ) with probability 6(1 + 7)/[6(1 + 7) + r ( l  - a)], 

1 + 6/(1 - 6), with probability ~ ( 1  - 6)/[6(1 + 7) + ~ ( 1- 6)]. 

Note that EW, = EW2 = 1. Now E$( W,) 5 0 implies 

Similarly, E$( W2) 5 0 implies 

which implies 
~ ( l- 6)4(1 - 6)+ 6(1 + 7)4(1 + 7 ) r O .  

These inequalities can be rewritten as 

Letting 6 4 0 for fixed 7 in the first inequality implies that 4 is left continuous at 1. A 

complementary analysis of the second inequality implies that @ is right continuous and 
thus continuous at 1. 

Taking limits of (2.8) as 7 4 0 yields 

Since 4 is continuous and equals 0 at 1, the lim inf and lim sup are arbitrarily close 
together implying that lim,+o 4(1 + 7)/7 exists. Since this limit exists, (2.9) implies that 
lim6+o- 4(1 - 6)/6 also exists and that the two limits are equal. Taking limits of (2.9) as 
6 4 0 and letting t = 1 + 17 now gives the desired result. Finally, relaxing the condition 
$(I) = 0, we apply the same analysis to the game 4(t) - 4(1), to obtain (2.3). 

3. Convex Families 

The log optimal portfolio b* has the property E In (b*'X/blX) 2 0 for all b E B 
= {b: C b, = 1, b,2 0). The crucial fact needed for the game theoretic results in the next 
section is the existence of a portfolio b** such that E(b1X/b**'X) I 1, for all b E B. That 
the portfolios b* and b** are the same is a consequence of the following more general 
result on convex families of random variables. 

DEFINITION.S is said to be a convexfamily of random variables if the members of S 
are defined on the same probability space and if S1,  S2ES implies AS1+ (1 - A)S2 E S, 
for all 0 5 X 5 1. 

EXAMPLE1. Random returns generated by portfolios. Let X -- F(x),x E Rm.Then 
the set of random variables 
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S = {Sb: Sb= C biXi, b , rO ,  C b, = 1 1 ,  
I =  I 

is a convex family. 
EXAMPLE2. Random returns generated by constrained portfolios. If the set of 

allowed portfolios b is a convex set Bo,then S = {Sb= blX: b E Bo)is a convex family. 
EXAMPLE3. Random returns generated by portfolios based on the past. Consider n 

sequential plays against a market X I ,  X 2 ,  . . . ,X ,  -F(x1,  x2,  . . . ,x,), xi E R':, i = 1,2, 
. . . ,n. Let bl,b2(x1),. . . ,bn(xl ,. . . ,x,-~)be a collection of functions b,: (Rm)('-I) +B, 
and let S = {IT:=I bf (Xl ,X 2 ,  . . . , Xi - , )XI  ) be the set of capital returns induced by all 
such sequential portfolios. Then S is a convex family. 

PROOFFOR EXAMPLE3. generates S ' ] )andSuppose the portfolio sequence { b ~ l ) } ~ = l  
{bj2'):=Igenerates S(2'.How does one prove that S = AS") + ( 1  - X)S(2)can also be 

generated by a sequential portfolio? Two obvious guesses fail. For example, one might 
try bi = Xbll' + ( 1  - ~ ) b $ ~ ' ,1,2, . . . n. This doesn't work. Neither does the device of i = 

choosing {bll')with probability X and {bi2')with probability 1 - A. However, if one 
divides the initial 1 unit capital into an amount X to be invested according to {b~l'):=l 
and an amount 1 - pooling the money "on X to be invested according to { b ~ ' } : = l ,  
paper" only at time n, the result is the desired S = AS'" + ( 1  - X)S(2).This can be 

viewed as a sequential portfolio-a value weighted average of 61'' and bj2).Thus the 
family S is convex. 

If -co < supsEs E In S < co is achieved for some S* in S, then necessarily E In (S/S*) 
I 0, for all S E S. We now establish that this characterization of S* is equiva- 
lent to E(S/S*)I 1 ,  for all S E S, if S is a convex family. This equivalence is cen- 

tral to the subsequent theory. Note that the following theorem does not require 
-co < E l n S * < c o .  

