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Small power plants and buildings with renewable power generation capability have recently been added to traditional central power
plants. 	rough these facilities, prosumers appear to have a concurrent role in both energy production and consumption. Based
on bidirectional power transfers by large numbers of prosumers, a smart microgrid has become an important factor in e
ciently
controlling the microgrids used in power markets and in conducting e�ective power trades among grids. In this paper, we present
an approach utilizing the game theory for e�ective and e
cient energy routing, which is a novel and challenging procedure for
a smart microgrid network. First, we propose strategies for choosing the desired transaction price for both electricity surpluses
and shortages to maximize pro�ts through energy transactions. An optimization scheme is utilized to search for an energy route
with minimum cost using the solving method used in a traditional transportation problem by treating the sale and purchase
quantities as transportation supply and demand, respectively. To evaluate the e�ect of the proposed decision strategies, we simulated
our mechanism, and the results proved that our mechanism yields results pursued by each strategy. Our proposed strategies will
contribute to spreading a smart microgrid for enhancing the utilization of microgrids.

1. Introduction

In a traditional energy market, few suppliers in large central
power plants supply power to a great number of homes and
businesses. However, relatively small-scale, self-contained,
medium-/low-voltage electric power systems (EPSs) housing
various distributed energy resources (DERs), that is, solar
panels or wind turbines, have come into wide use. Prosumers
thus appear to have a role in both energy production and
consumption concurrently. A smart microgrid is important
in e
ciently controlling the microgrids in the power markets
based on bidirectional power transfers by large numbers
of prosumers, and in e�ectively performing power trades
between these grids. A smart microgrid is de�ned as a
localized grouping of electricity generation (i.e., solar panels
or wind turbines) sources, energy storage facilities, and loads
and may include distributed energy resources (DERs) and an
intelligent distribution system with energy owmanagement

carried out by intelligent electronic devices balancing both
the load and source [1], as shown in Figure 1. 	us, energy
routing in a smartmicrogrid is beingmagni�ed as a novel but
challenging procedure in smart microgrid networks, and the
e
ciency, survivability, reliability, exibility, and availability
are being highlighted.

In particular, researchers have focused on the e�ective
and e
cient energy routing in smart microgrid networks to
fully utilize the distributed energy resources and decrease
the cost of energy transmissions. Similar to traditional
routing protocols [2], energy routers exchange the energy
information of each home in the data network and try to
�nd the most e�ective transaction and e
cient transmission
path in the energy network for energy sharing among homes.
Di�ering from traditional routing protocols, the routing
mechanism has an energy plane but no data plane. A�er
the energy routers �nd the most e�ective transaction and
e
cient transmission path in the control plane of the data
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Figure 1: Smart microgrid network with renewable energy in smart grid.

network, energy ows from one home to another through the
most energy-e
cient path on the energy plane of the energy
network, which is called energy routing [3, 4].

As recent related work, the authors in [4] proposed an
energy routing algorithm with distributed agility to avoid
failures that demonstrably maximizes the carrying capacity
of existing power-line resources. However, this algorithm
is impractical because it does not consider an e�ective
transaction mechanism, including a pricing strategy. In this
paper, we propose a strategy to determine the desired sale
and purchase prices for the surplus and shortage of electricity,
respectively, and an optimization scheme [5–10] for �nding
the most e
cient energy route.

	e remainder of this paper is organized as follows.
Section 2 introduces previous works related to a smartmicro-
grid and energy routing. Section 3 de�nes the system model
addressed in this paper, and Section 4 proposes a game-
theory-based energy routing approach for the described
problem. Section 5 then describes the simulation results for
an energy stock based on the price strategies used in arti�-
cial microgrids. Finally, Section 6 provides some concluding
remarks regarding this research.

2. Related Work

A smart microgrid is similar to a small-scale smart grid
and has abundant distributed generators and consumers for
medium-/low-voltage electric power within close locations

but requires a control mechanism, such as an advanced
metering infrastructure (AMI) of a smart grid, to e
ciently
share the renewable energy generated. 	erefore, the gen-
erators and consumers are the same as in a home area
network (HAN) in a smart grid, and the smart microgrid
network (SMGN) connecting them has a similar role as a
neighborhood area network (NAN), as shown in Figure 1
[11]. A smart microgrid can bene�t from less transmission
losses and cable costs because of the close vicinity between
the generator and consumers. Moreover, it can decrease the
amount of carbon emissions and increase the resilience of the
utility grid [12, 13].

