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[Analyzing resource conflicts in wireless networks]

M
ost human activity is limited in one way or 

the other by the finite availability of 

resources. In communications engineer-

ing, the fundamental resources are 

bandwidth (spectrum) and power. 

Power is needed to overcome noise at the receiver, and 

it is basically limited because of regulations and due 

to limitations on storage (i.e., batteries). Spectrum 

is fundamentally in shortage, because the part of 

the electromagnetic (EM) spectrum where 

radio wave propagation behaves well is rather 

limited. As a result, licensed (dedicated) 

spectrum has become very expensive, as 

evidenced by the spectrum license auc-

tions for third generation (3G) tele-

phony, for example. At the same 

time, unlicensed spectrum has 

become overcrowded and at many 

locations so cluttered with interference that sys-

tems provide a very poor grade of service or even cease to work. 

One example of this can be seen in places where many wireless 

local area network (LAN) base stations are placed too closely. 

Game theory is a branch of mathematics and provides a tool-

set for analyzing resource conflicts, or more generally, optimiza-

tion problems with multiple conflicting objective functions. In 

the context of this article, the finiteness of spectrum and power, 

and especially the situation when multiple operators are allowed 

to use the same spectrum, creates a resource conflict. The goal 

of this article is to explain some basic terminology and to convey 

why game theory is a useful tool for analyzing this resource 

conflict. The specific focus will be on the physical layer of wire-

less links, including in particular beamforming and array signal 

processing aspects for multiantenna  systems. The article will 

build on material from the literature [1]–[6] and on our own 

work on the topic (e.g., [7]–[9]). 

Before we begin our discussion, we should note that there is 

relatively rich literature on applications of game theory to the 

study of various other aspects of resource allocations in 
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 communications. A comprehen-

sive summary of this literature 

is presented in “A Brief Survey 

of Related Tutorial Articles,” 

which also puts the current tu-

torial article in context. 

BASIC GAME THEORY–

DEFINITIONS AND NOTIONS

We first review some basic ter-

minology. In general, a game G consists of three elements and 

can be represented as follows: 

 G5 1 51,c, K6, S, 5R1, c, RK6 2 .
First, there are the parties involved in the resource conflict. 

These will be called players, consistent with mainstream game 

theory literature [10]–[15]. In communication games, the play-

ers, 51, c, K6, are usually the transmitters and receivers that 

share the wireless channel. 

Second, the actions or moves 

that can be taken by the players 

are called strategies. They 

belong to the strategy space S. 

In the wireless communications 

application, a set of strategies 

may refer to which spectral 

band a user is transmitting in, 

or how much power she spends. 

The third element is the payoffs or utilities 5R1, c, RK6 
obtained by the players. These will depend on their selected 

strategies. Utility is a measure of how much something is worth 

to someone. The players are assumed to be rational and selfish 

that characterizes their objective: to maximize their utility in 

the game. In our work, the utilities are the rates at the receiv-

ers. In a more general context, utility may represent real or 

monetary values and it may be measured in arbitrary units. 

Utility is not necessarily linear in the amount owned. For 

We provide here a brief survey over related tutorial articles. 

MacKenzie et al. [25] discuss the application of game theory to 

code division multiple access (CDMA) power control problems 

and to medium access control in an ALOHA system. Srivastava 

et al. [26] illustrate the utility of game theory for ad hoc net-

works. In [19], Papadimitriou analyzes the Internet and its pro-

tocols from a game-theoretic point of view. Moreover, an 

overview of game theoretic approaches and a set of non-

cooperative games for energy-efficient resource allocation are 

presented in [27]. A survey on game theory influenced by trans-

portation engineering, but with application of the concepts to 

telecommunications, was given by Altman in [28]. A recent 

book on game theory and its application in wireless communi-

cations is [29]. This book first addresses fundamental aspects in 

game theory and then goes on to discussing different examples 

and applications in wireless communications and networking. 

There is a fairly rich literature on applications of game theory, 

specifically to spectrum conflicts in wireless systems, even though 

this topic is relatively new. In [4], the spectrum-sharing problem 

is studied from a game-theoretic viewpoint in search of fair, 

effective, and self-enforcing protocols. The players should be 

compelled to use proportional fair and Pareto efficient operat-

ing points. The strategy enforcement idea is backed by the use 

of a repeated game where users can punish one another if devi-

ating from a desired strategy. Specifically, if a player defects 

from the proposed fair and globally efficient power strategy, 

the other players would also defect by punishing that player 

with a lower utility corresponding to the Nash equilibrium strat-

egy. Consequently, no player has any incentive to defect. In [30], 

the authors characterize the conditions under which the Nash 

equilibrium is inefficient for a two-player spectrum-sharing 

game, and they introduce a distributed coordination algorithm 

to improve the performance of the system through optimizing 

the frequency allocation between the users. 

