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Problems of allocating joint costs in a reasonable way arise in many practical situations 
where people decide to work together to save costs. Cost allocation methods based on game 
theoretical concepts take into account the strategic aspects of cost allocation situations. We 
give a survey of cost allocation methods based on the nucleolus and the Shapley value, and 
introduce also a new one, the so-called cost gap allocation method which is based on the 
i--value. It is shown that for some large subclasses of cost allocation problems this new cost 
allocation method coincides with old separable cost methods proposed in the thirties by the 
Tennessee Valley Authority and also with the separable costs-remaining benefits (SCRB) 
method. Properties of this cost gap allocation method are also treated. 
(COST ALLOCATION METHOD) 

1. Introduction 

Cost allocation problems arise in many real life situations, where individuals, all 
with their own purposes, decide to work together. In these situations the problem 
arises how to divide among the participants the joint costs (and implicitly the cost 
savings) which result from the cooperation. There is a whole literature on this subject 
with all kinds of proposals to deal with the cost allocation problem. Many of the 
proposals ignore the strategic aspects of such situations. A natural framework to study 
cost allocation problems is game theory and it is not surprising that there are now 
many papers dealing with cost allocation methods based on game theoretical concepts. 
An extensive list of such papers is given in the references at the end of this paper. In 
this study we shall concentrate on game theoretical cost allocation methods. 

One has to realize beforehand that in theoretical studies one cannot expect a final 
answer to the question: What is the best cost allocation method? The choice of a 
method depends on the concrete situation where such a cost allocation problem arises, 
the ideas of the participants with respect to fairness, the power feelings of the 
participants, the difficulty of understanding and calculating a cost allocation proposal, 
and many other factors. 

It is a task of game theorists to design for classes of cost allocation problems a 
number of cost allocation methods and to describe the mathematical properties of 
such methods. The properties can reflect ethical, economic or political aspects. The 
comparison of cost allocation methods can then be based on properties, which the 
methods possess or fail to possess. Also secondary considerations, such as easiness to 
understand or to calculate, play a role in practice. 

The cost allocation problem is comparable with the problem in social choice theory 
to find a suitable welfare function or social choice rule. It is also comparable with the 
problem of choosing a suitable statistical test in statistics. In specific cost allocation 
situations, persons involved or arbitrators have to decide which method is most suitable 
for their purposes. They have to put priorities on the list of desirable properties for 
the cost allocation method. If one wants a method with too many properties, then 
impossibilities arise just as in social choice theory (see Arrow 1963). 
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The main purpose of this paper is to introduce a new cost allocation method, the 
so-called cost gap method, for a class of cost allocation problems and to study the 
properties of this new method. It will turn out that some separable cost allocation 
methods, developed during the 1930's by the engineers and economists of the Tennessee 
Valley Authority (see Heaney 1979, Ransmeier 1942, Straffin and Heaney 1981) can 
be seen as rough forms of this cost gap method. 

The paper is organized as follows. In ?2 we list several desirable properties for cost 
allocation methods and we give a survey of three well-known types of cost allocation 
methods. Two of the three treated types of methods are based on well-known game 
theoretical concepts, while the third method is closely related to the new cost gap 
method, which is considered in ?3. In the last section, some examples are given to 
illustrate the methods treated in ??2 and 3. The examples include cost allocation 
problems arising at airports or in networks. 

2. Cost Allocation Methods and Their Properties 

To work in a game theoretical context, a cost allocation problem is transformed 
into a cost game. This is a pair KN, c> where N := { 1, 2, . . . , n} denotes the set of 
participants, each of them indexed by a number. The elements of N are called players 
and subsets of N are called coalitions. Further, the cost function c: 2- , IR assigns to 
any nonempty coalition S the minimal costs c(S) which should be involved if the 
individuals in S should work together in order to serve their own purposes. For the 
empty coalition one puts c(0) = 0. This interpretation of the cost function c implies 
that c is subadditive, i.e. c(S U T) < c(S) + c(T) for all S, T C N with s n T = 0. 
The set of all subadditive cost functions corresponding to n-person cost games will be 
denoted by CG,. Let A, be a subset of CG,. 

A cost allocation method on A, is a map M: A, - - IR'. For each cost function 
c E An, the ith coordinate Mi(c) of the cost vector M(c) = (Ml(c), M2(c), . . . , Mn(c)) 
represents the costs that the method M charges to player i. For a cost allocation 
method all kinds of properties which can be desirable for the participants are listed 
below. There is, however, no method M: A, ) -R' which possesses all these properties. 