To share renewable energy e
ciently between DERs,
energy routing (i.e., setting up an energy-e
cient path) has
been brought up as a novel feature in an SMGN [4, 14, 15]. In
[4], the authors proposed a novel stochastic framework, lever-
aging distributed storage for alleviating many of the prob-
lems of current grids, for example, the di
culty in routing
renewable sources owing to their stochastic and o�en volatile
nature. In [15], to maximally utilize the distributed energy
resources and minimize the energy transmission overhead,
the authors developed distributed energy routing protocols
for a smart grid, which can be also applied to a smart
microgrid. 	e authors in [16] proposed a secure energy
routingmechanism, and the authors in [17] showed through a
simulation that false data injection attacks against distributed
energy routing can e�ectively disrupt the e�ectiveness of the
energy distribution process, thereby generating a signi�cant
loss in the energy supply, as well as increases in the energy
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transmission costs and the number of users experiencing
power outages. To the best of your knowledge, there are
no energy routing mechanisms to consider determining the
energy transaction price in pursuit of the maximization of
each node’s pro�ts.

Game theory is de�ned as “the study of mathematical
models of conict and cooperation between intelligent ratio-
nal decision makers” [18]. 	us, game theory has been used
in the �eld of economics and has attracted research interest
in the �eld of communication networking, for example, for
the analysis andmodeling of routing protocols [19–21]. Game
theory is utilized in a general routing decision to enhance
the fairness [22] or load balance [23]. While traditional and
energy routing are both similar from the viewpoint of the best
routing selection, the process factors of the latter approach
di�er from traditional routing. 	erefore, for this paper, we
designed an approach based on game theory for energy
routing in a smart microgrid.

3. System Model

In this section, we present the architecture of an SMGN as a
description of the current environment of the energy routing
problem. 	e SMGN used consists of � nodes and � links,
such as in a general network used in graph theory. Each
microgrid node indicates a home or town with small storage
facilities, renewable generators, and power consumers. We
consider each microgrid as a player participating in the
power exchange games. Let��(�, �) and��(�, �) represent the
total amount of electricity production and consumption by
all generators and consumers in the �th microgrid at time
period �, respectively. 	e total amount of electricity stored
in various storage facilities in node � at the beginning of time
period � is represented as �(�, �).

	enode has a surplus or shortage of electricity according
to the size of ��(�, �) and ��(�, �), respectively. If �(�, �) +��(�, �) − ��(�, �) is greater than 0, node � becomes the
supply node in the SMGN at time period �; otherwise, node
� becomes the demand node. We de�ne �(�, �) as the amount
of electricity surplus in node � at time period � and 	(�, �)
as the amount of electricity shortage, through the following
equations:

� (�, �) = max {� (�, �) + �� (�, �) − �� (�, �) , 0} ,
	 (�, �) = −min {� (�, �) + �� (�, �) − �� (�, �) , 0} .

(1)

At this point, considering the storage capacity of the
power storage device, �(�), we can split the amount of
surplus of the supply node into two parts: �1(�, �) and �2(�, �).
Here, �1(�, �) is the amount of power in excess of the storage
capacity among the electricity surpluses. 	is excess energy
cannot be stored, and it is thus advantageous to sell at a
price lower than the production cost at the node because it
is wasteful to not sell during this period. In addition, �2(�, �)
is the amount of power under the storage capacity among
the electricity surplus. By not being sold, this energy can be
stored at a storage facility during this period and can be used
in the next period. 	erefore, it is advantageous to choose

a pricing strategy that seeks out the greatest pro�t through
such a transaction.We de�ne �1(�, �) and �2(�, �) through the
following equations:

�1 (�, �)
= max {� (�, �) + �� (�, �) − �� (�, �) −  ⋅ � (�) , 0} ,
�2 (�, �)
= min {� (�, �) + �� (�, �) − �� (�, �) ,  ⋅ � (�)} ,
� (�, �) = �1 (�, �) + �2 (�, �) ,

