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GAME THEORY, MAXIMUM ENTROPY, MINIMUM
DISCREPANCY AND ROBUST BAYESIAN

DECISION THEORY1

BY PETER D. GRÜNWALD AND A. PHILIP DAWID

CWI Amsterdam and University College London

We describe and develop a close relationship between two problems that
have customarily been regarded as distinct: that of maximizing entropy, and
that of minimizing worst-case expected loss. Using a formulation grounded
in the equilibrium theory of zero-sum games between Decision Maker and
Nature, these two problems are shown to be dual to each other, the solution to
each providing that to the other. Although Topsøe described this connection
for the Shannon entropy over 20 years ago, it does not appear to be widely
known even in that important special case.

We here generalize this theory to apply to arbitrary decision problems
and loss functions. We indicate how an appropriate generalized definition of
entropy can be associated with such a problem, and we show that, subject to
certain regularity conditions, the above-mentioned duality continues to apply
in this extended context. This simultaneously provides a possible rationale for
maximizing entropy and a tool for finding robust Bayes acts. We also describe
the essential identity between the problem of maximizing entropy and that of
minimizing a related discrepancy or divergence between distributions. This
leads to an extension, to arbitrary discrepancies, of a well-known minimax
theorem for the case of Kullback–Leibler divergence (the “redundancy-
capacity theorem” of information theory).

For the important case of families of distributions having certain mean
values specified, we develop simple sufficient conditions and methods for
identifying the desired solutions. We use this theory to introduce a new
concept of “generalized exponential family” linked to the specific decision
problem under consideration, and we demonstrate that this shares many of
the properties of standard exponential families.

Finally, we show that the existence of an equilibrium in our game can be
rephrased in terms of a “Pythagorean property” of the related divergence,
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thus generalizing previously announced results for Kullback–Leibler and
Bregman divergences.

1. Introduction. Suppose that, for purposes of inductive inference or choos-
ing an optimal decision, we wish to select a single distributionP ∗ to act as rep-
resentative of a class� of such distributions. The maximum entropy principle
[Jaynes (1989), Csiszár (1991) and Kapur and Kesavan (1992)] is widely ap-
plied for this purpose, but its rationale has often been controversial [see, e.g.,
van Fraassen (1981), Shimony (1985), Skyrms (1985), Jaynes (1985), Seidenfeld
(1986) and Uffink (1995, 1996)]. Here we emphasize and generalize a reinterpreta-
tion of the maximum entropy principle [Topsøe (1979), Walley (1991), Chapter 5,
Section 12, and Grünwald (1998)]: that the distributionP ∗ that maximizes the en-
tropy over� also minimizes the worst-case expected logarithmic score (log loss).
In the terminology of decision theory [Berger (1985)],P ∗ is a robust Bayes, or
�-minimax, act, when loss is measured by the logarithmic score. This gives a
decision-theoretic interpretation of maximum entropy.

In this paper we extend this result to apply to a generalized concept of entropy,
tailored to whatever loss functionL is regarded as appropriate, not just logarithmic
score. We show that, under regularity conditions, maximizing this generalized
entropy constitutes the major step toward finding the robust Bayes (“�-minimax”)
act against� with respect toL. For the important special case that� is described
by mean-value constraints, we give theorems that in many cases allow us to
find the maximum generalized entropy distribution explicitly. We further define
generalized exponential families of distributions, which, for the case of the
logarithmic score, reduce to the usual exponential families. We extend generalized
entropy togeneralized relative entropy and show how this is essentially the same
as a general decision-theoretic definition ofdiscrepancy. We show that the family
of divergences between probability measures known asBregman divergences
constitutes a special case of such discrepancies. A discrepancy can also be used
as a loss function in its own right: we show that a minimax result for relative
entropy [Haussler (1997)] can be extended to this more general case. We further
show that a “Pythagorean property” [Csiszár (1991)] known to hold for relative
entropy and for Bregman divergences in fact applies much more generally; and we
give a precise characterization of those discrepancies for which it holds.

Our analysis is game-theoretic, a crucial concern being the existence and
properties of asaddle-point, and its associated minimax and maximin acts, in a
suitable zero-sum game between Decision Maker and Nature.

1.1. A word of caution. It is not our purpose either to advocate or to criticize
the maximum entropy or robust Bayes approach: we adopt a philosophically
neutral stance. Rather, our aim is mathematical unification. By generalizing the
concept of entropy beyond the standard Shannon framework, we obtain a variety
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of interesting characterizations of maximum generalized entropy and display its
connections with other known concepts and results.

The connection with�-minimax might be viewed, by those who already
regard robust Bayes as a well-founded principle, as a justification for maximizing
entropy—but it should be noted that�-minimax, like all minimax approaches,
is not without problems of its own [Berger (1985)]. We must also point out
that some of the more problematic aspects of maximum entropy inference, such
as the incompatibility of maximum entropy with Bayesian updating [Seidenfeld
(1986) and Uffink (1996)], carry over to our generalized setting: in the words of
one referee, rather than resolving this problem, we “spread it to a new level of
abstraction and generality.” Although these dangers must be firmly held in mind
when considering the implications of this work for inductive inference, they do not
undermine the mathematical connections established.

2. Overview. We start with an overview of our results. For ease of exposition,
we make several simplifying assumptions, such as a finite sample space, in this
section. These assumptions will later be relaxed.

2.1. Maximum entropy and game theory. Let X be a finite sample space,
and let� be a family of distributions overX. Consider a Decision Maker (DM)
who has to make a decision whose consequences will depend on the outcome
of a random variableX defined onX. DM is willing to assume thatX is
distributed according to someP ∈ �, a known family of distributions overX,
but he or she does not know which such distribution applies. DM would like to
pick a singleP ∗ ∈ � to base decisions on. One way of selecting such aP ∗ is to
apply themaximum entropy principle [Jaynes (1989)], which advises DM to pick
that distributionP ∗ ∈ � maximizingH(P ) over all P ∈ �. HereH(P ) denotes
the Shannon entropy of P , H(P ) := −∑

x∈X p(x) logp(x) = EP {− logp(X)},
wherep is the probability mass function ofP . However, the various rationales
offered in support of this advice have often been unclear or disputed. Here we
shall present a game-theoretic rationale, which some may find attractive.

Let A be the set of all probability mass functions defined overX. By
the information inequality [Cover and Thomas (1991)], we have that, for any
distribution P , infq∈A EP {− logq(X)} is achieved uniquely atq = p, where
it takes the valueH(P ). That is, H(P ) = infq∈A EP {− logq(X)}, and so the
maximum entropy can be written as

sup
P∈�

H(P ) = sup
P∈�

inf
q∈A

EP {− logq(X)}.(1)

Now consider the “log loss game” [Good (1952)], in which DM has to specify
someq ∈ A, and DM’s ensuing loss if Nature then revealsX = x is measured
by − logq(x). Alternatively, we can consider the “code-length game” [Topsøe
(1979) and Harremoës and Topsøe (2001)], wherein we require DM to specify
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a prefix-free codeσ , mappingX into a suitable set of finite binary strings, and
to measure his or her loss whenX = x by the lengthκ(x) of the codewordσ(x).
Thus DM’s objective is to minimize expected code-length. Basic results of coding
theory [see, e.g., Dawid (1992)] imply that we can associate withσ a probability
mass functionq havingq(x) = 2−κ(x). Then, up to a constant,− logq(x) becomes
identical with the code-lengthκ(x), so that the log loss game is essentially
equivalent to the code-length game.

By analogy with minimax results of game theory, one might conjecture that

sup
P∈�

inf
q∈A

EP {− logq(X)} = inf
q∈A

sup
P∈�

EP {− logq(X)}.(2)

As we have seen,P achieving the supremum on the left-hand side of (2) is
a maximum entropy distribution in�. However, just as important,q achieving
the infimum on the right-hand side of (2) is arobust Bayes act against�, or
a�-minimax act [Berger (1985)], for the log loss decision problem.

Now it turns out that, when� is closed and convex, (2) does indeed hold under
very general conditions. Moreover the infimum on the right-hand side is achieved
uniquely for q = p∗, the probability mass function of the maximum entropy
distributionP ∗. Thus, in this game between DM and Nature, the maximum entropy
distributionP ∗ may be viewed, simultaneously, as defining both Nature’s maximin
and—in our view more interesting—DM’s minimax strategy. In other words,
maximum entropy is robust Bayes. This decision-theoretic reinterpretation might
now be regarded as a plausible justification for selecting the maximum entropy
distribution. Note particularly that we donot restrict the actsq available to DM to
those corresponding to a distribution in the restricted set�: that the optimal actp∗
does indeed turn out to have this property is a consequence of, not a restriction on,
the analysis.

The maximum entropy method has been most commonly applied in the setting
where � is described bymean-value constraints [Jaynes (1989) and Csiszár
(1991)]: � = {P :EP (T ) = τ }, whereT = t (X) ∈ Rk is some given real- or
vector-valued statistic. As pointed out by Grünwald (1998), for such constraints
the property (2) is particularly easy to show. By the general theory of exponential
families [Barndorff-Nielsen (1978)], under some mild conditions onτ there will
exist a distributionP ∗ satisfying the constraint EP ∗(T ) = τ and having probability
mass function of the formp∗(x) = exp{α0 + αTt (x)} for someα ∈ Rk , α0 ∈ R.
Then, for anyP ∈ �,

EP {− logp∗(X)} = −α0 − αTEP (T ) = −α0 − αTτ = H(P ∗).(3)

We thus see thatp∗ is an “equalizer rule” against�, having the same expected loss
under anyP ∈ �.

To see thatP ∗ maximizes entropy, observe that, for anyP ∈ �,

H(P ) = inf
q∈A

EP {− logq(X)} ≤ EP {− logp∗(X)} = H(P ∗),(4)

by (3).
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To see thatp∗ is robust Bayes and that (2) holds, note that, for anyq ∈ A,

sup
P∈�

EP {− logq(X)} ≥ EP ∗{− logq(X)} ≥ EP ∗{− logp∗(X)} = H(P ∗),(5)

where the second inequality is the information inequality [Cover and Thomas
(1991)]. Hence

H(P ∗) ≤ inf
q∈A

sup
P∈�

EP {− logq(X)}.(6)

However, it follows trivially from the “equalizer” property (3) ofp∗ that

sup
P∈�

EP {− logp∗(X)} = H(P ∗).(7)

From (6) and (7), we see that the choiceq = p∗ achieves the infimum on the right-
hand side of (2) and is thus robust Bayes. Moreover, (2) holds, with both sides
equal toH(P ∗).

The above argument can be extended to much more general sample spaces (see
Section 7). Although this game-theoretic approach and result date back at least to
Topsøe (1979), they seem to have attracted little attention so far.

2.2. This work: generalized entropy. The above robust Bayes view of maxi-
mum entropy might be regarded as justifying its use in those decision problems,
such asdiscrete coding andKelly gambling [Cover and Thomas (1991)], where the
log loss is clearly an appropriate loss function to use. But what if we are interested
in other loss functions? This is the principal question we address in this paper.

2.2.1. Generalized entropy and robust Bayes acts. We first recall, in Section 3,
a natural generalization of the concept of “entropy” (or “uncertainty inherent in a
distribution”), related to a specific decision problem and loss function facing DM.
The generalized entropy thus associated with the log loss problem is just the
Shannon entropy. More generally, letA be some space of actions or decisions and
let X be the (not necessarily finite) space of possible outcomes to be observed. Let
the loss function be given byL :X × A → (−∞,∞], and let� be a convex set of
distributions overX. In Sections 4–6 we set up a statistical gameG� based on these
ingredients and use this to show that, under a variety of broad regularity conditions,
the distributionP ∗ maximizing, over�, the generalized entropy associated with
the loss functionL has a Bayes acta∗ ∈ A [achieving infa∈A L(P ∗, a)] that is a
robust Bayes (�-minimax) decision relative toL—thus generalizing the result for
the log loss described in Section 2.1. Some variations on this result are also given.

2.2.2. Generalized exponential families. In Section 7 we consider in detail the
case ofmean-value constraints, of the form� = {P :EP (T ) = τ }. For fixed loss
functionL and statisticT , asτ varies we obtain a family of maximum generalized
entropy distributions, one for each value ofτ . For Shannon entropy, this turns out
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to coincide with theexponential family having natural sufficient statisticT [Csiszár
(1975)]. In close analogy we define the collection of maximum generalized entropy
distributions, as we varyτ , to be thegeneralized exponential family determined by
L andT , and we give several examples of such generalized exponential families.
In particular, Lafferty’s “additive models based on Bregman divergences” [Lafferty
(1999)] are special cases of our generalized exponential families (Section 8.4.2).

2.2.3. Generalized relative entropy and discrepancy. In Section 8 we describe
how generalized entropy extends togeneralized relative entropy and show how this
in turn is intimately related to adiscrepancy or divergence function. Maximum
generalized relative entropy then becomes a special case of the minimum
discrepancy method. For the log loss, the associated discrepancy function is just
the familiar Kullback–Leibler divergence, and the method then coincides with the
“classical” minimum relative entropy method [Jaynes (1989); note that, for Jaynes,
“relative entropy” is the same as Kullback–Leibler divergence; for us it is the
negative of this].

2.2.4. A generalized redundancy-capacity theorem. In many statistical deci-
sion problems it is more natural to seek minimax decisions with respect to the
discrepancy associated with a loss, rather than with respect to the loss directly.
With any game we thus associate a new “derived game,” in which the discrepancy
constructed from the loss function of the original game now serves as a new loss
function. In Section 9 we show that our minimax theorems apply to games of this
form too: broadly, whenever the conditions for such a theorem hold for the original
game, they also hold for the derived game. As a special case, we reprove a minimax
theorem for the Kullback–Leibler divergence [Haussler (1997)], known in infor-
mation theory as the redundancy-capacity theorem [Merhav and Feder (1995)].

2.2.5. The Pythagorean property. The Kullback–Leibler divergence has a
celebrated property reminiscent of squared Euclidean distance: it satisfies an
analogue of the Pythagorean theorem [Csiszár (1975)]. It has been noted [Csiszár
(1991), Jones and Byrne (1990) and Lafferty (1999)] that a version of this property
is shared by the broader class of Bregman divergences. In Section 10 we show
that a “Pythagorean inequality” in fact holds for the discrepancy based on an
arbitrary loss functionL, so long as the gameG� has a value; that is, an analogue
of (2) holds. Such decision-based discrepancies include Bregman divergences as
special cases. We demonstrate that, even for the case of mean-value constraints,
the Pythagorean inequality for a Bregman divergence may be strict.

2.2.6. Finally, Section 11 takes stock of what has been achieved and presents
some suggestions for further development.
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3. Decision problems. In this section we set out some general definitions and
properties we shall require. For more background on the concepts discussed here,
see Dawid (1998).

A DM has to take some actiona selected from a givenaction space A, after
which Nature will reveal the valuex ∈ X of a quantityX, and DM will then
suffer a lossL(x, a) in (−∞,∞]. We suppose that Nature takes no account of the
action chosen by DM. Then this can be considered as a zero-sum game between
Nature and DM, with both players moving simultaneously, and DM paying Nature
L(x, a) after both moves are revealed. We call such a combinationG := (X,A,L)

a basic game.
Both DM and Nature are also allowed to make randomized moves, such a move

being described by a probability distributionP overX (for Nature) orζ overA
(for DM). We assume that suitableσ -fields, containing all singleton sets, have been
specified inX andA, and that any probability distributions considered are defined
over the relevantσ -field; we denote the family of all such probability distributions
onX by P0. We further suppose that the loss functionL is jointly measurable.

3.1. Expected loss. We shall permit algebraic operations on the extended real
line [−∞,∞], with definitions and exceptions as in Rockafellar (1970), Section 4.

For a functionf :X → [−∞,∞], and P ∈ P0, we may denote EP {f (X)}
[i.e., EX∼P {f (X)}] by f (P ). When f is bounded below,f (P ) is construed
as ∞ if P {f (X) = ∞} > 0. When f is unbounded, we interpretf (P ) as
f +(P ) − f −(P ) ∈ [−∞,+∞], wheref +(x) := max{f (x),0} and f −(x) :=
max{−f (x),0}, allowing eitherf +(P ) or f −(P ) to take the value∞, but not
both. In this last casef (P ) is undefined, else it isdefined (either as a finite number
or as±∞).

If DM knows that Nature is generatingX from P or, in the absence of such
knowledge, DM is usingP to represent his or her own uncertainty aboutX,
then the undesirability to DM of any acta ∈ A will be assessed by means of its
expected loss,

L(P,a) := EP {L(X,a)}.(8)

We can similarly extendL to randomized acts:L(x, ζ ) := EA∼ζ {L(x,A)},
L(P, ζ ) = E(X,A)∼P×ζ {L(X,A)}.

Throughout this paper we shall mostly confine attention to probability measures
P ∈ P0 such thatL(P,a) is defined for alla ∈ A, and we shall denote the family
of all suchP by P . We further confine attention to randomized actsζ such
that L(P, ζ ) is defined for allP ∈ P , denoting the set of all suchζ by Z. Note
that any distribution degenerate at a pointx ∈ X is in P , and soL(x, ζ ) is defined
for all x ∈ X, ζ ∈ Z.

LEMMA 3.1. For all P ∈ P , ζ ∈ Z,

L(P, ζ ) = EX∼P {L(X, ζ )} = EA∼ ζ {L(P,A)}.(9)
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PROOF. WhenL(P, ζ ) is finite this is just Fubini’s theorem.
Now consider the caseL(P, ζ ) = ∞. First supposeL ≥ 0 everywhere.

If L(x, ζ ) = ∞ for x in a subset ofX having positiveP -measure, then (9)
holds, both sides being+∞. Otherwise,L(x, ζ ) is finite almost surely[P ].
If EP {L(X, ζ )} were finite, then by Fubini it would be the same asL(P, ζ ).
So once again EP {L(X, ζ )} = L(P, ζ ) = +∞.

This result now extends easily to possibly negativeL, on noting thatL−(P, ζ )

must be finite; a parallel result holds whenL(P, ζ ) = −∞.
Finally the whole argument can be repeated after interchanging the roles ofx

anda and ofP andζ . �

COROLLARY 3.1. For any P ∈ P ,

inf
ζ∈Z

L(P, ζ ) = inf
a∈A

L(P,a).(10)

PROOF. Clearly infζ∈Z L(P, ζ ) ≤ infa∈A L(P,a). If inf a∈A L(P,a) = −∞
we are done. Otherwise, for anyζ ∈ Z, L(P, ζ ) = EA∼ζL(P,A) ≥
infa∈A L(P,a). �

We shall need the fact that, for anyζ ∈ Z, L(P, ζ ) is linear in P in the
following sense.

LEMMA 3.2. Let P0,P1 ∈ P , and let Pλ := (1−λ)P0 +λP1. Fix ζ ∈ Z, such
that the pair {L(P0, ζ ),L(P1, ζ )} does not contain both the values −∞ and +∞.
Then, for any λ ∈ (0,1), L(Pλ, ζ ) is finite if and only if both L(P1, ζ ) and L(P0, ζ )

are. In this case L(Pλ, ζ ) = (1− λ)L(P0, ζ ) + λL(P1, ζ ).

PROOF. Consider a bivariate random variable(I,X) with joint distributionP ∗
over{0,1}×X specified by the following:I = 1,0 with respective probabilitiesλ,
1− λ; and, givenI = i, X has distributionPi . By Fubini we have

EP ∗{L(X, ζ )} = EP ∗[EP ∗{L(X, ζ )|I }],
in the sense that, whenever one side of this equation is defined and finite, the same
holds for the other, and they are equal. Noting that, underP ∗, the distribution ofX
is Pλ marginally, andPi conditional onI = i (i = 0,1), the result follows. �

3.2. Bayes act. Intuitively, whenX ∼ P an actaP ∈ A will be optimal if it
minimizesL(P,a) over alla ∈ A. Any such actaP is aBayes act againstP . More
generally, to allow for the possibility thatL(P,a) may be infinite as well as to take
into account randomization, we callζP ∈ Z a (randomized) Bayes act, or simply
Bayes, againstP (not necessarily inP ) if

EP {L(X, ζ ) − L(X, ζP )} ∈ [0,∞](11)
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for all ζ ∈ Z. We denote byAP (resp.ZP ) the set of all nonrandomized (resp.
randomized) Bayes acts againstP . ClearlyAP ⊆ ZP , andL(P, ζP ) is the same
for all ζP ∈ ZP .

The loss functionL will be called �-strict if, for each P ∈ �, there
existsaP ∈ A that is the unique Bayes act againstP ; L is �-semistrict if, for
eachP ∈ �, AP is nonempty, anda, a′ ∈ AP ⇒ L(·, a) ≡ L(·, a′). WhenL is
�-strict, andP ∈ �, it can never be optimal for DM to choose a randomized act;
whenL is �-semistrict, even though a randomized act can be optimal there is never
any point in choosing one, since its loss function will be identical with that of any
nonrandomized optimal act.

