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Abstract: We develop a general game-theoretic framework for reasoning about strategic agents performing
possibly costly computation. In this framework, many traditional game-theoretic results (such as the existence
of a Nash equilibrium) no longer hold. Nevertheless, we can use the framework to provide psychologically
appealing explanations to observed behavior in well-studied games (such as finitely repeated prisoner’s dilemma
and rock-paper-scissors). Furthermore, we provide natural conditions on games sufficient to guarantee that
equilibria exist. As an application of this framework, we develop a definition of protocol security relying
on game-theoretic notions of implementation. We show that a natural special case of this this definition is
equivalent to a variant of the traditional cryptographic definition of protocol security; this result shows that,
when taking computation into account, the two approaches used for dealing with “deviating” players in two
different communities—Nash equilibrium in game theory and zero-knowledge “simulation” in cryptography—are
intimately related.
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1 Introduction
Consider the following game. You are given a ran-

dom odd n-bit number x and you are supposed to
decide whether x is prime or composite. If you guess
correctly you receive $2, if you guess incorrectly you
instead have to pay a penalty of $1000. Addition-
ally you have the choice of “playing safe” by giving
up, in which case you receive $1. In traditional game
theory, computation is considered “costless”; in other
words, players are allowed to perform an unbounded
amount of computation without it affecting their util-
ity. Traditional game theory suggests that you should
compute whether x is prime or composite and output
the correct answer; this is the only Nash equilibrium
of the one-person game, no matter what n (the size of
the prime) is. Although for small n this seems reason-
able, when n grows larger most people would probably
decide to “play safe”—as eventually the cost of com-
puting the answer (e.g., by buying powerful enough
computers) outweighs the possible gain of $1.

The importance of considering such computational
issues in game theory has been recognized since at
least the work of Simon [1]. There have been a num-
ber of attempts to capture various aspects of com-
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putation. Two major lines of research can be iden-
tified. The first line, initiated by Neyman [2], tries
to model the fact that players can do only bounded
computation, typically by modeling players as finite
automata. Neyman focused on finitely repeated pris-
oner’s dilemma, a topic which has contined to attract
attention. (See [3] and the references therein for more
recent work on prisoner’s dilemma played by finite au-
tomata; Megiddo and Wigderson [4] considered pris-
oner’s dilemma played by Turing machines.) In an-
other instance of this line of research, Dodis, Halevi,
and Rabin [5] and Urbano and Vila [6] consider the
problem of implementing mediators when players are
polynomial-time Turing machines. The second line,
initiated by Rubinstein [7], tries to capture the fact
that doing costly computation affects an agent’s util-
ity. Rubinstein assumed that players choose a finite
automaton to play the game rather than choosing a
strategy directly; a player’s utility depends both on
the move made by the automaton and the complex-
ity of the automaton (identified with the number of
states of the automaton). Intuitively, automata that
use more states are seen as representing more com-
plicated procedures. (See [8] for an overview of the
work in this area in the 1980s, and [9] for more recent
work.)

Our focus is on providing a general game-theoretic
framework for reasoning about agents performing
costly computation. As in Rubinstein’s work, we view
players as choosing a machine, but for us the machine
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is a Turing machine, rather than a finite automaton.
We associate a complexity, not just with a machine,
but with the machine and its input. The complexity
could represent the running time of or space used by
the machine on that input. The complexity can also
be used to capture the complexity of the machine itself
(e.g., the number of states, as in Rubinstein’s case) or
to model the cost of searching for a new strategy to
replace one that the player already has. For exam-
ple, if a mechanism designer recommends that player
i use a particular strategy (machine)M , then there is
a cost for searching for a better strategy; switching to
another strategy may also entail a psychological cost.
By allowing the complexity to depend on the machine
and the input, we can deal with the fact that machines
run much longer on some inputs than on others. A
player’s utility depends both on the actions chosen by
all the players’ machines and the complexity of these
machines.

