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Abstract: Game theory is a method of mathematical analysis developed to study the decision 
making process. In 1928, Von Neumann mathematically proved that every two-person, zero-
sum game with many pure finite strategies for each player is deterministic. In the early 50's, 
Nash presented another concept as the basis for a generalization of Von Neumann’s theorem. 
Another central achievement of game theory is the introduction of evolutionary game theory, 
by which agents can play optimal strategies in the absence of rationality. Through the process 
of Darwinian selection, a population of agents can evolve to an Evolutionary Stable Strategy 
(ESS) as introduced by Maynard Smith in 1982. Keeping pace with these game theoretical 
studies, the first computer simulation of coevolution was tried out by Hillis. Moreover, 
Kauffman proposed the NK model to analyze coevolutionary dynamics between different 
species. He showed how coevolutionary phenomenon reaches static states and that these states 
are either Nash equilibrium or ESS in game theory.  
Since studies concerning coevolutionary phenomenon were initiated, there have been numerous 
other researchers who have developed coevolutionary algorithms. In this paper we propose a 
new coevolutionary algorithm named Game theory based Coevolutionary Algorithm (GCEA) 
and we confirm that this algorithm can be a solution of evolutionary problems by searching the 
ESS. To evaluate this newly designed approach, we solve several test Multiobjective 
Optimization Problems (MOPs). From the results of these evaluations, we confirm that 
evolutionary game can be embodied by the coevolutionary algorithm and analyze the 
optimization performance of our algorithm by comparing the performance of our algorithm 
with that of other evolutionary optimization algorithms. 
 
Keywords: Coevolutionary algorithm, evolutionary stable strategy, game theory, 
multiobjective optimization problem. 
 

1. INTRODUCTION 

Game theory is divided into two categories, 
cooperative and noncooperative. Noncooperative 
game theory seeks to fully explain cooperation as well 
as noncooperation [1]. So in this paper, we bring 
noncooperative game theory into focus. Von Neumann 
laid the foundation for a noncooperative game theory 
in 1928 [2]. As well, in 1951, Nash introduced another 
concept as the basis for a generalization of Von 
Neumann’s theorem [3]. In his paper, as a minimum 

requirement for a pair of strategies to be a candidate 
for the solution of a two-person game, he suggested 
that each strategy had to be the best reply against the 
other. Such a pair of strategies, which are called Nash 
equilibrium, became the basis of modern 
noncooperative game theory [4].  

Since Nash equilibrium was proposed as a solution 
of the noncooperative game, studies to seek for game 
equilibrium have begun in earnest. Among these 
studies, evolutionary game theory is seen as a way of 
thinking about evolution at the phenotypic level when 
the fitness of particular phenotypes depend on their 
frequencies in the population. Lewontin first explicitly 
applied game theory in evolutionary biology [5]. His 
approach, however, was to picture a species as playing 
a game against nature, and to seek strategies that 
minimized the probability of extinction. Slobodkin 
and Rapoport have also taken up a similar study [6]. 
As well, Hamilton sought for an unbeatable strategy, 
which is essentially the same as an Evolutionary 
Stable Strategy (ESS) as defined by Maynard Smith 
and Price [7]. 
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Keeping pace with these researches, the 
coevolutionary algorithm as a trial of using the 
evolutionary algorithm among different species has 
been studied. Hillis [8] demonstrated how simulated 
evolution can be applied to a practical optimization 
problem and more specifically how coevolving 
parasites can improve the coevolution procedure. 
Simulated evolution represents an idealization of 
certain aspects of a biological system. As well 
Hamilton used both computer simulation and 
mathematical arguments to present how such 
coevolution is capable of generating genetic diversity. 
This improved coevolution procedure resulted in an 
increase in optimization efficiency. 

Several researchers of the co-evolutionary 
algorithm studied this phenomenon from the 
evolutionary game theory point of view. Kauffman [9] 
introduced co-evolution based on the NK class of 
statistical models. He indicated how readily 
coevolving ecosystems achieve Nash equilibria and 
how stable to perturbations such equilibria are. In his 
paper, he described a new class of models with which 
to investigate the coevolutionary problems. The class 
of models was related to ESS introduced by Maynard 
Smith and Price [7]. As well, Rosin and Belew [10] 
proposed that coevolution was hypothesized by game-
theoretic constructions such as Maynard Smith’s ESS 
[11] and the Prisoners’ Dilemma [12]. They alleged 
that it also arises in the evolution of AI game 
strategies, where the range of potential opponents 
makes it difficult to establish a single, fixed, 
exogenous fitness function as is typically used in 
genetic algorithms [13]. 