THEOREM2. If S is a convex family, then S* satisfies 

E In (SIS*)I 0, for all S E S, (3.1) 

ifand only ifS* satisfies 

E(S/S*)I 1 ,  for all S E S. (3.2) 

PROOF. The implication (3.2)=+ (3.1)follows from Jensen's inequality: E In (SIS*) 
I In E(S/S*)I 0. 

To prove the converse, suppose that S* satisfies (3.1)and that (3.2)is violated for 

some SI in S, i.e., 
ESl IS* > 1 .  (3.3) 

We form the convex combination 

s, = AS] + i s * ,  O I  X I 1 ,  r; = 1 - X .  

Of course, S, E S and ES,/S* > 1 ,  for 0 < X I 1. 
Now consider 

E ln S,/S* = E ln (ASI IS* + i)= E ln ( 1  + X(SI IS* - 1)). (3.4) 

We shall show that this is >O, contradicting (3.1).Define Y = ( S I / S * )- 1 and 
YM= min { Y, M } .  Since, by hypothesis, EY > 0, there exists a real number Mor 2 such 

that EYMo> 0. Using a Taylor series expansion, we have 

for some a between X and XYMo.But YhfoIM o  Thus from ( 3 4 ,  
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Finally, since EYMo> 0 ,  it is possible to choose X > 0 sufficiently small so that 

This contradicts (3.  l ) ,  thereby proving Theorem 2. 
At this point it is perhaps wise to specialize the convex family S in order to make 

some concrete assertions about the original stock market problem. We do this in the 
following sequence of corollaries. 

COROLLARY If -co < supsEsE In S < co is achieved for some S* E S ,  then S*1 .  
satisjes (3.1) and (3.2) in Theorem 2. 

Consequently the investment S* maximizing expected log return outperforms all 

other investments in the sense that E(S /S*)I 1, for all S E S .  

COROLLARY I f  S = { S b :  b 2 0 ,  C b; = 1 )  where Sb = btX, and b* achieves2. 
-co < sup E In S < co, then 

XI 
E -  b*tX 5 1 ,  for all i, 

with bT = 0 if 

REMARK. These are the Kuhn-Tucker conditions. See Bell and Cover (1980),Fin-
kelstein and Whitley ( 1 98 l ) ,  Breiman ( 1 96 1 )  and Thorp ( 1 969). 

PROOF. We note that S is a convex family and that S is the convex hull of { X i ) g l .  
Let S* = b*'X. 

We first show that (3.7) implies (3.2),since 

Xi 
E -  b*lX I 1 ,  for all i, 

implies, for any portfolio b E B, 

Conversely, (3.2) implies (3.7) trivially, by setting S = Xi in (3.2). Finally, (3.2) 
implies (3.8),since, if b$ > 0 and E(Xio/b*'X)< 1 ,  then 

because C bT E(X,/b*'X)is a convex combination of terms I1, with positive mass b$ on 
a term with expectation strictly less than 1 .  The contradiction in (3.10)establishes that 
(3.2) implies (3.7)and (3.8),proving the corollary. 

Summarizing, if S = { C g l  b i X i )  is the set of all random capitals resulting from 

portfolios of the stocks {Xi)p"=l ,and if -co < supsEs E In S < co,then the following 

three characterizations of S* are equivalent: 
( 1 )  S*  maximizes E In S ,  
( 2 )  ES/S* I1 ,  for all S E S, 
( 3 )  EX,/S* I1, for all i, and b: = 0 ,  if EXl /S*  < 1 .  
As a final note, consider the partial ordering S I  2 S2 iff E ( S 2 / S I )I 1, for S l ,S2 E S a 

convex family. We have shown this partially ordered set has a maximal element S*. 
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Now consider the partial ordering induced by expected logarithms, i.e., SI2 S2iff 
E In S2IE In S,.This ordering is transitive and has a maximal element S**. Although 
the orderings induced by E(SI /S2) and E In SI- E In S2are different, they have the 
same maximal element S* = S**. This may answer to some extent the concerns of 
Samuelson (1969) about the difficulties (based on intransitivity) with the notion of 
finding the "best" portfolio. 