Semistrictness is clearly weaker than strictness. For our purposes we can replace
it by the still weaker concept ofrelative strictness: L is �-relatively strict if
for all P ∈ � the set of Bayes actsAP is nonempty and, for alla, a′ ∈ AP ,
L(P ′, a) = L(P ′, a′) for all P ′ ∈ �.

3.3. Bayes loss and entropy. Whether or not a Bayes act exists, theBayes loss
H(P ) ∈ [−∞,∞] of a distributionP ∈ P is defined by

H(P ) := inf
a∈A

L(P,a).(12)

It follows from Corollary 3.1 that it would make no difference if the infimum
in (12) were extended to be overζ ∈ Z. We shall mostly be interested in Bayes acts
of distributionsP with finite H(P ). In the context of Section 2.1, withL(x, q) the
log loss− logq(x), H(P ) is just the Shannon entropy ofP .

PROPOSITION 3.1. Let P ∈ P and suppose H(P ) is finite. Then the
following hold:

(i) ζP ∈ Z is Bayes against P if and only if

EP {L(X,a) − L(X, ζP )} ∈ [0,∞](13)

for all a ∈ A.
(ii) ζP is Bayes against P if and only if L(P, ζP ) = H(P ).
(iii) If P admits some randomized Bayes act, then P also admits some

nonrandomized Bayes act; that is, AP is not empty.

PROOF. Items (i) and (ii) follow easily from (10) and finiteness. To prove (iii),
let f (P,a) := L(P,a) − H(P ). Thenf (P,a) ≥ 0 for all a, while EA∼ζP

f (P,

A) = L(P, ζP ) − H(P ) = 0. We deduce that{a ∈ A :f (P,a) = 0} has probabil-
ity 1 underζP and so, in particular, must be nonempty.�

We express the well-known concavity property of the Bayes loss [DeGroot
(1970), Section 8.4] as follows.
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PROPOSITION3.2. Let P0,P1 ∈ P , and let Pλ := (1− λ)P0 + λP1. Suppose
that H(Pi) < ∞ for i = 0,1.Then H(Pλ) is a concave function of λ on [0,1] (and
thus, in particular, continuous on (0,1) and lower semicontinuous on [0,1]). It is
either bounded above on [0,1] or infinite everywhere on (0,1).

PROOF. Let B be the set of alla ∈ A such that L(Pλ, a) < ∞ for
someλ ∈ (0,1)—and thus, by Lemma 3.2, for allλ ∈ [0,1]. If B is empty,
thenH(Pλ) = ∞ for all λ ∈ (0,1); in particular,H(Pλ) is then concave on[0,1].
Otherwise, taking any fixeda ∈ B we haveH(Pλ) ≤ L(Pλ, a) ≤ maxi L(Pi, a),
so H(Pλ) is bounded above on[0,1]. Moreover, as the pointwise infimum of
the nonempty family of concave functions{L(Pλ, a) :a ∈ A}, H(Pλ) is itself
a concave function ofλ on [0,1]. �

COROLLARY 3.2. If for all a ∈ A, L(Pλ, a) < ∞ for some λ ∈ (0,1), then
for all λ ∈ [0,1], H(Pλ) = lim{H(Pµ) :µ ∈ [0,1],µ → λ} [it being allowed
that H(Pλ) is not finite].

PROOF. In this caseB = A, so thatH(Pλ) = infa∈B L(Pλ, a). Each func-
tion L(Pλ, a) is finite and linear, hence a closed concave function ofλ on [0,1].
This last property is then preserved on taking the infimum. The result now follows
from Theorem 7.5 of Rockafellar (1970).�

COROLLARY 3.3. If in addition H(Pi) is finite for i = 0,1, then H(Pλ) is
a bounded continuous function of λ on [0,1].

Note that Corollary 3.3 will always apply when the loss function is bounded.
Under some further regularity conditions [see Dawid (1998, 2003) and

Section 3.5.4 below], a general concave function overP can be regarded as
generated from some decision problem by means of (12). Concave functions have
been previously proposed as general measures of the uncertainty or diversity in a
distribution [DeGroot (1962) and Rao (1982)], generalizing the Shannon entropy.
We shall thus call the Bayes lossH , as given by (12), the (generalized ) entropy
function or uncertainty function associated with the loss functionL.

3.4. Scoring rule. Suppose the action spaceA is itself a setQ of distributions
for X. Note we are not here consideringQ ∈ Q as a randomized act overX, but
rather as a simple act in its own right (e.g., a decision to quoteQ as a description
of uncertainty aboutX). We typically write the loss asS(x,Q) in this case and
refer toS as ascoring rule or score. Such scoring rules are used to assess the
performance of probability forecasters [Dawid (1986)]. We sayS is �-proper
if � ⊆ Q ⊆ P and, for allP ∈ �, the choiceQ = P is Bayes againstX ∼ P .
Then forP ∈ �,

H(P ) = S(P,P ).(14)
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Suppose now we start from a general decision problem, with loss functionL

such thatZQ is nonempty for allQ ∈ Q. Then we can define a scoring rule by

S(x,Q) := L(x, ζQ),(15)

where for eachQ ∈ Q we suppose we have selected some specific Bayes
act ζQ ∈ ZQ. Then for P ∈ Q, S(P,Q) = L(P, ζQ) is clearly minimized
whenQ = P , so that this scoring rule isQ-proper. IfL is Q-semistrict, then (15)
does not depend on the choice of Bayes actζQ. More generally, ifL is Q-relatively
strict, thenS(P,Q) does not depend on such a choice, for allP,Q ∈ Q.

We see that, forP ∈ Q, infQ∈Q S(P,Q) = S(P,P ) = L(P, ζP ) = H(P ).
In particular, the generalized entropy associated with the constructed scoring
rule (15) is identical with that determined by the original loss functionL. In this
way, almost any decision problem can be reformulated in terms of a proper
scoring rule.

3.5. Some examples. We now give some simple examples, both to illustrate
the above concepts and to provide a concrete focus for later development. Further
examples may be found in Dawid (1998) and Dawid and Sebastiani (1999).

3.5.1. Brier score. Although it can be generalized, we restrict our treatment
of the Brier score [Brier (1950)] to the case of a finite sample spaceX =
{x1, . . . , xN}. A distributionP overX can be represented by its probability vector
p = (p(1), . . . , p(N)), wherep(x) := P (X = x). A point x ∈ X may also be
represented by theN -vectorδx corresponding to the point-mass distribution on{x}
having entriesδx(j) = 1 if j = x, 0 otherwise. The Brier scoring rule is then
defined by

S(x,Q) := ‖δx − q‖2(16)

=
N∑

j=1

{δx(j) − q(j)}2

= ∑
j

q(j)2 − 2q(x) + 1.(17)

Then

S(P,Q) = ∑
j

q(j)2 − 2
∑
j

p(j) q(j) + 1,(18)

which is uniquely minimized forQ = P , so that this is aP -strict proper scoring
rule. The corresponding entropy function is (see Figure 1)

H(P ) = 1− ∑
j

p(j)2.(19)
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FIG. 1. Brier, log and zero–one entropies for the case X = {0,1}.

3.5.2. Logarithmic score. An important scoring rule is thelogarithmic score,
generalizing the discrete-case log loss as already considered in Section 2. For
a general sample spaceX, let µ be a fixedσ -finite measure (thebase measure)
on a suitableσ -algebra inX, and takeA to be the set of all finite nonnegative
measurable real functionsq onX for which

∫
q(x) dµ(x) = 1. Any q ∈ A can be

regarded as the density of a distributionQ overX which is absolutely continuous
with respect toµ. We denote the set of such distributions byM. However,
because densities are only defined up to a set of measure 0, differentq ’s in A can
correspond to the sameQ ∈ M. Note moreover that the many–one correspondence
betweenq andQ depends on the specific choice of base measureµ and will change
if we changeµ.



MAXIMUM ENTROPY AND ROBUST BAYES 1379

We define a loss function by

S(x, q) = − logq(x).(20)

If (and only if ) P ∈ M, then S(P,q) will be the same for all versionsq of
the density of the same distributionQ ∈ M. Hence for P,Q ∈ M we can
write S(P,Q) instead ofS(P,q), and we can considerS to be a scoring
rule. It is well known that, forP,Q,Q∗ ∈ M, EP {S(X,Q) − S(X,Q∗)} =
− ∫

p(x) log{q(x)/q∗(x)}dµ is nonnegative for allQ if and only if Q∗ = P .
That is,Q∗ is Bayes againstP if and only if Q∗ = P , so that this scoring rule
is M-strictly proper.

We have, forP ∈ M,

H(P ) = −
∫

p(x) logp(x) dµ,(21)

the usual definition of theentropy of P with respect toµ. WhenX is discrete
and µ is counting measure, we recover the Shannon entropy. For the simple
caseX = {0,1} this is depicted in Figure 1. Note that the whole decision problem,
and in particular the value ofH(P ) as given by (21), will be altered if we change
(even in a mutually absolutely continuous way) the base measureµ.

Things simplify whenµ is itself a probability measure. In this caseA contains
the constant function 1. For any distributionP whatsoever, whether or notP ∈ M,
we haveL(P,1) = 0, whence we deduceH(P ) ≤ 0 (with equality if and only
if P = µ). When P ∈ M, (21) assertsH(P ) = −KL (P,µ), where KL is the
Kullback–Leibler divergence [Kullback (1959)]. [Note that it is possible to have
KL (P,µ) = ∞, and thusH(P ) = −∞, even forP ∈ M.] If P /∈ M, there exist
a measurable setN andα > 0 such thatµ(N) = 0 butP (N) = α. Defineqn(x) = 1
(x /∈ N), qn(x) = n (x ∈ N ). Thenqn ∈ A andL(P,qn) = −α logn. It follows
thatH(P ) = −∞. Since the usual definition [Csiszár (1975) and Posner (1975)]
has KL(P,µ) = ∞ whenP � µ, we thus haveH(P ) = −KL (P,µ) in all cases.
This formula exhibits clearly the dependence of the entropy on the choice ofµ.

3.5.3. Zero–one loss. Let X be finite or countable, takeA = X and consider
the loss function

L(x, a) =
{ 0, if a = x,

1, otherwise.
(22)

ThenL(P,a) = 1 − P (X = a), and a nonrandomized Bayes act underP is any
mode ofP . WhenP has (at least) two modes, sayaP and a′

P , thenL(x, aP )

andL(x, a′
P ) are not identical, so that this loss function is notP -semistrict. This

means that we may have to take account of randomized strategiesζ for DM. Then,
writing ζ(x) := ζ(A = x), we have

L(x, ζ ) = 1− ζ(x)(23)
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and

L(P, ζ ) = 1− ∑
x∈X

p(x) ζ(x).(24)

A randomized actζ is Bayes againstP if and only if it puts all its mass on the set
of modes ofP .

We have generalized entropy function

H(P ) = 1− pmax,(25)

with pmax := supx∈X p(x). For the simple caseX = {0,1}, this is depicted
in Figure 1.

3.5.4. Bregman score. Suppose that #(X) = N < ∞ and that we represent
a distributionP ∈ P over X by its probability mass functionp ∈ 	, the unit
simplex inRN , which can in turn be considered as a subset of(N −1)-dimensional
Euclidean space. The interior	◦ of 	 then corresponds to the subsetQ ⊂ P of
distributions giving positive probability to each point ofX.

Let H be a finite concave real function on	. For any q ∈ 	◦, the set
∇H(q) of supporting hyperplanes toH at q is nonempty [Rockafellar (1970),
Theorem 27.3]—having a unique member whenH is differentiable atq. Select for
eachq ∈ 	◦ some specific member of∇H(q), and let the height of this hyperplane
at arbitraryp ∈ 	 be denoted bylq(p): this affine function must then have equation
of the form

lq(p) = H(q) + αT
q (p − q).(26)

Although the coefficient vectorαq ∈ RX in (26) is only defined up to addition of
a multiple of the unit vector, this arbitrariness will be of no consequence. We shall
henceforth reuse the notation∇H(q) in place ofαq .

By the supporting hyperplane property,

lq(p) ≥ H(p),(27)

lq (q) = H(q).(28)

Now consider the functionS :X × Q defined by

S(x,Q) = H(q) + ∇H(q)T(δx − q),(29)

whereδx is the vector havingδx(j) = 1 if j = x, 0 otherwise.
Then we easily see thatS(P,Q) = lq(p), so that, by (27) and (28),S(P,Q) is

minimized inQ whenQ = P . ThusS is aQ-proper scoring rule.
We note that

0 ≤ d(P,Q) := S(P,Q) − S(P,P )
(30)

= H(q) + ∇H(q)T(p − q) − H(p).
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With further regularity conditions (including in particular differentiability),
(30) becomes theBregman divergence [Brègman (1967), Csiszár (1991) and
Censor and Zenios (1997)] associated with the convex function−H . We therefore
call S, defined as in (29), aBregman score associated withH . This will be unique
whenH is differentiable on	◦. In Section 8 we introduce a more general decision-
theoretic notion of divergence.

We note by (28) that the generalized entropy function associated with this score
is H ∗(P ) = S(P,P ) = lp(p) = H(p) (at any rate inside	◦). That is to say, we
have exhibited a decision problem for which a prespecified concave functionH

is the entropy. This construction can be extended to the whole of	 and to certain
concave functionsH that are not necessarily finite [Dawid (2003)]. Extensions can
also be made to more general sample spaces.

3.5.5. Separable Bregman score. A special case of the construction of
Section 3.5.4 arises when we takeH(q) to have the form−∑

x∈X ψ{q(x)}, with
ψ a real-valued differentiable convex function of a nonnegative argument. In this
case we can take(∇H(q))(x) = −ψ ′{q(x)}, and the associated proper scoring
rule has

S(x,Q) = −ψ ′{q(x)} − ∑
t∈X

[ψ{q(t)} − q(t)ψ ′{q(t)}].(31)

We term this theseparable Bregman scoring rule associated withψ . The
correspondingseparable Bregman divergence [confusingly, this special case
of (30) is sometimes also referred to simply as a Bregman divergence] is

dψ(P,Q) = ∑
x∈X

	ψ {p(x), q(x)},(32)

where we have introduced

	ψ(a, b) := ψ(a) − ψ(b) − ψ ′(b) (a − b).(33)

The nonnegative function	ψ measures how much the convex functionψ

deviates ata from its tangent atb; this can be considered as a measure of “how
convex”ψ is.

We can easily extend the above definition to more general sample spaces. Thus
let X, µ, A andM be as in Section 3.5.2, and, in analogy with (31), consider the
following loss function:

S(x, q) := −ψ ′{q(x)} −
∫

[ψ{q(t)} − q(t)ψ ′{q(t)}]dµ(t).(34)

Clearly if q, q ′ are bothµ-densities of the sameQ ∈ M, thenS(x, q) = S(x, q ′)
a.e. [µ], and so, for anyP ∈ M, S(P,q) = S(P,q ′). Thus once again, for
P,Q ∈ M, we can simply writeS(P,Q). We then have

S(P,Q) =
∫

[{q(t) − p(t)}ψ ′{q(t)} − ψ{q(t)}]dµ(t),(35)
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whence

S(P,P ) = −
∫

ψ{p(t)}dµ(t),(36)

and so, ifS(P,P ) is finite,

dψ(P,Q) := S(P,Q) − S(P,P ) =
∫

	ψ {p(t), q(t)}dµ(t).(37)

Thus, forP,Q ∈ M, if S(P,P ) is finite,S(P,P ) ≤ S(P,Q). Using the extended
definition (11) of Bayes acts, we can show thatP is Bayes againstP even
whenS(P,P ) is infinite. That is,S is anM-proper scoring rule. Ifψ is strictly
convex,S is M-strict.

The quantity dψ(P,Q) defined by (37) is identical with the (separable)
Bregman divergence [Brègman (1967) and Csiszár (1991)]Bψ(p,q), based onψ
(and µ), between the densitiesp and q of P and Q. Consequently, we shall
termS(x, q) given by (34) aseparable Bregman score. ForP ∈ M the associated
separable Bregman entropy is then, by (36),

Hψ(P ) = −
∫

ψ{p(t)}dµ(t).(38)

The logarithmic score arises as a special case of the separable Bregman score
on takingψ(s) ≡ s logs; and the Brier score arises on takingµ to be counting
measure andψ(s) ≡ s2 − 1/N .

3.5.6. More examples. Since every decision problem generates a generalized
entropy function, an enormous range of such functions can be constructed. As
a very simple case, consider thequadratic loss problem, with X = A = R,
L(x, a) = (x − a)2. ThenaP = EP (X) is Bayes againstP , and the associated
proper scoring rule and entropy areS(x,P ) = {x−EP (X)}2 andH(P ) = varP (X)

— a very natural measure of uncertainty. This cannot be expressed in the form (38),
so it is not associated with a separable Bregman divergence. Dawid and Sebastiani
(1999) characterize all those generalized entropy functions that depend only on the
variance of a (possibly multivariate) distribution.

4. Maximum entropy and robust Bayes. Suppose that Nature may be
regarded as generatingX from a distributionP , but DM does not knowP . All
that is known is thatP ∈ �, a specified family of distributions overX. The
consequence DM faces if he or she takes acta ∈ A when Nature choosesX = x is
measured by the lossL(x, a). How should DM act?

4.1. Maximum entropy. One way of proceeding is to replace the family�

by some “representative” memberP ∗ ∈ �, and then choose an act that is Bayes
againstP ∗. A possible criterion for choosingP ∗, generalizing the standard
maximum Shannon entropy procedure, might be:

Maximize,over P ∈ �, the generalized entropy H(P ).
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4.2. Robust Bayes rules. Another approach is to conduct a form of “robust
Bayes analysis” [Berger (1985)]. In particular we investigate the�-minimax
criterion, a compromise between Bayesian and frequentist decision theory. For
a recent tutorial overview of this criterion, see Vidakovic (2000).

WhenX ∼ P ∈ �, the loss of an acta is evaluated byL(P,a). We can form
a newrestricted game, G� = (�,A,L), where Nature selects a distributionP
from �, DM an acta from A, and the ensuing loss to DM is taken to beL(P,a).
Again, we allow DM to take randomized actsζ ∈ Z, yielding lossL(P, ζ ) when
Nature generatesX from P . In principle we could also let Nature choose her
distributionP in some random fashion, described by means of a law (distribution)
for a random distributioñP overX. However, with the exception of Section 10,
where randomization is in any case excluded, in all the cases we shall consider�

will be convex, and then every randomized act for Nature can be replaced by a
nonrandomized act (the mean of the law ofP̃ ) having the identical loss function.
Consequently we shall not consider randomized acts for Nature.

In the absence of knowledge of Nature’s choice ofP , we might apply the
minimax criterion to this restricted game. This leads to the prescription for DM:

Choose ζ = ζ ∗ ∈ Z, to achieve

inf
ζ∈Z

sup
P∈�

L(P, ζ ).(39)

We shall term any actζ ∗ achieving (39)robust Bayes against�, or �-minimax.
When the basic game is defined in terms of aQ-proper scoring ruleS(x,Q),

and� ⊆ Q, this robust Bayes criterion becomes:
Choose Q = Q∗, to achieve

inf
Q∈Q

sup
P∈�

S(P,Q).(40)

Note particularly that in this case there is no reason to requireQ = �; we might
want to takeQ larger than� (typically, Q = P ). Also, we have not considered
randomized acts in (40)—we shall see later that, for the problems we consider,
this has no effect.

Below we explore the relationship between the above two methods. In
particular, we shall show that, in very general circumstances, they produce
identical results. That is, maximum generalized entropy is robust Bayes. This will
be the cornerstone of all our results to come.

First note that from (12) the maximum entropy criterion can be expressed as:
Choose P = P ∗, to achieve

sup
P∈�

inf
ζ∈Z

L(P, ζ ).(41)

There is a striking duality with the criterion (39).
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In the general terminology of game theory, (41) defines the extended real
lower value,

V := sup
P∈�

inf
ζ∈Z

L(P, ζ ),(42)

and (39) theupper value,

V := inf
ζ∈Z

sup
P∈�

L(P, ζ ),(43)

of the restricted gameG�. In particular, the maximum achievable entropy is exactly
the lower value. We always haveV ≤ V . When these two are equal and finite, we
say the gameG� has avalue, V := V = V .

DEFINITION 4.1. The pair(P ∗, ζ ∗) ∈ � × Z is a saddle-point (or equilib-
rium) in the gameG� if H ∗ := L(P ∗, ζ ∗) is finite, and the following hold:

(a) L(P ∗, ζ ∗) ≤ L(P ∗, ζ ) for all ζ ∈ Z;
(b) L(P ∗, ζ ∗) ≥ L(P, ζ ∗) for all P ∈ �.

(44)

In Sections 5 and 6 we show for convex� the existence of a saddle-point inG�

under a variety of broadly applicable conditions.
In certain important special cases [see, e.g., Section 2.1, (3)], we may be able to

demonstrate (b) above by showing thatζ ∗ is an equalizer rule:

DEFINITION 4.2. ζ ∈ Z is anequalizer rule in G� if L(P, ζ ) is the same finite
constant for allP ∈ �.