 
2. GAME THEORY 

Game theory is the study involving multi-player 
decision problems in conflict situations. Such a 
situation is called the “Game” and game theory 
provides a mathematical process for selecting an 
optimum strategy in the face of an opponent who has 
a strategy of his own. The game is composed of 
several factors, player, strategy, action and payoff. The 
player who is the decision maker of the game chooses 
specific strategy and takes an action that is then 
rewarded by with a payoff from the game result. In 
the game theory one usually makes the following 
assumptions. All players are rational, that is, each 
player selects the strategy that yields him the greater 
payoff. The matrix of payoffs can represent various 
conflicts. 

 
2.1. Maximin criterion and solution of game 

Several terminologies connected with game theory 
are defined as follows. A game is a sequence of plays, 
some of which may be simultaneous. A strategy is a 
description of the decisions that a player will make in 

possible situations. The game is said to be zero-sum if 
the sum of the players’ payoffs is always zero. Let’s 
consider zero-sum games between two players, 
labeled A  and B . Each player has a finite 
collection of pure strategies. Player A  has strategies 

1 2, , , na a a"  and player B  has strategies 

1 2, , ., mb b b" . Let ije  denote the expected payoff to 

player A  when he uses strategy iA  and player B  
uses strategy jB . The representation of the game is 
given by the payoff matrix. It does not include 
detailed information about the sequences of plays. In 
this game, we must record both players’ payoffs, say 

1 2( , ) ( , ) ije i j e i j e= − = . Player A  wins and player 
B  loses. Thus, when player B  tries to maximize his 
payoff, he is also attempting to minimize the payoff of 
player A . This means that player A  should look at 
the payoff he would receive if he plays strategy iA , 
i.e., min ij

j
e , and choose the strategy that has the 

largest of these minimum payoffs. This is known as 
the maximin criterion. Using this criterion, player A  
can guarantee that his payoff is at least, Lv , the lower 
value of the game, where max minL ij

ji
v e= . Similarly, 

player B  can guarantee that player A ’s payoff is no 
more than, Uv , the upper value of the game, 

min maxU ij
j i

v e= . If in this game, we have L Uv v=  

for a pair of pure strategies, there is said to be a saddle 
point. Consider a two-person, zero-sum game, in 
which A  has n  strategies and B  has m  
strategies. Then max min ( , )M

L qp
v e p q=   

min max ( , ) M
Uq p

e p q v= = . If *p  and *q  achieve the 

maximin criterion of the theorem then 
* *( , ) M M

L Ue p q v v v= = = . We say that v  is the value 
of the game and that the value together with the 
optimal strategies, *p  and *q  are the solution to 

the game. A pair of strategies *p  and *q  is an 
equilibrium pair if for any p  and q   

 
* * * *( , ) ( , ) ( , )e p q e p q e p q≤ ≤ .            (1) 

 
It is possible that there is more than one 

equilibrium-pair. A pair of strategies * *( , )p q  in a 
two-person, zero-sum game is an equilibrium pair if 
and only if * * * *( , , ( , ))p q e p q  is a solution to the 
game. These are available in the case of non-zero-sum 
games [14]. 
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2.2. Concepts of evolutionary games and evolutionary 
stable strategy 