A game-theoretic analysis of cognitive radio is presented in 

[31]. The authors formulate the spectrum-sharing problem 

between a primary user and several secondary users as a stat-

ic and dynamic (repeated) Cournot game. Here, the setup is 

described as an oligopoly market, and the objective is to 

maximize the payoffs of the secondary users. In [32], a 

repeated game is analyzed for a spectrum sharing situation 

in cognitive radio that can be described as a “prisoner’s 

dilemma” game. As a strategy to achieve higher outcomes, 

the iterated prisoner’s dilemma is used applying different 

decision rules. These rules decide the moves of a player in 

response to previous moves. Using these rules, a comparison 

of the different algorithms is performed. A further work is 

the power control game presented in [33]. There, an 

approach based on pricing is used to obtain efficient operat-

ing points. It is found that when a cost function is inserted 

into the defined utility function, the players reduce their 

powers simultaneously, achieving higher payoffs at the Nash 

equilibrium operating point. 

In terms of cooperative game theory, [6] and [34] study 

coalitions, coordination, and Nash bargaining theory for inter-

ference channels. Cooperative and noncooperative schemes 

are studied in [35] for power control optimization in interfer-

ence networks. In [36], cooperation is made to agree on fair 

allocation of the spectrum. 

More closely related to the topic discussed in this article, we 

note the following work. A minimax approach is used in [1] to 

show optimality of equal power allocation in single-user mul-

tiple antenna channels without channel state information at 

the transmitter. The work in [3] addresses transmission strate-

gies in noncooperative systems. In the first part of [3], Nash 

equilibria are explored for different optimization problems. 

The second part deals with algorithmic aspects to obtain the 

Nash equilibria.

A BRIEF SURVEY OF RELATED TUTORIAL ARTICLES

GAME THEORY IS A BRANCH OF 
MATHEMATICS AND PROVIDES A 

TOOLSET FOR ANALYZING RESOURCE 
CONFLICTS, OR MORE GENERALLY, 

OPTIMIZATION PROBLEMS 
WITH MULTIPLE CONFLICTING 

OBJECTIVE FUNCTIONS.
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 example, utility of money is more often argued to be logarith-

mic in the amount $x: utility 5 log($x). That is, one dollar has 

much more worth for someone who has nothing than for some-

one who already owns a fortune. 

When increasing someone else’s utility means decreasing 

your own, we say that we have a conflict. All resource alloca-

tion problems are conflicts in this sense. The set of all possi-

ble outcomes of a conflict is called the utility region. The 

northeast boundary of the utility region is called the Pareto 

boundary, because it consists of Pareto optimal operating 

points. These are points at which increasing the utility for 

one of the players necessarily must decrease the utility for 

the other. Figure 1 illustrates the utility region for a ficti-

tious two-player game. Figure 1 also shows the following 

special operating points:

The utilitarian point (U) is the point where the sum of  ■

the utilities 1R1 1 R2 2  is maximized. (In communications 

this point is also called the “sum-rate” point.) This is the 

point where a straight line with slope 21 touches the 

Pareto boundary. 

The egalitarian point (E) is the point where  ■ min 1R1, R2 2  is 

maximized. This point is the intersection between the Pareto 

boundary and a straight line with slope 11, which passes 

through the origin. 

The single-user (SU ■ 1, SU2) are the two points where R2 5 0 

and where R1 5 0, respectively. 

RESOURCE CONFLICTS ON THE 

GAUSSIAN INTERFERENCE CHANNEL

We will next introduce three running examples that will be used 

to illustrate how game theory can be used to analyze resource 

conflicts in communications, and specifically situations that are 

well modeled by an interference channel [16]. For simplicity of 

representation, we restrict ourselves to two-player games, 

K 5 2. The first example is the so-called single-input, single-

output (SISO) interference channel, and the corresponding 

resource allocation problem is formulated as a power game. The 

second example is the multiple-input, single-output (MISO) 

interference channel. The resource allocation problem is inter-

preted as a beamforming game. Finally, in the third example, we 

consider the multiple-input, multiple-output (MIMO) interfer-

ence channel. Here, the strategy space is the space of positive 

semidefinite matrices that satisfy a trace constraint. 

EXAMPLE 1: POWER (SISO) GAME 

In this running example we consider a “power game,” which is 

simple but provides some insights into what game theory can 

offer. Consider two transmitter-receiver pairs, TX1 S RX1 and 

TX2 S RX2, that operate in the same spectral band and create 

mutual interference to each other. Suppose that the first system 

transmits the signal x1 3n 4 using the power P1, and so does the 

second system transmits x2 3n 4 with power P2. The signals at the 

two receivers can then be modeled as 

 
y1 3n 45 h11x1 3n 41 h21x2 3n 41 e1 3n 4
y2 3n 45 h22x2 3n 41 h12x1 3n 41 e2 3n 4, (1)

 

where the channels between the transmitters and the receivers 

of both systems are defined in Figure 2 and denoted by 

hij, i, j [ 51, 26. Also, e1 3n 4  and e2 3n 4  are samples of a zero-

mean circularly symmetric complex Gaussian noise process 

with variance s2. The discrete-time signals in (1) are obtained 

either by filtering and sampling, or by projection of con-

tinuous-time waveforms onto an appropriate set of basis func-

tions. The assumption made on the powers implies that 

E 3 |xi 3n 4|2 45 Pi.

