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Abstract The paper concerns robustness with respect to

uncertain loading in topology optimization problems. Using

a game theoretic framework we formulate problems, or

games, defining generalized Nash equilibria. In each game

a set of topology design variables aim to find an optimal

topology, while a set of load variables aim to find the worst

possible load. Several numerical examples with uncertain

loading are solved in 2D and 3D. The games are formu-

lated using global stress, mass and compliance as objective

functions or constraints.

Keywords Topology optimization · Robust optimization ·

Game theory · Nash equilibrium · Stress constraints

1 Introduction

We consider structural topology optimization (TO) prob-

lems where there is uncertainty regarding the loads that the

optimized design will be subjected to. Load uncertainty is

typically the case for parts in a fighter aircraft, which, due
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to advanced maneuvers, may have high accelerations in any

direction. It is well known that an optimized structure may

have very bad performance if subjected to a load which it

was not optimized for; therefore, even if we would use a

very large number of load cases in the optimization, a small

perturbation of one of those loads may be catastrophic for

the structural integrity.

In this work, rather than using a limited number of

fixed load cases, the load may be any load in an infi-

nite uncertainty set defined by known maximum loads and

assuming an elliptical variation in space. This type of prob-

lem falls into the field of robust optimization (RO) (Ben-

Tal et al. 2009), where one often distinguishes between

stochastic and deterministic approaches. In the case of TO

the former includes reliability-based design optimization

(RBDO), where so-called reliability indices (Valdebenito

and Schuëller 2010), quantifying the probability of struc-

tural failure, are used as objective or constraints, and robust

design optimization (RDO) methods, where one minimizes

expected values and standard deviations of, e.g., compliance

given loads from some probability distribution (Evgrafov

et al. 2003; Dunning and Kim 2013; Jansen et al. 2015).

In deterministic, or worst-case, RO one assumes noth-

ing about the probability distribution of, in this case, the

load-variation, except upper and lower bounds on e.g. mag-

nitudes, and this is what is being done in the present

paper.

Deterministic, robust TO with uncertain loading has

previously been studied for minimum compliance formula-

tions. These problems may, assuming small deformations

and using certain load parametrizations, be cast as gener-

alized eigenvalue problems (Brittain et al. 2012; Cherkaev

and Cherkaev 2008; Takezawa et al. 2011) or as semi-

definite programming problems (Holmberg et al. 2015;

Thore et al. 2015). In this paper however we propose a much
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more general game theoretic framework for TO under load-

uncertainty including a wide range of different objective

functions and constraints.

Very briefly, game theory defines a problem class where

two (or more) players, given certain strategies (or vari-

ables), cooperate or are in conflict while trying to opti-

mize their profit (Aubin 1979). Game theory approaches

for structural optimization have been used in a number of

papers, but only two papers (known by the authors) involve

TO: Habbal (2005) formulated a TO framework to model

growth of cancerous tumors and Habbal et al. (2004) opti-

mized a thermoelastic system where a heat source as well as

an external load were applied to the design space; one player

was aiming to minimize the compliance of the thermoelastic

system by varying the topology, the other player was aim-

ing to minimize the temperature in the structure by adding

structural elements, such as fins, in order to maximize the

heat flow to the surroundings.

References to other fields of structural optimization

where game theory has been applied include Kobelev (1993)

where size optimization was performed on truss structures

with varying loads. Using the same convex pay-off func-

tional for both players, it was shown that the solution to

the game was obtained as an eigenvalue problem. Périaux

et al. (2001) used genetic algorithms in a shape optimization

problem to find a Nash equilibrium for players optimizing

the shape and flow in a nozzle. Banichuk (1973) calcu-

lated analytical solutions to optimization problems of elastic

beams subjected to loads of various forms from a predefined

set. He noted that for some classes of problems there exists

a unique worst-case load, for which it is possible to find an

optimal design that is optimal for the entire set, and also

for that unique load. But for some problems the worst-case

loading is not unique; consequently, an optimized design

will not be optimal for any of the loads in the set if these

are applied as unique load cases. This observation is related

to the multiple eigenvalue problem discussed in Holmberg

et al. (2015). Uncertainty, not only concerning loading, but

also elastic moduli and material defects such as cracks was

considered by Banichuk and Neittaanmäki (2007).

For the special case when both players use the same

objective function g, known as a zero-sum game, Aubin

and Ekeland (1984, Proposition 1, Chapter 6) show that a

non-cooperative equilibrium is also a solution to a min-max

problem with g as objective (cf. Appendix A). Choosing the

compliance as the objective function and a suitable loading

parametrization one can retrieve the generalized eigenvalue

problems (Brittain et al. 2012; Cherkaev and Cherkaev

2008; Takezawa et al. 2011; Kobelev 1993) or semi-definite

programming problems (Holmberg et al. 2015; Thore et al.

2015) mentioned above. When applicable these formula-

tions may be more efficient, but compared to the proposed

game theory framework they are very limited in that they

only apply to zero-sum games with certain choices of

functions and parametrizations.

In order to find designs that are robust, and optimized,

with respect to an uncertain load we here seek so-called

generalized Nash equilibria (GNE),1 which defines situa-

tions where none of the players have an incentive to change

strategy, unless the other player does so. In our games we

parametrize the load vector using one set of variables that

control the load within the uncertainty set. We also have

the standard TO variables that determine which elements in

the finite element-discretized design domain that represent

material and which represent holes. Both sets of variables

influence the state equation and are chosen such that they

are in conflict with each other; in game theory vocabulary

we say that we have a two-player non-cooperative game

(Aubin 1979).

The variables and the linear elastic model as well as the

game theoretic formulation in generic form is introduced in

Section 2. Optimality conditions are then given in Section 3.