LEMMA 4.1. Suppose that there exist both a maximum entropy distribu-
tion P ∗ ∈ � achieving (42), and a robust Bayes act ζ ∗ ∈ Z achieving (43).
Then V ≤ L(P ∗, ζ ∗) ≤ V . If, further, the game has a value, V say, then
V = H ∗ := L(P ∗, ζ ∗), and (P ∗, ζ ∗) is a saddle-point in the game G�.

PROOF. V = infζ L(P ∗, ζ ) ≤ L(P ∗, ζ ∗), and similarlyL(P ∗, ζ ∗) ≤ V . If the
game has a valueV , thenL(P ∗, ζ ∗) = V = infζ∈Z L(P ∗, ζ ), andL(P ∗, ζ ∗) =
V = supP∈� L(P, ζ ∗). �

Note that, even when the game has a value, either or both ofP ∗ andζ ∗ may fail
to exist.

Conversely, we have the following theorem.

THEOREM 4.1. Suppose that a saddle-point (P ∗, ζ ∗) exists in the game G�.
Then:

(i) The game has value H ∗ = L(P ∗, ζ ∗).
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(ii) ζ ∗ is Bayes against P ∗.
(iii) H(P ∗) = H ∗.
(iv) P ∗ maximizes the entropy H(P ) over �.
(v) ζ ∗ is robust Bayes against �.

PROOF. Part (i) follows directly from (44) and the definitions ofV , V . Part (ii)
is immediate from (44)(a) and finiteness, and in turn implies (iii). For anyP ∈ �,
H(P ) ≤ L(P, ζ ∗) ≤ H ∗ by (44)(b). Then (iv) follows from (iii). For anyζ ∈ Z,
supP L(P, ζ ) ≥ L(P ∗, ζ ), so that, by (44)(a),

sup
P

L(P, ζ ) ≥ H ∗.(45)

Also, by (44)(b),

sup
P

L(P, ζ ∗) = H ∗.(46)

Comparing (45) and (46), we see thatζ ∗ achieves (39); that is, (v) holds.�

COROLLARY 4.1. Suppose that L is �-relatively strict, that there is a
unique P ∗ ∈ � maximizing the generalized entropy H and that ζ ∗ ∈ Z is a Bayes
act against P ∗. Then, if G� has a saddle-point, ζ ∗ is robust Bayes against �.

COROLLARY 4.2. Let the basic game G be defined in terms of a Q-strictly
proper scoring rule S(x,Q), and let � ⊆ Q. If a saddle-point in the restricted
game G� exists, it will have the form (P ∗,P ∗). The distribution P ∗ will then solve
each of the following problems:

(i) Maximize over P ∈ � the generalized entropy H(P ) ≡ S(P,P ).
(ii) Minimize over Q ∈ Q the worst-case expected score, supP∈� S(P,Q).

It is notable that, when Corollary 4.2 applies, the robust Bayes distribution
solving problem (ii) turns out to belong to�, even though this constraint was
not imposed.

We see from Theorem 4.1 that, when a saddle-point exists, the robust Bayes
problem reduces to a maximum entropy problem. This property can thus be
regarded as an indirect justification for applying the maximum entropy procedure.
In the light of Theorem 4.1, we shall be particularly interested in the sequel
in characterizing those decision problems for which a saddle-point exists in the
gameG�.

4.3. A special case. A partial characterization of a saddle-point can be given
in the special case that the family� is closed under conditioning, in the sense
that, for all P ∈ � and B ⊆ X a measurable set such thatP (B) > 0, PB , the
conditional distribution underP for X givenX ∈ B, is also in�. This will hold,
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most importantly, when� is the set of all distributions supported onX or on some
measurable subset ofX.

For the following lemma, we suppose that there exists a saddle-point(P ∗, ζ ∗)
in the gameG�, and writeH ∗ = L(P ∗, ζ ∗). In particular, we haveL(P, ζ ∗) ≤ H ∗
for all P ∈ �. We introduceU := {x ∈ X :L(x, ζ ∗) = H ∗}.

LEMMA 4.2. Suppose that � is closed under conditioning and that P ∈ � is
such that L(P, ζ ∗) = H ∗. Then P is supported on U .

PROOF. Takeh < H ∗, and defineB := {x ∈ X :L(x, ζ ∗) ≤ h}, π := P (B).
By linearity, we haveH ∗ = L(P, ζ ∗) = π L(PB, ζ ∗) + (1 − π)L(PBc, ζ ∗)
(where Bc denotes the complement ofB). However, by the definition ofB,
L(PB, ζ ∗) ≤ h, while (if π = 1) L(PBc, ζ ∗) ≤ H ∗, by Definition 4.1(b) and the
fact thatPBc ∈ �. It readily follows thatπ = 0. Since this holds for anyh < H ∗,
we must haveP {L(X, ζ ∗) ≥ H ∗} = 1. However, EP {L(X, ζ ∗)} = L(P, ζ ∗) = H ∗,
and the result follows. �

COROLLARY 4.3. L(X, ζ ∗) = H ∗ almost surely under P ∗.

COROLLARY 4.4. If there exists P ∈ � that is not supported on U , then ζ ∗ is
not an equalizer rule in G�.

Corollary 4.4 will apply, in particular, when� is the family of all distributions
supported on a subsetA of X and (as will generally be the case)A is not a
subset ofU . Furthermore, since� then contains the point mass atx ∈ A, we
must haveL(x, ζ ∗) ≤ H ∗, all x ∈ A, so thatU is the subset ofA on which
the functionL(·, ζ ∗) attains its maximum. In a typical such problem having a
continuous sample space, the maxima of this function will be isolated points, and
then we deduce that the maximum entropy distributionP ∗ will be discrete (and
the robust Bayes actζ ∗ will not be an equalizer rule).

5. An elementary minimax theorem. Throughout this section we suppose
thatX = {x1, . . . , xN } is finite and thatL is bounded. In particular,L(P,a) and
H(P ) are finite for all distributionsP overX, and the setP of these distributions
can be identified with the unit simplex inRN . We endowP with the topology
inherited from this identification.

In this case we can show the existence of a saddle-point under some simple
conditions. The following result is a variant of von Neumann’s original minimax
theorem [von Neumann (1928)]. It follows immediately from the general minimax
theorem of Corollary A.1, whose conditions are here readily verified.

THEOREM 5.1. Let � be a closed convex subset of P . Then the restricted
game G� has a finite value H ∗, and the entropy H(P ) achieves its maximum H ∗
over � at some distribution P ∗ ∈ �.
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Theorem 5.1 does not automatically ensure the existence of a robust Bayes
act. For this we impose a further condition on the action space. This involves the
risk-set S of the unrestricted gameG, that is, the convex subset ofRN consisting
of all pointsl(ζ ) := (L(x1, ζ ), . . . ,L(xN, ζ )) arising as the risk function of some
possibly randomized actζ ∈ Z.

THEOREM 5.2. Suppose that � is convex, and that the unrestricted risk-set S

is closed. Then there exists a robust Bayes act ζ ∗ ∈ Z. Moreover, there exists P ∗ in
the closure � of � such that ζ ∗ is Bayes against P ∗ and (P ∗, ζ ∗) is a saddle-point
in the game G�.

PROOF. First assume� closed. By Theorem 5.1 the gameG� has a finite
valueH ∗. Then there exists a sequence(ζn) in Z such that limn→∞ supP∈� L(P,

ζn) = infζ∈Z supP∈� L(P, ζ ) = H ∗. SinceS is compact, on taking a subsequence
if necessary we can findζ ∗ ∈ Z such thatl(ζn) → l(ζ ∗). Then, for allQ ∈ �,

L(Q,ζ ∗) = lim
n→∞L(Q,ζn) ≤ lim

n→∞ sup
P∈�

L(P, ζn) = H ∗,(47)

whence

sup
P∈�

L(P, ζ ∗) ≤ H ∗.(48)

However, for P = P ∗, as given by Theorem 5.1, we haveL(P ∗, ζ ∗) ≥
H(P ∗) = H ∗, so thatL(P ∗, ζ ∗) = H ∗. The result now follows.

If � is not closed, we can apply the above argument with� replaced by�
to obtainζ ∗ ∈ Z and P ∗ ∈ �. Then sup� L(P, ζ ∗) ≤ sup� L(P, ζ ), all ζ ∈ Z.
Since L(P, ζ ) is linear, hence continuous, inP for all ζ , sup� L(P, ζ ) =
sup� L(P, ζ ), and the general result follows.�

Note thatS is the convex hull ofS0, the set of risk functions of nonrandomized
acts. A sufficient condition forS to be closed is thatS0 be closed. In particular this
will always hold ifA is finite.

The above theorem gives a way of restricting the search for a robust Bayes
act ζ ∗: first find a distributionP ∗ maximizing the entropy over�, then look for
acts that are Bayes againstP ∗. In some cases this will yield a unique solution, and
we are done. However, as will be seen below, this need not always be the case, and
then further principles may be required.

5.1. Examples.

5.1.1. Brier score. Consider the Brier score (16) forX = {0,1} and� = P .
Let H be the corresponding entropy as in (19). From Figure 1, or directly, we see
that the entropy is maximized forP ∗ havingp∗(0) = p∗(1) = 1/2 . Since the Brier
score isP -strictly proper, the unique Bayes act againstP ∗ is P ∗ itself. It follows
thatP ∗ is the robust Bayes act against�. Hence in this case we can find the robust
Bayes act simply by maximizing the entropy.
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5.1.2. Zero–one loss. Now consider the zero–one loss (22) forX = {0,1} and
� = P . Let H be the corresponding entropy as in (25). From Figure 1, or directly,
we see that the entropy is again maximized forP ∗ with p∗(0) = p∗(1) = 1/2.
However, in contrast to the case of the Brier score,P ∗ now has several Bayes
acts. In fact,every distributionζ overA = {0,1} is Bayes againstP ∗—yet only
one of them (namely,ζ ∗ = P ∗) is robust Bayes. Therefore finding the maximum
entropyP ∗ is of no help whatsoever in finding the robust Bayes actζ ∗ here. As we
shall see in Section 7.6.3, however, this does not mean that the procedure described
here (find a robust Bayes act by first finding the maximum entropyP ∗ and then
determine the Bayes acts ofP ∗) is never useful for zero–one loss: if� = P , it may
help in findingζ ∗ after all.

6. More general minimax theorems. We are now ready to formulate more
general minimax theorems. The proofs are given in the Appendix.

Let (X,B) be a metric space together with its Borelσ -algebra. Recall
[Billingsley (1999), Section 5] that a family� of distributions on(X,B) is called
(uniformly) tight if, for all ε > 0, there exists a compact setC ∈ B such that
P (C) > 1− ε for all P ∈ �.

THEOREM 6.1. Let � ⊆ P be a convex, weakly closed and tight set of
distributions. Suppose that for each a ∈ A the loss function L(x, a) is bounded
above and upper semicontinuous in x. Then the restricted game G� = (�,A,L)

has a value. Moreover, a maximum entropy distribution P ∗, attaining

sup
P∈�

inf
a∈A

L(P,a),

exists.

We note that ifX is finite or countable and endowed with the discrete topology,
thenL(x, a) is automatically a continuous, hence upper semicontinuous, function
of x.

Theorem 6.1 cannot be applied to the logarithmic score, which is not bounded
above in general. In such cases we may be able to use the theorems below. Note
that these all refer to possibly randomized Bayes actsζ ∗, but by Proposition 3.1
it will always be possible to choose such acts to be nonrandomized.

THEOREM 6.2. Let � ⊆ P be convex, and let P ∗ ∈ �, with Bayes act ζ ∗, be
such that −∞ < H(P ∗) = H ∗ := supP∈� H(P ) < ∞. Suppose that for all P ∈ �

there exists P0 ∈ P such that, on defining Qλ := (1 − λ)P0 + λP , the following
hold:

(i) P ∗ = Qλ∗ for some λ∗ ∈ (0,1).
(ii) The function H(Qλ) is differentiable at λ = λ∗.
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Then (P ∗, ζ ∗) is a saddle-point in G�.

Theorem 6.2 essentially gives differentiability of the entropy as a condition for
the existence of a saddle-point. This condition is strong but often easy to check.
We now introduce a typically weaker condition, which may, however, be harder
to check.

CONDITION 6.1. Let (Qn) be a sequence of distributions in�, with
respective Bayes acts(ζn), such that the sequence(H(Qn)) is bounded below
and(Qn) converges weakly to some distributionQ0 ∈ P0. Then we require that
Q0 ∈ P , Q0 has a Bayes actζ0 and, for some choice of the Bayes acts(ζn) andζ0,
L(P, ζ0) ≤ lim infn→∞ L(P, ζn) for all P ∈ �.

One would typically aim to demonstrate Condition 6.1 in its stronger “�-free”
form, wherein all mentions of� are replaced byP , or both� andP are replaced
by some familyQ with � ⊆ Q ⊆ P . In particular, in the case of aQ-proper scoring
rule S, Condition 6.1 is implied by the following.

CONDITION 6.2. Let(Qn) be a sequence of distributions inQ such that the
sequence(H(Qn)) is bounded below and(Qn) converges weakly toQ0. Then we
requireQ0 ∈ Q andS(P,Q0) ≤ lim infn→∞ S(P,Qn) for all P ∈ Q.

This displays the condition as one of weak lower semicontinuity of the score in
its second argument.

We shall further consider the following possible conditions on�:

CONDITION 6.3. � is convex; everyP ∈ � has a Bayes actζP and finite
entropyH(P ); andH ∗ := supP∈� H(P ) < ∞.

CONDITION 6.4. Furthermore, there existsP ∗ ∈ � with H(P ∗) = H ∗.

THEOREM 6.3. Suppose Conditions 6.1, 6.3 and 6.4 hold. Then there
exists ζ ∗ ∈ Z such that (P ∗, ζ ∗) is a saddle-point in the game G�.

If H(P ) is not upper-semicontinuous or if� is not closed in the weak topology,
then supP∈� H(P ) may not be achieved. As explained in the Appendix, for a
general sample space these are both strong requirements. If they do not hold, then
Theorem 6.3 will not be applicable. In that case we may instead be able to apply
Theorem 6.4:

THEOREM 6.4. Suppose Conditions 6.1 and 6.3 hold and, in addition, � is
tight. Then there exists ζ ∗ ∈ Z such that

sup
P∈�

L(P, ζ ∗) = inf
ζ∈Z

sup
P∈�

L(P, ζ ) = sup
P∈�

inf
a∈A

L(P,a) = H ∗.(49)

In particular, the game G� has value H ∗, and ζ ∗ is robust Bayes against �.
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In the Appendix we prove the more general Theorem A.2, which implies The-
orem 6.4. We also prove Proposition A.1, which shows that (under some restric-
tions) the conditions of Theorem A.2 are satisfied whenL is the logarithmic score.

The theorems above supply sufficient conditions for the existence of a robust
Bayes act, but do not give any further characterization of it, nor do they assist in
finding it. In the next sections we shall consider the important special case of�

defined by linear constraints, for which we can develop explicit characterizations.

7. Mean-value constraints. Let T ≡ t (X), with t :X → Rk , be a fixed real-
or vector-valued statistic. An important class of problems arises on imposing
mean-value constraints, where we take

� = �τ := {P ∈ P :EP (T ) = τ },(50)

for someτ ∈ Rk . This is the type of constraint for which the maximum entropy and
minimum relative entropy principles have been most studied [Jaynes (1957a, b)
and Csiszár (1975)].

We denote the associated restricted game(�τ ,A,L) by Gτ . We call T the
generating statistic.

In some problems of this type (e.g., with logarithmic score on a continuous
sample space), the family�τ will be so large that the conditions of the theorems of
Section 6 will not hold. Nevertheless, the special linear structure will often allow
other arguments for showing the existence of a saddle-point.

7.1. Duality. Before continuing our study of saddle-points, we note some
simple duality properties of such mean-value problems.

DEFINITION 7.1. Thespecific entropy function h :Rk → [−∞,∞] (associ-
ated with the loss functionL and generating statisticT ) is defined by

h(τ ) := sup
P∈�τ

H(P ).(51)

In particular, if�τ = ∅, thenh(τ ) = −∞.

Now defineT := {τ ∈ Rk :h(τ ) > −∞} andP ∗ := {P ∈ P :EP (T ) ∈ T }.

LEMMA 7.1. The set T ⊆ Rk is convex, and the function h is concave on T .

PROOF. Take τ0, τ1 ∈ T and λ ∈ (0,1), and let τλ := (1 − λ)τ0 + λτ1.
There existP0,P1 ∈ P with Pi ∈ �τi

and H(Pi) > −∞, i = 0,1. Let Pλ :=
(1 − λ)P0 + λP1. Then, for anya ∈ A, L(Pi, a) ≥ H(Pi) > −∞, so that
L(Pλ, a) = (1 − λ)L(P0, a) + λL(P1, a) is defined, that is,Pλ ∈ P . Moreover,
clearlyPλ ∈ �τλ

. We thus haveh(τλ) ≥ H(Pλ) ≥ (1−λ)H(P0)+λH(P1) > −∞.
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Thusτλ ∈ T ; that is,T is convex. Now lettingP0 andP1 vary independently, we
obtainh(τλ) ≥ (1− λ)h(τ0) + λh(τ1); that is,h is concave. �

For τ ∈ T , define

Pτ := arg sup
P∈�τ

H(P )(52)

whenever this supremum is finite and is attained. It is allowed thatPτ is not unique,
in which case we consider an arbitrary such maximizer. ThenH(Pτ ) = h(τ ). By
Theorem 4.1(iv), (52) will hold if(Pτ , ζτ ) is a saddle-point inGτ .

Dually, for β ∈ Rk , we introduce

Qβ := arg sup
P∈P ∗

{H(P ) − βTEP (T )},(53)

whenever this supremum is finite and is attained. Again,Qβ is not necessarily
unique. For any suchQβ we can define a corresponding value ofτ by

τ = EQβ
(T ).(54)

ThenQβ ∈ �τ , and on restricting the supremum in (53) toP ∈ �τ , we see that we
can takeQβ for Pτ in (52). More generally, we writeτ ↔ β whenever there is a
common distribution that can serve as bothPτ in (52) andQβ in (53) (in cases of
nonuniqueness this correspondence may not define a function in either direction).

It follows easily from (53) that, whenτ ↔ β,

h(σ ) − βTσ ≤ h(τ ) − βTτ,(55)

or equivalently

h(σ ) ≤ h(τ ) + βT(σ − τ )(56)

for all σ ∈ T . Equation (56) expresses the fact that the hyperplane through the
point (τ, h(τ )) with slope coefficientsβ is a supporting hyperplane to the concave
function h :T → R. Thusτ andβ can be regarded as dual coordinates for the
specific entropy function. In particular, ifτ ↔ β andh is differentiable atτ , we
must have

β = h′(τ ).(57)

More generally, ifτ1 ↔ β1 andτ2 ↔ β2, then on combining two applications
of (55) we readily obtain

(τ2 − τ1)
T(β2 − β1) ≤ 0.(58)

In particular, whenk = 1 the correspondenceτ ↔ β is nonincreasing in the
sense thatτ2 > τ1 ⇒ β2 ≤ β1.
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7.2. Linear loss condition. Theorem 7.1 gives a simple sufficient condition
for an act to be robust Bayes against�τ of the form (50). We first introduce the
following definition.

DEFINITION 7.2. An actζ ∈ Z is linear (with respect to loss functionL and
statisticT ) if, for someβ0 ∈ R andβ = (β1, . . . , βk)

T ∈ Rk and allx ∈ X,

L(x, ζ ) = β0 + βTt (x).(59)

A distributionP ∈ P is linear if it has a Bayes actζ that is linear. In this case
we call (P, ζ ) a linear pair. If EP (T ) = τ is finite, we then callτ a linear point
of T . In all cases we call(β0, β) the associatedlinear coefficients.

Note that, if the problem is formulated in terms of aQ-strictly proper scoring
rule S, andP ∈ Q, the conditions “P is a linear distribution,” “P is a linear act”
and “(P,P ) is a linear pair” are all equivalent, holding when we have

S(x,P ) = β0 +
k∑

j=1

βj tj (x)(60)

for all x ∈ X.

THEOREM 7.1. Let τ ∈ T be linear, with associated linear pair (Pτ , ζτ ) and
linear coefficients (β0, β). Let �τ be given by (50).Then the following hold:

(i) ζτ is an equalizer rule against �τ .
(ii) (Pτ , ζτ ) is a saddle-point in Gτ .
(iii) ζτ is robust Bayes against �τ .
(iv) h(τ ) = H(Pτ ) = β0 + βTτ .
(v) τ ↔ β.