(i) M: A, -) IR' is said to be an efficient cost allocation method if for each c e A, 
we have ZieN Mi(c) = c(N). 

(ii) M: A, ) IRR is said to be an individually rational cost allocation method if 
for each c E An we have Mi(c) ' c({i}) for all i E N. 

(iii) M: An --> IRn is said to be a stable cost allocation method if for each c E An 
with CORE(c) = 0 we have M(c) E CORE(c), where the core of c is given by 

CORE(c) := {y E 1Rn; , yi = c(N) and Z yi ? c(S) for all S =A 0}. 
iEN iES 

(iv) M: An -- - Rn is said to possess the dummy player property if Mi(c) = c({i}) 
for all c E An and all i E N for which c(S U {i}) - c(S) = c({i}) for all S C N - {i}. 

(v) M: An -* 1Rn is said to possess the anonymity property if for each c E An and 
each permutation 0: N - N with Oc E An we have Mo(1)(0c) = Mi(c) for all i E N, 
where Oc is the cost function given by (0c)(OS) = c(S) for all S C N. 

(vi) M: An - JRn is said to be an aggregate monotonic cost allocation method if 
for each cl, c2 E An with c2(S) = c1(S) for all S * N and c2(N) 2 cl(N), we have M#(c2) 
> Mi(c') for all i E N. 

In the remainder of the paper several other properties will also be considered. Let 
us make some remarks and describe then some well-known cost allocation methods. 
First we note that for many cost functions c E CGn its core is empty. Further we note 
that for any cost allocation method on the set of cost functions with a nonempty core, 
stability implies efficiency as well as individual rationality. 
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The simplest cost allocation method on CG, is the egalitarian method E which 
apportions the joint cost c(N) of the grand coalition equally to the players, i.e. Ei(c) 
= c(N)/n for each c E CG, and each i E N. This egalitarian method is efficient, 
monotonic in the aggregate and possesses also the anonymity property, but it fails to 
take strategic aspects into consideration: E is not individually rational and does not 
possess the dummy player property. 

Now we describe three cost allocation methods, which have obtained much attention 
in the literature and which are applied to several practical situations. 

(1) Methods Based on Marginal Costs in Entering Coalitions 

The key idea of these methods was introduced by Shapley (1953). Let c E CG, be 
a cost function and 0: N - > N a permutation of the grand coalition. With respect to 
0, the formation of the grand coalition N can be seen as the sequential process, where 
the players form the grand coalition by entering one by one in the order 0(1), 0(2), 

0(n). Let any player pay the additional costs which arise by joining his 
predecessors, i.e. player 0(i) has to pay the marginal cost MO(i)(c) given by 

O(i)(c) = c ({0(1), 0(2), . . . , 0(i)}) - c({0(1), 0(2), . .. , 0(i - 

Then the corresponding cost allocation method M0 on CG, is efficient. It possesses the 
dummy player property, but it is not anonymous. The Shapley cost allocation method 
(I is obtained by averaging in a uniform manner these cost allocation methods M0 
corresponding to the various permutations 0 on N. Thus b = (n!)-f 0 M0 where the 
sum is taken over all permutations on N. Due to this sum, the Shapley method is 
anonymous, but it fails to be stable. The Shapley method is based on the Shapley 
value, a game theoretical concept introduced in 1953. In the literature also weighted 
versions of the Shapley method are considered, i.e. a' = 0 a(0)M0 where a(0) 2 0 
for any permutation 0 on N and 0 a(0) = 1. 

There exist various axiomatic characterizations of the Shapley method. The most 
well-known characterization is due to Shapley himself (1953) and is as follows: 

(a) A cost allocation method M: CG, -- 1R' is efficient, anonymous, additive and 
possesses the dummy player property if and only if M = (. 

Here additivity means that M(c' + c2) = M(c') + M(c2) for all cl, c2 E CG,. 
Recently, Driessen (1985a) proved that another axiomatic characterization of the 
Shapley method can be obtained by replacing two classical axioms (anonymity and 
dummy player property) by the two following axioms: 

(bi) M: CG, -- IRn is said to possess the weak dummy player property if Mi(c) 
- c({i}) for all c E CG, and all i E N for which c(S U {i}) - c(S) + c(N - S) 
-c(N - (S U {i})) = 2c({i}) whenever S C N - {i}. 