The systems compete with each other for resources, because 

if one of the transmitters increases its transmit power in an 

attempt to improve performance (SINR at its receiver), then it 

will simultaneously increase the amount of interference gener-

ated to the other system. The “strategy” space for the two sys-

tems consists of how much power to spend (P1, P2) and during 

what fraction of the available time, to transmit. Clearly, the [FIG2] Interference channel encountered in the power game.
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[FIG1] Example of a utility region (inside the solid green curve) 
and some interesting points: the egalitarian (E) point, utilitarian 
(U) point, single-user (SUi) points, and the Nash bargaining 
(NB) solution.
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problem is only well formulated if we impose constraints on the 

power that can be spent, say 

 P1 # P1 for system 1, and P2 # P2 for system 2. (2)

Throughout this example we will assume that both systems oper-

ate under the same constraint, i.e., that P1 5 P2 5 P for some P. 

The model (1) is recognized as an interference channel 

(IFC) in the literature. The IFC is a complex topic and the 

capacity of this channel is unknown [16]. However, it is known 

that if the interference at any of the receivers is strong enough 

to be decoded by treating the desired signal as noise when 

doing this decoding, then the following scheme is optimal: 

The receiver first decodes the interference, and then subtracts 

the decoded interference from the received signal to obtain 

interference-free data. Conversely, if the interference at any 

receiver is very weak, then it is optimal to just treat it as addi-

tional additive noise. Throughout this article, we will assume 

that the receivers treat the interference as noise. The main 

reason for this is that a decode-and-subtract-interference 

strategy would require all systems to know the coding and 

modulation formats of all other systems. This is a questionable 

assumption. In addition, interference subtraction brings diffi-

cult synchronization problems. 

Throughout, we will also assume that the transmitters use 

capacity-achieving coding, so that Shannon’s log 11 1 SNR 2  for-

mula is applicable. While this formula only provides an (achiev-

able) upper bound, with some modification it provides a 

reasonable model for practical systems. More precisely, the 

achievable rate, at some given error probability, of most adaptive 

coding and modulation schemes behaves as log 11 1 gSNR 2  for 

some penalty factor g that measures how far from the Shannon 

limit the system is operating [17]. (For simplicity of the exposi-

tion we will omit g in what follows). The log 11 1 gSNR 2  scaling 

law holds also to some extent for fast (ergodic) fading channels. 

To understand the possible operating points for the system 

we first assume that both systems transmit continuously with 

powers P1, P2, and therefore produce interference to each other 

continuously as well, see Figure 3(a). In this case, we can write 

the rates at the receivers as 

 

R1 5 log2a1 1
P1|h11|

2

P2|h21|
2 1 s2

b
R2 5 log2a1 1

P2|h22|
2

P1|h12|
2 1 s2

b.

 

(3)

 

The rate (utility) region is 

 R5 d
P1#P, P2#P

1R1, R2 2 .
Clearly, to achieve points on the boundary at least one of the 

transmitters must use maximum power. 

To achieve points outside the region R one can use a 

 technique called time-sharing. This amounts to splitting the 

available time into two subslots of relative lengths t and 1 2 t, 

where 0 # t # 1 and use two different pairs of transmit pow-

ers 1P1, P2 2  and 1P r1, P r2 2  that yield two different rate pairs 
1R1, R2 2  and 1R r1, R r2 2 , during the two subslots [see Figure 

3(b)]. Equivalently, the systems can split the available band-

width, or code space (in orthogonal CDMA) into two parts 

with a relative number of degrees of freedom equal to t 

and 1 2 t. For a given t, the achievable rate pair becomes 
1tR1 1 11 2 t 2R r1, tR2 1 11 2 t 2R r2 2  were R1 and R2 are defined 

in (3) and where 

 

R r1 5 log2a1 1
P r1|h11|

2

P r2|h21|
2 1 s2

b
R r2 5 log2a1 1

P r2|h22|
2

P r1|h12|
2 1 s2

b .

 

(4)

 

The power constraint in (2) can be interpreted either as a peak 

constraint, or as a limit on the average transmit power (in case 

the transmission is intermittent). Depending on how the power 

constraint is interpreted, two rate regions will emerge with time-

sharing. We will assume that the peak power is constrained. The 

resulting rate region with time-sharing is 

R5
d

  
0#P1, Pr1#P, 0#P2, P r2#P

t :0#t#1

1tR1 1 112 t 2R r1, tR2 1 112t 2R r2 2 .
 

We recognize R as the convex hull of R. Therefore, time-shar-

ing with a peak power constraint corresponds to convexification 

of the rate region R. 

A special case of time-sharing is when the strategies are cho-

sen such that the systems do not create any interference to each 

other. This is illustrated in Figure 3(c). In practice, this can be 

simply accomplished by separating the systems in time or 

 frequency. In accordance with most literature, we call this 

“orthogonal transmission.” Then we get the rate region (assum-

ing again a peak power constraint) 

 
Rorth 5 d

0#P1#P,   0#P2#P 

t:0#t#1

        

1tR1, 11 2 t 2R2 2 .
 

Generally, Rorth # R. 