Nash introduced a new concept of game theory that 
results from a solution of the non-cooperative game. 
In his papers [3,4], he said that any two-person, zero-
sum or non-zero-sum game with a finite number of 
pure strategies has at least one equilibrium pair. This 
is referred to as Nash’s theorem and he proved it 
mathematically. In 1952 Nash introduced Nash 
equilibrium, which is the solution of a non-
cooperative game. According to Nash, each 
participant of the game has his own strategy set and 
objective function. Then during the game each player 
searches for the optimal strategy while other players’ 
strategies are fixed. The game is conducted in this 
frame and when no player can further improve his 
criterion, the system is regarded as having reached a 
state of equilibrium, known as Nash equilibrium [3]. 
Differently from classical game theory, in 
evolutionary game theory, there are no rational players 
involved in selecting a strategy. Instead, strategies of 
players are selected by Darwinian selection. The 
primary contribution of evolutionary game theory is 
the concept of ESS. ESS is proposed by biologist 
Maynard Smith. He defined ESS as a strategy such 
that, if all the members of a population adopt it, then 
no mutant strategy could invade the population under 
the influence of natural selection [11]. As well, ESS is 
a refinement concept of Nash equilibrium that does 
away with the traditional assumption of agent 
rationality. Instead, Maynard Smith demonstrates that 
game theoretic equilibrium can be achieved through a 
process of Darwinian selection [15]. Nevertheless, the 
ESS is defined as a static concept, and since its 
introduction numerous other stability concepts have 
been proposed [16], including those that are more 
properly rooted in dynamical systems theory [17]. The 
ESS corresponds to a dynamical attractor [18]. 

 
3. GAME THEORY BASED CO-

EVOLUTIONARY ALGORITHM 

3.1. Coevolutionary algorithm 
As far as the author is aware of, Hillis [8] was the 

first to propose the computational use of predator-prey 
coevolution. He tested coevolving sorting network 
architectures and sets of lists of numbers on the 
sorting networks. The computational study of 
coevolution initiated by Hillis gave birth to 
competitive coevolutionary algorithms. In 1994, 
Paredis introduced Coevolutionary Genetic 
Algorithms (CGAs). In contrast with the typical all-at-
once fitness evaluation of Genetic Algorithms (GAs), 
CGAs employ a partial but continuous fitness 
evaluation. Furthermore, the power of CGAs was 
demonstrated on various applications such as 
classification [19,20], process control [21], and 

constraint satisfaction [22]. In addition to this, a 
number of symbiotic applications have been 
developed [23-25]. 

The use of multiple interacting subpopulations has 
also been explored as an alternate mechanism for 
coevolving niches using the so-called island model 
[26-30]. In the island model a fixed number of 
subpopulations evolve competing rather than 
cooperating solutions. In addition, individuals 
occasionally migrate from one subpopulation to 
another, resulting in a mixing of genetic material. The 
previous work that has looked at cooperating rather 
than competing subpopulations has involved a user-
specified decomposition of the problem into species 
[31]. 

Potter and De Jong have also explored the use of 
multiple cooperative interaction subpopulations as an 
alternate mechanism for representing the coevolution 
of species. The previous work that has looked at 
coevolving multiple cooperative species in separate 
subpopulations involved a user-specified 
decomposition of the problem into species [32]. In 
this coevolutionary approach, multiple instances of 
GAs are run in parallel, each instance of which 
evolves a species of individuals, which are good at 
particular tasks. This is accomplished by selecting a 
representative from each of the GA populations and 
combining them into a single composite agent, which 
is capable of evaluating the top level goal. These 
composite agents were called collaborations. Credit 
from evaluating the composite agent flows back to the 
individual subcomponents reflecting how well they 
collaborate with the other subcomponents to achieve 
the top level goal. This credit is then used by the GA 
instances to evolve better subcomponents. Such 
systems are called Cooperative Coevolutionary 
Genetic Algorithms [33]. 
 
3.2. Idea of game theory based Coevolutionary 

Algorithm  
As previously stated, from a mathematical point of 
view, coevolution has both game theoretical properties 
and dynamics. For that reason coevolution finally 
reaches the stable equilibrium state and this state is 
thought of as an optimal solution because of the 
dominance property of the game. From these 
properties, we assume that the coevolutionary 
algorithm can be made using a game matrix, and as an 
optimal solution of the game, the equilibrium state of 
this coevolutionary algorithm can be found. As well, 
our aim is to combine the coevolutionary algorithm 
with evolutionary game theory and confirm that this 
Game theory based Coevolutionary Algorithm 
(GCEA) can be used in optimization. Although, in 
particular, we suppose that the population dynamics of 
evolutionary game theory can be used to most 
advantageously control the ratio of agents having 
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diverse strategy according to the change of 
environment. As such, firstly we apply this algorithm 
to Multiobjective Optimization Problems (MOPs) for 
an optimization performance evaluation. 