PROOF. For anyP ∈ P ∗ we have

L(P, ζτ ) = β0 + βTEP (T ).(61)

By (61) L(P, ζτ ) = β0 + βTτ = L(Pτ , ζτ ) for all P ∈ �. Thus (44)(b) holds
with equality, showing (i). SinceL(Pτ , ζτ ) is finite andζτ is Bayes againstPτ ,
(44)(a) holds. We have thus shown (ii). Then (iii) follows from Theorem 4.1(v),
and (iv) follows from Theorem 4.1(i), (iii) and (iv). For (v), we have from (61)
that, forP ∈ P ∗,

H(P ) − βTEP (T ) ≤ L(P, ζτ ) − βTEP (T )(62)

= β0(63)

= H(Pτ ) − βTEPτ (T )(64)

from (iv). Thus we can takeQβ in (53) to bePτ . �
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COROLLARY 7.1. The same result holds if (59) is only required to hold with
probability 1 under every P ∈ �τ .

We now develop a partial converse to Theorem 7.1, giving a necessary condition
for a saddle-point. This will be given in Theorem 7.2.

DEFINITION 7.3. A point τ ∈ T is regular if there exists a saddle-point
(Pτ , ζτ ) in Gτ , and there existsβ = (β1, . . . , βk)

T ∈ Rk such that:

(i) Pτ can serve asQβ in (53) (so thatτ ↔ β).
(ii) With ζ = ζτ and (necessarily)

β0 := h(τ ) − βTτ,(65)

the linear loss property (59) holds withPτ -probability 1.

If τ satisfies the conditions of Theorem 7.1 or of Corollary 7.1 it will be regular,
but in general the force of the “almost sure” linearity requirement in (ii) above is
weaker than needed for Corollary 7.1.

We shall denote the set of regular points ofT by T r , and its subset of linear
points byT l . For discreteX, τ ∈ T r will by (ii) be linear wheneverPτ gives
positive probability to everyx ∈ X. More generally, as soon as we knowτ ∈ T r ,
the following property, which follows trivially from (ii), can be used to simplify
the search for a saddle-point:

LEMMA 7.2. If τ is regular, the support Xτ of Pτ is such that, for some ζ ∈ Z,
L(x, ζ ) is a linear function of t (x) on Xτ .

The following lemma and corollary are equally trivial.

LEMMA 7.3. Suppose τ ∈ T r . If P ∈ �τ and P � Pτ , then L(P, ζτ ) = h(τ ).

COROLLARY 7.2. If τ ∈ T r and P � Pτ for all P ∈ �τ , then ζτ is an
equalizer rule in Gτ .

We now show that, under mild conditions, a pointτ in the relative interior
[Rockafellar (1970), page 44]T 0 of T will be regular. Fixτ ∈ T 0 and consider�τ ,
given by (50). We shall suppose that there exists a saddle-point(Pτ , ζτ ) for
the gameGτ —this could be established by the theory of Section 5 or 6, for
example. The valueL(Pτ , ζτ ) of the game will then beh(τ ), which will be finite.

Consider the functionψτ onT defined by

ψτ(σ ) := sup
P∈�σ

L(P, ζτ ).(66)

In particular,ψτ (τ ) = h(τ ).
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PROPOSITION7.1. ψτ is finite and concave on T .

PROOF. For σ ∈ T there existsP ∈ �σ with H(P ) > −∞; so ψτ(σ ) ≥
L(P, ζτ ) ≥ H(P ) > −∞.

Now take σ0, σ1 ∈ T and λ ∈ (0,1), and considerσλ := (1 − λ)σ0 + λσ1.
Then�σλ

⊇ {(1 − λ)P0 + λP1 :P0 ∈ �σ0,P1 ∈ �σ1}, so thatψτ (σλ) ≥ (1 − λ) ×
ψτ (σ0) + λψτ (σ1). Thusψτ is concave onT .

Finally, if ψτ were to take the value+∞ anywhere onT , then by Lemma 4.2.6
of Stoer and Witzgall (1970) it would do so atτ ∈ T 0, which is impossible
sinceψτ(τ ) = h(τ ) has been assumed finite.�

For the proof of Theorem 7.2 we need to impose a condition allowing the
passage from (70) to (71). For the examples considered in this paper, we can use
the simplest such condition:

CONDITION 7.1. For allx ∈ X, t (x) ∈ T .

This is equivalent tot (X) ⊆ T , or in turn to T being the convex hull
of t (X). For other applications (e.g., involving unbounded loss functions on
continuous sample spaces) this may not hold, and then alternative conditions may
be more appropriate.

THEOREM 7.2. Suppose that τ ∈ T 0 and (Pτ , ζτ ) is a saddle-point for the
game Gτ . If Condition 7.1holds, then τ is regular.

PROOF. T is convex,ψτ :T → R is concave, andτ ∈ T 0. The supporting
hyperplane theorem [Stoer and Witzgall (1970), Corollary 4.2.9] then implies that
there existsβ ∈ Rk such that, for allσ ∈ T ,

ψτ (τ ) + βT(σ − τ ) ≥ ψτ (σ ).(67)

That is, for anyP ∈ P ∗,

h(τ ) + βT{EP (T ) − τ } ≥ ψτ {EP (T )}.(68)

However, forP ∈ P ∗,

ψτ {EP (T )} ≥ L(P, ζτ ) ≥ inf
ζ

L(P, ζ ) = H(P ).(69)

Thus, for allP ∈ P ∗,

h(τ ) + βT{EP (T ) − τ } ≥ H(P ),

with equality whenP = Pτ . This yields Definition 7.3(i).
For (ii), (68) and (69) imply that

h(τ ) − L(P, ζτ ) + βT{EP (T ) − τ } ≥ 0 for all P ∈ P ∗.(70)
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Takex ∈ X, and letPx be the point mass onx. By Condition 7.1,Px ∈ P ∗, and so

h(τ ) − L(x, ζτ ) + βT{t (x) − τ } ≥ 0 for all x ∈ X.(71)

On the other hand,

EPτ [h(τ ) − L(X, ζτ ) + βT{t (X) − τ }] = 0.(72)

Together (71) and (72) imply that

Pτ [h(τ ) − L(X, ζτ ) + βT{t (X) − τ } = 0] = 1.(73)

The result follows. �

7.3. Exponential families. Here we relate the above theory to familiar proper-
ties of exponential families [Barndorff-Nielsen (1978)].

Let µ be a fixedσ -finite measure on a suitableσ -algebra inX. The set of all
distributionsP � µ having aµ-densityp that can be expressed in the form

p(x) = exp

{
α0 +

k∑
j=1

αj tj (x)

}
(74)

for all x ∈ X is theexponential family E generated by the base measureµ and the
statisticT .

We remark that (74) is trivially equivalent to

S(x,p) = β0 +
k∑

j=1

βj tj (x),(75)

for all x ∈ X, whereS is the logarithmic score (20), andβj = −αj . In particular,
(P,p) is a linear pair.

Now under regularity conditions onµ and T [Barndorff-Nielsen (1978),
Chapter 9; see also Section 7.4.1 below], for allτ ∈ T 0 there will exist a
unique Pτ ∈ �τ ∩ E ; that is, Pτ has a densitypτ of the form (74), and
EPτ (T ) = τ . Comparing (75) with (59), it follows from Theorem 7.1 that (as
already demonstrated in detail in Section 2.1)(Pτ ,pτ ) is a saddle-point inGτ .
In particular, as is well known [Jaynes (1989)], the distributionPτ will maximize
the entropy (21), subject to the mean-value constraints (50). However, we regard
this property as less fundamental than the concomitant dual property: thatpτ is the
robust Bayes act under the logarithmic score when all that we know of Nature’s
distributionP is that it satisfies the mean-value constraintP ∈ �τ . Furthermore,
by Theorem 7.1(i), in this casepτ will be an equalizer strategy against�τ [cf. (3)].

We remark thatpτ of the form (74) is only one version of the density forPτ with
respect toµ; any other such density can differ frompτ on a set ofµ-measure 0.
However, our game requires DM to specify a density, rather than a distribution, and
from this point of view certain other versions of the density ofPτ (which are of
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course still Bayes againstPτ ) will not do: they are not robust Bayes. For example,
let X = R, let µ = Lebesgue measure and consider the constraints EP (X) = 0,
EP (X2) = 1. Let P0 be the standard Normal distributionN(0,1), and letp0 be
its usual density formula,p0(x) = (2π)−1/2 exp−1

2x2. Then the conditions of
Theorem 7.1 hold,P0 is maximum entropy (as is well known) and the choicep0
for its density is robust Bayes against the set�0 of all distributionsP —including,
importantly, discrete distributions—that satisfy the constraints. This would not
have been true if instead ofp0 we had takenp′

0, identical with p0 except for
p′

0(x) = p0(x)/2 at x = ±1. While p′
0 is still Bayes againstP0, its Bayes loss

against the distribution in�0 that puts equal probability 1/2 at−1 and+1 exceeds
the (constant) Bayes loss ofp0 by log2. Consequently,p′

0 is not a robust Bayes
act. It is in fact easy to see that a densityp will be robust Bayes in this problem
if and only if p(x) ≥ p0(x) everywhere (the set on which strict inequality holds
necessarily having Lebesgue measure 0).

We further remark that none of the theorems of Section 6 applies to the above
problem. The boundedness and weak closure requirements of Theorem 6.1 both
fail; condition (ii) of Theorem 6.2 fails; and although Condition 6.2 holds, the
existence of a Bayes act and finite entropy required for Condition 6.3 fail for those
distributions in�τ having a discrete component.

7.4. Generalized exponential families. We now show how our game-theoretic
approach supports the extension of many of the concepts and properties of standard
exponential family theory to apply to what we shall term ageneralized exponential
family, specifically tailored to the relevant decision problem. Although the link
to exponentiation has now vanished, analogues of familiar duality properties of
exponential families [Barndorff-Nielsen (1978), Chapter 9] can be based on the
theory of Section 7.1.

Consider the following condition.

CONDITION 7.2. For all τ ∈ T , h(τ ) = supP∈�τ
H(P ) is finite and is

achieved for a uniquePτ ∈ �τ .

In particular, this will hold if (i) X is finite, (ii) L is bounded and (iii) H is
strictly convex. For under (i) and (ii) Theorem 5.1 guarantees that a maximum
generalized entropy distributionPτ exists, which must then be unique by (iii).

Under Condition 7.2 we can introduce the following parametric family of
distributions overX:

Em := {Pτ : τ ∈ T }.(76)

We callEm the full generalized exponential family generated byL andT ; and we
call τ its mean-value parameter. Condition 7.2 ensures that the mapτ �→ Pτ is
one-to-one.

Alternatively, consider the following condition:
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CONDITION 7.3. For allβ ∈ Rk , supP∈P ∗{H(P ) − βTEP (T )} is finite and
is achieved for a unique distributionQβ ∈ P ∗.

Again, this will hold if, in particular, (i)–(iii) below Condition 7.2 are satisfied.
Under Condition 7.3 we can introduce the parametric family

En := {Qβ :β ∈ Rk}.(77)

We call this family thenatural generalized exponential family generated by the loss
functionL and statisticT ; we callβ its natural parameter. This definition extends
a construction of Lafferty (1999) based on Bregman divergence: see Section 8.4.2.
Note that in general the natural parameterβ in En need not be identified; that is,
the mapβ �→ Qβ may not be one-to-one. See, however, Proposition 7.2, which
sets limits to this nonidentifiability.

From this point on, we suppose that both Conditions 7.2 and 7.3 are satisfied.
For anyβ ∈ Rk , (54) yieldsτ ∈ T with τ ↔ β, that is,Pτ = Qβ . It follows
thatEn ⊆ Em.

We further defineE r := {Pτ : τ ∈ T r}, the regular generalized exponential
family, and E l := {Pτ : τ ∈ T l}, the linear generalized exponential family,
generated byL and T . Then E l ⊆ E r ⊆ Em. In general,E l may be a proper
subset ofE r : then for Pτ ∈ E r \ E l we can only assert the “almost sure linear
loss” property of Lemma 7.2.

The following result follows immediately from Definition 7.3(ii).

PROPOSITION 7.2. If Qβ1 = Qβ2 = Q ∈ E r , then (β1 − β2)
TT = 0 almost

surely under Q.

For τ ∈ T r chooseβ as in Definition 7.3. Thenτ ↔ β, and it follows
thatE r ⊆ En. We have thus demonstrated the following.

PROPOSITION7.3. When Conditions 7.2and 7.3both apply,

E r ⊆ En ⊆ Em.

Now considerE0 := {Pτ : τ ∈ T 0}, the open generalized exponential family
generated byL andT . From Theorem 7.2 we have the following:

PROPOSITION7.4. Suppose Conditions 7.1–7.3all apply and a saddle-point
exists in Gτ for all τ ∈ T 0. Then

E0 ⊆ E r ⊆ En ⊆ Em.(78)
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7.4.1. Application to standard exponential families. We now consider more
closely the relationship between the above theory and standard exponential
family theory.

Let E∗ be the standard exponential family (74) generated by some base
measureµ and statisticT . Taking as our loss function the logarithmic scoreS,
(75) shows thatE l ⊆ E∗ (distributions inE∗ \ E l being those for which the
expectation ofT does not exist). We can further ask: What is the relationship
betweenE∗ and En? As a partial answer to this, we give sufficient conditions
for E∗, E l andEn to coincide.

Forβ = (β1, . . . , βk) ∈ Rk , define

κ(β) := log
∫

e−βTt (x) dµ,(79)

χ(β) := sup
P∈P ∗

{H(P ) − βTEP (T )}.(80)

Let B denote the convex set{β ∈ Rk :κ(β) < ∞}, and letB0 denote its relative
interior. Forβ ∈ B, let Q∗

β be the distribution inE∗ with µ-densityq∗
β(x) :=

exp{−κ(β) − βTt (x)}, and letQβ , if it exists, achieve the supremum in (80).

PROPOSITION 7.5. (i) For all β ∈ B0, the act q∗
β is linear, and Qβ = Q∗

β

uniquely. Moreover, χ(β) = κ(β).
(ii) If B = Rk , then Condition 7.3holds and E∗ = E l = En.
(iii) If Condition 7.3 holds, B is nonempty and E∗ is minimal and steep,

then B = Rk and E∗ = E l = En.

[Note that the condition for (ii) will apply whenever the sample spaceX
is finite.]

PROOF OFPROPOSITION7.5. Linearity of the actq∗
β (β ∈ B) is immediate,

the associated linear coefficients being(β0, β) with β0 = κ(β). Supposeβ ∈ B0.
Thenτ := EQ∗

β
(T ) exists [Barndorff-Nielsen (1978), Theorem 8.1]. We may also

write Pτ for Q∗
β . Then τ is a linear point, with(Pτ ,pτ ) the associated linear

pair. By Theorem 7.1(iv)κ(β) = H(Pτ ) − βTτ . Also, by Theorem 7.1(v) we can
takePτ = Q∗

β asQβ . The supremum in (80) thus being achieved byPτ , we have
χ(β) = H(Pτ ) − βTτ = κ(β).

To show that the supremum in (80) is achieved uniquely atQ∗
β , note that any

P achieving this supremum must satisfy

H(P ) − βTEP (T ) = H(Q∗
β) − βTEQ∗

β
(T )

(81)
= κ(β) = S(P,q∗

β) − βTEP (T ),
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the last equality deriving from the definition ofq∗
β . It follows that S(P,q∗

β) =
H(P ) = S(P,p), whence

∫
log{p(x)/q∗

β(x)}p(x) dµ = 0. However, this can only
hold if P = Q∗

β .
Part (ii) follows immediately.
For part (iii), assume Condition 7.3 holds. Then, for allβ ∈ Rk ,

χ(β) = sup
τ∈T

sup
P∈�τ

{H(P ) − βTτ } = sup
τ∈T

{h(τ ) − βTτ },(82)

with h(τ ) as in (51). By Lemma 7.1T is convex. It follows thatχ is a closed
convex function onRk .

Steepness ofE∗ means that|κ(βn)| → ∞ whenever(βn) is a sequence inB0

converging to a relative boundary pointβ∗ of B. Sinceκ is convex [Barndorff-
Nielsen (1978), Chapter 8] andχ coincides withκ on B0, we must thus have
|χ(βn)| → ∞ as(βn) → β∗. Since by Condition 7.3 the closed convex functionχ

is finite on Rk , B cannot have any relative boundary points—hence, under
minimality, any boundary points—inRk . SinceB is nonempty, it must thus
coincide withRk . Then, by (ii)E∗ = E l = En. �

To see that even under the above conditions we need not haveE∗ = Em, consider
the caseX = {0,1}, T = X. ThenEm consists of all distributions onX, whereas
E∗ = E l = En excludes the one-point distributions at 0 and 1.

7.4.2. Characterization of specific entropy. We now generalize a result of
Kivinen and Warmuth (1999). For the case of finiteX, they attack the problem
of minimizing the Kullback–Leibler discrepancy KL(P,P0) over all P such
that EP (T ) = 0. Equivalently (see Section 3.5.2), they are maximizing the entropy
H(P ) = −KL (P,P0), associated with the logarithmic score relative to base
measureP0, subject toP ∈ �0.

Let E∗ be the standard exponential family (74) generated by base measureP0

and statisticT , with typical memberQ∗
β (β ∈ Rk) having probability mass

function of the form

q∗
β(x) = p0(x) e−κ(β)−βTt (x)(83)

and entropyh(τ ) = κ(β) + βTτ , whereτ = EQβ
(T ).

Suppose 0∈ T 0. By Chapter 9 of Barndorff-Nielsen (1978), there then exists
within �0 a unique memberQ∗

β∗ of E∗. By Theorem 7.1 the maximum of the
entropy −KL (P,P0) is achieved forP = Q∗

β∗ ; its maximized value is thus
h(0) = κ(β∗), where

κ(β) = log
∑
x

p0(x) e−βTt (x).(84)
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Equation (1.5) of Kivinen and Warmuth (1999) essentially states that the
maximized entropyh(0) over�0 can equivalently be obtained as

h(0) = min
β∈Rk

κ(β).(85)

By Proposition 7.5(i) this can also be written as

h(0) = min
β∈Rk

χ(β).(86)

We now extend the above property to a more general decision problem,
satisfying Conditions 7.2 and 7.3. Letτ ↔ β, σ ↔ γ (τ, σ ∈ T ). Thenχ(β) =
β0 = h(τ ) − βTτ , χ(γ ) = γ0 = h(σ ) − γ Tσ , with β0, and correspondinglyγ0, as
in (65). From (56) we have

h(σ ) ≤ β0 + βTσ.(87)

Moreover, we have equality in (87) whenβ = γ . It follows that forσ ∈ T

h(σ ) = inf
β∈Rk

{χ(β) + βTσ },(88)

the infimum being attained whenβ ↔ σ . In particular, when 0∈ T we recover (86)
in this more general context. Equations (82) and (88) express a conjugacy relation
between the convex functionχ and the concave functionh.

7.5. Support. Fix x ∈ X. For any actζ ∈ Z we term the negative losssx(ζ ) :=
−L(x, ζ ) the support for act ζ based on datax. Likewise, sP (ζ ) := −L(P, ζ )

is the support forζ based on a (theoretical or empirical) distributionP for X.
If F ⊆ Z is a family of contemplated acts, then the functionζ �→ sP (ζ ) on F is
the support function over F based on “data”P . When the maximum ofsP (ζ )

over ζ ∈ F is achieved at̂ζ ∈ F , we may termζ̂ the maximum support act
(in F , based onP ). Then ζ̂ is just the Bayes act againstP in the game with
loss functionL(x, ζ ), whenζ is restricted to the setF .

For the special case of the logarithmic score (20),sx(q) = logq(x) is
the log-likelihood of a tentative explanationq(·), on the basis of datax;
if P is the empirical distribution formed from a sample ofn observations,
sP (q) is (n−1 times) the log-likelihood for the explanation whereby these were
independently and identically generated from densityq(·). Thus our definition
of the support function generalizes that used in likelihood theory [Edwards
(1992)], while our definition of maximum support act generalizes that of maximum
likelihood estimate. In particular, maximum likelihood is Bayes in the sense of the
previous paragraph.

Typically we are only interested in differences of support (between different
acts, for fixed datax or distributionP ), so that we can regard this function as
defined only up to an additive constant; this is exactly analogous to regarding
a likelihood function as defined only up to a positive multiplicative constant.
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7.5.1. Maximum support in generalized exponential families. Let T ≡ t (X)

be a statistic, and letE r be the regular generalized exponential family generated
by L andT . Fix a distributionP ∗ over X, and consider the associated support
function s∗(·) := sP ∗(·) over the familyF r := {ζτ : τ ∈ T r}. It is well known
[Barndorff-Nielsen (1978), Section 9.3] that, in the case of an ordinary exponential
family (when L is logarithmic score andF r = {pτ (·) : τ ∈ T r} is the set of
densities of distributions inE r ), the likelihood overF r based on datax∗ (or
more generally on a distributionP ∗) is under regularity conditions maximized
at pτ∗ , whereτ ∗ = t (x∗) [or τ ∗ = EP ∗(T )]. The following result gives a partial
generalization of this property.