(b2) M: CG, -- IR' is said to possess the equal individuality property if Mi(c) 
- Mj(c) for all c E CG, and all i, j E N, i j j such that c(S) = c(N - S) for all S C N 
with i E S andj E S. 

Young (1985) showed that also the additivity axiom can be replaced by a monotonicity 
axiom. Although the Shapley method is monotonic in the aggregate, another form of 
monotonicity was required by Young: 

(c) A cost allocation method M: CG, -- IRn is efficient, anonymous and strongly 
monotonic if and only if M = (. 

Here strongly monotonicity means that Mi(c2) > Mi(c') for all cl, c2 E CG, and all 
i E N such that c2(S U {i}) - c2(S) c1(S U {i}) - c1(S) for all S C N. 

Axiomatic characterizations of the Shapley method are also treated in Aumann and 
Shapley (1974) and Dubey (1975), while axiomatic characterizations of the weighted 
versions of the Shapley method are treated in Weber (1978). Loehman and Whinston 
(1974) derive from a set of axioms a charge scheme for public investments. This charge 
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scheme coincides with the Shapley cost allocation method on cost functions. Other 
papers which are closely related to the Shapley method are Hamlen et al. (1980), 
Jensen (1977) and Loehman and Whinston (1971). The Shapley cost allocation method 
is applied to many practical situations, for which we refer to ?4.2 of this paper or to 
Lucas (1981), Shubik (1962). 

(2) Methods Minimizing Maximum Unhappiness 
Pioneering in this field was Schmeidler (1969) with his paper in which he introduced 

the game theoretical concept nucleolus. Later many authors modified the ideas of 
Schmeidler and introduced related concepts. 

For any cost function c E CG", its imputation set I(c) consists of all efficient 
allocations, which are individually rational. Thus 

I(c)= {y EJ Rn; I yi = c(N) and yi < c({i}) for all i E N}. 
iEN 

Given a cost function c E CGn such that I(c) =A 0, the key idea is to look first at a 
certain function u: {S; S C N} X I(c) - > IR, where for a coalition S and an imputation 
y E I(c) the number u(S, y) represents the unhappiness of the coalition S with respect 
to the allocation y, and then to minimize the maximum unhappiness. Hence, if for 
x, y E I(c) 

max {u(S, x); S C N} < max {u(S, y); S C N} (*) 

then x is seen as a better cost allocation than y. If in (*) the equality holds (instead of 
the inequality), then a more subtle look at the unhappiness of coalitions with respect 
to x and y follows. In general, for any u: {S; S C N} X I(c) -l JR and any y E I(c), 
let 0(u, y) be the vector in JRR2M whose coordinates are the numbers u(S, y), S C N, 
arranged in nonincreasing order. Given c and u, we then say that x E I(c) is a better 
cost allocation than y E I(c) if 0(u, x) is lexicographically smaller than 0(u, y), i.e. 
O(U, X) <L O(U, y). The u-nucleolus of the cost function c is now defined to be the set 

Nu(c) :={x E (c); O(u, x) <L O(U, y) for all y E I(c)}. 
The nucleolus of the cost function c (a la Schmeidler) is obtained whenever u(S, x) 

ZiEs xi - c(S) for S * 0 and u(0, x) := 0. Grotte (1970) introduced the 
normalized nucleolus by considering the unhappiness function u(S, x) := ISL-'( iEs xi 
- c(S)) for S * 0 and u(0, x) := 0. For other nucleoli taking into account the size 
ISI of a coalition S, we refer to Wallmeier (1983). Some other versions of the nucleolus, 
known as disruption nucleoli, are studied by Gately (1974), Littlechild and Vaidya 
(1976) and Charnes, Rousseau and Seiford (1978). In Gately (1974) and Littlechild 
and Vaidya (1976) the unhappiness function for cost games with a nonempty strict 
core is given by 

u(S, x) :=[Z xi -c(N -S)][ 2: xi -c(S)]- for S =A 0, N. 
ieN-S iES 

In Charnes et al. (1978), the ratio of these two quantities is replaced by the normalized 
difference, thus for S * 0, N 

u(S, x) IN -N- SI-[c(N- S) - Z xi] -SI L'[c(S) - xi]- 
iEN-S iES 

Schmeidler (1969) proved that the nucleolus of a cost game consists of a single point 
and hence it gives rise to a cost allocation method on CGn, which turns out to be 
efficient, individually rational, stable, anonymous and to possess the dummy player 
property. However, as Megiddo (1974) showed, the nucleolus cost allocation method 
is not monotonic in the aggregate. An axiomatic characterization of the nucleolus has 
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been found by Sobolev (1975). For practical applications of the nucleolus method, we 
refer to ?4.2 or to Lucas (1981), Suzuki and Nakayama (1976). 