Most of the real-world problems encountered by 
engineers involve simultaneous optimization of 
several competitive objective functions [34]. The 
traditional optimization problems attempt to 
simultaneously minimize cost and maximize fiscal 
return. In searching solutions for these problems, we 
discover that there is not a single optimal solution but 
rather a set of solutions. These solutions are optimal in 
the wider sense that no other solutions in the search 
space are superior to them when all objectives are 
considered. They are generally known as Pareto-
optimal solutions [35].  
 
3.3. Definition of multiobjective optimization problem 

General MOPs contain a set of n  decision 
variables, a set of k  objective functions, and a set of 
m  constraints. In this case, objective functions and 
constraints respectively become functions of the 
decision variables. If the goal of MOPs is to maximize 
the objective functions of the y  vector, then  
 

1

1

maximize ( ) ( ( ),..., ( ),..., ( )),
subject to ( ) ( ( ),..., ( ),..., ( )) 0,

i k

j m

y f x f x f x f x
e x e x e x e x
= =

= ≤
 (2) 

 
where 1 2( , ,..., )nx x x x X= ∈ , 1 2( , ,..., )ky y y y Y= ∈ . 

In (2), x  is called a decision variable vector and 
y  is called an objective function vector. The decision 

variable space is denoted by X  and the objective 
function space is denoted by Y . The constraint 
condition ( ) 0e x ≤  determines the set of feasible 
solutions [34]. The feasible set fX  is defined as the 
set of decision vectors x  that satisfy the constraints 

( )e x : { }| ( ) 0fX x X e x= ∈ ≤ . The image of fX , 
i.e., the feasible region in the objective space, is 
denoted as { }( ) ( )

ff f x XY f X f x
∈

= =∪  [36]. The 

set of solutions of MOPs consist of all decision 
vectors for which the corresponding objective vectors 
cannot be improved in any dimension without 
degradation in another [37]. Differently from Single-
objective Optimization Problems (SOPs), MOPs have 
a set of solutions known as the Pareto optimal set. 
This solution set is generally called non-dominated 
solutions and is optimal in the sense that no other 
solutions are superior to them in the search space 
when all objectives are considered. 
 
3.4. Several approaches to solve MOPs 

Classical methods for generating the Pareto-optimal 
set aggregate the objective functions of MOPs into a 

single parameterized objective function. Then the 
optimizer systematically varies the parameters of this 
function. Several optimizations are performed in order 
to achieve a set of solutions that approximate the 
Pareto-optimal set [34]. Some representatives of this 
class of techniques include the weighting method [39], 
the constraint method [39], goal programming [40], 
and the min-max approach [41]. 

The first exploration for treating objective functions 
separately in Evolutionary Algorithms (EAs) was 
launched by Schaffer. In his dissertation [42,43], 
Schaffer proposed the Vector Evaluated Genetic 
Algorithm (VEGA) for searching a solution set to 
solve MOPs. He created VEGA to find and maintain 
multiple classification rules in a set-covering problem. 
VEGA attempted to achieve this goal by selecting a 
fraction of the next generation using one of each of 
the attributes (e.g., cost, reliability) [44]. Other 
approaches that search solutions for MOPs include 
those of Fourman [45], Kursawe [46], and Hajela and 
Lin [47]. However, as none of them makes direct use 
of the actual definition of Pareto-optimality, different 
non-dominated individuals are generally assigned 
different fitness values [48]. 