THEOREM 7.3. Suppose τ ∗ := EP ∗(T ) ∈ T r . Let τ ∈ T r be such that either
of the following holds:

(i) ζτ is linear;
(ii) P ∗ � Pτ .

Then

s∗(ζτ∗) ≥ s∗(ζτ ).(89)

PROOF. SinceP ∗ ∈ �τ∗ and(Pτ∗, ζτ∗) is a saddle-point inGτ∗
, we have

s∗(ζτ∗) ≥ −h(τ ∗).(90)

Under (i), (59) holds everywhere; under (ii), by Definition 7.3(ii) it holds with
P ∗-probability 1. In either case we obtain

L(P ∗, ζτ ) = h(τ ) + βT(τ ∗ − τ ).(91)

By (56), the right-hand side is at least as large ash(τ ∗), whences∗(ζτ ) ≤ −h(τ ∗).
Combining this with (90), the result follows.�

COROLLARY 7.3. If for all τ ∈ E r either ζτ is linear or P ∗ � Pτ , then ζτ∗ is
the maximum support act in F r .

For the case of the logarithmic score (20) over a continuous sample space,
with P ∗ a discrete distribution (e.g., the empirical distribution based on a sample),
Theorem 7.3(ii) may fail, and we need to apply (i). For this we must be sure to
take as the Bayes actp(·) againstP ∈ E the specific choice where (74) holds
everywhere (rather than almost everywhere). Then Corollary 7.3 holds.

See Section 7.6.1 for a case where neither (i) nor (ii) of Theorem 7.3 applies,
leading to failure of Corollary 7.3.
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7.6. Examples. We shall now illustrate the above theory for the Brier score,
the logarithmic score and the zero–one loss. In particular we analyze in detail the
simple case havingX = {−1,0,1} andT ≡ X. For each decision problem we
(i) show how Theorems 7.1 and 7.2 can be used to find robust Bayes acts, (ii) give
the corresponding maximum entropy distributions and (iii) exhibit the associated
generalized exponential family and specific entropy function.

7.6.1. Brier score. Consider the Brier score forX = {x1, . . . , xN}. By (17) we
may write this score as

S(x,Q) = 1− 2q(x) + ∑
j

q(j)2.

To try to apply Theorem 7.1 we search for a linear distributionPτ ∈ �τ . That is,
we must find(βj ) such that, for allx ∈ X,

1− 2pτ (x) + ∑
y

pτ (y)2 = β0 +
k∑

j=1

βj tj (x).(92)

Equivalently, we must find(αj ) such that, for allx,

pτ (x) ≡ α0 +
k∑

j=1

αj tj (x).(93)

The mean-value constraints∑
x

tj (x)pτ (x) = τj , j = 1, . . . , k,

together with the normalization constraint∑
x

pτ (x) = 1,

will typically determine a unique solution for thek + 1 coefficients(αj ) in (93).
As long as this procedure leads to a nonnegative value for eachpτ (x), by
Theorem 7.1 and the fact that the Brier score is proper we shall then have obtained
a saddle-point(Pτ ,Pτ ).

However, as we shall see below, for certain values ofτ this putative “solution”
for Pτ might have somepτ (x) negative—showing that it is simply not possible
to satisfy (92). By Theorem 5.2 we know that, even in this case a saddle-point
(Pτ ,Pτ ) exists. We can find it by applying Theorem 7.2: we first restrict the sample
space to someX∗ ⊆ X and try to find a probability distributionPτ satisfying the
mean-value and normalization constraints, such thatpτ (x) = 0 for x /∈ X∗ and for
which, for some(βj ) (92) holds for allx ∈ X∗ [or, equivalently, for some(αj )

(93) holds for all x ∈ X∗]. Among all such restrictionsX∗ that lead to an
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everywhere nonnegative solution for(pτ (x)), we choose that yielding the largest
value ofH . Then the resulting distributionPτ will supply a saddle-point and so,
simultaneously, (i) will haveH(Pτ ) = h(τ ), the maximum possible generalized
entropy 1− ∑

x p(x)2 subject to the mean-value constraints, and (ii) (which we
regard as more important) will be robust Bayes for the Brier score against all
distributions satisfying that constraint.

A more intuitive and more efficient geometric variant of the above procedure
will be given in Section 8.

EXAMPLE 7.1. SupposeX = {−1,0,1} andT ≡ X. Consider the constraint
E(X) = τ , for τ ∈ [−1,1]. We first look for linear acts satisfying (93). The mean-
value constraint

∑
x x pτ (x) = τ and normalization constraint

∑
x pτ (x) = 1

provide two independent linear equations for the coefficients(α0, α1) in (93), so
uniquely determining(α0, α1), and hencepτ . We easily findα0 = 1

3, α1 = 1
2τ

and thuspτ (x) = 1
3 + 1

2τx (x = −1,0,1) (whenceβ1 = −τ , β0 = 2
3 + 1

3τ2).
We thus obtain a nonnegative solution for(pτ (−1),pτ (0),pτ (1)) only so long
asτ ∈ [−2/3,2/3]: in this and only this case the actpτ is linear. Whenτ falls
outside this interval we can proceed by trying the restricted sample spaces{−1},
{0}, {1}, {0,1}, {−1,0}, {−1,1}, as indicated above. All in all, we find that the
optimal distributionPτ has probabilities, entropy andβ satisfying Definition 7.3,
as given in Table 1.

The family {Pτ :−1 ≤ τ ≤ 1} constitutes the regular generalized exponential
family overX generated by the Brier score and the statisticT ≡ X. The location
of this family in the probability simplex is depicted in Figure 2.

We note thath(τ ) = β0 + β1τ andβ1 = h′(τ ) (−1 < τ < 1). The functionh(τ )

is plotted in Figure 3; Figure 4 shows the correspondence betweenβ1 andτ .
By Theorem 7.1(i), the robust Bayes actPτ will be an equalizer rule whenτ is

linear, that is, forτ ∈ [−2
3, 2

3], and also (trivially) whenτ = ±1.

The above example demonstrates the need for condition (i) or (ii) in Theo-
rem 7.3 and Corollary 7.3: typically both these conditions fail here forτ /∈ [−2

3, 2
3].

TABLE 1
Brier score: maximum entropy distributions

pτ (−1) pτ (0) pτ (1) h(τ ) β0 β1

τ = −1 1 0 0 0 = β1 β1 ≥ 2
−1 < τ ≤ −2

3 −τ 1+ τ 0 −2τ(1 + τ) 2τ2 −2− 4τ

−2
3 < τ < 2

3
1
3 − 1

2τ 1
3

1
2τ + 1

3
2
3 − 1

2τ2 2
3 + 1

2τ2 −τ

2
3 ≤ τ < 1 0 1−τ τ 2τ(1− τ) 2τ2 2− 4τ

τ = 1 0 0 1 0 = −β1 β1 ≤ −2
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FIG. 2. Brier score, logarithmic score and zero–one loss: the probability simplex for
X = {−1,0,1}, with entropy contours and generalized exponential family (maximum entropy dis-
tributions for the constraint E(X) = τ , τ ∈ [−1,1]). The set of distributions satisfying E(X) = τ

corresponds to a vertical line intersecting the base at τ ; this is displayed for τ = −0.25and τ = 0.75.
The intersection of the bold curve and the vertical line corresponding to τ represents the maximum
entropy distribution for constraint E(X) = τ .

Thus let P ∗ have probabilities(p∗(−1),p∗(0),p∗(1)) = (0.9,0,0.1), so that
τ ∗ = EP ∗(X) = −0.8 andζτ∗ = (0.8,0.2,0). From (18) we finds∗(ζτ∗) = −0.24.
However, ζτ∗ = ζ−0.8 is not the maximum support act inF r in this case:
it can be checked that this is given byζ−0.95 = (0.95,0.05,0), having support
s∗(ζτ ) = −0.195.

7.6.2. Log loss. We now specialize the analysis of Section 7.3 to the case
X = {−1,0,1}, T ≡ X, with µ counting measure.

For τ ∈ (−1,1), the maximum entropy distributionPτ will have (robust
Bayes) probability mass function of the formpτ (x) = exp−(β0 + β1x). That
is, the probability vectorpτ = (pτ (−1),pτ (0),pτ (1)) will be of the form
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FIG. 3. Specific entropy function h(τ) for Brier score, logarithmic score and zero–one loss.

(peβ1,p,pe−β1), subject to the normalization and mean-value constraints

p (1+ eβ1 + e−β1) = 1,(94)

p (e−β1 − eβ1) = τ,(95)

which uniquely determinep ∈ (0,1), β1 ∈ R. Then h(τ ) = β0 + β1τ , where
β0 = − logp.

We thus have

p = (1+ eβ1 + e−β1)−1,(96)

τ = p (e−β1 − eβ1),(97)

h = − logp + β1τ.(98)
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FIG. 4. Correspondence between mean-value parameter τ (x-axis) and natural parameter β1
(y-axis) of generalized exponential family, for Brier score, logarithmic score and zero–one loss.

On varyingβ1 in (−∞,∞), we obtain the parametric curve(τ, h) displayed in
Figure 3; Figure 4 displays the correspondence betweenβ1 and τ . It is readily
verified thatdh/dτ = (dh/dβ1)/(dτ/dβ1) = β1, in accordance with (57).

In the terminology of Section 7.4, the above family{Pτ : τ ∈ (0,1)} constitutes
the natural exponential family associated with the logarithmic score and the
statistic T . It is also the usual exponential family for this problem. However,
the full exponential family further includesτ = ±1. The family �1 consists
of the single distributionP1 putting all its mass on the point 1. Then trivially
P1 is maximum entropy [with specific entropyh(1) = 0], andp1 = (0,0,1), with
loss vectorL(·,p1) = (∞,∞,0), is unique Bayes againstP1 and robust Bayes
against�1. Clearly (59) fails in this case, but even thoughτ = 1 is not regular the
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property of Lemma 7.2 does hold there (albeit trivially). Similar properties apply
at τ = −1.

7.6.3. Zero–one loss. We now consider the zero–one loss (22) and seek robust
Bayes acts against mean-value constraints�τ of form (76). Once again we can
try to apply Theorem 7.1 by looking for an actζτ ∈ Z that is Bayes against
somePτ ∈ �τ , and such that

L(x, ζτ ) ≡ 1− ζτ (x) = β0 +
k∑

j=1

βj tj (x)(99)

for all x ∈ X. When this proves impossible, we can again proceed by restricting
the sample space and using Theorem 7.2. The distributionPτ will again maximize
the generalized entropy. However, in this problem, in contrast to the log and
Brier score cases, because of nonsemistrictness the Bayes act againstPτ may be
nonunique—and, if we want to ensure that (99) (or its restricted version) holds,
it may matter which of the Bayes acts (including randomized acts) we pick. Thus
the familiar routine “maximize the generalized entropy, and then use a Bayes act
against this distribution” is not, by itself, fully adequate to derive the robust Bayes
act: additional care must be taken to select theright Bayes act.

EXAMPLE 7.2. Again takeX = {−1,0,1} and T ≡ X. Consider the con-
straint E(X) = τ , where τ ∈ [−1,1]. We find that for eachτ a unique max-
imum entropyPτ exists. By some algebra we can then find the probabilities
(pτ (−1),pτ (0),pτ (1)); they are given in Table 2, together with the corresponding
specific entropyh(τ ) (also plotted in Figure 3).

The family of distributions{Pτ : τ ∈ [−1,1]} thus constitutes the full gener-
alized exponential family overX generated by the zero–one loss and the sta-

TABLE 2
Zero–one loss: maximum entropy distributions

pτ (−1) pτ (0) pτ (1) h(τ )

τ = −1 1 0 0 0
−1 < τ < −1

2 −τ 1+ τ 0 1+ τ

τ = −1
2

1
2

1
2 0 1

2

−1
2 < τ < 0 1−τ

3
1−τ

3
1+2τ

3
2+τ

3

τ = 0 1
3

1
3

1
3

2
3

0 < τ < 1
2

1−2τ
3

1+τ
3

1+τ
3

2−τ
3

τ = 1
2 0 1

2
1
2

1
2

1
2 < τ < 1 0 1−τ τ 1− τ

τ = 1 0 0 1 0
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tistic T ≡ X. The location of this family in the probability simplex is depicted
in Figure 2.

How can we determine the robust Bayes actsζτ ? We know that any such
ζτ is Bayes againstPτ and thus puts all its mass on the modes ofPτ . As can
be seen, for−0.5 ≤ τ ≤ 0.5 the setAPτ of these modes has more than one
element. We additionally use (99), restricted tox in the support ofPτ , to find
out whichζτ ∈ APτ are robust Bayes. Forτ ∈ [−1

2, 1
2] this requires

−β1 + β0 = 1− ζτ (−1),

β0 = 1− ζτ (0),(100)

β1 + β0 = 1− ζτ (1),

from which we readily deduceβ0 = 2
3. The condition thatζτ put all its mass on the

modes ofPτ then uniquely determinesζτ for −0.5 ≤ τ < 0 and for 0< τ < 0.5.
If τ = 0, all actsζ are Bayes for someP ∈ �τ (takeP uniform), and hence by
Theorem 7.1 all solutions to (100) [i.e., such thatζτ (0) = 1

3] are robust Bayes acts.
Finally, for τ = 0.5 (the caseτ = −0.5 is similar) we must haveζτ (−1) = 0, and
we can use the “supporting hyperplane” property (56) to deduce thatζτ (0) ≤ 1

3.
Table 3 gives the robust Bayes actsζτ for eachτ ∈ [−1,1], together with the

corresponding values ofβ0, β1. Thusζτ is a linear act for−0.5 ≤ τ ≤ 0.5 (where
we must choosea = 1

3 at the endpoints). Again we see thath(τ ) = β0 + β1τ , and
thatβ1 = h′(τ ) where this exists.

Figure 4 shows the relationship betweenβ1 andτ . In this case the uniqueness
part of Condition 7.3 is not satisfied, with the consequence that neitherβ1 nor τ

uniquely determines the other. However, the full exponential family{Pτ :−1 ≤
τ ≤ 1} is clearly specified by the one-one mapτ �→ Pτ , and most of the properties
of such families remain valid.

TABLE 3
Zero–one loss: robust Bayes acts

ζτ (−1) ζτ (0) ζτ (1) β0 β1

τ = −1 1 0 0 = β1 β1 ≥ 1
−1 < τ < −1

2 1 0 0 1 1
τ = −1

2 1− a a ≤ 1
3 0 1− a 1− 2a

−1
2 < τ < 0 2

3
1
3 0 2

3
1
3

τ = 0 a ≤ 2
3

1
3

2
3 − a 2

3 a − 1
3

0 < τ < 1
2 0 1

3
2
3

2
3 −1

3
τ = 1

2 0 a ≤ 1
3 1− a 1− a 2a − 1

1
2 < τ < 1 0 0 1 1 −1
τ = 1 0 0 1 = −β1 β1 ≤ −1
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8. Relative entropy, discrepancy, divergence. Analogous to our generalized
definition of entropy, we now introducegeneralized relative entropy with respect
to a decision problem, and we show how the negative relative entropy has a natural
interpretation as a measure of discrepancy. This allows us to extend our minimax
results to a more general setting and leads to a generalization of the Pythagorean
property of the relative Shannon entropy [Csiszár (1975)].

We first introduce the concept of thediscrepancy between a distributionP and
a (possibly randomized) actζ , induced by a decision problem.

8.1. Discrepancy. Suppose first thatH(P ) is finite. We define, for anyζ ∈ Z,
thediscrepancy D(P, ζ ) between the distributionP and the actζ by

D(P, ζ ) := L(P, ζ ) − H(P ).(101)

In the general terminology of decision theory,D(P, ζ ) measures DM’sregret
[Berger (1985), Section 5.5.5] associated with taking actionζ when Nature
generatesX from P . Also, since−D(P, ζ ) differs from−L(P, ζ ) by a term only
involving P , we can use it in place of the support functionsP (ζ ): thus maximizing
support is equivalent to minimizing discrepancy.

We note that, if a Bayes actζP againstP exists, then

D(P, ζ ) = EP {L(X, ζ ) − L(X, ζP )}.(102)

We shall also use (102) as thedefinition of D(P, ζ ) whenP /∈ P , or H(P ) is not
finite, butP has a Bayes act (in which case it will not matter which such Bayes
act we choose). This definition can itself be generalized further to take account of
some cases where no Bayes act exists; we omit the details.

The functionD has the following properties:

(i) D(P, ζ ) ∈ [0,∞].
(ii) D(P, ζ ) = 0 if and only if ζ is Bayes againstP .
(iii) For any a, a′ ∈ A, D(P,a) − D(P,a′) is linear in P (in the sense of

Lemma 3.2).
(iv) D is a convex function ofP .

Conversely, under regularity conditions any functionD satisfying (i)–(iii) above
can be generated from a suitable decision problem by means of (101) or (102)
[Dawid (1998)].

8.1.1. Discrepancy and divergence. When our loss function is aQ-proper
scoring ruleS, we shall typically denote the corresponding discrepancy function
by d . Thus forP,Q ∈ Q with H(P ) finite,

d(P,Q) = S(P,Q) − H(P ).(103)

We now haved(P,Q) ≥ 0, with equality whenQ = P ; if S is Q-strict,
thend(P,Q) > 0 for Q = P . Conversely, if for any scoring ruleS, S(P,Q) −
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S(P,P ) is nonnegative for allP,Q ∈ Q, then the scoring ruleS is Q-proper. We
refer tod(P,Q) as thedivergence between the distributionsP andQ. As we shall
see in Section 10, divergence can be regarded as analogous to a measure of squared
Euclidean distance.

The following lemma, generalizing Lemmas 4 and 7 of Topsøe (1979), follows
easily from (103) and the linearity ofS(P,Q) in P .

LEMMA 8.1. Let S be a proper scoring rule, with associated entropy
function H and divergence function d . Let P1, . . . ,Pn have finite entropies, and
let (p1, . . . , pn) be a probability vector. Then

H(P) = ∑
pi H(Pi) + ∑

pi d(Pi,P ),(104)

d(P ,Q) = ∑
pi d(Pi,Q) − ∑

pi d(Pi,P ),(105)

where P := ∑
pi Pi .

We can also associate a divergence with a more general decision problem, with
loss functionL such thatZQ is nonempty for allQ ∈ Q, by

d(P,Q) := D(P, ζQ) = EP {L(X, ζQ) − L(X, ζP )},(106)

where again for eachQ ∈ Q we suppose we have selected some specific Bayes
actζQ. This will then be identical with the divergence associated directly [using,
e.g., (103)] with the corresponding scoring rule given by (15), and (104) and (105)
will continue to hold with this more general definition.

8.2. Relative loss. Given a gameG = (X,A,L), choose, once and for all,
a reference act ζ0 ∈ Z. We can construct a new gameG0 = (X,A,L0), where the
new loss functionL0 is given by

L0(x, a) := L(x, a) − L(x, ζ0).(107)

This extends naturally to randomized acts:L0(x, ζ ) := L(x, ζ ) − L(x, ζ0). We
call L0 the relative loss function and G0 the relative game with respect to the
reference actζ0. In order thatL0 > −∞ we shall requireL(x, ζ0) < ∞ for
all x ∈ X. We further restrict attention to distributions inP ′ := {P :L0(P, a)

is defined for alla ∈ A} and randomized acts inZ′ := {ζ :L0(P, ζ ) is defined
for all P ∈ P ′}. In general,P ′ andZ′ may not be identical withP andZ.

The expected relative lossL0(P, ζ ) satisfies

L0(P, ζ ) = L(P, ζ ) − L(P, ζ0)(108)

wheneverL(P, ζ0) is finite. Whether or not this is so, it is easily seen that the
Bayes acts against anyP are the same in both games.
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DEFINITION 8.1. An actζ0 ∈ Z is calledneutral if the loss functionL(x, ζ0)

is a finite constant,k say, onX.

If a neutral act exists, and we use it as our reference act, thenL0(P, ζ ) =
L(P, ζ ) − k, all P ∈ P . The relative gameG0 is then effectively the same
as the original gameG, and maximum entropy distributions, saddle-points, and
other properties of the two games, or of their restricted subgames, will coincide.
However, these equivalences are typically not valid for more general relative
games.

8.3. Relative entropy. When a Bayes actζP againstP exists, thegeneralized
relative entropy H0(P ) := infa∈A L0(P, a) associated with the relative lossL0 is
seen to be

H0(P ) = EP {L(X, ζP ) − L(X, ζ0)}.(109)

[In particular, we must have−∞ ≤ H0(P ) ≤ 0.] When L(P, ζ0) is finite,
this becomes

H0(P ) = H(P ) − L(P, ζ0).(110)

Comparing (109) with (102), we observe the simple but fundamental relation

H0(P ) = −D(P, ζ0).(111)

Themaximum generalized relative entropy criterion thus becomes identical to
theminimum discrepancy criterion:

Choose P ∈ � to minimize, over P ∈ �, its discrepancy D(P, ζ0) from the
reference act ζ0.