The algorithm that we use is stated in Section 4, and the

design and load parametrization is described in Section 5.

Three specific functions (to be used as objective or con-

straint functions) are given in Section 6. In Section 7 we

discuss the choice of additional load cases in our games to

obtain convergence by the proposed algorithm. Numerical

solutions to three concrete instances, in both 2D and 3D, of

the generic game are presented in Section 8.

2 Structural model in the game theoretic

framework

We formulate games with two sets of design variables and

two objective functions. The first set of variables is the

topology variables x and the second set is the load variables

θ . The topology variables x are chosen to find the best pos-

sible structure by minimizing the function g1(x, θ), which

in this paper is stiffness, mass or stress. The load variables θ

are chosen to find the worst possible loading by maximizing

the function g2(x, θ), for which there are also several pos-

sible choices; we use stiffness and stress in this paper. The

topology variables are restricted to

X (θ) =
{

x ∈ R
m | ε ≤ xi ≤ 1, i = 1, . . . , m,

ce(x, θ) ≤ ce, e = 1, . . . , k} ,

where ce defines upper bounds on values of the k con-

straint functions ce. The m design variables are subject

to box constraints where 1 implies that the corresponding

1The term generalized is appropriate here since unlike in the orig-

inal Nash game formulation (Nash 1951), the strategy set of each

player can depend on the strategies of the other players (Facchinei and

Kanzow (2010)).
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element contains material and the small number ε > 0 that

it is empty. The load variables are restricted to

� =
{

θ ∈ R
s−1 | θ ≤ θi ≤ θ, i = 1, . . . , s − 1

}

,

in which s is the number of spatial dimensions. The box

constraints in � can be used to restrict the load variation,

but in this paper they are chosen sufficiently loose so that

they do not become active and are included only to improve

numerical performance.

Both sets of variables influence the state equation

K(x)U = F (θ), (1)

where K(x) ∈ R
n×n is the global stiffness matrix, and U =

(

u1, . . . , uf

)

∈ R
n×f contains the nodal displacements

obtained for the f load cases in

F (θ) =
(

f 1(θ), . . . , f f (θ)
)

∈ R
n×f .

2.1 The game in generic form

Following the terminology of game theory (Aubin 1979), a

game is characterized by players who have certain objective

functions (sometimes called e.g. loss- or pay-off functions)

which they influence using strategies. Our problem is a two-

player non-cooperative game, non-cooperative meaning that

the two players can change only their own strategy. The

first player wants to minimize g1(x, θ), using as strategy

the design variables x. The second player wants to maxi-

mize g2(x, θ) and uses the load variables θ as strategy. The

sets X (θ) and � introduced above are now referred to as

strategy sets of the respective player.

The meaning of the term solution to a game can be

ambiguous. The most commonly used solution concepts are

Pareto optima and (generalized) Nash (or non-cooperative)

equilibria. The games studied in this paper are all of zero-

sum character,2 and for a zero-sum game, every point is in

fact a Pareto optimum, making this solution concept unsuit-

able. A solution to our game is thus a generalized Nash

equilibrium, i.e. a point (x∗, θ∗) satisfying

g1(x
∗, θ∗) = min

x∈X (θ∗)
g1(x, θ∗) (2a)

g2(x
∗, θ∗) = max

θ∈�
g2(x

∗, θ) (2b)

Problems (2a) and (2b) are in general non-convex (resp.

non-concave), large-scale optimization problems for which

computing globally optimal solutions is currently not prac-

tical. Therefore one should think here of GNE as meaning, a

priori, local GNE, with x∗ and θ∗ locally optimal solutions

to (2a) and (2b), respectively.

An important question is of course whether the game (2)

admits any equilibria at all? Even if (2) was a standard

2By choosing f = 1 in the games (G1) and (G2) in Section 8 we

obtain zero-sum games.

and not a generalized Nash game, the classical Nash exis-

tence theorem (Aubin 1979, p. 267) would not be applicable

since, e.g., g1 is not, in general, convex and g2 not con-

cave. However, absent a mathematical proof, the numerical

results shown below provide strong evidence of existence of

solutions for our particular examples, and we note that this

difficult topic has been the subject of recent research (Pang

and Gesualdo 2011).

3 First order necessary optimality conditions

We introduce two Lagrangian functions

L1(x, θ) = g1(x, θ) +

k
∑

e=1

λe (ce(x, θ) − ce)

+

m
∑

i=1

(ξi(ε − xi) + ηi(xi − 1))

and

L2(x, θ) = g2(x, θ) +

s−1
∑

i=1

(

κi(θ − θi) + γi(θi − θ)
)

,

where λe, ξi , ηi , κi and γi are Lagrange multipliers.

The set � satisfies Abadie’s constraint qualifier (CQ)

(Andréasson et al. (2005 Proposition 5.44)), so if X (θ∗) is

also sufficiently regular3 a GNE (x∗, θ∗) must satisfy the

Karush-Kuhn-Tucker conditions (Andréasson et al. 2005)

∇xL1(x
∗, θ∗) = 0, (3a)

ce(x
∗, θ∗) − ce ≤ 0, e = 1, . . . , k, (3b)

λe ≥ 0, e = 1, . . . , k, (3c)

λe

(

ce(x
∗, θ∗) − ce

)

= 0, e = 1, . . . , k, (3d)

ε − x∗
i ≤ 0, i = 1, . . . , m, (3e)

x∗
i − 1 ≤ 0, i = 1, . . . , m, (3f)

ξi ≥ 0, i = 1, . . . , m, (3g)

ηi ≥ 0, i = 1, . . . , m, (3h)

ξi(ε − x∗
i ) = 0, i = 1, . . . , m, (3i)

ηi(x
∗
i − 1) = 0, i = 1, . . . , m, (3j)

∇θL2(x
∗, θ∗) = 0, (3k)

θ − θ∗
i ≤ 0, i = 1, . . . , s − 1, (3l)

θ∗
i − θ ≤ 0, i = 1, . . . , s − 1, (3m)

κi ≥ 0, i = 1, . . . , s − 1, (3n)

γi ≥ 0, i = 1, . . . , s − 1, (3o)

κi(θ − θ∗
i ) = 0, i = 1, . . . , s − 1, (3p)

γi(θ
∗
i − θ) = 0, i = 1, . . . , s − 1. (3q)

3Abadie’s CQ holds in (G1) and (G2) in Section 8, for example.
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These conditions are verified numerically in the final

iteration of the algorithm described next.