Figure 4 illustrates the regions R, R and Rorth for two 

randomly chosen channel realizations: one corresponding to 

a situation with weak interference between the systems 

[Figure 4(a)], and the other corresponding to strong interfer-

ence [Figure 4(b)]. For the case of strong interference, R is 

nonconvex so time-sharing enlarges the rate region. In this 

P1

1 T T

(a) (b) (c)

1 – T1 – T

P1

P2 P2

P1 P′1

P2 P′2

[FIG3] Different time-sharing schemes are shown in (a)–(c).
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case, there is no loss induced 

by forcing the time-sharing to 

be orthogonal. For the exam-

ple with weak interference, R 

is convex so time- sharing can-

not make it larger. However, 

with weak interference, orthogonal time-sharing shrinks the 

rate region; in fact, here Rorth is much smaller than R. The 

channel realizations in this example were chosen such that 

both |h11|
2 and |h22|

2 have the same values for the weak and 

the strong interference case. This is the reason for why the 

regions Rorth coincide for the weak and the strong interfer-

ence case. 

The basic problem with the power game is that if the sys-

tems act unilaterally (not cooperating) then no system has 

any  incentive to do time-shar-

ing (stop transmitting for a 

period) nor to transmit with 

less than the maximal possi-

ble power P. In the next sec-

tion, we make this precise and 

see what tools game theory offers to understand this prob-

lem. We end by noting that the power game is formally 

defined as 

 GSISO 5 1 51, 26, 30, P 42 3 30, 1 4, 5R1, R26 2 .
 ■

EXAMPLE 2: BEAMFORMING (MISO) GAME 

We will consider two multiple-antenna setups, one in this exam-

ple and one in Example 3. In this example, we assume that the 

transmitters TX1 and TX2 have n transmit antennas each, that 

can be used with full phase coherency. Receivers RX1 and RX2, 

however, have only a single receive antenna each. Hence our 

problem setup constitutes a MISO IFC [18]. 

This leads to the following basic model for the matched- 

filtered, symbol-sampled complex baseband data received at RX1 

and RX2 

 y1 5 h11
T w1s1 1 h21

T w2s2 1 e1 

 y2 5 h22
T w2s2 1 h12

T w1s1 1 e2,

where s1 and s2 are transmitted symbols, hij is the (complex- 

valued) n 3 1 channel-vector between TXi and RXj, and wi is 

the beamforming vector used by TXi. The variables e1, e2 are 

noise terms that we model as i.i.d. complex Gaussian with zero 

mean and variance s2. We assume that each base station can 

use the transmit power P, but that power cannot be traded 

between the base stations. Without loss of generality, we shall 

take P 5 1. This gives the power constraint ||wi||
2 # 1,  i 5 1, 2. 

Various schemes that we will discuss require that the transmit-

ters have different forms of channel state information (CSI). 

However, at no point we will require phase coherency between 

TX1 and TX2. 

The following beamformers are well known in literature, and 

their operational meaning in a game-theoretic framework is 

studied in [7]. The maximum-ratio transmission (MRT) beam-

forming vectors maximize the power of the received desired 

 signal component and are given by 

 w1
MRT 5

h11
*

||h11||
  and  w2

MRT 5
h22

*

||h22||
.

The zero-forcing (ZF) beamformers assure that the transmitter 

generates no interference to the other system, and they are 

given by 

 w1
ZF 5 a Ph12

' h11

7Ph12

' h11 7 b
*

 and  w2
ZF 5 a Ph21

' h22

7Ph21

' h22 7 b
*

 (5) 

[FIG4] Examples (a) and (b) of rate region boundaries for two 
randomly chosen channel realizations. Results are shown for all 
the three sharing schemes defined in Figure 3. Also, the two 
Nash equilibria are pointed out (to be explained later).
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for TX1 and TX2, respectively, 

where PX
'
! I 2 X 1XHX 221XH 

denotes orthogonal projection 

onto the orthogonal comple-

ment of the column space of X. 

In [8], we showed that all efficient, i.e., Pareto optimal, 

beamforming vectors can be parameterized by 

 w1 1l1 2 5
l1w1

MRT 1 11 2 l1 2w1
ZF

7l1w1
MRT 1 11 2 l1 2w1

ZF 7  and

 w2 1l2 2 5
l2w2

MRT 1 11 2 l2 2w2
ZF

||l2w2
MRT 1 11 2 l2 2w2

ZF||
 (6)

for some 0 # l1, l2 # 1. The parameterization in (6) says that 

each transmitter needs to know only its MRT and ZF beamform-

ers to achieve the points on the Pareto boundary. To compute 

these beamformers, knowledge of the transmitters’ own chan-

nels to all other users is sufficient. The parameter lk, 

0 # lk # 1 can be interpreted as the “selfishness” of user k. 

For lk 5 1 the transmitter falls back to the selfish MRT solution 

(which turns out to be a so-called Nash equilibrium). For lk 5 0 

the transmitter acts in a completely altruistic way and uses the 

ZF beamforming vectors, which spread no interference to the 

other system. 