Goldberg [49] proposed a Pareto-based fitness 
assignment approach known as the Pareto Genetic 
Algorithm (Pareto GA). The idea of this algorithm is 
to assign high probability to all non-dominated 
individuals in the population. This method consists of 
assigning rank 1 to the non-dominated individuals and 
removing them from contention, then finding a new 
set of non-dominated individuals, ranked 2, and so 
forth. He named these rankings as Pareto ranking. 
Fonseca and Fleming [50] have proposed a different 
scheme, whereby an individual’s rank corresponds to 
the number of individuals in the current population by 
which it is dominated. Therefore non-dominated 
individuals are assigned the same rank, while 
dominated ones are penalized according to the 
population density of the corresponding region of the 
trade-off surface [51]. Horn and Nafpliotis also 
proposed a tournament selection based on Pareto 
dominance [44]. Moreover distributive search is very 
important in Pareto GA. The goal of Pareto GA is to 
explore all Pareto optimal solution sets distributed 
along the Pareto frontier. To achieve this goal 
Goldberg and Richardson introduced the concept of 
fitness sharing in their paper [52]. It is within the 
range of possibility to search distributive solutions 
using the fitness sharing that makes highly fitted 
candidates share fitness with others in their 
surroundings [53]. With the introduction of non-
dominance Pareto-ranking and fitness sharing, Pareto 
GA has now become a type of standard in the sense 
that the Pareto GA provides a very efficient way to 
find a wide range of solutions to a given problem. 
Although this approach proposed by Goldberg was 
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further developed in [54] and led to many applications 
[55-57], all of these approaches are based on the 
concept of Pareto ranking and use either sharing or 
mating restrictions to ensure diversity.  
 
3.5. Design game theory based Co-evolutionary 

Algorithm to solve MOPs 
In this section, we design a Game theory based 

Coevolutionary Algorithm to solve MOPs. Through 
the evolutionary game, players try to optimize their 
own objective function and all individuals of the 
population are regenerated after players have been 
rewarded. The reward value is determined from the 
game matrix. For example, in the case of 
minimization MOPs, which have two variables x , 
y  and objective functions 1( , )f x y , 2 ( , )f x y , the 

architecture of populations for GCEA is designed as 
follows. In Fig. 1, fitness iF  is determined from the 
game matrix where 0,1, ,i n= " . The game matrix is 
defined in the previous tables and two populations 
coevolve with each other through the game. Payoff of 
the game for each population, iG , is calculated from 
the differences between two objective functions. 

 
1 1

1 2

2 2

2 1

( , ' ) (( , ), ( ' , ' ))
( , ) ( ' , ' ),

( , ' ) (( , ), ( ' , ' ))
( ' , ' ) ( , ).

i i i i i i

i i i i

i i i i i i

i i i i

G v v G x y x y
f x y f x y

G v v G x y x y
f x y f x y

=

= −

=

= −

       (3) 

 
From these payoffs, the fitness of each player is 

calculated   
1

2

(( , ), ( ' , ' ))
100 ,

(( , ), ( ' , ' ))
' 100 ,

i i i i
i

i i i i
i

G x y x y
F

G x y x y
F

α

α

= ×

= ×
         (4) 

 
where α  is constant to normalize the fitness of iF  
or 'iF  so that α  must be max (( , ),k i i

i
G x y  

( ' , ' ))i ix y . From these establishments, GCEA is as 
follows: 

Step 1: Two populations are randomly generated as 
in Fig. 1. 
Step 2: The Player selected in the first population 
plays with that from the second population and then 
he is paid off using Table 1 and (3).  
Step 3: The Player in the second population is paid 
off using Table 2 and (3).  
Step 4: The fitness of each player nF  and 'nF  is 
updated using (4).  
Step 5: The process from Step 2 to Step 3 is 
executed for all individuals of each population one by 
one.  
Step 6: Each population is regenerated separately 
using genetic algorithms.  
Step 7: The process from Step 2 to Step 6 is 
executed.  

 
Keeping these ideas, we apply GCEA to MOPs. 

 
4. TEST PROBLEMS AND EVALUATION 

While an assortment of evolutionary approaches 
and their variations have been successfully applied to 
solving MOPs, in recent years some researchers have 
investigated particular topics of evolutionary 
multiobjective search. In spite of this variety of 
approaches, there is a lack of studies that compare the 
performance and different aspects of these approaches. 
In this chapter, we provide a systematic comparison of 
several multiobjective evolutionary algorithms. The 
test problems considered here are used in Zitzler’s 
paper [58], and cover six representative MOPs, which 
mention a corresponding test function and are 
constructed in the following the guidelines in [59]. 

plays

plays

plays

plays

Fig. 1. Architecture of population for GCEA. 

 
Table 1. The game matrix for population 1 of GCEA.

 1'v  2'v  "  'nv  

1v 1 1 1( , ' )G v v 1 1 2( , ' )G v v  "  1 1( , ' )nG v v

2v 1 2 1( , ' )G v v 1 2 2( , ' )G v v  "  1 2( , ' )nG v v

#  #  #  %  #  

nv 1 1( , ' )nG v v 1 2( , ' )nG v v  "  1( , ' )n nG v v

 
Table 2. The game matrix for population 2 of GCEA.