4 Algorithm for finding a generalized Nash

equilibrium

An overview of algorithms for finding GNEs is given by

Facchinei and Kanzow (2010). Unfortunately such algo-

rithms are much less developed, in terms of both theory

and implementation, than, e.g., those for non-linear opti-

mization problems, for which several high-quality codes,

often globally convergent under reasonable assumptions,

are available.

One way to find a GNE is to solve the optimality

system (3a)–(3q) directly using Newton-based methods

(Christensen et al. 1998; Dreves et al. 2011; Facchinei and

Kanzow 2010). Such methods, however, require second

derivatives, or at least approximations thereof. In particu-

lar the Hessian of L1 is large and dense and Newton-based

methods are therefore expected to be too expensive, unless

perhaps (limited memory) quasi-Newton approximations

can be used.

Périaux et al. (2001) and Habbal et al. (2004) used a non-

linear Jacobi-type algorithm (Facchinei and Kanzow 2010)

where the two players update their strategies simultane-

ously, i.e. both optimization problems are solved at the same

time and independent of each other. This algorithm has the

advantage that it allows for computing the two strategies

in parallel. However, in our game the two players’ strate-

gies are highly counteracting in (1) and we have found it

more efficient to update the strategies in sequence. There-

fore we suggest the following nonlinear Gauss-Seidel-type

(Facchinei and Kanzow 2010) algorithm:

In the examples in Section 8, the problems in Step 1 and

Step 2 are considered solved whenever the change in the

objective function value is below a given threshold and the

constraints are satisfied within a certain tolerance. As for

the stopping criteria in Step 3, Algorithm 1 is terminated

whenever only one iteration of the TO problem in Step 2

was required in three successive outer iterations (an outer

iteration consists of Step 1, 2 and 3).

As pointed out by Facchinei and Kanzow (2010), if Algo-

rithm 1 converges, it does so to a GNE (it suffices that all

functions involved are continuous). The conditions under

which convergence occurs is however not clear. The most

promising approach towards ensuring convergence for a

wide class of problems seems to be to include so-called

proximal terms in the objective of the respective problem

to penalize too rapid changes of the strategies (Attouch

et al. 2008; Facchinei and Kanzow 2010). This has not been

done here; instead we propose in Section 7 to modify the

games themselves such that convergence is obtained when

we apply Algorithm 1.

5 Design and load parametrization

5.1 Topology variables

We use a standard SIMP-approach (Bendsøe 1989) for the

TO. The topology design variables x are filtered using a lin-

ear design variable filter (Bruns and Tortorelli 2001) that

may be written

ρi(x) =

m
∑

j=1

�ijxj , i = 1, . . . , m, (4)

where

�ij =
ψijvj

∑m
k=1 ψikvk

, ψij = max

(

0, 1 −
||ei − ej ||

R

)

,

in which, for element j , ej is its centroid and vj its vol-

ume; the filter radius is denoted R and || · || is the Euclidean

norm. We denote ρi(x), i = 1, . . . , m,as physical variables

as they are used to define the properties of the structure.

Using the SIMP-approach, the stiffness matrix reads

K(x) =

m
∑

i=1

ρi(x)pK i, (5)

where K i is an expanded element stiffness matrix and p >

1 is a penalization exponent. The lower bound ε introduced

in X (θ) ensures that the stiffness matrix is positive defi-

nite for every feasible design x, assuming the structure is

appropriately supported.

The filter in (4) results in a transition zone between mate-

rial and holes (Sigmund 2007). Due to the penalization in

(5) the intermediate design variable values in this transition

give a non-physical stiffness, which makes them undesir-

able. Therefore, in order to obtain a more ”black-and-white”

design without the intermediate design variable values, we

remove the filter after convergence of Algorithm 1 and con-

tinue with a TO using only those ρi(x) that are close to

a boundary as design variables, while those that are at the
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Fig. 1 Angles in spherical coordinates

lower or upper bound and surrounded by elements with the

same value are fixed to their current value (see Holmberg

et al. (2015) for additional details). As the design changes

are typically quite small we have chosen not to update the

loads after the filter has been removed, and we have found

(3k)–(3q) to be very close to satisfied anyway, see Figs. 6b,

9c and 12c. However, we note that there is no guarantee

that the final design is a GNE. In that sense, we consider

the design obtained after Algorithm 1 to be the optimized

design and the final design the result of a post-processing

step that, at least, satisfy (3a)–(3j).

5.2 Load variables

We consider loads varying in an uncertainty set where the

maximum loads in all directions are known, but the direc-

tion of the load may vary. Such loads can for example occur

due to accelerations in an aircraft, where there are restric-

tions on the allowable accelerations in different directions,

but accelerations may occur in any direction depending on

the maneuver. The loading, for load case ℓ, reads

f ℓ = LTrℓ,

where the uncertainty vector rℓ ∈ R
s is a unit vector and

L ∈ R
s×n a matrix containing the maximum loads. This

type of loading has been used in Holmberg et al. (2015)

where the components of rℓ were used to vary the loading.