4. The +Game for the Stock Market 

We now show that the log optimal portfolio b* has short-term robustness properties 
in that it simultaneously solves many competitive stock market games. 

Recall the stock market @-game of $1. Players 1 and 2 each start with one unit of 
capital. A strategy for player i consists of a choice of a "fair" distribution function 
Gi(w), Gi(O-) = 0, S wdGi(w)I 1, and a choice of portfolio bi E B. He then exchanges his 
unit of capital for the fair random variable Wi - Gi(w), and distributes the result W, of 
this gamble across the stocks according to portfolio bi. We assume that Wl , W2, and X 
are independent r.v.'s. The payoff to player 1 for the game is defined to be 

We now solve for the optimal strategies in this game. 
Let WT - GT, Wf - G t  denote the minimax strategies for the primitive @-game, 

and let v, denote the value of this game given by 

v6 = inf sup E@( Wl I W2), 
W2EW W,EW 

where W is the set of all fair r.v.'s W 2 0, E W  I 1. Let b* maximize E In btX, and let 
S* = b*'X. 

THEOREM3. Let $(t) be a monotonic nondecreasing function. Then the two-person 
zero-sum game with payoflE@( Wlb{X/ W2blX) has a value v, and optimal strategies 

where b* is log optimal, and GT, Gf solve the primitive @-game. 

REMARK. The optimal strategies for the stock market @-game factor into two parts: 
(1) the game-theoretic randomization WT, Wf ,designed solely to win the primitive 

@-game where no subsequent market investment is allowed, and 
(2) a deterministic choice of portfolio bT = bf = b*, identical for both players, chosen 

independently of the payoff criterion @. This choice b* is defined by its log optimality. 
PROOF. We observe that for any W2 E W and S2E S, 

W2S2/S*2 0, and (4.4) 

E( W2S2/S*) = ( E  W2)E(S2 IS*) I1, (4.5) 

by Theorem 2. Thus the random variable (W2S2/S*)E W. This allows us to write 

E@( WTS*/ W2S2) = E@( WT/( W2S2/S*)). (4.6) 

But by the definition of the value of the game 

E@(WT/W)2 E@(WT/Wf)= v,, 

for all W E  W, yielding 
E@( WTS*/ W2S2) 2 v,. 
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Similarly, since WISI IS* E W, 

Consequently, Wl = WT, bl = b*, W2 = Wf ,b2 = b* achieve the value v, of the game. 

5. Multistage Market Games 

In the previous theorem, the stock market game provided only one investment 
opportunity. We now consider n investment periods, with compounding of the invest- 
ment each time and reallocation of the capital across the stocks based on the past. 
Suppose we are to invest sequentially in a market process Xi E RT, with known 
joint distribution (XI,  X2, . . . ,Xn) - F(xl ,  x2, . . . ,xn). Again fair randomization is 
allowed. 

We now show that log optimal portfolios remain optimal in this multistage game 
against time dependent stocks. 

Player 1 selects any sequential portfolio b l ,  b2(X1), . . . , bn(X1,. . . , XnPI) and fair 
randomization WI - Gl(w). This results in capital WISn = Wl nr=lb:Xi. Similarly, 
Player 2 selects a sequential portfolio b', , b5(X1),. . . , b',(Xl, . . . ,Xn-I) and fair ran- 
domization W2 - G2(w), resulting in capital W2S; = W2 b:fXi. The payoff to 
player 1 is E@(WISn/ W2S',). It is assumed that Wl , W2, (XI ,  . . . ,X,) are independent 
random variables. Of course, the Xi's can be dependent. 

THEOREM4. The optimal portfolio strategies for the n-stage market game are given, 
for both players 1 and 2, by bf(XI, X2, . . . ,Xk-]), k = 1, . . . ,n, where bf maximizes the 
conditional expected log return E(ln btXk I XI ,  XZ, . . . ,Xk-l). The optimal randomiza- 
tion is given by WT - GT , Wf - G f , where GT ,GT solve the primitive @-game with 
payofE@( Wl / W2) and corresponding value v,. The value of the n-stage market game 
1s v,. 