(3) Methods Based on Separable and Nonseparable Costs 
In these methods one can distinguish two steps. Given any cost function c E CG", 

in the first step to each participant i is allocated his marginal or separable cost, i.e. the 
cost ml := c(N) - c(N - {i}). Thus the separable cost of player i is the raise in costs 
if player i joins the coalition N - {i}. Let mc = (mc, mc, . . ., mc). For many cost 
functions the total of separable costs will be less than the joint cost of the grand 
coalition, i.e. z mq < c(N). In the second step the remaining cost 

gc(N) :=c(N)- ml (>0) 
iEN 

is allocated in some way to the participants. The remaining cost gc(N) is called the 
nonseparable cost. Let wl, w2, . . ., wn be nonnegative numbers with 7n I Wi > 0, 
where the weights wi, i = 1, 2, . . ., n, may be constant but they may also depend 
on the cost function. Then the separable cost allocation method with weight vector 
w = (w1, w2, . . . , wn) assigns to a cost function c E CGn the cost allocation 

n 

S(c, w) = mc + gc(N)(I wi)lw. 
i=1 

Separable cost allocation methods were considered by engineers and economists of 
the Tennessee Valley Authority (TVA) in the 1930's in relation to apportioning costs 
of dam systems in the Tennessee River. For more information on this TVA-project, 
other water resource projects and their corresponding cost allocation problems, we 
refer to Heaney (1979), Ransmeier (1942), Straffin and Heaney (1981). 

Two of the separable cost allocation methods considered by the TVA are the equal 
charge method (EC-method) and the alternative cost avoided method (ACA-method) 
where the weight vectors are respectively (1, 1, . . . , 1) and (c({l}) - ml, c({2}) 

-in2,. . . ., c({n}) - mc). Hence, the EC-method is given by 

EC(c) = mc + n lgc(N)(1, 1, .. ., 1) 

and the ACA-method is given by 
n 

ACA(c) = mc + gc(N)[, (c({i}) - mq)]-(c({I}) - mc, . .. , c({n}) - mc). 
i=l 

The method commonly used among water resource engineers is the separable cost 
remaining benefits method (SCRB-method), which is a modification of the ACA- 
method. The weight w = (w1 ,w2, . . . , wn) in the SCRB-method depends on the cost 
function c as follows: 

wi= min {c({i}), bi} - ml for all i E N, 

where bi is the benefit to player i if only his purposes are served. Note that for those 
situations, where c({i}) < bi for all i E N, the SCRB-method coincides with the ACA- 
method. 

The three separable methods mentioned above are efficient, anonymous but not 
stable since these methods do not take into account the coalitions, for which the 
number of players is more than 1 but less than n - 1. In the next section we shall 
introduce a new separable cost allocation method, which does take into account all 
coalitions. For studies on the cost allocation problem in water resources development, 
we refer to Loehman et al. (1979), Loughlin (1977), Young et al. (1982). Legros (1982) 

This content downloaded from 130.89.45.231 on Thu, 17 Dec 2015 08:37:15 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1020 S. H. TIJS AND T. S. H. DRIESSEN 

studies the equivalence of the nucleolus method and the SCRB-method for a certain 
class of cost games. 

3. The Cost Gap Allocation Method and Its Properties 

In 1981 Tijs introduced the -r-value, a new game theoretical solution concept. In 
this section we describe the cost allocation method which corresponds to the -r-value. 
We shall call this method the cost gap method because the allocation of the nonseparable 
cost by this separable method is determined with the aid of a cost gap function. It will 
turn out that the EC-, ACA- and SCRB-method, mentioned in the previous section, 
can be seen as "rough" forms of this cost gap method since they coincide for certain 
classes of cost functions where the coalitions of size unequal to 1, n - 1 and n are not 
essential. 

Let KN, c> be a cost game and mc = (mc, mc,. . , mc) E IRn the marginal vector 
for KN, c>, whose ith coordinate is the separable cost of player i, i.e. mq = c(N) 
- c(N - {i}) for all i e N. For each coalition S we define the cost gap of S in the 
game KN, c> by 

gc(S) :=c(S) - mq if S = 0 and gc(0) := O. 
ies 

The map gc: 2N JR is called the cost gap function of the cost game KN, c>. Note 
that gc(N) is equal to the nonseparable cost in the cost game. In general we shall 
assume that the cost gap function is nonnegative. 