In this paper we choose to parameterize rℓ by the angles θ =

(θ, φ)T in a spherical coordinate system (Fig. 1), reducing

to a polar coordinate system for 2D-problems (φ = π/2).

These angles are used as variables to define the direction of

the load.

The first load case f 1(θ), i.e. the first column of F (θ) in

(1), is for a 3D-problem expressed as

f 1(θ) = LTr1(θ)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

. . .

. . .

xmax 0 0

0 ymax 0

0 0 zmax

. . .

. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎝

sin(φ) cos(θ)

sin(φ) sin(θ)

cos(φ)

⎞

⎠ . (6)

The matrix L is built by a number of s × s diagonal

blocks, but only one such block is written explicitly in (6).

Each block corresponds to the degrees of freedom of one

node; if no load is applied at that node the block con-

tains zeros, otherwise the maximum loads xmax, ymax and

zmax are placed on the diagonal. For notational simplicity

we have assumed that the maximum loads are given in the

global coordinate directions and we assume that the maxi-

mum loads are the same in all nodes, i.e. no further index is

added.

As θ varies, f 1(θ) maps out an ellipsoid where xmax,

ymax and zmax define the vertices. For 2D-problems (φ =

π/2 ), r(θ) = (sin(θ) cos(θ))T , where θ is the angle in a

polar coordinate system in the global xy-plane, as shown in

Fig. 2.

Note that we expect the worst load to occur on the ellip-

soid (or ellipse in 2D), not for a load of lower magnitude

inside it. For the functions introduced in Section 6 this is

proved mathematically using the fact that the maximum

value of a convex function is found at the extreme points

of the feasible set (Rockafeller 1972, Corollary 32.3.1). The

Fig. 2 Load variable and load for a 2D-problem
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convexity of both the compliance and the stress measure

introduced in Section 6 as functions of the load follow by

viewing each as composed of a non-decreasing and a convex

function (Boyd and Vanderberghe 2004, p. 97).

5.2.1 Extensions to more general loading scenarios

It is possible to extend (6) to more general loading scenar-

ios:

– If there are several external loads varying with the same

θ it is straightforward to add maximum loads in the

respective block of L and each block may have different

maximum loads on the diagonal.

– If there are several load cases, with possibly different

maximum loads or loads applied at different positions,

we add another column L̂
T
rℓ(θ) to F (θ), where L̂ is

built in the same way as L and the number of variables

in θ is increased accordingly.

– Additional load cases that vary with the same θ and

are restricted by the same L are introduced by adding

columns in r(θ). This is done in this paper, as described

in Section 7.

6 Objective functions, constraints and gradients

The game theoretic formulation allows for a wide range of

choices regarding g1, g2 and ce in (2). Since we do not have

an existence proof we cannot be too specific, but the pos-

sible choices is at least restricted by the requirement that

each of the problems in (2) be well-posed. For this it suf-

fices (Andréasson et al. 2005, Theorem 4.7) that, e.g., X (θ)

and � be non-empty and compact and g1 and g2 lower,

respectively upper, semi-continuous, conditions that are not

difficult to see to in practise. For numerical efficiency

it is preferable that g1, g2 and ce be at least differen-

tiable so that gradient-based optimization algorithms can be

applied.

In this paper we consider three functions: compliance,

global stress, and mass, which we define and differentiate

below.

6.1 Compliance

The compliance for load case ℓ is

Cℓ(x, θ) =
1

2
uℓ(x, θ)Tf ℓ(θ), (7)

where uℓ(x, θ) is part of the solution to (1).

The gradient of (7) with respect to x can be found in

e.g. Christensen and Klarbring (2008). The derivative with

respect to θt , t = 1, . . . , (s − 1) is given by

2
∂Cℓ(x, θ)

∂θt

=
∂uℓ(x, θ)T

∂θt

f ℓ (θ) + uℓ(x, θ)T
∂f ℓ(θ)

∂θt

=

(

K(x)−1 ∂f ℓ(θ)

∂θt

)T

f ℓ(θ) + uℓ(x, θ)T
∂f ℓ(θ)

∂θt

=

(

∂f ℓ(θ)

∂θt

)T

uℓ(x, θ) + uℓ(x, θ)T
∂f ℓ(θ)

∂θt

= 2uℓ(x, θ)T
∂f ℓ(θ)

∂θt

,

where the second and third step follow from (1). From (6)

we find that

∂f ℓ(θ)

∂θt

= LT ∂rℓ(θ)

∂θt

, (8)

where ∂rℓ(θ)/∂θt is the derivative of the simple trigonomet-

ric functions in (6). The θt -derivative of (7) therefore finally

reads

∂Cℓ(x, θ)

∂θt

= uℓ(x, θ)TLT ∂rℓ(θ)

∂θt

.

6.2 Stress

A global stress measure, σG
ℓ (θ), ℓ = 1, . . . , f , is created

for each load case using a P -norm, with exponent P ≥ 1,

of the vector of local von Mises stresses (Holmberg et al.

2013b):

σG
ℓ (x, θ) =

(

d
∑

a=1

(

σ vM
ℓa (x, θ)

)P

)

1
P

, (9)

where σ vM
ℓa (x, θ) is the von Mises stress for load case ℓ in

stress evaluation point a and d is the number of such points.

The von Mises stresses are based on penalized stresses

and the penalized stress vector (in Voigt notation) in stress

evaluation point a for load case ℓ is calculated as

σ ℓa(x, θ) = ρi(x)qEBauℓ(x, θ), (10)

where E is the constitutive matrix, Ba is the expanded

strain-displacement matrix corresponding to stress evalua-

tion point a and index i denotes the element that this point

belongs to. The stress penalization ρi(x)q , with 0 < q < 1,
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was suggested by Bruggi (2008) and also used successfully

by e.g. Le et al. (2010) and Holmberg et al. (2013a).