The main problem is to find beamforming vectors that yield 

a rational, efficient, and fair performance tuple 1R1, R2 2 . 
Noncooperative as well as cooperative game theory provide a 

systematic way of approaching this problem. Let us define the 

game as a tuple 

 GMISO 5 1 51, 26, 30, 1 42, 5R1, R26 2  
with players one and two strategy space 0 # l1, l2 # 1 and 

payoff functions 

 R1 1l1, l2 2 5 loga1 1
|w1

T 1l1 2h11|
2

s2 1 |w2
T 1l2 2h21|

2
b

 R2 1l1, l2 2 5 loga1 1
|w2

T 1l2 2h22|
2

s2 1 |w1
T 1l1 2h12|

2
b. 

EXAMPLE 3: MIMO GAME 

We consider the setup of Figure 2, but where both the transmit-

ters and the receivers are equipped with multiple antennas. The 

received signal at receiver i can be described via the following 

baseband signal model: 

 yi 5 Hiixi 1 a
j2 i

Hjixj 1 ei,   for  1 # i 2 j # 2,

where xi is the vector transmitted by TXi, Hji is the flat-fading 

MIMO channel matrix between TXj and RXi, and yi is the 

received vector at RXi. Also, ei is a vector of received noise at 

RXi, and we model its elements as i.i.d. circularly symmetric 

complex Gaussian with zero 

mean and variance s2. The 

transmit covariance matrix 

associated with TXi is given by 

Qi 5 E 3xi xi
H 4 and the individual 

power constraint is Pi; hence, E 3 7 xi 7 2 45 tr 1Qi 2 # Pi.

We continue with the assumption of low-complexity ter-

minals and do not allow for interference cancellation at the 

receivers. Hence, the receivers simply treat the multiuser 

interference as additive spatially colored noise. We assume 

that the receivers have perfect CSI. The maximum achievable 

information rate on link i is a function of the transmit cova-

riance matrices Q1, Q2 

 R1 1Q1, Q2 2 5 log det 1I 1 H11
H C1

21 1Q2 2H11Q1 2 ,
where the noise-plus-interference covariance matrix is 

 C1 1Q2 2 ! s2I 1 H21Q2H21
H .

The achievable rate R2 for the link TX2 S RX2 has a similar 

form. The achievable rate region is a function of Q1, Q2 and is 

given by 

 R5 d
Qi[Di

5R1 1Q1, Q2 2 , R2 1Q1, Q2 2 6, 
where the constraint set Di contains all feasible strategies for 

user i 

 Di ! 5Q f 0 : tr 1Q 2 # Pi6. 
The resource allocation problem amounts to finding reasonable 

operating points in R. In the next sections, we will approach 

this problem using noncooperative and cooperative game theo-

retic tools. The game is formally defined by 

 GMIMO 5 1 51, 26, 5D1, D26, 5R1, R26 2 . 

NONCOOPERATIVE GAME THEORY

Resource conflicts in wireless systems can be understood using 

game theory. Game theory is a branch of mathematics. The 

 theory splits into noncooperative and cooperative game theory. 

In noncooperative games, the players strictly compete and can-

not strike deals. In cooperative games, the players can negotiate 

with one another and form joint strategies. This section will 

explain static noncooperative game theory, and the next section 

deals with cooperative theory. 

If two players do not cooperate, then the only reasonable 

operating point will be at a so-called Nash equilibrium. A (Nash) 

equilibrium is an operating point where no player can improve 

her situation by changing strategy unilaterally, assuming every-

one else continues their current strategy. 

EXAMPLE 1 CONTINUED 

In the power game, the strategy space consists of the powers 

P1, P2 and the time-sharing factor t. Considering first only the 

THE PRICE OF ANARCHY MEASURES 
THE COST THAT A SYSTEM PAYS FOR 
OPERATING WITHOUT COOPERATION. 
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parameters P1, P2, the Nash equilibrium is the set of P1, P2 

for which 

 R1
NE 5 log2a1 1

P1
NE|h11|

2

P2
NE|h21|

2 1 s2
b $ log2a1 1

P1|h11|
2

P2
NE|h21|

2 1 s2
b

for all P1 with P1 # P and 

 R2
NE 5 log2a1 1

P2
NE|h22|

2

P1
NE|h12|

2 1 s2
b $ log2a1 1

P2|h22|
2

P1
NE|h12|

2 1 s2
b

for all P2 with P2 # P. In practice, we must also consider the 

time-sharing factor t. In the power game, it turns out that there 

is a trivial Nash equilibrium that consists of transmitting with 

maximum power (P1 5 P2 5 P) and not doing time-sharing [4]. 

To see that one should transmit continuously at the equilibri-

um, one can waterfill the available power over the noise and 

interference. If user two transmits with constant power over all 

time slots, then the waterfilling power allocation will give a con-

stant power allocation for user one too. The Nash equilibria are 

pointed out in Figure 4.  ■

Very often, the Nash equilibrium is a bad outcome in the 

sense that the selfishness of the players does not pay off. For 

example, in the power game with strong interference, [Figure 

4(b)], any point on the single-user time-sharing line beats any 

point inside the region (especially the Nash equilibrium). 

However for weak interference, the Nash equilibrium is a good 

outcome in this example. Indeed, for the weak-interference case 

in Figure 4(a), the Nash equilibrium is sum-rate optimal. 