Let KN, c> be a cost game with a nonnegative cost gap function, i E N and S C N 
such that i E S. As in all separable methods, the separable cost mq is seen as a lower 
bound for the cost contribution of player i to the joint cost c(N). Now player i can 
argue that it is unreasonable that he contributes more than mq + gC(S) to the joint 
cost. Namely, if the cost allocation to player i exceeds the amount mq + gC(S), then 
he can threaten to try to form the coalition S and to allocate the corresponding cost 
c(S) in such a way that each other player j C S, j =A i, has only to pay the lower 
amount mic, while player i himself contributes the remaining cost c(S) - ls-{i mi, 
which equals mq + gC(S), so player i would be better off than before. 

The above argument holds for any S with i E S. Hence, the number mins;ies (mq, 
+ gC(S)) or equivalently mq + mins;iEs gC(S) can be seen as an upper bound for the 
cost contribution of player i to the joint cost c(N). 

Due to the above reasoning, we define for any cost function c E CGn a corresponding 
weight vector wc = (wI , wC2, . . . , wc) E IRn by 

w:= min gC(S) for all i e N. 
S;iES 

Then the number wq can be seen as the maximal contribution of player i to the 
nonseparable cost gc(N). We shall now also assume that the total of these maximal 
contributions covers the nonseparable cost gc(N), i.e. I wq > gc(N). 

The cost gap allocation method is now defined as the separable method, where the 
nonseparable cost is allocated to the players proportional to the abovementioned 
weight vector. Formally, to any cost function c E CGn such that 

gc(S) > 0 for all S C N and w > gc(N) (3.1) 
iEN 

the cost gap allocation method assigns the cost allocation 

CGA(c):= mc if gc(N) = 0, 

= mc + gc(N)( z w9c)-lwc if gc(N) > 0. 
iEN 
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The cost allocation CGA(c) can also be obtained as the point where the hyperplane 
{y E IRW; ZaN yi = c(N)} of efficient cost allocations intersects the straight line 
segment with end points mc and mc + wC, as indicated by Figure 1. 

In particular, for cost functions c E CG, with a nonempty core, the vector mc turns 
out to be a lower bound and the vector mc + wc an upper bound for the core of c, 
which imply that the cost function c satisfies the conditions in (3.1). Furthermore, it 
follows from this that the class 

Qn: {cE CGn;gc(S) 2 0 forall SCNand Z wq > gc(N)} 
iEN 

is a full-dimensional cone in the linear space CGn. For a proof of these remarks we 
refer to Tijs (1981), where also a list of properties for the r-value can be found. The 
corresponding list for the cost gap method is as follows. 

THEOREM 3.1. The cost gap allocation method CGA Qn IRn is efficient, 
individually rational and possesses the dummy player property, the anonymity property, 
the strategic equivalence property and the continuity property. 

The cost gap method on Q2 or Q3 is also stable, but it is not stable on Qn whenever 
n > 4. A complete list of properties which characterize the cost gap method will appear 
in Tijs (1986). Some other properties of this method are given in the next theorems. 
The first result states that the cost allocation to the nondummy players by the cost gap 
method is not affected if the dummy players in a game are removed. 

THEOREM 3.2. (The dummy out property for CGA: Qn -IRn). Let KN, c> be a 
cost game and D the set of dummy players, i.e. 

D:= {i E N; c(S U {i}) - c(S) = c({i})for all S C N- {i}}. 

Let KN - D, c'> be the cost game with c'(S) = c(S) for all S C N - D. If c E Qfn, then 
CE C Qn-IDI and CGAi(c') = CGAi(c) for all i E N - D. 

PROOF. For i E D we have ml = c(N)-c(N- {i}) = c({i}) and for i E N-D: 
m= c'(N - D) - c'((N - D) - {i}) = c(N - D) - c((N - D) - {i}) = c(N) - c(N 
-{i}) = mc. So, mc = c({i}) if i EeN - D. It follows that for 
each S C N, 

~~' ~ ~V m~~c+ c 

C~~~~~~~~ +W 

m ~~~~~~~~~~~n 
\ / ~~~~~~{y E 1R ; y. c (N)} 

iEN 

F IGURE 1 . 
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gc(S) = c(S)- mj=c c(S-D)- z mj 
jES jES-D 