Note that, even though Bayes acts are unaffected by changing fromL to the
relative lossL0, the corresponding entropy function (110) isnot unaffected. Thus
in general the maximum entropy criterion (for the same constraints) will deliver
different solutions in the two problems. Related to this, we can also expect to
obtain different robust Bayes acts in the two problems.

Suppose we construct the relative loss taking as our reference actζ0 a Bayes
act against a fixedreference distribution P0. Alternatively, start with a proper
scoring ruleS, and construct directly the relative score with reference to the
actP0. The minimum discrepancy criterion then becomes theminimum divergence
criterion: chooseP ∈ � to minimize the divergenced(P,P0) from the reference
distributionP0.

This reinterpretation can often assist in finding a maximum relative entropy
distribution. If moreover we can chooseP0 to be neutral, this minimum divergence
criterion becomes equivalent to maximizing entropy in the original game.
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8.4. Relative loss and generalized exponential families.

8.4.1. Invariance relative to linear acts. Suppose the reference actζ0 is linear
with respect toL andT , so that we can write

L(x, ζ0) = δ0 + δTt (x).(112)

Then if EP (T ) exists,

L0(P, ζ ) = L(P, ζ ) − δ0 − δTEP (T ),(113)

H0(P ) = H(P ) − δ0 − δTEP (T ).(114)

In particular, for allP ∈ �τ ,

L0(P, ζ ) = L(P, ζ ) − δ0 − δTτ,(115)

H0(P ) = H(P ) − δ0 − δTτ.(116)

We see immediately from the definitions that the full, the natural, the regular
and the linear generalized exponential families generated byL0 andT are identical
with those generated byL andT . The correspondenceτ �→ Pτ is unaffected; for
the natural case, ifQβ arises fromL andQ0,β from L0, we haveQ0,β = Qβ+δ .

Suppose in particular that we take anyPσ ∈ E l . In this case we can takeζ0
having property (112) to be the corresponding Bayes actζσ . We thus see that a
generalized exponential family is unchanged when the loss function is redefined
by taking it relative to some linear member of the family. This property is well
known for the case of a standard exponential family, where every regular member
is linear (with respect to the logarithmic score). In that case, the relative loss can
also be interpreted as the logarithmic score when the base measureµ is changed
to Pσ ; the exponential family is unchanged by such a choice.

8.4.2. Lafferty additive models. Lafferty (1999) definesthe additive model
relative to a Bregman divergence d , reference measure P0 and constraint random
variable T :X → R as the family of probability measures{Qβ :β ∈ R} where

Qβ := argmin
P∈P

βEP {T (X)} + d(P,P0).(117)

We note thatP0 = Q0 is in this family.
Let S be the Bregman score (29) associated withd and let S0 be the

associated relative scoreS0(x,Q) ≡ S(x,Q) − S(x,P0). Note that by (111)
d(P,P0) = −H0(P ), whereH0(P ) is the entropy associated withS0. Lafferty’s
additive models are thus special cases of our natural generalized exponential
families as defined in Section 7.4, being generated by the specific loss functionS0
and statisticT . As shown in Section 8.4.1, whenP0 is linear (with respect to
S andT ) the previous sentence remains true on replacingS0 by S.

These considerations do not rely on any special Bregman properties, and so
extend directly to any loss-based divergence functiond of the form given by
(103) or (106).
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8.5. Examples.

8.5.1. Brier score. In the case of the Brier score, the divergence between
P and Q is given by the squared Euclidean distance between their probabil-
ity vectors:

d(P,Q) = ‖p − q‖2 = ∑
j

{p(j) − q(j)}2.(118)

Using a reference distributionP0, the relative entropy thus becomes

H0(P ) = −∑
j

{p(j) − p0(j)}2.(119)

The uniform distribution overX is neutral. Therefore the distribution within a
set � that maximizes the Brier entropy is just that minimizing the discrepancy
from the uniform reference distributionP0.

To see the consequences of this for the construction of generalized Brier
exponential families, letX = {−1,0,1} and consider the Brier score picture in
Figure 2. The bold line depicts the maximum entropy distributions for constraints
E(T ) = τ , τ ∈ [−1,1]. By the preceding discussion, these coincide with the
minimum P0-discrepancy distributions. For each fixed value ofτ , the set�τ =
{P :EP (X) = τ } is represented by the vertical line through the simplex intersecting
the base line at the coordinateτ . In Figure 2 the casesτ = −0.25 andτ = 0.75 are
shown explicitly. The minimum discrepancy distribution within�τ will be given
by the point on that line within the simplex that is nearest to the center of the
simplex. This gives us a simple geometric means to find the minimum relative
discrepancy distributions forτ ∈ [−1,1], involving less work than the procedure
detailed in Section 7.6.1. We easily see that forτ ∈ [−2/3,2/3] the minimizing
point pτ is in the interior of the line segment, while forτ outside this interval the
minimizing point is at one end of the segment.

8.5.2. Logarithmic score. For P ∈ M (i.e., P � µ) any versionp of the
density dP/dµ is Bayes againstP . Then, with q any version ofdQ/dµ,
D(P,q) = EP [log{p(X)/q(X)}] is the Kullback–Leibler divergence KL(P,Q)

and does not depend on the choice of the versions of eitherp or q. Again, for
P,Q ∈ M we can treatS as a proper scoring ruleS(x,Q), with d(P,Q) ≡
KL (P,Q) as its associated divergence. [ForP /∈ M there is no Bayes act (see
Section 3.5.2), and so, according to our definition (102), the discrepancyD(P,q)

is not defined: we might define it as+∞ in this case.] Maximizing the relative
entropy is thus equivalent to minimizing the Kullback–Leibler divergence in
this case.

There is a simple relationship between the choice of base measureµ, which
is a necessary input to our specification of the decision problem, and the use
of a reference distribution for defining relative loss. If we had constructed our
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logarithmic loss using densities starting with a different choiceµ0 of base measure,
whereµ0 is mutually absolutely continuous withµ, we should have obtained
instead the loss functionS0(x,Q) = − logq0(x), with q0(x) = (dQ/dµ0)(x) =
(dQ/dµ)(x) × (dµ/dµ0)(x). Thus S0(x,Q) = S(x,Q) + k(x), with k(x) ≡
− logd(x), whered is some version ofdµ/dµ0. In particular, whenµ0 is a
probability measure, this is exactly the relative loss function (107) with respect
to the reference distributionµ0, when we start from the problem constructed in
terms ofµ (in particular, it turns out that this relative game will not depend on the
starting measureµ). As already determined, the corresponding relative entropy
function isH0(P ) = −KL (P,µ0).

8.5.3. Zero–one loss. In this case, the discrepancy betweenP and an actζ ∈ Z
is given by

D(P, ζ ) = pmax− ∑
j∈X

p(j)ζ(j).(120)

When X has finite cardinalityN , and ζ0 is the randomized act that chooses
uniformly fromX, we haveS(x, ζ0) ≡ 1−1/N , so that this choice ofζ0 is neutral.

Take X = {−1,0,1} and T ≡ X, let ζ0 be uniform onX and consider the
minimum zero–oneζ0-discrepancy distributions shown in Figure 2. Determining
this family of distributions geometrically is easy once one has determined the
contours of constant generalized entropy, since these are also the contours of
constant discrepancy fromζ0.

8.5.4. Bregman divergence. In a finite sample space, the Bregman score (29)
generates the Bregman divergence (30). Thus minimizing the Bregman divergence
is equivalent to maximizing the associated relative entropy, which is in turn
equivalent to finding a distribution that is robust Bayes against the associated
relative loss function. Minimizing a Bregman divergence has become a popular
tool in the construction and analysis of on-line learning algorithms [Lafferty (1999)
and Azoury and Warmuth (2001)], on account of numerous pleasant properties it
enjoys. As shown by properties (i)–(iv) of Section 8.1 and as will further be seen
in Section 10, many of these properties generalize to an arbitrary decision-based
divergence function as defined by (103) or (106).

In more general sample spaces, the separable Bregman score (34) generates the
separable Bregman divergencedψ given by (37). When the measureµ appearing
in these formulae is itself a probability distribution,µ will be neutral (uniquely so
if ψ is strictly convex); then minimizing overP the separable Bregman divergence
dψ(P,µ) of P from µ becomes equivalent to maximizing the separable Bregman
entropyH(P ) as given by (38).

9. Statistical problems: discrepancy as loss. In this section we apply the
general ideas presented so far to more specifically statistical problems.
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9.1. Parametric prediction problems. In a statistical decision problem, we
have a family{Pω :ω ∈ Ω} of distributions for an observableX overX, labelled
by the valuesω of a parameter� ranging overΩ ; the consequence of taking
an actiona depends on the value of�. We shall show how one can construct a
suitable loss function for this purpose, starting from a general decision problemG
with loss depending on the value ofX, and relate the minimax properties of the
derived statistical gamêG to those of the underlying basic gameG.

In our contextX is best thought of as a future outcome to be predicted, perhaps
after conducting a statistical experiment to learn about�. The distributions ofX
given� = ω would often be taken to be the same as those governing the data in
the experiment, but this is not essential. Our emphasis is thus on statistical models
for prediction, rather than for observed data: the latter will not enter directly.
For applications of this predictive approach to problems of experimental design,
see Dawid (1998) and Dawid and Sebastiani (1999).

9.2. Technical framework. Let (X,B) be a separable metric space with its
Borelσ -field, and letP0 be the family of all probability distributions over(X,B).
We shall henceforth want to considerP0 itself (and subsets thereof) as an abstract
“parameter space.” When we wish to emphasize this point of view we shall
denoteP0 by Θ0, and its typical member byθ ; whenθ is considered in its original
incarnation as a probability distribution on(X,B), we may also denote it byPθ .

Θ0 becomes a metric space under the Prohorov metric inP0, and the associated
topology is then identical with the weak topology onP0 [Billingsley (1999),
page 72]. We denote the set of all probability distributions, orlaws, on the Borel
σ -field C in Θ0 by L0. Such a law can be regarded as a “prior distribution” for
a parameter random variable� taking values inΘ0. For such a law� ∈ L0, we
denote byP� ∈ P0 its mean, given byP�(A) = E�{P�(A)} (A ∈ B): this is just
the marginal “predictive” (mixture) distribution forX over X, obtained by first
generating a valueθ for � from �, and then generatingX from Pθ .

9.3. The derived game. Starting from a basic gameG = (X,A,L), we
construct a newderived game, Ĝ := (Θ,A, L̂). The new loss function̂L onΘ ×A
is just the discrepancy function for the original gameĜ,

L̂(θ, a) := D(Pθ, a),(121)

and the original sample spaceX is replaced byΘ := {θ ∈ Θ0 :D(Pθ, a) is defined
for all a ∈ A}.

We have

L̂(θ, a) = L(Pθ, a) − H(Pθ)(122)

when H(Pθ) is finite. Properties (121) and (122) then extend directly to
randomized actsζ ∈ Z for DM. A randomized act for Nature in̂G is a law putting
all its mass onΘ ⊆ Θ0. We shall denote the set of such laws byL ⊆ L0.
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Note that̂L(θ, a) is just the regret associated with taking actiona whenX ∼ Pθ .
It is nonnegative, and it vanishes if and only ifa is Bayes againstPθ . Such a regret
function will often be a natural loss function to use in a statistical decision problem.

Since L̂ ≥ 0, the expected losŝL(�,ζ ) is defined in[0,∞] for all � ∈ L,
ζ ∈ Z. From (122) we obtain

L̂(�, ζ ) = L(P�, ζ ) −
∫

H(Pθ) d�(θ)(123)

when the integral exists. An actζ0 will thus be Bayes against� in Ĝ if and only
if it is Bayes againstP� in G. More generally, this equivalence follows from
the property E�{L̂(�, ζ ) − L̂(�, ζ0)} = EP�

{L(X, ζ ) − L(X, ζ0)}. In particular,
if L is aQ-proper scoring rule in the basic gameG, and the mixture distribution
P� ∈ Q, thenP� will be Bayes against� in Ĝ.

Thederived entropy function is

Ĥ (�) = H(P�) −
∫

H(Pθ) d�(θ)(124)

(when the integral exists) and is nonnegative. This measures the expected reduction
in uncertainty aboutX obtainable by learning the value of�, when initially
� ∼ �: it is theexpected value of information [DeGroot (1962)] in� aboutX.

The derived discrepancy is just

D̂(�, ζ ) = D(P�, ζ ).(125)

9.4. A statistical model. Let Ω ⊆ Θ0: for example,Ω might be a parametric
family of distributions forX. We can think ofΩ as the statistical model for the
generation ofX. We will typically write ω or Pω for a member ofΩ and use�
to denote the parameter� when it is restricted to taking values inΩ . We denote
by 	 ⊆ L0 the class of laws onΘ0 that give all their mass toΩ and can thus
serve as priors for the parameter� of the model; we denote by� ⊆ P0 the family
{P� :� ∈ 	} of all distributions forX obtainable as mixtures over the modelΩ .
Clearly both	 and� are convex.

LEMMA 9.1. Suppose that the family Ω of distributions on (X,B) is tight.
Then so too are � and 	 [the latter as a family of laws on (Θ0,C)].

PROOF. The tightness of� follows easily from the definition.
Let Ω denote the closure ofΩ in Θ0. SinceΩ is tight, so isΩ [use, e.g.,

Theorem 3.1.5(iii) of Stroock (1993)], and then Prohorov’s theorem [Billingsley
(1999), Theorem 5.1] implies thatΩ is compact in the weak topology. Any
collection (in particular,	) of distributions on(Θ0,C) supported onΩ is then
necessarily tight. �
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9.5. Minimax properties. Now consider a statistical model withΩ ⊆ Θ

(so that	 ⊆ L). We can tailor the derived gamêG to this model by simply
restricting the domain of̂L to Ω × A. We would thus be measuring the loss
(regret) of taking actζ ∈ Z, when the true parameter value isω ∈ Ω , by
L̂(ω, ζ ) = D(Pω, ζ ). Alternatively, and equivalently, we can focus attention on the
restricted game Ĝ	 as defined in Section 4.2, with	 the family of laws supported
on the modelΩ . In the present context we shall denote this byĜΩ .

We will often be interested in the existence and characterization of a value,
saddle-point, maximum entropy (maximin) prior̂�∗ or robust Bayes (minimax)
act ζ̂ ∗, in the gamêGΩ . Note in particular that, when we do have a saddle-point
(�̂∗, ζ̂ ∗) in ĜΩ , with valueĤ ∗, we can use Lemma 4.2 to deduce that�̂∗ must
put all its mass onΥ := {ω ∈ Ω :D(Pω, ζ̂ ∗) = Ĥ ∗}: in particular, with�̂∗-prior
probability 1 the discrepancy from the minimax act is constant. When, as will
typically hold,Υ is a proper subset ofΩ , we further deduce from Corollary 4.4
that ζ̂ ∗ is not an equalizer rule in̂GΩ .

To investigate further the minimax and related properties of the gameĜΩ , we
could try to verify directly for this game the requirements of the general theorems
already proved in Sections 5–7. However, under suitable conditions these required
properties will themselves follow from properties of the basic gameG. We now
detail this relationship for the particular case of Theorem 6.4.

We shall impose the following condition:

CONDITION 9.1. There existsK ∈ R such thatH(Pω) ≥ K for all ω ∈ Ω .

By concavity ofH , Condition 9.1 is equivalent toH(Q) ≥ K for all Q ∈ �.
The following lemma is proved in the Appendix.

LEMMA 9.2. Suppose Condition 9.1 holds. Then if Conditions 6.1 and 6.3
hold for L and � (in G), they likewise hold for L̂ and 	 (in Ĝ).

The next theorem now follows directly from Lemmas 9.1 and 9.2 and
Theorem 6.4.

THEOREM 9.1. Suppose Conditions 6.1, 6.3and 9.1 all hold for L and �

in G and, in addition, the statistical model Ω is tight. Then Ĥ ∗ := sup�∈	 Ĥ (�)

is finite, the game ĜΩ has value Ĥ ∗ and there exists a minimax (robust Bayes)
act ζ̂ ∗ in ĜΩ such that

sup
ω∈Ω

L̂(ω, ζ̂ ∗) = inf
ζ∈Z

sup
ω∈Ω

L̂(ω, ζ ) = sup
�∈	

inf
a∈A

L̂(�,a) = Ĥ ∗.(126)

We remark that the convexity requirement on� in Condition 6.3 will be
satisfied automatically, while the finite entropy requirement is likewise guaranteed
by Condition 9.1 and the assumed finiteness ofH ∗.
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The proof of Theorem A.2 shows that we can takeζ̂ ∗ to be Bayes in̂G against
some law�̂∗ in the weak closure	 of 	 (or, equivalently, Bayes inG against
P̂ ∗ := P�̂∗ in the weak closure� of �). However, in general, if	 is not weakly
closed,ζ̂ ∗ need not be a Bayes act in̂G against any prior distribution� ∈ 	

(equivalently, not Bayes inG against any mixture distributionP� ∈ �).
On noting that for any reference actζ0 the gamesG� andG�

0 induce the same
derived game, and using (111), we have the following.

COROLLARY 9.1. Suppose that there exists ζ0 ∈ Z such that Conditions
6.1 and 6.3 hold for L0 and � in the relative game G�

0 , and, in addition, that
L is tight. Suppose further that D(Pω, ζ0) is bounded above for ω ∈ Ω . Then
there exists a minimax (robust Bayes) act ζ̂ ∗ in the game ĜΩ .

If the boundedness condition in Corollary 9.1 fails, we shall have

sup
ω∈Ω

L̂(ω, ζ0) = sup
ω∈Ω

D(Pω, ζ0) = ∞.(127)

It can thus fail for allζ0 ∈ Z only when infζ∈Z supω∈Ω L̂(ω, ζ ) = ∞; that is,
the upper value of the gamêGΩ is ∞. In this case the game has no value,
and anyζ ∈ Z will trivially be minimax in ĜΩ . In the contrary case, we would
normally expect to be able to find a suitableζ0 ∈ Z to satisfy all the conditions of
Corollary 9.1 and thus demonstrate the existence of a robust Bayes actζ̂ ∗ in ĜΩ .

9.6. Kullback–Leibler loss: the redundancy-capacity theorem. An important
special case arises when the modelΩ is dominated by aσ -finite measureµ, and
the loss functionL in G is given by the logarithmic score (20) with respect toµ. In
this case, for any possible choice ofµ, the derived loss is just the Kullback–Leibler
divergence,̂L(ω,P ) ≡ KL(Pω,P ). We call such a game aKullback–Leibler game.
The corresponding derived entropŷH(�), as given by (124), becomes themutual
information, I�(X,�), betweenX and�, in their joint distribution generated by
the prior distribution� for � [Lindley (1956)]. There has been much research,
especially for asymptotic problems, into the existence and properties of a maximin
“reference” prior distribution� overΩ maximizing this mutual information, or of
a minimax act (which can be regarded as a distributionP̂ ∗ ∈ M overX) for DM
[Bernardo (1979), Berger and Bernardo (1992), Clarke and Barron (1990, 1994),
Haussler (1997) and Xie and Barron (2000)].

The following result follows immediately from Corollary 9.1 and Proposi-
tion A.1.

THEOREM 9.2. Suppose that loss on Ω × A is measured by L̂(ω,P ) =
KL (Pω,P ), and that the model Ω is tight. Then there exists a minimax act P̂ ∗ ∈ M
for ĜΩ , achieving infP∈M supω∈Ω KL(Pω,P ). When this quantity is finite it is
the value of the game and equals the maximum attainable mutual information,
I ∗ := sup�∈	 I�(X,�).
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Theorem 9.2, a version of the “redundancy-capacity theorem” of information
theory [Gallager (1976), Ryabko (1979), Davisson and Leon-Garcia (1980) and
Krob and Scholl (1997)], constitutes the principal result (Lemma 3) of Haussler
(1997). Our proof techniques are different, however.

If I ∗ is achieved for somê�∗ ∈ 	, then (�̂∗, P̂ ∗) is a saddle-point in̂GΩ ,
whence, sincêP ∗ is then Bayes in̂G against�̂∗, P̂ ∗ is the mixture distribution
P�̂∗ = ∫

Pω d�̂∗(ω). Furthermore, since Lemma 4.2 applies in this case, we find
that �̂∗ must be supported on the subspaceΥ := {ω ∈ Ω :KL (Pω, P̂ ∗) = I ∗}.
As argued in Section 4.3, for the case of a continuous parameter-space�̂∗ will
typically be a discrete distribution. Notwithstanding this, it is known that, for
suitably regular problems, as sample size increases this discrete maximin prior
converges weakly to the absolutely continuous Jeffreys invariant prior distribution
[Bernardo (1979), Clarke and Barron (1994) and Scholl (1998)].