(2)

where 0 ≤  ≤ 1—the rate of proper charging capacity for the
storage device

	e amount of electricity demand during a power short-
age (de�ned as 	(�, �) above) is the amount of purchased
electricity with the highest priority for power use. However,
the demandnode is favorable for buying and storing a speci�c
amount of electricity when it can purchase energy at a price
close to (or lower than) the production cost. 	erefore, the
demand nodemay have an extra amount of demand,	2(�, �),
and the �nal power demand, 	(�, �), is then updated using
	1(�, �), which is the same as 	(�, �) de�ned above, and
	2(�, �) through the following equations:

	1 (�, �) = −min {� (�, �) + �� (�, �) − �� (�, �) , 0} ,
	2 (�, �) =  ⋅ � (�) ,
	 (�, �) = 	1 (�, �) + 	2 (�, �) .

(3)

	e link from node � to another node � is labeled
as ordered node pair (�, �), which is utilized for power
transmissions. Node �, with an electricity surplus, sends some
of its power, which node �, with an electricity shortage,
receives; in this case, nodes � and � use link (�, �) for the
power transmission. Let ���(�) be the transmission rate over
link (�, �) during time slot �. To determine the optimal
transmission rate, �∗��(�), the system should choose the price

of the electricity sold by each transmitting node and the price
of electricity bought by each receiving node.

To do so, we suppose the use of a control center (CC) of
the SMGN for the power exchange. A supply node intends to
sell its surplus electricity to the demand nodes, and a demand
node intends to buy electricity from the supply nodes. 	e
CC receives information regarding the amount of electricity
to be sold or bought from the supply and demand nodes,
respectively, and matches the supply node to the demand
node based on the amount of electricity to be transmitted.
We de�ne the amount of electricity to sell to the demand
nodes for supply node � at time period � and the amount of
electricity to buy from the supply nodes for demand node �
at time period �, that is, ��(�, �) and ��(�, �), respectively, as
follows:

�� (�, �) = ∑
∀� ̸=�
�∗�� (�) ,

�� (�, �) = ∑
∀� ̸=�
�∗�� (�) ,

(4)

where 0 ≤ ��(�, �) ≤ �(�, �); 0 ≤ ��(�, �) ≤ 	(�, �).
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	e amount of electricity stored in node � at the end
of time period �, that is, �(�, � + 1), satis�es the following
equality:

� (�, � + 1) = {{{
� (�, �) + �� (�, �) − �� (�, �) − �� (�, �) , for supply node �
� (�, �) + �� (�, �) − �� (�, �) + �� (�, �) , for demand node �. (5)

4. Game-Theory-Based Energy
Routing Approach

4.1. Problem De�nition. Our objective in this research is to
�nd the optimal energy route to meet the electricity demand
for all nodes in an SMGN. To achieve this goal, we divide this
problem into two subproblems:

(i) 	e �rst subproblem is for each selling/buying node
to �nd the proper price to maximize its own pro�t.

(ii) 	e second subproblem is for each node to determine
the optimal power transmission path according to a
potential counterparty and the price chosen by the
CC.

In this research, we introduce certain assumptions to
determine the proper price for the �rst subproblem. Each
node has the average production expense (normal produc-
tion expense,��(�)) for the typical power production and the
average production expense (additional production expense,
�(�)) for additional power production. In the remaining
cases, each node intends to sell its surplus electricity at over
the normal production cost, ��(�), a�er using the typical
amount of power produced, and thus ��(�) is the lower
bound of the desired sale price. Similarly, each node does
not intend to supplement its electricity shortage at over the
additional production cost, �(�), during a shortage period
a�er using its typical power production, and thus�(�) is the
upper bound of the desired purchase price.