EXAMPLE 2 (BEAMFORMING GAME) CONTINUED 

For the MISO IFC game GMISO, there is a unique and pure 

Nash equilibrium [7]. At this equilibrium point, both systems 

use their maximum-ratio transmission beamforming vectors  

w1
NE 5 wMRT

1 5 h*
11/ 7h11 7  and w2

NE 5 wMRT
2 5 h*

22/ 7h22 7 . The self-

ish strategies l1 5 l2 5 1 achieve the equilibrium. Unfor-

tunately, the corresponding rate tuple is not Pareto optimal 

in general. 

EXAMPLE 3 (MIMO GAME) CONTINUED 

The Nash equilibrium for the MIMO IFC game GMIMO always 

admits a NE, for any set of channel matrices and transmit 

powers. In contrast to the SISO and MISO IFCs, the NE for the 

MIMO IFC is not necessarily unique. It is shown in [5] that the 

NE is unique if the following condition is satisfied 

 r 1S 2 , 1  with 3S 4ji 5 er 1Hji
HHii

2HHii
21Hji 2 , if  j 2 i

0, otherwise,
 (7) 

where r 1A 2  denotes the largest eigenvalue of A. If the NE 

exists, it can be approached by the so-called synchronous or 

asynchronous iterative waterfilling (IWF). Each user performs 

single-user waterfilling with respect to the effective channel and 

by treating signals from the other users as noise. More precisely, 

the first user computes the transmit covariance matrix 

 Q1
opt 1Q2 2 5 U1 1m1I 2 D1

21 21U1
H, (8) 

where U1 and D1 are obtained from the eigenvalue decomposi-

tion of the effective channel H11
H C1

21 1Q2 2H11 5 U1D1U1
H  and 

m1  i s  chosen to  sat is fy  tr 3 1m1I 2 D1
21 21 45 P1  wi th 

1x 21!max 10, x 2 . The second user computes an expression 

similar to (8). The computations of Q1 and Q2 are then iterated. 

One can show that the IWF algorithm converges if (7) holds. 

In Figure 5, we illustrate the convergence of the IWF for a two-

user 2 3 2 MIMO IFC operating at an SNR of 15 dB. The channel 

realization was chosen at random, but such that (7) is fulfilled. 

The horizontal axis shows the iteration number. On the vertical 

axis, the eigenvalues of the two transmit covariance matrices Q1 

and Q2 are shown (denoted as 1l11, l12 2  for the first user and 
1l21, l22 2  for the second user). It holds that l,1 1 l,2 5 1. 

Furthermore, the rates R1 and R2 of the two users are shown. It 

can be observed that the algorithm converges very fast. 

PRICE OF ANARCHY

One characterization of the efficiency of the Nash equilibrium is 

the so-called price of anarchy (PoA) [19], [20]. The PoA mea-

sures the cost that a system pays for operating without coopera-

tion. It is defined as the ratio of the profit obtained at the 

optimal operating point, over the profit when functioning at 

the worst-case Nash equilibrium. The question arises here to 

the distinction of optimal operating points and what would 

be the “social good.” For this purpose, several global objective 

functions have been proposed, two of which are the utilitarian 

and the egalitarian solutions (cf. the discussion of Figure 1). The 

utilitarian solution could be the one of most interest to network 

operators, while the egalitarian solution may be perceived as 

“fairer.” Here, we use the utilitarian social welfare function to 

express the PoA 

 PoA 5

max
||w1||

25||w2||
251

R1 1w1, w2 2 1 R2 1w1, w2 2
minNE 1R1

NE 1 R2
NE 2 . (9)

The PoA is always greater than or equal to one. If PoA 5 1, the 

NE achieves the utilitarian optimal solution. The PoA can be 

1 2 3 4 5 6
0

1

2

3

4

5

6

7

8

9

Iteration Number

E
ig

e
n

m
o

d
e

 P
o
w

e
r

A
llo

c
a

ti
o

n
/R

a
te

 R
1
, 
R

2

λ11
λ12
λ21
λ22
R1
R2

[FIG5] Convergence of IWF for a 2 3 2 MIMO IFC with two users. 
The SNR was 15 dB and the channels were randomly chosen.
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interpreted as follows: If e.g., 

PoA 5 2, the optimal solution 

is twice as good as the selfish 

NE solution. 

In Figure 6, we show the 

PoA for the MISO IFC game for different SNRs. Three trans-

mit antennas and four representative channel realizations 

are compared. The channels h11 and h22 are chosen randomly. 

The channels h12 and h21, corresponding to the cross-talk, 

are chosen in four di f ferent ways:  i )  or thogona l 
1h11

H h12 5 h22
H h21 5 0 2 ; ii) parallel (h11 5 g1h12 and h22 5 g2 

h21 

for real-valued g1, g2); iii) regular (h11, h22, h12, h21 are all 

chosen randomly and independently); and iv) conjugate 

(h11 5 h12
*  and h22 5 h21

* ). 