10. The Pythagorean inequality. The Kullback–Leibler divergence satisfies
a property reminiscent of squared Euclidean distance. This property was called
the Pythagorean property by Csiszár (1975). The Pythagorean property leads
to an interpretation of minimum relative entropy inference as aninformation
projection operation. This view has been emphasized by Csiszár and others in
various papers [Csiszár (1975, 1991) and Lafferty (1999)]. Here we investigate
the Pythagorean property in our more general framework and show how it is
intrinsically related to the minimax theorem: essentially, aPythagorean inequality
holds for a discrepancy functionD if and only if the loss functionL on whichD is
based admits a saddle-point in a suitable restricted game. Below we formally state
and prove this; in Section 10.2 we shall give several examples.

Let � ⊆ P be a family of distributions overX, and let ζ0 be a reference
act, such thatL(P, ζ0) is finite for all P ∈ � [so that L0(P, ζ ) is defined
for all P ∈ �, ζ ∈ Z]. We impose no further restrictions on� (in particular,
convexity is not required). Consider the relative restricted gameG�

0 , with loss
function L0(P, a), for P ∈ �, a ∈ A. We allow randomization overA but
not over�. The entropy function for this game isH0(P ) = −D(P, ζ0) and is
always nonpositive.

THEOREM10.1. Suppose (P ∗, ζ ∗) is a saddle-point in G�
0 . Then for all P ∈ �,

D(P, ζ ∗) + D(P ∗, ζ0) ≤ D(P, ζ0).(128)

Conversely, if (128) holds with its right-hand side finite for all P ∈ �, then
(P ∗, ζ ∗) is a saddle-point in G�

0 .

PROOF. Let H ∗
0 := H0(P

∗) = −D(P ∗, ζ0). If (P ∗, ζ ∗) is a saddle-point
in G�

0 , thenH ∗
0 = L0(P

∗, ζ ∗) and is finite. Also, for allP ∈ �,

L0(P, ζ ∗) ≤ H ∗
0 .(129)
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If H0(P ) = −∞, thenD(P, ζ0) = ∞, so that (128) holds trivially. Otherwise,
(129) is equivalent to

{L0(P, ζ ∗) − H0(P )} + {−H ∗
0 } ≤ {−H0(P )},(130)

which is just (128).
Conversely, in the case thatD(P, ζ0) is finite for allP ∈ �, (128) implies (129).

Also, puttingP = P ∗ in (128) givesD(P ∗, ζ ∗) = 0, which is equivalent toζ ∗
being Bayes againstP ∗. Moreover, H(P ∗) = D(P ∗, ζ0) is finite. By (44),
(P ∗, ζ ∗) is a saddle-point inG�

0 . �

COROLLARY 10.1. If S is a Q-proper scoring rule and � ⊆ Q, then in the
restricted relative game G�

0 having loss S0(P,Q) ( for fixed reference distribution
P0 ∈ Q), if (P ∗,P ∗) is a saddle-point (in which case P ∗ is both maximum entropy
and robust Bayes), then for all P ∈ �,

d(P,P ∗) + d(P ∗,P0) ≤ d(P,P0).(131)

Conversely, if (131) holds and d(P,P0) < ∞ for all P ∈ �, then (P ∗,P ∗) is a
saddle-point in G�

0 .

We shall term (128), or its special case (131), thePythagorean inequality.
We deduce from (128), together withD(P, ζ0) = −H0(P ), that for allP ∈ �,

H0(P
∗) − H0(P ) ≥ D(P, ζ ∗),(132)

providing a quantitative strengthening of the maximum relative entropy property,
H0(P

∗) − H0(P ) ≥ 0, of P ∗. Similarly, (131) yields

H0(P
∗) − H0(P ) ≥ d(P,P ∗).(133)

Often we are interested not in the relative gameG�
0 but in the original gameG�.

The following corollary relates the Pythagorean inequality to this original game:

COROLLARY 10.2. Suppose that in the restricted game G� there exists an act
ζ0 ∈ Z such that L(P, ζ0) = k ∈ R, for all P ∈ � (in particular, this will hold if ζ0
is neutral ). Then, if (P ∗, ζ ∗) is a saddle-point in G�, (128)holds for all P ∈ �;
the converse holds if H(P ) is finite for all P ∈ �.

10.1. Pythagorean equality. Related work to date has largely confined itself
to the case of equality in (128). This has long been known to hold for the
Kullback–Leibler divergence of Section 8.5.2 [Csiszár (1975)]. More recently
[Jones and Byrne (1990), Csiszár (1991) and Della Pietra, Della Pietra and Lafferty
(2002)], it has been shown to hold for a general Bregman divergence under certain
additional conditions. This result extends beyond our framework in that it allows
for divergences not defined on probability spaces. On the other hand, when we try
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to apply it to probability spaces as in Section 3.5.4, its conditions are seen to be
highly restrictive, requiring not only differentiability but also, for example, that the
tangent space∇H(q) of H atq should become infinitely steep asq approaches the
boundary of the probability simplex. This is not satisfied even for such simple cases
as the Brier score: see Section 10.2.1, where we obtain strict inequality in (128).

The following result follows easily on noting that we have equality in (128) if
and only if we have it in (129):

THEOREM 10.2. Suppose (P ∗, ζ ∗) is a saddle-point in G�
0 . If ζ ∗ is an

equalizer rule in G�
0 [i.e., L0(P, ζ ∗) = H0(P

∗) for all P ∈ �], then (128)
holds with equality for all P ∈ �. Conversely, if (128) holds with equality, then
L0(P, ζ ∗) = H0(P

∗) for all P ∈ � such that D(P, ζ0) < ∞; in particular, if
D(P, ζ0) < ∞ for all P ∈ �, ζ ∗ is an equalizer rule in G�

0 .

Combining Theorem 10.2 with Theorem 7.1(i) or Corollary 7.2 now gives the
following:

COROLLARY 10.3. Let � = �τ = {P ∈ P :EP {t (X)} = τ }. Suppose
(P ∗, ζ ∗) := (Pτ , ζτ ) is a saddle-point in Gτ

0. If either (Pτ , ζτ ) is a linear pair
or P � Pτ , then (128)holds with equality.

10.2. Examples. We now illustrate the Pythagorean theorem and its conse-
quences for our running examples.

10.2.1. Brier score. Let X be finite. As remarked in Section 8.5.1, the
Brier divergenced(P,Q) between two distributionsP andQ is just ‖p − q‖2.
Let � ⊆ P be closed and convex. By Theorem 5.2, we know that there then exists
a P ∗ ∈ � such that(P ∗,P ∗) is a saddle-point in the relative gameG�

0 . Therefore,
by Corollary 10.1 we have, for allP ∈ �,

‖p − p∗‖2 + ‖p∗ − p0‖2 ≤ ‖p − p0‖2,(134)

or equivalently,

(p − p∗)T(p∗ − p0) ≤ 0.(135)

The distributionP ∗ within � that maximizes the Brier entropy relative toP0,
or equivalently that minimizes the Brier discrepancy toP0, is given by the
point closest toP0 in �, that is, the Euclidean projection ofP0 onto �.
That this distribution is also a saddle-point is reflected in the fact that the angle
∠(p, p∗,p0) ≥ 90◦ for all P ∈ �.

Consider again the caseX = {−1,0,1} and constraint EP (X) = τ . For
τ ∈ [−2/3,2/3], where (except for the extreme cases) the minimizing pointpτ

is in the interior of the line segment, (135), and so (134), holds with equality for
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all P ∈ �τ ; while for τ outside this interval, where the minimizing point is at one
end of the segment, (135) and (134) hold with strict inequality for allP ∈ �τ \{Pτ }.
Note further that in the former casepτ is linear; forτ ∈ (−2/3,2/3) pτ is in the
interior of the simplex, so thatPτ has full support. Hence, by Theorem 7.1(i) or
Corollary 7.2,pτ is an equalizer rule. In the latter casePτ does not have full
support, and indeed the strict inequality in (134) implies by Theorem 10.2 that it
cannot be an equalizer rule.

We can also use (135) to investigate the existence of a saddle-point for certain
nonconvex�. Thus suppose, for example, that� is represented in the simplex by
a spherical surface. Then the necessary and sufficient condition (135) for a saddle-
point will hold for a reference pointp0 outside the sphere, but fail forp0 inside.
In the latter case Corollary 4.1 does not apply, and the maximum Brier entropy
distribution in� (the point in� closest to the center of the simplex) willnot be
robust Bayes against�.

10.2.2. Logarithmic score. In this cased(P,Q) becomes the Kullback–
Leibler divergence KL(P,Q) (P,Q ∈ M). This has been intensively studied
for the case of mean-value constraints�M

τ = {P ∈ M :EP (T ) = τ } (τ ∈ T 0),
when the Pythagorean property (131) holds with equality [Csiszár (1975)]. By
Theorem 10.2 this is essentially equivalent to the equalizer property of the
maximum relative entropy densitypτ , as already demonstrated (in a way that even
extends to distributionsP ∈ �τ \ M) in Section 7.3. (Recall from Section 8.5.2
that in this case the relative entropy, with respect to a reference distributionP0, is
simply the ordinary entropy under base measureP0.)

In the simple discrete example studied in Section 7.6.2, the above equalizer
property also extended (trivially) to the boundary pointsτ = ±1. Such an
extension also holds for more general discrete sample spaces, since the condition
of Corollary 7.2 can be shown to apply whenτ is on the boundary ofT . So in all
such cases the Pythagorean inequality (131) is in fact an equality.

10.2.3. Zero–one loss. For the caseX = {−1,0,1} and constraint EP (X) = τ ,
with ζ0 uniform onX, we haveH0(P ) = H(P )−1+1/N , and then (132) (equiva-
lent to both the Pythagorean and the saddle-point property) asserts: for allP ∈ �τ ,

H(Pτ ) − H(P ) ≥ D(P, ζτ ).(136)

Using (25) and (120), (136) becomes

pτ,max≤ ∑
p(x) ζτ (x).(137)

This can be confirmed for the specifications ofPτ andζτ given in Tables 2 and 3.
Specifically, for 0≤ τ < 1

2, both sides of (137) are(1 + τ )/3 (the equality
confirming that in this case we have an equalizer rule), while, for1

2 < τ ≤ 1,
(137) becomesτ ≤ p(1), which holds sinceτ = p(1) − p(−1) (in particular we
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have strict inequality, and hence do not have an equalizer rule, unlessτ = 1). For
τ = 1

2, we calculate
∑

p(x)ζτ (x)−pτ,max= (1−3a)p(−1), which is nonnegative
sincea ≤ 1/3, so verifying the Pythagorean inequality, and hence the robust Bayes
property ofζ1/2 = (0, a,1− a) for a ≤ 1

3—although this will be an equalizer rule
only for a = 1

3. Similar results hold when−1 ≤ τ < 0.

11. Conclusions and further work.

11.1. What has been achieved. In this paper we started by interpreting the
Shannon entropy of a distributionP as the smallest expected logarithmic loss
a DM can achieve when the data are distributed according toP . We showed
how this interpretation (a) allows for a reformulation of the maximum entropy
procedure as a robust Bayes procedure and (b) can be generalized to supply a
natural extension of the concept of entropy to arbitrary loss functions. Both these
ideas were already known. Our principal novel contribution lies in the combination
of the two: the generalized entropies typically still possess a minimax property,
and therefore maximum generalized entropy can again be justified as a robust
Bayes procedure. For some simple decision problems, as in Section 5, this result is
based on an existing minimax theorem due to Ferguson (1967); see the Appendix,
Section A.1. For others, as in Section 6, we need more general results, such as
Lemma A.1, which uses a (so far as we know) novel proof technique.

We have also considered in detail in Section 7 the special minimax results
available when the constraints have the form of known expectations for certain
quantities. Arising out of this is our second novel contribution: an extension of
the usual definition of “exponential family”to a more general decision framework,
as described in Section 7.4. We believe that this extension holds out the promise
of important new general statistical theory, such as variations on the concept
of sufficiency.

Our third major contribution lies in relating the above theory to the problem
of minimizing a discrepancy between distributions. This in turn leads to two
further results: in Section 9.5 we generalize Haussler’s minimax theorem for the
Kullback–Leibler divergence to apply to arbitrary discrepancies; in Section 10
we demonstrate the equivalence between the existence of a saddle-point and a
“Pythagorean inequality.”

11.2. Possible developments. We end by discussing some possible extensions
of our work.

11.2.1. Moment inequalities. As an extension to the moment equalities
discussed in Section 7, one may consider robust Bayes problems for moment
inequalities, of the form� = {P :EP (T ) ∈ A}, whereA is a general (closed,
convex) subset ofRk . A direct approach to (39) is complicated by the combination
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of inner maximization and outer minimization [Noubiap and Seidel (2001)].
Replacement of this problem by a single maximization of entropy over� could
well simplify analysis.

11.2.2. Nonparametric robust Bayes. Much of robust Bayes analysis in-
volves “nonparametric” families�: for example, we might have a reference
distribution P0, but, not being sure of its accurate specification, wish to guard
against anyP in the “ε-neighborhood” ofP0, that is,{P0 + c(P − P0) : |c| ≤ ε,

P arbitrary}. Such a set being closed and convex, a saddle-point will typically ex-
ist, and then we can again, in principle, find the robust Bayes act by maximizing
the generalized entropy. However, in general it may not be easy to determine or
describe the solution to this problem.

11.2.3. Other generalizations of entropy and entropy optimization problems.
It would be interesting to make connections between the generalized entropies and
discrepancies defined in this text and the several other generalizations of entropy
and relative entropy which exist in the literature. Two examples are the Rényi
entropies [Rényi (1961)] and the family of entropies based on expected Fisher
information considered by Borwein, Lewis and Noll (1996).

Finally, very recently, Harremoës and Topsøe [Topsøe (2002) and Harremoës
and Topsøe (2002)] have proposed a generalization of Topsøe’s original minimax
characterization of entropy [Topsøe (1979)]. They show that a whole range
of entropy-related optimization problems can be interpreted from a minimax
perspective. While Harremoës and Topsøe’s results are clearly related to ours, the
exact relation remains a topic of further investigation.

APPENDIX: PROOFS OF MINIMAX THEOREMS

We first prove Theorem 6.1, which can be used for loss functions that
are bounded from above, and Theorem 6.2, which relates saddle-points to
differentiability of the entropy. We then prove a general lemma, Lemma A.1,
which can be used for unbounded loss functions but imposes other restrictions.
This lemma is used to prove Theorem 6.3. Next we demonstrate a general result,
Theorem A.2, which implies Theorem 6.4. Finally we prove Lemma 9.2.

A.1. Theorem 6.1: L upper-bounded, � closed and tight. The following
result follows directly from Theorem 2 of Ferguson [(1967), page 85].

THEOREM A.1. Consider a game (X,A,L). Suppose that L is bounded
below and that there is a topology on Z, the space of randomized acts, such that
the following hold:

(i) Z is compact.
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(ii) L :X × ζ → R is lower semicontinuous in ζ for all x ∈ X.

Then the game has a value, that is, supP∈P infa∈A L(P,a) = infζ∈Z supx∈X L(x, ζ ).
Moreover, a minimax ζ , attaining infζ∈Z supx∈X L(x, ζ ), exists.

Note thatZ could be any convex set. By symmetry considerations, we thus have
the following.

COROLLARY A.1. Consider a game (�,A,L). Suppose that L is bounded
above and there is a topology on � such that the following hold:

(i) � is convex and compact.
(ii) L :� × A → R is upper semicontinuous in P for all a ∈ A.

Then the game has a value, that is, infζ∈Z supx∈X L(x, ζ ) = supP∈� infa∈A L(P,a).
Moreover, a maximin P , attaining supP∈� infa∈A L(P,a), exists.

PROOF OFTHEOREM 6.1. Since� is tight and weakly closed, by Prohorov’s
theorem [Billingsley (1999), Theorem 5.1] it is weakly compact. Also, under the
conditions imposedL(P,a) is, for eacha ∈ A, upper semicontinuous inP in
the weak topology [Stroock (1993), Theorem 3.1.5(v)]. Theorem 6.1 now follows
from Corollary A.1. �

A.2. Theorems 6.2 and 6.3: L unbounded, supH(P ) achieved. Through-
out this section, we assume that� is convex and thatH ∗ := supP∈� H(P ) is finite
and is achieved for someP ∗ ∈ � admitting a not necessarily unique Bayes actζ ∗.

To prove that(P ∗, ζ ∗) is a saddle-point, it is sufficient to show thatL(P, ζ ∗) ≤
L(P ∗, ζ ∗) = H ∗ for all P ∈ �.

PROOF OFTHEOREM 6.2. By Lemma 3.2,L(P, ζ ∗) andL(P0, ζ
∗) are finite,

and f (λ) := L(Qλ, ζ
∗) is linear in λ ∈ [0,1]. Also, f (λ) ≥ H(Qλ) for all λ

and f (λ∗) = H(Qλ∗) = H ∗. Thusf (λ) must coincide with the tangent to the
curveH(Qλ) atλ = λ∗. It follows that

L(P, ζ ∗) = f (1) = H ∗ + (1− λ)

{(
d

dλ

)
H(Qλ)

}
λ=λ∗

.(138)

However, {(
d

dλ

)
H(Qλ)

}
λ=λ∗

= lim
λ↓λ∗

H(Qλ) − H ∗

λ − λ∗ ≤ 0,

sinceH(Qλ) ≤ H ∗ for λ > λ∗. We deduceL(P, ζ ∗) ≤ H ∗. �

NOTE. If P0 in the statement of Theorem 6.2 can be chosen to be in�, then we
further haveH(Qλ) ≤ H ∗ for λ < λ∗, which implies{(d/dλ)H(Qλ)}λ=λ∗ = 0,
and henceL(P, ζ ∗) = H ∗. In particular, if this can be done for allP ∈ � (i.e.,
P ∗ is an “algebraically interior” point of�), thenζ ∗ will be an equalizer rule.
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From this point on, for anyP ∈ �, λ ∈ [0,1] we writePλ := λP + (1 − λ)P ∗.
Then, since we are assuming� convex,Pλ ∈ �.

LEMMA A.1. Suppose Conditions 6.3 and 6.4 hold. Let ζλ be Bayes
against Pλ (in particular, ζ ∗ := ζ0 is Bayes against P ∗, and ζ1 is Bayes
against P ). Then

L(P, ζλ) − L(P ∗, ζλ) = H(Pλ) − L(P ∗, ζλ)

λ
(139)

≤ 0(140)

(0 < λ < 1). Moreover, limλ↓0L(P ∗, ζλ) and limλ↓0L(P, ζλ) both exist as finite
numbers, and

lim
λ↓0

L(P ∗, ζλ) = H ∗.(141)

PROOF. First note that, sinceH(Pλ) = L(Pλ, ζλ) is finite, by Lemma 3.2 both
L(P, ζλ) andL(P ∗, ζλ) are finite for 0< λ < 1. Also by Lemma 3.2, for allζ ∈ Z,
L(Pλ, ζ ) is, when finite, a linear function ofλ ∈ [0,1]. Then

λL(P, ζ ) + (1− λ)L(P ∗, ζ ) = L(Pλ, ζ )

≥ H(Pλ) = L(Pλ, ζλ)(142)

= λL(P, ζλ) + (1− λ)L(P ∗, ζλ).(143)

On puttingζ = ζλ we have equality in (142); then rearranging yields (139), and
(140) follows fromL(P ∗, ζλ) ≥ H ∗ andH(Pλ) ≤ H ∗.

For generalζ ∈ Z we obtain (when all terms are finite)

λ{L(P, ζλ) − L(P, ζ )} ≤ (1− λ){L(P ∗, ζ ) − L(P ∗, ζλ)}.(144)

Put ζ = ζ1, so thatL(P, ζ1) = H(P ) is finite, and first suppose thatL(P ∗, ζ1)

is finite. Then the left-hand side of (144) is nonnegative, and soL(P ∗, ζ1) ≥
L(P ∗, ζλ) (0 ≤ λ ≤ 1)—which inequality clearly also holds ifL(P ∗, ζ1) = ∞.
An identical argument can be applied on first replacingζ1 by ζλ′ (0 < λ′ < 1), and
we deduce thatL(P ∗, ζλ′) ≥ L(P ∗, ζλ) (0 ≤ λ ≤ λ′ ≤ 1). That is to say,L(P ∗, ζλ)

is a nondecreasing function ofλ on [0,1]. It follows that

lim
λ↓0

L(P ∗, ζλ) ≥ L(P ∗, ζ0) = H ∗.(145)

A parallel argument, interchanging the roles ofP ∗ andP , shows thatL(P, ζλ)

is nonincreasing inλ ∈ [0,1]. Since, by (140), for allλ ∈ (0,0.5], L(P, ζλ) ≤
L(P ∗, ζλ) ≤ L(P ∗, ζ0.5) < ∞, it follows that limλ↓0 L(P, ζλ) exists and is finite.