	e CC adopts a stock exchange pricing scheme to
determine the energy transaction price during time period
�. 	us, each supply and demand node provides its amount
of electricity to sell and buy along with the desired sale
and purchase price, respectively, to the CC. 	e CC matches
the amount of electricity to be sold by the supply nodes in
ascending order of their desired sale price with the amount
of electricity to purchase by the demand nodes in descending
order of their desired purchase price.	eCC thendetermines
the energy transaction price of the matching point, which is
de�ned as �(�).
4.2. Pricing Strategy and Transportation Problem. In this
decision scheme for determining the trading price, the lower
the desired sale price suggested by the supply node is, the
more likely the supply nodewill be able to sell all of its surplus
electricity, but at a decrease in pro�t. Meanwhile, the higher
the desired purchase price suggested by the demand node is,
the more likely the demand node will be able to purchase
all of its required electricity needs, but at an increase in

the purchasing cost. Each node as game player has the desired
sale and purchase prices as selectable strategies. If there is
only one supply node and one demand node, payo� table
for each selectable strategy is shown in Table 1. In the case
that the desired sale price of supply node is less than or
equal to the desired purchase price of demand node, energy
transaction price is determined with the average of those
two prices. 	us, the positive gain of supply node and the
negative gain of demand node are equal. In the opposite
case, because transaction is not conducted, the gain of supply
node is 0 and the negative gain becomes � as electricity
shortage cost of demand node.	e optimal strategy of supply

nodes �∗ = argmax�{����∗ | argmin�(����)} becomes the biggest

price among possible strategies, and the optimal strategy of

demand nodes �∗ = argmin�{���∗� | argmax�(����)} becomes

the smallest price among possible strategies. 	erefore, the
stable point of such transaction game does not exist.

	erefore, in this research, we designed three strategies
for the supply and demand nodes to determine the desired
price using the trading price �(� − 1) for the preceding time
period � − 1. Here, ��(�, �) denotes the desired sale price
of supply node � at time �. Because we divide the amount
of surplus electricity of the supply node into the amount of
power in excess of storage capacity �1(�, �) and the amount
of power under storage capacity �2(�, �), we de�ne these
two types of desired sales prices as ��1(�, �) and ��2(�, �),
respectively. 	e amount of power in excess of the storage
capacity can be sold at a lower price than the production
cost, whereas, for the amount of power below the storage
capacity, the desired sales price that compensates for the
production costs should be chosen. Here, ��(�, �) denotes
the desired purchase price of demand node � at time �.
Similarly, we de�ne the two types of desired purchase prices
for the electricity shortage of the demandnode as��1(�, �) and��2(�, �), where ��1(�, �) is the price for the electricity demand
for power shortage 	1(�, �) and ��2(�, �) is the price for the
extra demanded electricity 	2(�, �), which is stored for use
during the next period. For 	1(�, �), that is, the power to be
bought, the price��1(�, �)will be close to the cost of the excess
production. 	e price ��2(�, �) should be set lower than the
production cost for the extra demanded power,	2(�, �).

We suggest three strategies for determining the desired
prices of the supply and demand nodes, considering each of
the above points.

Strategy 1 (optimistic strategy). It is a decision strategy for
the desired trading price, ��(�, �) and ��(�, �), to maximize
the pro�t, rather than the possibility of the sale/purchase
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Table 1: Payo� table (����, −����) for transaction game.

Seller
Buyer

⋅ ⋅ ⋅ 4 5 6 7 8 ⋅ ⋅ ⋅...
4 (4, −4) (4.5, −4.5) (5, −5) (5.5, −5.5) (6, −6)
5 (0, −�) (5, −5) (5.5, −5.5) (6, −6) (6.5, −6.5)
6 (0, −�) (0, −�) (6, −6) (6.5, −6.5) (7, −7)
7 (0, −�) (0, −�) (0, −�) (7, −7) (7.5, −7.5)
8 (0, −�) (0, −�) (0, −�) (0, −�) (8, −8)...

being predicted to similarly determine price �(�) based on
the trading price �(� − 1) during the preceding time period

��1 (�, �) = �� (�) ,
��2 (�, �) = max{� (� − 1) , �� (�) + � (�)2 } ,

��1 (�, �) = min{� (� − 1) , �� (�) + � (�)2 } ,

��2 (�, �) = 3 ⋅ �� (�) − � (�)2 .

(6)

Strategy 2 (medium strategy). It is a decision strategy for
the desired trading price, ��(�, �) and ��(�, �), to pursue the
maximization of both the possibility of a sale/purchase and
pro�ts from trading:

��1 (�, �) = 5 ⋅ �� (�) − � (�)4 ,
��2 (�, �)
= max{�� (�) + � (� − 1)2 , 3 ⋅ �� (�) + � (�)4 } ,
��1 (�, �)
= min{� (� − 1) + � (�)2 , �� (�) + 3 ⋅ � (�)4 } ,

��2 (�, �) = 5 ⋅ �� (�) − � (�)4 .