The gradient of the global stress measure (9) with respect

to x is given in Holmberg et al. (2013b, 2013a) and is not

repeated here. The derivative of (9) with respect to θt reads

∂σG
ℓ (x, θ)

∂θt

=

d
∑

a=1

∂σG
ℓ (σ vM

ℓ )

∂σ vM
ℓa

∂σ vM
ℓa (x, θ)

∂θt

=

d
∑

a=1

∂σG
ℓ (σ vM

ℓ )

∂σ vM
ℓa

(

∂σ vM
ℓa (σ ℓ)

∂σ ℓa

)T
∂σ ℓa(x, θ)

∂θt

.

(11)

The first factor in (11) is obtained from (9) as

∂σG
ℓ (σ vM

1 )

∂σ vM
ℓa

=

(

d
∑

b=1

(

σ vM
ℓb (θ)

)P

)

1
P

−1

σ vM
ℓa (x, θ)P−1;

the second factor follows trivially from the definition of the

von Mises stress; and the third factor follows from (10) and

reads

∂σ ℓa(x, θ)

∂θt

= ρi(x)qEBa

∂uℓ(x, θ)

∂θt

= ρi(x)qEBaK
−1(x)

∂f ℓ(θ)

∂θt

,

where ∂f ℓ(θ)/∂θt is given in (8). Rather than forming

the inverse of the stiffness matrix explicitly we compute

K−1(x)∂f ℓ(θ)/∂θt by solving an additional linear system,

at the same cost as solving (1).

6.3 Mass

The mass M(x) is

M(x) =

m
∑

i=1

Miρi(x),

where Mi is the element mass. The derivative with respect

to design variable xb reads

∂M(x)

∂xb

=

m
∑

i=1

Mi�ib,

where �ib was defined in (4). Obviously, since the mass is

not a function of the load, it does not make sense to use mass

for g2 in (2b).

Remark 1 Using the global stress measure (9) in a stress

constraint we are guaranteed that all local stresses (in the

evaluation points in the FE model) are lower than or equal

to the stress limit (Holmberg et al. (2013a, 2013b)) and we

consider the stresses in the final designs in Figs. 12b and

14b to be sufficiently close to the stress limit given that TO

is essentially a conceptual design tool. If more control over

the local stresses is desired, an alternative is to use clus-

tered stress measures where the stress evaluation points are

arranged into a number of clusters and one stress measure

is calculated for each such cluster (Holmberg et al. 2013a).

The computational cost for this is of course higher than for

the global approach used here.

7 Adding load cases for stability

A structure optimized for only one load will typically have

bad performance for other directions of the loading. This

can cause difficulties in the form of oscillations between

Step 1 and 2 when Algorithm 1 is applied to games such as

those studied here. This issue is illustrated next by an exam-

ple, which also suggest how to modify problem (2a) to get

convergence for our games.

If the design space is sufficiently large the worst

load found at iteration k + 1 will be a load where

the defining uncertainty vector r is orthogonal to that

found at iteration k; this is shown in Appendix A for

a problem where both g1 and g2 is compliance. This

means that the topology xk+1 can be totally differ-

ent from xk and this causes an oscillation where the

Fig. 3 An example of an intermediate design step, just before the load

is about to be updated. a: Only one load case and obviously not a robust

design, b: Two load cases (shown simultaneously) and a more robust

design
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load varies and the topology oscillates between dif-

ferent designs. An example where both g1 and g2 is

compliance is visualized in Fig. 3a, which shows an inter-

mediate (not converged) design where the load direction is

just about to be updated. Here the new worst load direc-

tion will be orthogonal to the current and major topological

changes are required in order to minimize the compliance

for the new load.

One way to avoid these oscillations is to add load

cases to the TO problem (2a). Motivated by Appendix A,

loads defined by orthogonal uncertainty vectors should be

a good choice for additional loads. For the 3D-examples in

Section 8 however, we found that Algorithm 1 converged

faster for orthogonal loads than for orthogonal uncertainty

vectors, which is why orthogonal loads are added in this

paper. If xmax = ymax (= zmax in 3D) the same loads are

obtained by using orthogonal uncertainty vectors as orthog-

onal loads; but if the loading region is elliptical, orthogonal

loads will span the ellipsoid better than the loads due to

orthogonal uncertainty vectors. Figure 3b shows a design,

in an intermediate design step, obtained using two load

cases: the primary load f 1 and a second load f 2, orthogonal

to f 1.

Adding more load cases might make the algorithm con-

verge faster, but in each iteration we need to solve for more

right hand sides in (1) and, if applicable, in the adjoint

gradient calculation. From numerical tests we have found

it efficient to add loads obtained by rotating (the 2 or 3

orthogonal loads) π/4 radians in each plane; see Fig. 4 for a

visualization in 2D. This means that we use four load cases

in 2D problems and nine load cases in 3D problems and all

loads are defined by θ . The additional computational cost

due to the extra right hand sides is usually compensated for

by faster convergence. One way of calculating the additional

loads is given in Appendix B.

If the objective function in the topology problem (2a),

depends on θ we use the sum of the objective values for the

load cases and constraints are added if a constraint function

Fig. 4 Four load cases used in a 2D problem

depends on θ . In the load problem (2b), we use only the first

load case (6) – in this way we find the worst load rather than

the worst weighted loads.

8 Examples

There are several possible games that fit into the generic for-

mulation (2). Based on the functions defined in Section 6 we

formulate three games that we consider numerically, using

two different geometries.