For the extreme case of orthogonal channels, the NE solu-

tion is always Pareto optimal. For a regular (i.e., fixed but 

random) channel realization, the NE solution is close to the 

Pareto boundary for low SNR whereas for high SNR, the PoA 

increases without bound. For the case when the channels are 

parallel, the PoA is bounded by a constant. Finally, for the 

case when the channels are conjugate, the PoA increases 

without bound but the increase is slower than in the regular 

case. Note that ZF is always sum-rate optimal at high SNR for 

the MISO IFC [9]. 

COOPERATIVE GAME THEORY

In cooperative games, players (here: systems) are allowed to 

bargain and strike deals with one another. The theory for 

 cooperative games splits into the cases of transferable utility 

and nontransferable utility. In the case of transferable utili-

ty, the players can pay one another side payments; with 

nontransferable utility, this is not allowed. We deal only 

with nontransferable utility games here. A fundamental 

point we must understand is that a player can be coopera-

tive and rational at the same time. That is, being coopera-

tive does not mean the same thing as being altruistic. The 

point is that even if players are eventually interested in 

maximizing their own outcome, they may be willing to 

accept a bargaining solution that is found to be good 

enough for both. One way of modeling this behavior mathe-

matically is by using Nobel laureate (economics) John Nash 

bargaining theory [21]. 

EXAMPLE 4: 

THE $100 QUESTION 

This classic example (from [15]) is meant to illustrate the 

basic issues involved in modeling bargaining situations. Two 

men, one rich and one poor, meet a genie on the street. The 

genie offers them $100 to share, provided that they can 

agree on how to split the money. What will be the outcome 

of this event? The question, while somewhat imaginary, cap-

tures the same fundamental behavioral issues as the games 

in Examples 1–3 do. Thus, if we can understand how to deal 

with this question, we will also have gained some insight 

into the power and beamforming games.  ■ 

The Nash bargaining theo-

ry answers the $100 question 

by formulating a set of axioms 

and proving the existence of a 

unique “bargaining solution.” 

The Nash bargaining theory predicts to some extent what is 

likely to happen in practice if all parties act strictly rationally. 

An important point is that Nash bargaining has nothing to do 

with the Nash equilibrium. (The latter applies only to nonco-

operative games and there bargaining makes no sense.) The 

Nash bargaining outcome is not necessarily “fair” (as defined 

by most), as the Nash solution to the $100 question below 

will show. 

The main result by Nash is the following theorem. Let S be 

a utility region. Suppose S is compact and convex and let 

u1
*, u2

* be a so-called threat point. This threat point is the out-

come that is achieved if the players cannot agree on any bar-

gaining outcome. It may be taken, for example, to be the Nash 

equilibrium of the game, i.e., the likely outcome without any 

cooperation. Obviously, any meaningful threat point u1
*, u2

* 

must lie inside S. Next, consider a function that maps the set 

of possible utility regions and the set of possible threat points 

onto a bargaining solution 1u, v 2 : 
 1u, v 2 5 f 1S, u*, v* 2 [ S. 

Nash’ bargaining theorem states that the function f 1 # 2 , and 

therefore the bargaining outcome, is uniquely defined under 

relatively general circumstances. Moreover, the bargaining 

outcome can be easily computed. 

More precisely, the conditions under which f 1 # 2  exists are 

given by a set of axioms (to be presented shortly). Under these 

axioms, Nash showed that f 1 # 2  is unique and given by 

 1u, v 2 5 max1u,v2PS
 1u 2 u* 2 1v 2 v* 2 . (10) 

[FIG6] Example of the PoA for a two-user three-antenna 
MISO IFC as a function of the SNR, for four different 
channel realizations.
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The axioms are the following: 

 1) Feasibility: 1u, v 2 $ 1u*, v* 2 . 
This condition is nearly trivi-

al and just says that the out-

come of a bargain cannot be 

worse for any of the players 

than the outcome if no bargaining occurs (that is, the 

treat point). 

 2)  Pareto optimal: 1u, v 2 [ S and 1u, v 2 $ 1u, v 2 1 
1u, v 2 5 1u, v 2 . This condition is also nearly trivial and states 

that the outcome (u, v) of a bargaining must lie on the 

Pareto boundary of the utility region. Clearly, if this were 

not the case then there would be another outcome that is 

better for both players, and no reasonable bargaining 

scheme would choose (u, v). 

 3) Independence of irrelevant alternatives (IIA): If 
1u, v 2 [ T ( S  and 1u, v 2 5 f 1S, u*, v* 2 ,  then 1u, v 25 

f 1T, u*, v* 2 . This condition says that if bargaining in the utility 

region S results in a solution 1u, v 2  that lies in a subset of T 

of S, then a hypothetical bargaining in the region T would 

have resulted in the same outcome. 

  This axiom appears highly natural: The outcome of a 

bargaining should not be affected by the presence of alter-

native possible solutions that both players consider irrele-

vant. However, the axiom is controversial, because one can 

easily find examples where expanding the utility region will 

increase the bargaining outcome for one of the players but 

decrease it for the other. More precisely, suppose T ( S 

and let 1u1
S, u2

S 2 5 f 1S, u*, v* 2  and 1u1
T, u2

T 2 5 f 1T, u*, v* 2 . 
Then we can construct cases where u1

S $ u1
T but u2

S , u2
T. 