(7)

Strategy 3 (pessimistic strategy). It is a decision strategy for
the desired trading price,��(�, �) and��(�, �), tomaximize the
possibility of a sale or purchase, rather than a pro�t, when
predicting a quite di�erent determination of price �(�) from
trading price �(� − 1) based on the preceding time period:

��1 (�, �) = 3 ⋅ �� (�) − � (�)2 ,
��2 (�, �) = �� (�) ,
��1 (�, �) = � (�) ,
��2 (�, �) = �� (�) .

(8)

...
...
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Figure 2: Architecture of traditional transportation problem.

A�er solving the �rst subproblem, the CC obtains the
transaction price �(�) at time period �, the amount of elec-
tricity sold by each supply node, and the amount of electricity
purchased by each demand node. Utilizing the results of the
�rst subproblem, the CC then chooses the proper path for
transferring the power as the second subproblem.	e second
subproblem has an architecture exactly the same as that of
a traditional transportation problem (see Figure 2) because
it is a problem of �nding the optimum power transmission
path between the chosen supply and demand nodes while
satisfying the amount of electricity demanded by the demand
node. Moreover, this is considered a balanced transportation
problem because the total amount of electricity sold,��(�, �),
as determined by the CC, is equal to the total amount of
electricity purchased, ��(�, �), which is also chosen by the
CC.

4.3. Energy Routing Optimization. 	e decision problem of
the trading price for the CC, which takes on the role of the
power exchanger, corresponds to a type of classic multiplayer
competitive game.	erefore, di�erent strategies are required
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based on the situation, which in our problem is determined
according to the total amounts of the electricity surplus and
shortage. 	e optimal strategy for the supply and demand
nodes, based on the situation, is as follows.

Situation 1 (excess supply). It is a case in which the total
amount of surplus electricity in the SMGN exceeds the total
amount of electricity shortage:

∑
�∈Supply Nodes

� (�, �) > ∑
�∈Demand Nodes

	 (�, �) . (9)

In this situation, the probability of a sale by a supply
node decreases signi�cantly, and thus Strategy 3 (pessimistic)
is suitable for a supply node. In contrast, the purchase
probability of a demand node increases greatly, and thus a
demand node has an advantage when selecting Strategy 1
(optimistic) to increase its pro�ts.

Situation 2 (equilibrium). It is a case in which the total
amount of surplus electricity in the SMGN is the same as the
total amount of electricity shortage:

∑
�∈Supply Nodes

� (�, �) = ∑
�∈Demand Nodes

	 (�, �) . (10)

In this situation, the sale probability of the supply nodes
is at a similar level as the purchase probability of the demand
nodes. 	us, Strategy 2 (medium) is a good choice for both
supply and demand nodes.

Situation 3 (excess demand). It is a case in which the total
amount of surplus electricity in the SMGN is lower than the
total amount of electricity shortage:

∑
�∈Supply Nodes

� (�, �) < ∑
�∈Demand Nodes

	 (�, �) . (11)

Under excess demand, Strategy 1 (optimistic) is a good
choice for the supply nodes because this situation heightens
the sale probability considerably. Moreover, Strategy 3 (pes-
simistic), forgoing its pro�t, is proper for a demand node
because the purchase probability is very low.

At the beginning of time period �, each supply node
submits its chosen sale price, ��(�, �), and the amount of
electricity for sale, �(�, �), according to its selected strategy, to
the CC. Each demand node also submits its chosen purchase
price, ��(�, �) and the amount of electricity for purchase,
	(�, �), based on its selected strategy, to the CC. 	e CC
then determines the trading amount for each demand node
by utilizing the matching algorithm in order of the desired
transaction price.

	e energy routing problem used for this decision can
be used to �nd the optimum power transmission path,
�∗��(�), utilizing the Hungarian algorithm (developed by Kuhn

in 1955), which is a well-known solving method for the
transportation problem [24]. Moreover, it was proved that
the Hungarian algorithm has a polynomial time complexity
because it uses only a matrix operation.
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Figure 3: Trend of energy storage level at microgrid NC.