PROOF. From the proof of Example 3 in $3, we know that the set S of all Sn 
generated by sequential portfolios is a convex family. Thus, if S ?  maximizes E In Sn 
over all SnES, then ESn/S$ 5 1, for all SnES, which is all that is needed to apply the 
minimax argument of Theorem 3. 

It remains only to find S,*and the associated log optimal sequential portfolio. We 
observe 

n 

E In Sn= E ln n biXk 
k= I 

The maximum of each term E(E In biXk I XI ,  XZ, . . . ,Xk-1)) over bk(X1, X2, . . . ,Xk-I) 
is achieved by the maximum conditional expected log return portfolio bf(xl,  x2, . . . , 
xk-]) achieving max E(ln b'Xk I XI ,  X2, . . . ,Xk-l). This sequential portfolio maximizes 
E l n  S,. 

6. Example: Posterior Randomization Based on Relative Capital 

Now let us allow the players to observe each other's progress over many rounds of 
investment. 

How do competitive investment decisions change? Do the investors jockey for posi- 
tion in a non log optimal way? We shall allow an initial fair randomization by each 
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player. Both players then observe the outcomes W'P', W':'. A portfolio choice b:", b:" is 
then announced and XI is revealed to both players. Another round of fair randomiza- 
tion is allowed and portfolios by', by' are announced, and so forth. The stock market 
process XI ,  X2, . . . ,XnE R': can be dependent. 

After a tortuous development of conditionally game theoretic optimal play, we shall 
find that the obvious first guess at optimal play is minimax-use the conditionally 
expected log optimal portfolio from $5 at each stage and finish with a fair randomiza- 
tion Wg ,all without regard to the opponent's fortunes. Knowledge of one's opponent's 
progress allows sharper play but is not necessary to achieve the value of the game. 

We know (Bell and Cover 1980) that if two gamblers with equal capital try to 
outgamble one another in the zero sum game with payoff P( Wl 2 W2}, then the value 
of the game is 4 and the optimal strategies for both players are to choose W, according 
to a uniform distribution over the interval [O, 21. What happens if player 1 starts with u 
units and player 2 with 1 unit? Now the payoff becomes P(u Wl 2 W2). Assume first that 
u > 1. Then the optimal strategies can be shown to be WT -- Uniform [O, 21, and 

Thus WZ is a mixture of a Uniform [O,2u] r.v. and the degenerate r.v. WE 0, where the 
mix is chosen to satisfy the constraint EW2 = 1. (If u < 1, then the players switch 
distributions.) 

All of this suggests a similar problem in the stock market game with payoff 
E@( WISI / W2S2). Suppose investors 1 and 2 choose their respective portfolio strategies 
bl and b2. Then the stock vector X and the resulting capitals S1= b{X and S2= biX are 
revealed. At this point each player is allowed to exchange his capital S, for a fair r.v. 
S,W,, where W, E W, and W is the set of all nonnegative r.v.'s with mean no greater 
than one. But since the purpose is to play the @-game, each player chooses his distribu- 
tion for W, based on the knowledge of the relative capital SIIS2. HOW should they play? 
Formally, the game is as follows. 

The conditionally randomized market game. Player 1 chooses a portfolio bl EB and 
an indexed set of fair random variables Wl(x, S I ,  S2) E W, where x E Rm, S I ,  S2E R. 
Player 2 simultaneously chooses b2 E B, and an indexed set of r.v.'s W2(x, Sl,S2)E W. 
The payoff to player 1 is 

Before solving this market @-game, we digress to analyze the primitive @-game with 
unequal starting capitals. 

Let v,(u) = infW2,, supwlEw E@(uWl/W2).In particular, v,(l) = v,, as previously 
defined. We next argue that v,(u) is concave in u. This is reasonable, since player 1 can 
exchange u for ul and u2 with fair randomization and then play the game @(ul Wl / W2) 
or @(u2 Wl/ W2) optimally. This is captured in the following lemma. 

LEMMA. For any @: R+ + R, @ nondecreasing, v,(u) is a concave nondecreasing 
function of u. 