= c(S - D)- mj' = g(S-D). 
jES-D 

Thus in particular gc(N) = gc'(N - D). But gc(S) = gc (S-D) for all S C N implies 
that wq' = wc for all i E N - D. Further, for each S C N - D we have gc'(S) = gc(s) 
and for all i E D we have wq = 0 since c E Qf and i E D imply 0 < wc < gC({i}) 
- c({i}) - ml = 0. Hence, >J-D WJ = >EWD WJ = wj. W. Now it follows that 
c E Qf implies c' E QC-IDI. Moreover, for the nontrivial case gc(N) > 0 we have for 
all i E N -D: 

ml' + gc(N - D)( z wj)-'w = ml + gc(N)( E wj91w. 
jEN-D jEN 

Hence, we can conclude that CGAi(c') = CGAi(c) if i E N - D. 
It can be shown that the dummy out property also holds for the cost allocation 

methods based on the Shapley value and the nucleolus. 
The cost gap method is not monotonic in the aggregate, but it possesses another 

form of monotonicity. The next theorem states that if a cost game KN, cl> is changed 
to a cost game KN, c2> only by increasing the cost of one coalition T with less than 
n - 1 players, then the players outside T are better off in the second game c2 than in 
the original game cl by the cost gap method. 

THEOREM 3.3. (Complementary monotonicity for CGA: Qf -. IRn). Let KN, cl> 
be a game and T C N with 1 < ITI < n - 1. Let KN, c2> be a cost game with c2(S) 
= cl(S) for all S # T and c2(T) 2 cl(T). If cl E Qf,. then c2 E Qf and CGAi(c2) 
< CGAi(cl) for all i N- T. 

PROOF. Since ITI < n - 1, we have mc2 = mci. This implies that gc2(S) = gCl(5) 
for all S # T and gc2(T) 2 gc'(T). It follows that w72 = wil for i E N - T and w?2 

I wq' for i E T. It is now easy to see that cl E Qf implies c2 E Qf. Further, in case 
gc'(N) > 0 we have for all i E N -T: 

m59 + gC2(N)( , wjw2)-'w9 = mq' + gcl(N)( , wjT2)-lwqc < mr' + gcl(N)( wjcl)wlW. 
jEN jEN jEN 

It follows now that for all i E N - T: CGAi(c2) ? CGAi(cl). C1 
It is easy to show that the Shapley method on CG, possesses also the complementary 

monotonicity property, but the nucleolus method does not possess this property (see 
Driessen 1985b). 

Now we consider two subclasses of cost games for which the cost gap method is 
easy to determine and coincides with other cost allocation methods. 

First of all we consider the subclass, consisting of the cost games KN, c) satisfying 

min gc(S) = gC({j}) 2 0 for all i E N. 
S;iES 

Games of this type are called semiconvex games and are introduced by Driessen and 
Tijs (1985). The class of semiconvex n-person cost games is a full-dimensional cone in 
CGn, but it is also a subclass of Qn. Note that for a semiconvex game KN, c> we have 
for all i E N, wq = gC({i}) = c({i}) - mq and hence we can state the next result. 

THEOREM 3.4. If KN, c> is a semiconvex cost game, then CGA(c) = ACA(c). 

Most of the cost games which arose in the TVA-project were convex games, which 
are characterized by the property (see Shapley 1971) 
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c(SU {i})-c(S) 2 c(TU {i})-c(T) forallS, TCNand 

all iENwithSC TCN- {i}. 

This property implies that c(S U {i}) - c(S) 2 ml, or equivalently gC(S U {i}) 2 gC(S) 
whenever i E N and S C N- {i}. From this it follows that convex games are 
semiconvex. 

The second subclass which we want to consider, consists of the cost games KN, c> 
satisfying minooscA gc(S) = gc(N) ? 0. These games are called quasi-concave games 
and are studied in Driessen and Tijs (1983). The class of quasi-concave n-person cost 
games is a full-dimensional cone in CG, and it is also included in Qf. These games 
possess many nice properties, e.g. the cost allocation based on the cost gap method or 
nucleolus lies in the centre of the core of the game. For a quasi-concave game KN, c>, 
we have wq = gc(N) for all i E N and hence, the next result is obvious. 

THEOREM 3.5. If KN, c> is a quasi-concave game, then CGA(c) = EC(c). 