 1'v  2'v  "  'nv  

1v 2 1 1( , ' )G v v 2 1 2( , ' )G v v  "  2 1( , ' )nG v v

2v 2 2 1( , ' )G v v 2 2 2( , ' )G v v  "  2 2( , ' )nG v v

#  #  #  %  #  

nv 2 1( , ' )nG v v 2 2( , ' )nG v v  "  2 ( , ' )n nG v v
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4.1. Test MOPs 
In the previous chapters, we introduced various 

established evolutionary algorithms for solving MOPs. 
In spite of this variety, there is a lack of studies that 
compare the performance and different aspects of 
these approaches. From among these studies we 
introduce several researches. On the theoretical side, 
Fonseca and Fleming discussed the influence of 
different fitness assignment strategies on the selection 
process [51]. Zitzler provides a systematic comparison 
of multiobjective EAs, including a random search 
strategy as well as a single objective evolutionary 
algorithm using objective aggregation. The basis of 
this empirical study is formed by a set of well-defined, 
domain-independent test functions that allow the 
investigation of independent problem features. The 
functions considered here cover the range of 
convexity, nonconvexity, discrete, multimodal, 
deceptive, and non-uniform Pareto fronts. Deb has 
identified several features that may cause difficulties 
for multiobjective evolutionary algorithms in 
converging to the Pareto-optimal front and 
maintaining diversity within the population [36,38]. 
The test functions used in this paper is as follows. 
y Test function 1T  has a convex Pareto-optimal 

front:  
1 1 1

2
2

1
1

( ) ,

( ,..., ) 1 9 ,
1

( , ) 1 ,

n
ii

n

f x x

x
g x x

n
fh f g
g

=

=

= + ⋅
−

= −

∑  

 where 30n = , and [0,1]ix ∈ . 
y Test function 2T  has a non-convex Pareto-

optimal front:  
1 1 1

2
2

2
1

1

( ) ,

( ,..., ) 1 9 ,
1

( , ) 1 ,

n
ii

n

f x x

x
g x x

n

fh f g
g

=

=

= + ⋅
−

 
= −  

 

∑  

 where 30n = , and [0,1]ix ∈ .  
y Test function 3T  represents the discreteness 

feature; its Pareto-optimal front consists of several 
non-contiguous convex parts:  
1 1 1

2
2

1 1
1 1

( ) ,

( ,..., ) 1 9 ,
1

( , ) 1 sin(10 ),

n
ii

n

f x x

x
g x x

n
f fh f g f
g g

π

=

=

= + ⋅
−

 
= − −  

 

∑  

 where 30n = , and [0,1]ix ∈ .  

y Test function 4T  contains 921  local Pareto-
optimal sets and therefore tests for the 
evolutionary algorithm's ability to deal with 
multimodality:  
1 1 1

2
2 2

1
1

( ) ,

( ,..., ) 1 10( 1) ( 10cos(4 )),

( , ) 1 ,

n
n i ii

f x x

g x x n x x

fh f g
g

π=

=

= + − + −

= −

∑

 where 30n = , [0,1]ix ∈  and 2 , , [ 5,5]nx x ∈ −" .  
y Test function 5T  describes a deceptive problem 

and distinguishes itself from the other test 
functions in that ix  represents a binary string: 

1 1 1

2 2

1
1

( ) 1 ( ),

( ,..., ) ( ( )),

1( , ) ,

n
n ii

f x u x

g x x v u x

h f g
f

=

= +

=

=

∑  

where ( )iu x  gives the number of ones in the bit 
vector ix , 

2 ( ) ( ) 5
( ( ))

1 ( ) 5
i i

i
i

u x if u x
v u x

if u x
+ < 

=  = 
 

and 11n = , 30
1 {0,1}x =  and 5

2 ,..., {0,1}nx x ∈ . 
y Test function 6T  includes two difficulties caused 

by the non-uniformity of the objective space: 
Firstly, the Pareto-optimal solutions are non-
uniformly distributed along the global Pareto front. 
Secondly, the density of the solutions is least near 
the Pareto-optimal front and most away from the 
front:  

6
1 1 1 1

0.25

2
2

2
1

1

( ) 1 exp( 4 )sin (6 ),

( ,..., ) 1 9 ,
1

( , ) 1 ,

n
ii

n

f x x x

x
g x x

n

fh f g
g

π

=

= − −

 
 = + ⋅
 −
 

 
= −  

 

∑  

where 10n =  and [0,1]ix ∈ .  
 