The first geometry is the two-dimensional L-beam seen

in Fig. 5a. The L-beam is a challenging test example

because of the internal corner with a stress singularity; the

stress is very high initially, so the initial design is very far

from feasible when we have a stress constraint. The L-beam

has outer dimensions 200 × 200 mm, thickness 1 mm and

is rigidly attached at the upper boundary. The applied load

is due to acceleration of a 12 kg mass attached in the right

corner. The maximum accelerations are 10 times the accel-

eration of gravity: giving a maximum load of 1177 N in

any direction in the xy-plane, i.e. xmax = ymax = 1177

x

y

(b)

(a)

Fig. 5 Design domains with supports and uncertain loads. a: 2D L-

beam, b: 3D bracket
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in (6). The design domain is discretized with 6400, equal

sized, 8-node quadrilateral elements and has 39040 degrees

of freedom.

The second geometry is an attachment bracket modelled

in 3D, Fig. 5b, with outer dimensions 230 × 60 × 68 mm.

The bracket is rigidly attached in one end and attaches to

some equipment that weighs 22 kg in the lower part of the

other end. The bracket shall be dimensioned for 20 times the

acceleration of gravity in the z-direction and 10 % of that

in other directions for robustness. The maximum loads are

thus xmax = ymax = 431.6 and zmax = 4316 and the load

is modelled as a point load applied in the centre of grav-

ity of the equipment, from which stiff rods connect to four

attachment points in the bracket. The bracket is modelled

with linear eight node hexahedron- and six node penta-

hedron elements of varying size; in total 25864 elements

and 86187 degrees of freedom. The filter radius is set to

R = 3 [mm].

To avoid numerical issues due to the stress concentra-

tion at the point where the load is applied, the elements

in the vicinity of that point in the 2D example and in the

vicinity of the rods in the 3D example are non-design ele-

ments for which the stress is not part of the global stress

measure.

The topologies are plotted in a gray-scale where white

implies void, black solid material and gray is elements

with intermediate design variable values. The 3D topologies

have gray element lines for ease of visualization. The stress

plots should be viewed in color. The design material is an

aluminium with Young’s modulus 71000 MPa, Poisson’s

ratio 0.33 and density 2.8 × 10−9 tonne/mm3.

In all numerical examples the initial design is an equal

distribution of material; the lower bound on the design vari-

ables is set to ε = 0.001; the SIMP and stress penalization

exponents to p = 3 and q = 0.5, respectively; and the P-

norm exponent to P = 24. The local penalized stress (10)

is evaluated in the element centroid.

The optimization problems in Step 1 and 2 of Algorithm

1 are solved using MMA, the Method of Moving Asymp-

totes (Svanberg 1987). All examples have converged at a

low number of outer iterations k in Algorithm 1, typically

in the order of 5 to 15, and the number of inner iterations in

Step 1 and 2 is drastically decreased with increasing k, the

last iterations only involving one inner iteration. The total

number of inner iterations has been between approximately

200 and 1500, using conservative settings of the allowable

updates in MMA and fine convergence criteria. As the load

problem in Step 1 has only s − 1 variables and simple box

constraints, it is solved in a few iterations. Thus, the main

computational cost is due to solving the TO problem in

Step 2.

8.1 Game formulation 1: compliance

In the first formulation we minimize compliance, subjected

to a mass constraint, using the topology variables and search

for the load giving the highest compliance using the load

variables, i.e.

(G1)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
x∈X1

f
∑

ℓ=1

Cℓ(x, θ)

max
θ∈�

C1(x, θ)

where

X1 =
{

x ∈ R
m | ε ≤ xi ≤ 1, i = 1, . . . , m,

m
∑

i=1

Miρi(x) ≤ M

}

.

The design seen in Fig. 6 is obtained using (G1), where

M = 0.35M̂ , M̂ being the mass obtained if all topology

variables are equal to 1.

(a)

(b)

Fig. 6 a: L-beam design for game (G1). b: Compliance as a function

of θ for the design in a, the dashed line represents θ∗
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Fig. 7 L-beam reference design where the compliance has been

minimized for a fixed load, f 1(θ = 1.5π)

As a reference, the design obtained for non-robust opti-

mization with a fixed load, f 1 (θ = 1.5π), is given in

Fig. 7. Comparing the robust and non-robust designs we

find that the main difference is the diagonal structural mem-

ber between the two vertical members, which increases the

stiffness for a load in the x-direction.

The curve in Fig. 6b shows g2(x
∗, θ) = C1(x

∗, θ) for

θ ∈ [0, 2π ] and the dashed vertical line shows θ = θ∗. We

find that f 1(θ
∗) is actually the load that gives the maximum

compliance, showing that the design in Fig. 6a is a robust

design.

The 3D design obtained using (G1) and the upper bound

M = 0.1M̂ is seen in Fig. 8.

8.2 Game formulation 2: stress minimization

In the second formulation we minimize the weighted global

stress, subjected to a mass constraint, using the topology

variables and maximize the global stress using the load

variables:

(G2)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

min
x∈X2

f
∑

ℓ=1

σG
ℓ (x, θ)

max
θ∈�

σG
1 (x, θ)

where X2 = X1.

Fig. 8 3D bracket design for game (G1)

For the allowable mass M = 0.45M̂ we obtain the design

in Fig. 9a. A smooth radius has been created in the inter-

nal corner in order to avoid the stress singularity and the

thickness of the structural parts are dimensioned such that

the stress in the structure is minimized considering all pos-

sible loads; therefore, some parts will have low stress for

(c)

240.0

260.0

280.0

300.0

320.0

340.0

360.0

380.0

(b)

(a)

Fig. 9 a: L-beam design for game (G2), b: von Mises stress for the

first load case, c: Global von Mises stress as a function of θ for the

design in a, the dashed line represents θ∗
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specific load cases. The stress plot in Fig. 9b shows the von

Mises stresses for the load f 1 (θ∗). Studying the stress plot

it is obvious that some structural parts have very low stress,

implying that they are not necessary for this particular load

case.