Figure 1 exemplifies this point. The solid green curve is the 

Pareto boundary of the original region S. The dashed green 

curve is the Pareto boundary of the expanded region T. 

The Nash bargaining solutions occur when the Pareto 

boundaries intersect the corresponding hyperbola defined 

by (10). Clearly, expanding the region improves one of the 

utilities but not both. This illustrates that any requirement 

that T ( S 1 u1
S $ u1

T, u2
S $ u2

T would be incompatible 

with the IIA axiom. 

 4) Symmetry: If S is symmetric around u 5 v then 

u* 5 v*
1 u 5 v. This just means that if the utility region is 

symmetric around a line with slope 45° then the bargaining 

outcome will lie on the line of symmetry. 

 5) Invariance to linear transformation: Let a1, a2, b1, b2 [ R, 

a1 . 0, a2 . 0 be arbitrary. Then this axiom says that if 
1a1u

* 1 b1, a2v
* 1 b2 2 [ S then f 1S, a1u

* 1 b1, a2v
* 1 b2 25 

3a1, a2 4  f  1S, u*, v* 2 1 3b1, b2 4.
EXAMPLE 4 ($100 QUESTION) CONTINUED 

Now let us solve the $100 question by using the Nash bar-

gaining theorem. To formulate the problem more precisely, 

let us assume that the utility of money is logarithmic in the 

amount owned. Also, we assume that the rich man (R) is 

near infinitely rich (xr 5 1010) but that the poor man (P) 

owns only xp 5 10 in total. 

Let x be the amount R 

gets in the bargain. After bar-

gaining the utility for R is 

 ur
bargain 5 log 11010 1 x 2  

and the utility for P is 

 up
bargain 5 log 110 1 1100 2 x 2 2 .

We take the threat point to be 1ur
*, up

* 2 5 1 log 1xr 2 , log 1xp 2 2  
since if no bargain occurs, both R and P will leave with exactly 

the initial amount they owned. We now look for 

 max
ur 

,up 
,xP30,1004 1ur2 ur

* 2 1up2up
* 2 .

The solution can be easily found graphically. It is the point 

where the Pareto boundary has a unique intersection with a 

hyperbola parametrized by 1ur 2 ur
* 2 1up 2 up

* 2 5 constant (cf. 

the Nash bargaining points in Figure 1). The Nash bargaining 

solution of the $100-question with xr 5 1010 and xp 5 10 is 

x < 66. Evidently, the bargaining outcome favors the rich 

man, who gets the most part of the money. For comparison, if 

instead P had initially owned only xp 5 0.1 5 10 cents (R has 

still xr 5 1010), then the Nash bargaining solution would be 

x < 84 and the outcome would be even more unbalanced. The 

reason is that R has much more bargaining power. In fact, he 

can dictate a “my way or no way” outcome by threatening to 

walk away without a deal if he does not get a larger share of 

the money. Especially he knows that not being able to reach a 

deal will hurt P more than R so that P will be more willing to 

accept a bad deal than no deal at all. In the special cases when 

xp S 0 the bargaining solution x S 100 and when xp S xr 

the solution approaches x S 50.

Is the outcome of Example 4 fair? This depends on how 

one defines fairness, which is by necessity a highly subjective 

notion. Bargaining theory does not aspire to model fairness in 

the sense that most humans interpret the term. Rather, it 

should be seen as a mathematical model for the fact that a 

stronger part in a (resource) conflict always has a larger 

power of negotiation and therefore will achieve a better out-

come [22]. 

The cooperative game theory framework outlined here, and 

the Nash bargaining theory in particular, can be used to ana-

lyze both the SISO (power), MISO and MIMO games in 

Examples 1–3. In essence, the approach consists of computing 

the Pareto boundary with time-sharing (to ensure convexity) 

and then solve (10) to find the Nash bargaining point. This 

solution must be found numerically, but the computation can 

be aided by the efficient parameterization of the Pareto bound-

ary presented in [8]. A detailed treatment of the results here 

would lead too far and we instead refer the reader to the rele-

vant literature [6] and [7]. 

A different cooperative approach for MIMO interference net-

works is studied in [23], where axiomatic bargaining theory is 

used to find the Kalai-Smorodinsky operating point. This 

approach can also be applied to nonconvex utility regions. 

A FUNDAMENTAL POINT WE MUST 
UNDERSTAND IS THAT A PLAYER 

CAN BE COOPERATIVE AND RATIONAL 
AT THE SAME TIME. 
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CONCLUDING REMARKS

In this article, we described some basic concepts from noncoop-

erative and cooperative game theory and illustrated them by 

three examples using the interference channel model,  namely, 

the power allocation game for SISO IFC, the beamforming game 

for MISO IFC, and the transmit covariance game for MIMO IFC. 

In noncooperative game theory, we restricted ourselves to dis-

cuss the NE and PoA and their interpretations in the context of 

our application. Extensions to other noncooperative approaches 

include Stackelberg equilibria and the corresponding question 

“Who will go first?” We also correlated equilibria where a certain 

type of common randomness can be exploited to increase the 

utility region. We leave the large area of coalitional game theory 

[24] open. 
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