We observe that, although the cost gap method on Qf is not stable, this method 
restricted to the class of quasi-concave n-person cost games is stable in such a way that 
its cost allocation coincides with the barycentre of the core. The same result holds for 
the Shapley cost allocation method restricted to the class of convex n-person cost 
games (see Shapley 1971). The cost gap method restricted to the class of (semi-)convex 
n-person cost games is stable if n = 2, 3 or 4, but fails to be stable whenever n 2 5 
(see Driessen and Tijs 1985). In the next theorem a weak form of stability for the cost 
gap method restricted to the class of convex cost games is treated. First we prove a 
lemma dealing with dummy players. A player i is called a dummy player in a cost 
game KN, c> if c(S U {i}) - c(S) = c({i}) for all S C N- {i}. 

LEMMA 3.6. Let KN, c> be a cost game such that the imputation set I(c) contains 
at least two points. Then there exist at least two players, who are no dummy players. 

PROOF. Let D be the set of the dummy players in the game c. Suppose that IN - DI 
< 2. Then IDI ? n - 1, which implies together with the dummy player definition that 
c(S) = zi s c({i}) for all S # 0. But then I(c) = {(c({1}), c({2}), . . .,c(n)) 

which contradicts the assumption in the lemma. It follows that there exist at least two 
nondummy players. C1 

Convex cost games possess a nonempty core (Shapley 1971). Thus, in case the cost 
gap allocation of a convex cost game falls outside its core, we can conclude by Lemma 
3.6 that there are at least two nondummy players in the convex cost game. Now we 
formulate the announced theorem. 

THEOREM 3.7. (Weak stability). Let KN, c> be a convex cost game and suppose 
that CGA(c) X CORE(c). Let D be the set of the dummy players in c and T C N such 
that jET CGAj(c) > c(7). Then for each pair i, j E T - D, i #j, there exists 
x E CORE(c) such that xi > CGA1(c) and xj < CGAj(c). 

PROOF. Let i, j E T-D, i j and 0: N -> N a permutation such that 0(1) = i 
and 0(n) = j. Let x E IR' be defined by 

xo(k) = c({0(1), 0(2), .. . , 0(k)}) - c({0(1), 0(2), .. . , 0(k - 1)}) for all k E N. 

Since c is convex, x E CORE(c) (see Shapley 1971). Note that xi = c({i}) - c(0) 
= c({i}) and xj = c(N) - c(N - {j}) = mjc. It suffices now to show that 

mk < CGAk(c) <c({k}) for all k&EN-D. 
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The convexity of c implies for all S C N and all k E N - S, 

c({k}) 2 c(S U {k}) - c(S) 2 c(N) - c(N - {k}) = mk- 

From this follows that k E D if c({k}) = mc. Hence, c({k})- m > 0 whenever 
k E N- D. 

We know that CGA(c) E I(c) but CGA(c) X CORE(c), so I(c) contains at least two 
points, which implies that c(N) < kN c({k}). By the convexity of c we have that 
c E Qf, so gC(S) 2 0 for all S C N. Then gc(N) = 0 would imply that mc E CORE(c) 
and mc = CGA(c). Because it is given that CGA(c) X CORE(c) we can conclude that 
gc(N) > 0. Since convex games are semiconvex, the cost allocation CGA(c) is given by 

CGAk(c) = mc + a(c({k}) - mck) for all k E N 

where a := gc(N)[13 1 (c({l}) - m)fl'. Then a > 0 since gc(N) > 0, but also a < 1 
since c(N) < Ek c({k}). Let k E N - D. Then c({k}) - mc> 0 and since 0 < a 
<1 we obtain that mc < CGAk(c) < c({k}). C1 

An interpretation of Theorem 3.7 can be given. Let KN, c> be a convex cost game 
and suppose that coalition T is not content with the cost gap allocation CGA(c) since 

>JjET CGAj(c) > c(T) and, hence, some nondummy players in T may threaten to form 
a subcoalition. Then the arbitrator who proposes the cost gap allocation as a suit- 
able cost allocation can make a counter-threat by looking for a stable allocation 
x E CORE(c), where one of the nondummy players involved will be worse off and 
another will be better off than his cost gap allocation, without saying beforehand who 
are the favoured and harmed players. 

We conclude this section with the remark that an extension of the cost gap method 
on Qf to the set CG, of all cost functions is given by the authors (1984). 

4. Examples 

In this last section we compare some cost allocation methods for the two-person 
cost allocation problems and further, we consider two practical cost allocation 
problems. 