We apply GCEA proposed in our paper to these six 
test MOPs and analyze the experimental results. 
 
4.2. Experimental results and analysis  

Figs. 2-13 display optimized solutions of MOPs by 
evolutionary algorithms introduced in Zitzler's paper 
and our GCEA. To analyze these results we cite 
figures, which display optimized solutions using the 
several evolutionary algorithms proposed by Zitzler in 
his paper [60]. He used 8 different evolutionary 
algorithms to optimize six test MOPs. In these cited 
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figures, the evolutionary algorithms used are as 
follows: 
y SPEA: The Strength Pareto Evolutionary 

Algorithm. 
y SOEA: A Single-Objective Evolutionary 

Algorithm using weighted-sum aggregation. 
y NSGA: The Nondominated Sorting Genetic 

Algorithm. 
y VEGA: The Vector Evaluated Genetic Algorithm.  
y HLGA: Hajela and Lin's weighted-sum based 

approach. 
y NPGA: The Niched Pareto Genetic Algorithm. 
y FFGA: Fonseca and Fleming's multiobjective EA. 
y RAND: A random search algorithm. 

 
Figs. 2, 4, 6, 8, 10, and 12 show optimized 

solutions of MOPs by eight different EAs previously 
introduced in Zitzler’s paper [60]. To analyze the 
evaluation of our GCEA, we cite these results. Figs. 3, 
5, 7, 9, 11, and 13 display simulated optimization 
results using our GCEA. GA parameters used are as  
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follows, the number of generations is 500, population 
size is 100, one-point crossover rate is 0.8, and  
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mutation ratio is 0.01. These are the same parameter 
values used in Zitzler’s simulations. From comparing 
the Pareto fronts in the cited figures with ESS found 

by GCEA, we can see that ESS exists in the Pareto 
front or Pareto optimal set. So we conclude that 
GCEA can determine MOP’s solution set. For every 
test MOPs, GCEA can find the optimized solution set 
of these problems. 

Though these results are successful, finding the 
Pareto-optimal front of 4T  test MOP is too hard to 
find and so Zitzler applied elitism to his algorithm. 
But GCEA does not need this method. In place of this 
concept, a larger population size is needed. Figs. 14 
and 15 show another experimental result using only 
adapted algorithm and population size for 4T  test 
MOP.  

In this experiment GCEA does not use elitism but 
only increased population size. From Fig. 14, though 
the optimization performance of NSGA is better 
according to increasing population size, the Pareto-
optimal front can determine when the elitism is 
appended. But from Fig. 15, we confirm that GCEA 
can find the Pareto-optimal front simply by increasing 
population size. From these previous results, we can 
see that ESS found by GCEA is very similar to the 
Pareto front. So we conclude that this algorithm newly 
proposed by us can search the Pareto-optimal front of 
MOPs, as well, this GCEA is more concise than other 
evolutionary algorithms used in Zitzler’s experiments. 
 

5. CONCLUSIONS 

In this paper, we introduce a brief history and 
several concepts of game theory and coevolutionary 
algorithms. Some researchers have studied the relation 
between these two fields. As well, we proposed Game 
theory based Coevolutionary Algorithm, which is 
based on Evolutionary Game Theory, as a new 
approach to solve evolutionary problems that are 
particularly involved in these fields. Moreover 
Evolutionary Stable Strategy is the basis of GCEA. To 
evaluate the performance of GCEA, we used 
Multiobjective Optimization Problems. Although ESS 
is the equilibrium solution of the evolutionary game 
involved in mathematics and economics, we confirm 
that GCEA can be used as a new optimization 
approach from the simulation result. So we presume 
that GCEA may be useful in implementing the real 
robot controller for the environment, which has 
several conflict objective functions. In our future 
works, we will focus our study on the real robot 
controller implementations. 
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