5. Experimental Results

We assume three locations, NC, SC, and GA, for the
microgrids used in the simulation and set the di�erent
characteristics for each. NC has more electricity production
than consumption, the electricity consumption of SC exceeds
its production, and GA has similar amounts of energy pro-
duction and consumption. We identify the characteristics of
the three strategies (i.e., optimistic, medium, and pessimistic)
by applying the strategies to these three microgrid locations.

For the results of NC with an excess electricity supply
(see Figure 3), the microgrid does not sell its accumulated
energy surplus and, under the optimistic strategy, has a
consistently high level of electricity stock. 	us, we can
con�rm that a waste of energy owing to an excessive storage
capacity exists. In the usage case for the medium strategy,
NC maintains a low amount of power stock through the
proper sale of its excess electricity, which is similar to the
results of the pessimistic strategy. However, the use of the
pessimistic strategy decreases NC’s pro�ts through o�ering
a lower selling price than in the medium strategy.

In contrast, for SC (i.e., a microgrid whose power
consumption exceeds its production), using the optimistic
strategy does not solve the problemof a lack of power through
purchasing, and the power shortage is maintained (see
Figure 4). Under the medium strategy, SC nearly maintains a
state without a power shortage or excess through a su
cient
purchasing of power, whereas, under the pessimistic strategy,
SC secures some excess electricity through an aggressive
purchase.

For the results of the GA microgrid, which has sim-
ilar levels of electricity production and consumption (see
Figure 5), the optimistic strategy pursues maximized pro�ts
through electricity transactions. 	us, energy depletion is
shown during periods of high electricity consumption, and a
high level of electricity stockpiling is shown for periods with
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Figure 4: Trend of energy storage level at microgrid SC.
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Figure 5: Trend of energy storage level at microgrid GA.

high electricity production. Using the medium strategy, GA
maintains the proper level of stockpiling through its purchas-
ing of electricity during periods of high power consumption
and through its selling of electricity during periods of high
power production.Under the pessimistic strategy, GA’s power
reserves are nearly depleted. 	us, GA appears to have the
optimum status but su�ers from reduced pro�ts from energy
trading owing to its low sales price.

To verify the results based on these three strategies from
another perspective, we demonstrated the variations in the
transaction price determined by the seller and buyer, as
shown in Figure 6. In this �gure, a lack of price points
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Figure 6: Trend of transaction price under di�erent pricing strate-
gies.

Table 2: Total pro�t of each node by electricity transaction.

Node

Strategy

Strategy 1 Strategy 2 Strategy 3

(Optimistic) (Medium) (Pessimistic)

NC 768 908.75 784
SC −13� − 738 −863 −681
GA −30 −45.75 −103

indicates that the trading conditions of the seller and buyer
were not met and no business transactions took place.

Initially, under the optimistic strategy, the deals do not
work well and are thus sustained at the average transaction
price. In contrast, under the pessimistic strategy, the seller
and buyer trade actively (i.e., with the price strategy min-
imizing their pro�ts) according to the variations in supply
and demand, and thus the transaction price changes rapidly.
	e medium strategy shows moderate variations in the
transaction price, which hovers near the average price.

According to the above electricity transaction prices, the
summations of gain obtained at each node are shown in
Table 2.

6. Conclusions

In a smart microgrid network (SMGN), which has been
predicted to be one of the core components of a future
power grid, the optimal power transmission problem is an
important factor. In this paper, we proposed an optimal
price decision strategy according to the particular situation
based on a power exchange. 	e power exchange determines
the proper counterparty by utilizing an a�ordable amount
for surplus electricity, the desirable selling price for such
surplus, the amount of electricity demand, and the desired
purchase price during a shortage period. We also modeled
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an energy routing approach satisfying the amount of elec-
tricity supply/demand, as the same problem, and suggested a
potential solution.	e proposed strategy and energy routing
methodology will contribute to the introduction of a smart
power grid, increasing the possibility of its utilization.

As future work, we plan to compare a combined strategy
that applies a probabilistically selected pricing strategy to the
market using the pure strategies proposed in this paper and
evaluate its performance enhancement. Moreover, we plan
to evaluate our proposed scheme using real network data to
verify the e�ectiveness and e
ciency of a real-world SMGN.
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