SinceP ∗ maximizes entropy over�,

H(P ∗) − L(P ∗, ζλ) ≥ H(Pλ) − L(P ∗, ζλ)
(146)

= λ{L(P, ζλ) − L(P ∗, ζλ)},
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by (143). On notingL(P ∗, ζλ) ≤ L(P ∗, ζ1) sinceL(P ∗, ζλ) is nondecreasing, and
usingL(P, ζλ) ≥ H(P ), (146) impliesH ∗ − L(P ∗, ζλ) ≥ λ{H(P ) − L(P ∗, ζ1)}.
If L(P ∗, ζ1) < ∞, then lettingλ ↓ 0 we obtainH ∗ ≥ limλ↓0L(P ∗, ζλ), which,
together with (145), establishes (141). Otherwise, noting thatL(P ∗, ζ0.5) < ∞,
we can repeat the argument withP replaced byP0.5. �

COROLLARY A.2.

lim
λ↓0

L(P, ζλ) − H ∗ = lim
λ↓0

H(Pλ) − L(P ∗, ζλ)

λ
.(147)

COROLLARY A.3 (Condition for existence of a saddle-point).L(P, ζ ∗) ≤
H(P ∗) if and only if

lim
λ↓0

H(Pλ) − L(P ∗, ζλ)

λ
≤ lim

λ↓0
L(P, ζλ) − L(P, ζ ∗).(148)

PROOF OF THEOREM 6.3. The conditions of Lemma A.1 are satisfied. By
Corollary A.3 and (140), we see that it is sufficient to prove that, for allP ∈ �,

0≤ lim
λ↓0

L(P, ζλ) − L(P, ζ ∗).(149)

However, (149) is implied by Condition 6.1.�

A.3. If supP∈� H(P ) is not achieved. In some cases supP∈� H(P ) may not
be achieved in� [Topsøe (1979)]. We might then think of enlarging� to, say,
its weak closure�. However, this can be much bigger than�. For example, for
uncountableX, the weak closure of a set, all of whose members are absolutely
continuous with respect toµ, typically contains distributions that are not. Then
Theorem 6.3 may not be applicable.

EXAMPLE A.1. Consider the logarithmic score, as in Section 3.5.2, with
X = R andµ Lebesgue measure, and let� = {P :P � µ,E(X) = 0,E(X2) = 1}.
Then � contains the distributionP with P (X = 1) = P (X = −1) = 1/2, for
whichH(P ) = −∞. There is no Bayes act against thisP .

This example illustrates that, in case supP∈� H(P ) is not achieved [for an
instance of this, see Cover and Thomas (1991), Chapter 9], we cannot simply take
its closure and then apply Theorem 6.3, since Condition 6.3 could still be violated.

The following theorem, which in turn implies Theorem 6.4 of Section 6, shows
that the game(�,A,L) will often have a value even when� is not weakly closed.
We need to impose an additional condition:

CONDITION A.1. Every sequence(Qn) of distributions in� such thatH(Qn)

converges toH ∗ has a weak limit point inP0.
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THEOREM A.2. Suppose Conditions 6.1, 6.3 and A.1 hold. Then there
exists ζ ∗ ∈ Z such that

sup
P∈�

L(P, ζ ∗) = inf
ζ∈Z

sup
P∈�

L(P, ζ ) = sup
P∈�

inf
a∈A

L(P,a) = H ∗.(150)

In particular, the game G� has value H ∗, and ζ ∗ is robust Bayes against �.

PROOF. Let (Qn) be a sequence in� such thatH(Qn) converges toH ∗. In
particular,(H(Qn)) is bounded below. On choosing a subsequence if necessary,
we can suppose by Condition A.1 that(Qn) has a weak limitP ∗, and further that
for all n H ∗ − H(Qn) < 1/n. By Condition 6.1,P ∗ has a Bayes actζ ∗.

Now pick anyP ∈ �. We will show thatL(P, ζ ∗) ≤ H ∗. First fix n and define
Rn

λ := λP + (1 − λ)Qn, Hn
λ := H(Rn

λ) (0 ≤ λ ≤ 1). In particular,Rn
0 = Qn,

Rn
1 = P . Then Rn

λ ∈ �, with Bayes actζ n
λ , say. We haveHn

λ = L(Rn
λ, ζ n

λ ) =
λL(P, ζ n

λ ) + (1− λ)L(Rn
0, ζ n

λ ), while Hn
0 ≤ L(Rn

0, ζ n
λ ). It follows that

L(P, ζ n
λ ) ≤ Hn

0 + (Hn
λ − Hn

0 )/λ.(151)

SinceHn
0 = H(Qn) > H ∗ − 1/n andHn

0 , Hn
λ ≤ H ∗, we obtain

L
(
P, ζn

1/
√

n

) ≤ H ∗ + 1/n + 1/
√

n.(152)

Now with Q′
n := Rn

1/
√

n
, (Q′

n) converges weakly toP ∗. Moreover,H(Q′
n) ≥

(1/
√

n )H(P )+ (1−1/
√

n )H(Qn) is bounded below. On applying Condition 6.1
to Q′

n, and using (152), we deduce

L(P, ζ ∗) ≤ H ∗.(153)

It now follows that

inf
ζ∈Z

sup
P∈�

L(P, ζ ) ≤ sup
P∈�

L(P, ζ ∗) ≤ H ∗.(154)

However,

H ∗ = sup
P∈�

inf
a∈A

L(P,a) = sup
P∈�

inf
ζ∈Z

L(P, ζ ) ≤ inf
ζ∈Z

sup
P∈�

L(P, ζ ),(155)

where the the second equality follows from Proposition 3.1 and the third inequality
is standard. Together, (154) and (155) imply the theorem.�

PROOF OF THEOREM 6.4. If � is tight, then by Prohorov’s theorem any
sequence(Qn) in � must have a weak limit point, so that, in particular,
Condition A.1 holds. �

It should be noted that, forP ∗ appearing in the above proof, we may
have H(P ∗) = H ∗. In the case of Shannon entropy, we haveH(P ∗) ≤ H ∗;
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a detailed study of the case of strict inequality has been carried out by Harremoës
and Topsøe (2001).

We now show, following Csiszár (1975)and Topsøe (1979), that the conditions
of Theorem A.2 are satisfied by the logarithmic score. We takeL = S, the
logarithmic score (20) defined with respect to a measureµ. This is M-strictly
proper, whereM is the set of all probability distributions absolutely continuous
with respect toµ.

PROPOSITIONA.1. Conditions A.1 and 6.2 are satisfied for the logarithmic
score S relative to a measure µ if eitherof the following holds:

(i) µ is a probability measure and Q = M;
(ii) X is countable, µ is counting measure and Q = {P ∈ P :H(P ) < ∞}.
PROOF. To show Condition A.1, under either (i) or (ii), let(Qn) be a sequence

of distributions in� such thatH(Qn) converges toH ∗. Givenε > 0, chooseN
such that, forn ≥ N , H ∗ − H(Qn) < ε. Then forn,m ≥ N , on applying (104)
we have

H ∗ ≥ H
{1

2(Qn + Qm)
}

= 1
2

[
H(Qn) + H(Qm) + KL

{
Qn,

1
2(Qn + Qm)

}
(156)

+ KL
{
Qm, 1

2(Qn + Qm)
}]

≥ H ∗ − ε + 1
16‖Qn − Qm‖2,

where ‖ · ‖ denotes total variation and the last inequality is an application of
Pinsker’s inequality KL(P1,P2) ≥ (1/4)‖P1 − P2‖2 [Pinsker (1964)]. That is,
n,m ≥ N ⇒ ‖Qn − Qm‖2 ≤ 16ε, so that(Qn) is a Cauchy sequence under‖ · ‖.
Since the total variation metric is complete,(Qn) has a limitQ in the uniform
topology, which is then also a weak limit [Stroock (1993), Section 3.1]. This shows
Condition A.1.

To demonstrate Condition 6.2, supposeQn ∈ Q, H(Qn) ≥ K > −∞ for
all n, and (Qn) converges weakly to some distributionQ0 ∈ P0. By Posner
(1975), Theorem 1, KL(P,Q) is jointly weakly lower semicontinuous in both
arguments. In case (i), the entropyH(P ) ≡ −KL (P,µ) is thus upper semicon-
tinuous inP ∈ P , and it follows that 0≥ H(Q0) ≥ K > −∞, which implies
Q0 ∈ M = Q. In case (ii), the entropy function is lower semicontinuous [Topsøe
(2001)], whence 0≤ H(Q0) < ∞, and againQ0 ∈ Q. In either case, the lower
semicontinuity of KL(P,Q) in Q then implies that, forP ∈ Q, S(P,Q0) =
KL (P,Q0)+H(P ) ≤ lim infn→∞{KL (P,Qn)+H(P )} = lim infn→∞S(P,Qn).

�

Theorem A.2 essentially extends the principal arguments and results of Topsøe
(1979) to nonlogarithmic loss functions. In such cases it might sometimes be
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possible to establish the required conditions by methods similar to Proposition A.1,
but in general this could require new techniques.

A.4. Proof of Lemma 9.2. Suppose Condition 9.1 holds, and Conditions
6.1 and 6.3 hold forL and� in G. We note thatH(Pω) is then bounded below
by K and above byH ∗ for ω ∈ Ω ; for � ∈ 	, the integral in (123) and (124) is
then bounded by the same quantities.

To show Condition 6.1 holds for̂L and 	 in Ĝ, let �n ∈ 	, with Bayes
act ζn ∈ Z in Ĝ, be such that(Ĥ (�n)) is bounded below and(�n) converges
weakly to�0 ∈ 	. DefiningQn := P�n,Q0 := P�0, we then haveQn ∈ �, with
Bayes actζn ∈ Z in G. Now let f :X → R be bounded and continuous, and
defineg :Θ0 → R by g(θ) = EPθ

{f (X)}. By the definition of weak convergence,
the function g is continuous. It follows that EQn{f (X)} = E�n{g(�)} →
E�0{g(�)} = EQ0{f (X)}. This shows that(Qn) converges weakly toQ0. Also,
by (124) and Condition 9.1, the sequence(H(Qn)) is bounded below. It now
follows from Condition 6.1 inG� that Q0 has a Bayes actζ0 in G—any such
act likewise being Bayes against�0 in Ĝ. Also, for an appropriate choice of
the Bayes acts(ζn) and ζ0, L(P, ζ0) ≤ lim infn→∞ L(P, ζn), for all P ∈ �. By
finiteness of the integral in (123) we then obtainL̂(�, ζ0) ≤ lim infn→∞ L̂(�, ζn),
for all � ∈ 	.

We now show that Condition 6.3 holds for̂L and 	 in Ĝ. First it is clear
that 	 is convex. Since� ∈ 	 andP� ∈ � have the same Bayes acts (in their
respective games), ifP� ∈ � has a Bayes act, then so does�. Also, the integral
in (123) is bounded as a function of�, whenceĤ (�) is finite if H(P�) is, and
sup�∈	 Ĥ (�) is finite if supP∈� H(P ) is.

REFERENCES

AZOURY, K. S. and WARMUTH, M. K. (2001). Relative loss bounds for on-line density estimation
with the exponential family of distributions.Machine Learning 43 211–246.

BARNDORFF-NIELSEN, O. (1978).Information and Exponential Families in Statistical Theory.
Wiley, New York.

BERGER, J. O. (1985).Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer,
New York.

BERGER, J. O. and BERNARDO, J. M. (1992). On the development of reference priors (with
discussion). InBayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Smith, eds.) 35–60. Oxford Univ. Press.

BERNARDO, J. M. (1979). Reference posterior distributions for Bayesian inference (with discus-
sion).J. Roy. Statist. Soc. Ser. B 41 113–147.

BILLINGSLEY, P. (1999).Convergence of Probability Measures, 2nd ed. Wiley, New York.
BORWEIN, J. M., LEWIS, A. S. and NOLL, D. (1996). Maximum entropy reconstruction using

derivative information. I. Fisher information and convex duality.Math. Oper. Res. 21
442–468.

BRÈGMAN, L. M. (1967). The relaxation method of finding a common point of convex sets and
its application to the solution of problems in convex programming.USSR Comput. Math.
and Math. Phys. 7 200–217.



MAXIMUM ENTROPY AND ROBUST BAYES 1431

BRIER, G. W. (1950). Verification of forecastsexpressed in terms of probability. Monthly Weather
Review 78 1–3.

CENSOR, Y. and ZENIOS, S. A. (1997).Parallel Optimization: Theory, Algorithms and Applica-
tions. Oxford Univ. Press.

CLARKE, B. and BARRON, A. (1990). Information-theoretic asymptotics of Bayes methods.IEEE
Trans. Inform. Theory 36 453–471.

CLARKE, B. and BARRON, A. (1994). Jeffreys’ prior is asymptotically least favorable under entropy
risk. J. Statist. Plann. Inference 41 37–60.

COVER, T. and THOMAS, J. A. (1991).Elements of Information Theory. Wiley, New York.
CSISZÁR, I. (1975).I -divergence geometry of probability distributions and minimization problems.

Ann. Probab. 3 146–158.
CSISZÁR, I. (1991). Why least squares and maximum entropy? An axiomatic approach to inference

for linear inverse problems.Ann. Statist. 19 2032–2066.
DAVISSON, L. D. and LEON-GARCIA, A. (1980). A source matching approach to finding minimax

codes.IEEE Trans. Inform. Theory 26 166–174.
DAWID , A. P. (1986). Probability forecasting.Encyclopedia of Statistical Sciences 7 210–218.

Wiley, New York.
DAWID , A. P. (1992). Prequential analysis, stochastic complexity and Bayesian inference (with

discussion). InBayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Smith, eds.) 109–125. Oxford Univ. Press.

DAWID , A. P. (1998). Coherent measures of discrepancy, uncertainty and dependence, with
applications to Bayesian predictive experimental design. Technical Report 139, Dept.
Statistical Science, Univ. College London.

DAWID , A. P. (2003). Generalized entropy functions and Bregman divergence. Unpublished
manuscript.

DAWID , A. P. and SEBASTIANI , P. (1999). Coherent dispersion criteria for optimal experimental
design.Ann. Statist. 27 65–81.

DEGROOT, M. H. (1962). Uncertainty, information and sequential experiments.Ann. Math. Statist.
33 404–419.

DEGROOT, M. H. (1970).Optimal Statistical Decisions. McGraw-Hill, New York.
DELLA PIETRA, S., DELLA PIETRA, V. and LAFFERTY, J. (2002). Duality and auxiliary functions

for Bregman distances. Technical Report CMU-CS-109, School of Computer Science,
Carnegie Mellon Univ.

EDWARDS, A. W. F. (1992).Likelihood, expanded ed. Johns Hopkins Univ. Press, Baltimore, MD.
FERGUSON, T. S. (1967).Mathematical Statistics. A Decision-Theoretic Approach. Academic Press,

New York.
GALLAGER, R. G. (1976). Source coding with side information and universal coding. Unpublished

manuscript.
GOOD, I. J. (1952). Rational decisions.J. Roy. Statist. Soc. Ser. B 14 107–114.
GRÜNWALD, P. D. (1998). The minimum description length principle and reasoning under

uncertainty. Ph.D. dissertation, ILLC Dissertation Series 1998-03, Univ. Amsterdam.
GRÜNWALD, P. D. and DAWID , A. P. (2002). Game theory, maximum generalized entropy,

minimum discrepancy, robust Bayes and Pythagoras. InProc. 2002 IEEE Information
Theory Workshop (ITW 2002) 94–97. IEEE, New York.

HARREMOËS, P. and TOPSØE, F. (2001). Maximum entropy fundamentals.Entropy 3 191–226.
Available at www.mdpi.org/entropy/.

HARREMOËS, P. and TOPSØE, F. (2002). Unified approach to optimization techniques in Shannon
theory. InProc. 2002 IEEE International Symposium on Information Theory 238. IEEE,
New York.



1432 P. D. GRÜNWALD AND A. P. DAWID

HAUSSLER, D. (1997). A general minimax result for relative entropy.IEEE Trans. Inform. Theory
43 1276–1280.

JAYNES, E. T. (1957a). Information theory and statistical mechanics. I.Phys. Rev. 106 620–630.
JAYNES, E. T. (1957b). Information theory and statistical mechanics. II.Phys. Rev. 108 171–190.
JAYNES, E. T. (1985). Some random observations.Synthèse 63 115–138.
JAYNES, E. T. (1989).Papers on Probability, Statistics and Statistical Physics, 2nd ed. Kluwer

Academic, Dordrecht.
JONES, L. K. and BYRNE, C. L. (1990). General entropy criteria for inverse problems, with

applications to data compression, pattern classification and cluster analysis.IEEE Trans.
Inform. Theory 36 23–30.

KAPUR, J. N. and KESAVAN, H. (1992). Entropy Optimization Principles with Applications.
Academic Press, New York.

KIVINEN , J. and WARMUTH, M. K. (1999). Boosting as entropy projection. InProc. Twelfth
Annual Conference on Computational Learning Theory (COLT ’99) 134–144. ACM
Press, New York.

KROB, J. and SCHOLL, H. R. (1997). A minimax result for the Kullback–Leibler Bayes risk.Econ.
Qual. Control 12 147–157.

KULLBACK , S. (1959).Information Theory and Statistics. Wiley, New York.
LAFFERTY, J. (1999). Additive models, boosting, and inference for generalized divergences. InProc.

Twelfth Annual Conference on Computational Learning Theory (COLT ’99) 125–133.
ACM Press, New York.

L INDLEY, D. V. (1956). On a measure of the information provided by an experiment.Ann. Math.
Statist. 27 986–1005.

MERHAV, N. and FEDER, M. (1995). A strong version of the redundancy-capacity theorem of
universal coding.IEEE Trans. Inform. Theory 41 714–722.

VON NEUMANN, J. (1928). Zur Theorie der Gesellschaftspiele.Math. Ann. 100 295–320.
NOUBIAP, R. F. and SEIDEL, W. (2001). An algorithm for calculating�-minimax decision rules

under generalized moment conditions.Ann. Statist. 29 1094–1116.
PINSKER, M. S. (1964).Information and Information Stability of Random Variables and Processes.

Holden-Day, San Francisco.
POSNER, E. (1975). Random coding strategies for minimum entropy.IEEE Trans. Inform. Theory

21 388–391.
RAO, C. R. (1982). Diversity and dissimilarity coefficients: A unified approach.J. Theoretical

Population Biology 21 24–43.
RÉNYI, A. (1961). On measures of entropy and information.Proc. Fourth Berkeley Symp. Math.

Statist. Probab. 1 547–561. Univ. California Press, Berkeley.
ROCKAFELLAR, R. T. (1970).Convex Analysis. Princeton Univ. Press.
RYABKO , B. Y. (1979). Coding of a source withunknown but ordered probabilities. Problems

Inform. Transmission 15 134–138.
SCHOLL, H. R. (1998). Shannon optimal priors on IID statistical experiments converge weakly to

Jeffreys’ prior.Test 7 75–94.
SEIDENFELD, T. (1986). Entropy and uncertainty.Philos. Sci. 53 467–491.
SHIMONY, A. (1985). The status of the principle of maximum entropy.Synthèse 63 35–53.

[Reprinted as Chapter 8 of Shimony (1993).]
SHIMONY, A. (1993).Search for a Naturalistic World View 1. Cambridge Univ. Press.
SKYRMS, B. (1985). Maximum entropy inferenceas a special case of conditionalization.Synthèse

63 55–74.
STOER, J. and WITZGALL , C. (1970). Convexity and Optimization in Finite Dimensions. I.

Springer, Berlin.
STROOCK, D. W. (1993).Probability Theory, an Analytic View. Cambridge Univ. Press.



MAXIMUM ENTROPY AND ROBUST BAYES 1433

TOPSØE, F. (1979). Information-theoretical optimization techniques.Kybernetika 15 8–27.
TOPSØE, F. (2001). Basic concepts, identities and inequalities—the toolkit of information theory.

Entropy 3 162–190. Available at www.mdpi.org/entropy/.
TOPSØE, F. (2002). Maximum entropy versus minimum risk and applications to some classical

discrete distributions.IEEE Trans. Inform. Theory 48 2368–2376.
UFFINK, J. (1995). Can the maximum entropy principle be explained as a consistency requirement?

Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 26 223–262.
UFFINK, J. (1996). The constraint rule of the maximum entropy principle.Stud. Hist. Philos. Sci. B

Stud. Hist. Philos. Modern Phys. 27 47–79.
VAN FRAASSEN, B. (1981). A problem for relative information minimizers in probability

kinematics.British J. Philos. Sci. 32 375–379.
VIDAKOVIC , B. (2000). Gamma-minimax: A paradigm for conservative robust Bayesians.Robust

Bayesian Analysis. Lecture Notes in Statist. 152 241–259. Springer, New York.
WALLEY, P. (1991).Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London.
XIE, Q. and BARRON, A. R. (2000). Asymptotic minimax regret for data compression, gambling,

and prediction.IEEE Trans. Inform. Theory 46 431–445.

CWI AMSTERDAM

P.O. BOX 94079
NL-1090 GB AMSTERDAM

THE NETHERLANDS

E-MAIL : pdg@cwi.nl

DEPARTMENT OFSTATISTICAL SCIENCE

UNIVERSITY COLLEGE LONDON

GOWER STREET

LONDON WC1E 6BT
UNITED KINGDOM

E-MAIL : dawid@stats.ucl.ac.uk