Again, the curve in Fig. 9c shows that θ∗ is, within

some tolerance, the maximizer of the global stress measure

g2(x
∗, θ) = σG

1 (x∗, θ), implying robustness.

A non-robust design, using the fixed load f 1 (θ = 1.5π)

and the same M , is seen in Fig. 10. In the non-robust design

the structural parts are thicker as they are only dimensioned

for one specific load. The stress is thus lower for that load

case than what it is for the robust design, but higher for other

load cases.

The equilibrium design for the 3D example using M =

0.1M̂ is shown in Fig. 11a and the von Mises stresses for

the first load case are shown in Fig. 11b.

Fig. 10 L-beam reference design where the global stress has been

minimized for a fixed load, f 1 (θ = 1.5π). a: Topology, b: von Mises

stress

8.3 Game formulation 3: stress constraint

In (G2) we used a fixed limit on the available mass, which in

the 2D example was found manually such that the optimized

structure had a maximum von Mises stress approximately

equal the yield limit of the material, 350 MPa. In formu-

lation 3 we are instead aiming for the lightest design that

satisfy a stress constraint, and using the load variable we

seek the direction giving the highest global stress. This

formulation reads

(G3)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
x∈X3(θ)

m
∑

i=1

Miρi(x)

max
θ∈�

σG
1 (x, θ)

where

X3(θ) =
{

x ∈ R
m | ε ≤ xi ≤ 1, i = 1, . . . , m,

σG
ℓ (x, θ) ≤ σG, ℓ = 1, . . . , f

}

.

The equilibrium design obtained using (G3), seen in

Fig. 12a, has, as for (G2), a radius in the internal corner so

that the stress singularity is avoided, and the structural mem-

bers are dimensioned such that the global stress is lower

than the constraint limit, chosen equal to the yield limit of

the material, σG = 350 MPa. The maximum local stress for

Fig. 11 3D bracket for game (G2). a: Optimized topology, b: von

Mises stress for the first load case
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the load f 1 (θ∗), Fig. 12b, is 322 MPa. The reason why the

maximum local stress is slightly lower than σG is because

the global stress measure (9) overestimates the maximum

local stress (Holmberg et al. 2013b).

Comparing again with a non-robust design, optimized for

the fixed load f 1 (θ = 1.5π) and seen in Fig. 13, we find

that the non-robust optimization has created fewer structural

(c)

0 π/2 π 3π/2 2π
330.0

335.0

340.0

345.0

350.0

355.0

360.0

(b)

(a)

Fig. 12 a: L-beam design for game (G3), b: von Mises stress for the

first load case, c: Global von Mises stress as a function of θ for the

design in a, the dashed line represents θ∗

members with approximately the same stress for this par-

ticular load, whereas the robust design has more structural

members and not all of these are fully stressed for the load

f 1 (θ∗). However, when varying θ all parts should become

fully stressed for some specific load.

The curve in Fig. 12c shows that we are at a local max-

ima for the load problem, but that the global maxima is only

about 2 % higher. As a comparison we also plot the same

curve for the non-robust design, Fig. 13c, where we find that

the maximum global stress is approximately 450 % higher

(c)

0 π/2 π 3π/2 2π
200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0

1600.0

1800.0

(b)

(a)

Fig. 13 L-beam reference design where the mass was minimized, sub-

jected to a global stress constraint, for a fixed load, f 1 (θ = 1.5π). a:

Topology, b: von Mises stress, c: Global von Mises stress as a function

of θ for the design in a
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Fig. 14 3D bracket for game (G3). a: Optimized topology, b: von

Mises stress for the first load case

than the stress limit for a load orthogonal to that it was

optimized for.

For the 3D example optimized using (G3) we find that

the optimized design in Fig. 14a is simple and easy to inter-

pret and that the maximum von Mises stresses, Fig. 14b,

are below the stress limit σG = 350 MPa. However,

some structural members have become very thin compared

to the element size and some gray elements remain. This

implies that, for this load and stress constraint, a finer mesh

should have been used if better precision was required from

the model. Now the stress constraint is satisfied and it is

not possible to remove more elements without removing a

structural member.

9 Concluding remarks

A game theory approach to robust TO with uncertain

loading has been developed and exemplified using three

different games for design of both 2D and 3D structures.

The nature of the proposed non-cooperative games,

between the structure and the external loads, is such that

convergence is difficult to obtain – an element may be

very important for some loads but completely unnecessary

for others, and this typically leads to oscillations in the

design variable values. By addition of certain load cases (see

Section 7) such oscillations can be avoided, thus making

Algorithm 1 efficient. The efficiency is demonstrated by the

small number of outer iterations and the almost black-and-

white optimized designs. The few gray elements remaining

are in part explained by the filtering technique combined

with the varying element size in the 3D mesh, but also by

the discretization as discussed in connection with Fig. 14.

The proposed game theoretic framework allows formula-

tion of a wide class of relevant structural optimization prob-

lems, most of which cannot be cast as semi-definite pro-

gramming problems or optimization problems with eigen-

values. The numerical examples give an idea of the broad

range of problems that can be given in the game theoretic

framework; for example that we can apply stress constraints

despite the load uncertainty.
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Appendix A: Motivation why orthogonal loads

are necessary for stability

Consider (2) for the special case when both g1 and g2 is

compliance, there is only one load case, and X is indepen-

dent on θ . Then (2) becomes a two-person zero-sum game.