Now to put the stock market back into the game. Let S1= b:X, S2= b$X. 
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THEOREM The conditionally randomized &game has value v, and optimal strate- 5 .  
gies 

bT = bt = b*, WT(x, S I ,  S2) = WT, - GT$(w), W f ( x ,  S1, S2) = W f ,- G ~ ( w ) ,  

where b* is log optimal, and WT,, W?, are optimal in the primitive @game with equal 
starting capitals. Thus unconditional randomization is suficient to achieve the value of 
the game. 

PROOF. It is enough to show that the strategies above satisfy the saddlepoint condi- 

tions (see (2.1)): 

for all Wl(x, S I ,  S*), W2(x, S*, S2) E W .  
For the first inequality we verify that 

Sl
E( W1(X'

S* 
' S*)S1)= E($ E( WI(X,  SI,S* IX ,  SI,S*))) r E -

s * -
< 1 ,  (6.5)  

because of the conditional fairness of W l ( ., . , .) and the conditions for S* developed 
in Theorem 2 .  Also, WT, and Wl(X, S I ,  S*)SI / S f  are independent and nonnegative. 
Thus by the saddlepoint condition for primitive @-games, 

and the first inequality is established. 
The second inequality follows from a similar verification for WT, and W2(X, S*, 

S2)S2/S*with reference again to the saddlepoint conditions for primitive &games. 
It is a curious fact that unconditional randomization WT,, W f ,  for either player 

achieves as much game-theoretically as conditional randomization Wl(x,  S I ,  S2), 
W2(x,SI,S2).Isn't it foolish for player i to ignore the relative capital S1 /S2 when he uses 
his final randomization to outperform the other player? Yes and no. One reason is that, 
if bl = b*, b2 = b*, then SI  IS2 = S*/S* = 1 ,  the ratio of player capital will be 1, and the 
players are thrown into the primitive $-game where WT,, W f ,  are optimal. So condi- 
tional randomization is not needed if both use the log optimal portfolio b*. Apparently, 
it follows as a result ofthe mathematics that any deviation from S* by one of the players 
intended to set up a better competitive position for the subsequent randomization hurts 
the player. This is reflected in the fact that E(S/S*)r 1 ,  for all S; i.e., S/S* is a subfair 
random variable and composing it with a fair randomization leaves it subfair. 

One final point. Although conditional randomization is not necessary to achieve 
the value of the game, it is true that use of conditionally minimax randomization 
WT(X, S I ,  S2) and W f ( X ,  S I ,  S2) is sharper than use of unconditionally minimax 
randomization WT4, Wf,. Both strategies are minimax, but the conditional random- 
ization dominates the unconditional randomization. Both achieve v,, but conditional 
randomization is superior when either player deviates from the log optimal S*.In short, 
the unconditional randomization WIC,is minimax but not admissible. 

7. Conclusions 

First consider payoff functions @(SIIS2),like SI  IS2 satisfying the conditions of 
Theorem 1. Apparently, any investor competing with another investor according to 
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such a payoff criterion will achieve the value of the game by choosing the conditional 
expected log optimal portfolio at each investment opportunity. No randomization is 
required. This is true for all such 6,  arbitrary time dependent market processes, and for 
every stopping time n. Moreover, if conditions on q5 are relaxed to include all nonde- 
creasing functions, then the same sequential portfolio selections, followed now by 
appropriate fair randomization, is minimax. In short, the investor does not need to 
know q5 or n in order to choose his portfolio at each time. 

Here is a possible reason for the robustness of log optimal portfolios. Since the ratio 
of capitals S,/S,* at time n, where S,* is the capital induced by the conditionally log 
optimal portfolio and Snis the capital induced by any other sequential portfolio, obeys 

we see Sn/S,*belongs to the set of all fair random variables. In this sense, Sn is always 
within "fair reach" of S ; .  So it is not surprising that log optimal portfolios behave well 
in the competitive investment game. 

' Dr. Bell's research was partially supported by grants from the Department of Health and Human Services 

and from the Rand Corporation. 

Professor Cover's work was partially supported by NSF ECS82-11568. 
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