4.1. Two-Person Cost Allocation Problems 

It is easy to verify that for any two-person cost game KN, c) the cost gap allocation 
coincides with the Shapley and nucleolus allocation and that it is given by 

CGA(c) = 2(c{1}) - c({2}) + c({1, 2}), - c({1}) + c({2}) + c({1, 2})). 

As noted before, it belongs always to the core of c. 

4.2. User Fees in the Airport Game 

Cost allocation problems can arise from situations in which some service is provided 
to a variety of different customers who differ in the amount or type of service they 
need. One can think of toll roads, computers, telephones and airports. Let us 
concentrate on the aircraft landing fee problem as discussed in Owen (1982). 

Consider an airport with one runway and divide the planes which are to land there 
into m types. Let Nj be the set of landings by planes of type j over a fixed time-span. 
Then N:= U7Zi N) is the set of all landings. Let nj denote the number of landings by 
planes of type j and n = 2 n. 

The cost of building a runway depends upon the largest plane for which the runway 
is designed. Let tj be the cost to make the airport suitable for landings by planes of 
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type j. We suppose that 0 = to < t, < t2 < . . . < tin. The cost function c of 
the corresponding cost game KN, c> is then determined by c(0) = 0 and for all 
0 * SCN 

c(S) := max {tj; <j < m, S n Nj # 0}. 

The airport economists Baker (1965) and Thompson (1971) proposed the following 
simple cost allocation rule: each user contributes equally to the cost tl; each user, 
except those of type 1, contributes equally to t2 - tl; etc. This means that a user of 
type j has to pay the amount nJk 1 (t - tkl)(1k lr)-. Littlechild and Owen (1973) 
showed that the above-mentioned cost allocation coincides with the cost allocation 
based on the Shapley value. Dubey (1982) gave a nice axiomatic characterization of 
the Shapley cost allocation method restricted to such airport cost functions. For the 
nucleolus of an airport game we refer to Littlechild (1974), Littlechild and Owen 
(1976), Owen (1982). Here we shall calculate the cost allocation to the users according 
to the cost gap method. We consider only the practical case where nm 2 2. Then the 
separable cost of any user is equal to zero, and hence gC(S) = c(S) for all S C N. In 
particular, gc(N) = c(N) = tm > 0. Further, wq = mins;ies gC(S) = t1 for i E N). Now 
it follows that c E Qf and that the landing fee, based on the cost gap method, for a 
plane i of type j is equal to 

m 

CGAi(c) = tm( 2 nktk)-1tj for i E Nj. 
k= i 

Thus the cost gap allocation is proportional to the cost numbers tj, 1 < j < m 
corresponding to the various types. 

4.3. Minimum Cost Spanning Tree Games 

Let G be a network with node set N U {0}. Each node i E N corresponds to a 
consumer and the node 0 to a central supplier of some commodity. Let for an arc 
(i, j), the number d(i, j) denote the cost of connecting i to j. For each nonempty 
coalition S C N, let c(S) be the minimum cost required to connect all the consumers 
to the central supplier in the network with node set S U {0}. If we interpret d(i, j) as 
the length of arc (i, j), then c(S) is the length of a shortest spanning tree of the network 
with node set S U {0}. There are a lot of papers dealing with cost allocation problems 
arising from such network situations (see Bird 1976, Claus and Granot 1976, Claus 
and Kleitman 1973, Granot and Huberman 1981, 1984). It is proved in Granot and 
Huberman (1981) that the core of a corresponding cost game is nonempty. This 
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contrasts with the results for Steiner tree games studied in Megiddo (1978), where an 
example of a 5-person Steiner tree game with an empty core is given. 

Let us look at the specific spanning tree game with three consumers, corresponding 
to the network of Figure 2. The corresponding minimum cost spanning tree game 
KN, c> is determined by N= {1, 2, 3} and c(0) = 0, c({l}) = 40, c({2}) = c({3}) 
= 60, c({1, 2}) = c({1, 3}) = 70, c({2, 3}) = 110 and c({l1, 2, 3}) = 100. Here the 
minimum cost spanning tree for N is given in Figure 3. For this specific spanning tree 
game, the three cost allocations based on the Shapley value, the nucleolus and the 
i--value, are as follows: 

the Shapley cost allocation cI?(c) = (13k, 43, 43), 
the nucleolus cost allocation N(c) = (10, 45, 45), 
the cost gap allocation CGA(c) = (12 A, 437 , 4374). 

All three of them belong to the core of the game.' 

' The authors would like to thank Patrick Legros for putting our attention to the TVA-project. 
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