By Proposition 1, Chapter 6, in Aubin and Ekeland (1984),

(x∗, r∗) is a Nash equilibrium if and only if it solves the

problem

min
x∈X

max
θ∈�

f (θ)TK(x)−1f (θ)

= min
x∈X

max
θ∈�

r(θ)TLK(x)−1LTr(θ)

= min
x∈X

max
||r||=1

rTH (x)r, (12)

where (6) was used in the first step and the notation H (x) =

LK(x)−1LT was introduced in the last step, where also a

change of variables from θ to r was made.

Applying Algorithm 1 in Section 4, problem (12) is

solved in two steps in an alternating sequence until the algo-

rithm has converged. The result of two typical steps of the

algorithm is described below.

First, we solve the inner maximization problem

max
||r||=1

rTH
(

xk−1
)

r (13)
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in order to find the worst loading at iteration k. The

Rayleigh-Ritz theorem (Horn and Johnson (1985, Theo-

rem 4.2.2)) asserts that the solution to (13) is the largest

eigenvalue, λk
max, of the eigenvalue problem

(

H
(

xk−1
)

− λI
)

r = 0. (14)

The load direction for which (13) attains its maximum value

is given by the eigenvector rk
max corresponding to λk

max.

In the same way the smallest eigenvalue of (14), λk
min,

represents the minimizer of rTH
(

xk−1
)

r and the corre-

sponding eigenvector the loading. Assuming λk
min �= λk

max,

the eigenvectors are orthogonal; i.e. the loads for which the

structure has its maximum and minimum compliance are

orthogonal.

In the next step, the outer minimization problem

min
x∈X

(

rk
max

)T

H (x)rk
max

in (12) is solved with rk
max fixed, resulting in a new topology

xk ∈ arg min
x∈X

(

rk
max

)T

H (x)rk
max.

Given a sufficiently large design space X , the compli-

ance will attain its minimum value for the load direction

defined by rk
max, i.e. the load LTrk

max gives the minimum

compliance of the loads LTr(θ) for all θ ∈ �.

When xk has been obtained, we set k := k + 1 and solve

the load variable problem (13) again for this new topol-

ogy. As the compliance for the design xk now attains its

minimum value for rk
max we know that rk

max now instead is

the eigenvector corresponding to the smallest eigenvalue of

(14); that is,

rk
max = rk+1

min .

As the eigenvectors are orthogonal, we also know that

rk+1
max = rk

min.

Thus, the new “worst” uncertainty vector is that which,

before the topology was updated, was the “best” (or “least

critical”). This explains why Algorithm 1 might not con-

verge if only one load case is used.

Appendix B: Calculation of the additional loads

First, a vector orthogonal to f 1 is found as

f̂ 2 = f 1 × v,

where f̂ 2 gives the direction for the second load and v is

the normal to the plane in 2D-problems or an arbitrary vec-

tor in 3D-problems, for example a unit vector in the global

x-direction (or the y-direction if the x-direction is close to

parallel to f 1). The magnitude is chosen such that the load,

in 3D, is on the ellipsoid defined by xmax, ymax and zmax; a

scale factor cℓ is obtained for the ℓ:th load from

⎛

⎜

⎝

cℓ

[

f̂ ℓ

]

x

xmax

⎞

⎟

⎠

2

+

⎛

⎜

⎝

cℓ

[

f̂ ℓ

]

y

ymax

⎞

⎟

⎠

2

+

⎛

⎜

⎝

cℓ

[

f̂ ℓ

]

z

zmax

⎞

⎟

⎠

2

= 1. (15)

The ℓ:th load is then given by

f ℓ = cℓf̂ ℓ. (16)

In 3D, the vector for the third load is chosen orthogonal

to both to f 1 and f 2 as

f̂ 3 = f 1 × f 2,

and the load f 3 is again calculated using (15) and (16).

Given these loads, additional loads are created in each

plane by rotating the orthogonal loads ψ = π/4 radians

about the normal direction n of each plane. The normal

directions in 3D are defined by f 1, f 2 or f 3 and the two

loads that are rotated are the two that do not define n. The

directions of the rotated loads f̂ ℓ, ℓ = s+1, . . . , s2, are cal-

culated using Rodrigues’ rotation formula, that for one such

load reads

f̂ ℓ = f̃ cos ψ + (n × f̃ ) sin ψ + n(nTf̃ )(1 − cos ψ),

where f̃ is the load that is being rotated. The magnitudes

of the loads are again determined by (15) and (16). In total,

four load cases are used in a 2D-problem and nine load cases

are used for 3D-problems.

As linear elasticity theory and effective stress is used,

there is no need to add loads in opposite directions.
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Valdebenito M, Schuëller (2010) A survey on approaches for

reliability-based optimization. Struct Multidiscip Optim

42(5):645–663

1397

http://dx.doi.org/10.1007/s00158-012-0880-7
http://dx.doi.org/10.1007/s00158-015-1285-1

	Game theory approach to robust topology optimization with uncertain loading
	Abstract
	Introduction
	Structural model in the game theoretic framework
	The game in generic form

	First order necessary optimality conditions
	Algorithm for finding a generalized Nash equilibrium
	Design and load parametrization
	Topology variables
	Load variables
	Extensions to more general loading scenarios


	Objective functions, constraints and gradients
	Compliance
	Stress
	Mass

	Adding load cases for stability
	Examples
	Game formulation 1: compliance
	Game formulation 2: stress minimization
	Game formulation 3: stress constraint

	Concluding remarks
	Acknowledgements
	Open Access
	Appendix A Motivation why orthogonal loads are necessary for stability
	 Calculation of the additional loads
	Appendix B Calculation of the additional loads
	References