In this setting, we can define Nash equilibrium in
the obvious way. However, as we show by a simple
example (a rock-paper-scissors game where random-
ization is costly), a Nash equilibrium may not always
exist. Other standard results in the game theory, such
as the revelation principle (which, roughly speaking,
says that there is always an equilibrium where players
truthfully report their types, i.e., their private infor-
mation [10, 11]) also do not hold. (See the full paper.)
We view this as a feature. We believe that taking
computation into account should force us to rethink
a number of basic notions.

First, we show that the non-existence of Nash equi-
librium is not such a significant problem. We iden-
tify natural conditions (such as the assumption that
randomizing is free) that guarantee the existence of
Nash equilibrium in computational games. More-
over, we demonstrate that our computational frame-
work can explain experimentally-observed phenom-
ena, such as cooperation in the finitely repeated pris-
oner’s dilemma, that are inconsistent with standard
Nash equilibrium in a psychologically appealing way.

We also show that our framework is normative in
that it can be used to tell a mechanism designer how
to design a mechanism that takes into account agents’
computational limitations. We illustrate this point
in the context of cryptographic protocols. We use
our framework to provide a game-theoretic definition
of what it means for a communication protocol to
securely compute [12] a function of players’ inputs.
Rather than stipulating that “malicious” players can-
not harm the “honest” ones (as traditionally done in
cryptographic definitions [12, 13]), we say that a pro-
tocol Π is a secure implementation of function f if,
given any computational game G for which it is an

equilibrium for the players to provide their inputs to
a mediator computing f and output what the medi-
ator recommends, running Π on the same inputs is
also an equilibrium. In other words, whenever a set
of parties want to compute f on their inputs, they
also want to honestly run the protocol Π using the
same inputs. Perhaps surprisingly, we show that, un-
der weak restrictions on the utility functions of the
players (essentially, that players never prefer to com-
pute more), our notion of implementation is equiva-
lent to a variant of the cryptographic notion of se-
cure computation. This result shows that the two
approaches used for dealing with “deviating” play-
ers in two different communities—Nash equilibrium in
game theory, and zero-knowledge “simulation” [13] in
cryptography—are intimately connected once we take
cost of computation into account.

Finally, we believe this work leaves open a huge
number of exciting research questions. We outline
several directions in Section 5. To give just one ex-
ample, under natural restrictions on the utility func-
tion of players, we can circumvent classical impos-
sibility results with respect to secure computation
(e.g., [14]), suggesting an exploration of more game-
theoretic (im)possibility results.

2 A Computational Framework
In a Bayesian game, it is implicitly assumed that

computing a strategy—that is, computing what move
to make given a type—is free. We want to take the
cost of computation into account here. To this end, we
consider what we call Bayesian machine games, where
we replace strategies by machines. For definiteness,
we take the machines to be Turing machines, although
the exact choice of computing formalism is not signif-
icant for our purposes. Given a type, a strategy in
a Bayesian game returns a distribution over actions.
Similarly, given as input a type, the machine returns
a distribution over actions. Just as we talk about
the expected utility of a strategy profile in a Bayesian
game, we can talk about the expected utility of a ma-
chine profile in a Bayesian machine game. However,
we can no longer compute the expected utility by just
taking the expectation over the action profiles that
result from playing the game. A player’s utility de-
pends not only on the type profile and action profile
played by the machine, but also on the “complexity”
of the machine given an input. The complexity of a
machine can represent, for example, the running time
or space usage of the machine on that input, the size
of the program description, or some combination of
these factors. For simplicity, we describe the com-
plexity by a single number, although, since a number
of factors may be relevant, it may be more appropriate
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to represent it by a tuple of numbers in some cases.
(We can, of course, always encode the tuple as a sin-
gle number, but in that case, “higher” complexity is
not necessarily worse.) Note that when determin-
ing player i’s utility, we consider the complexity of all
machines in the profile, not just that of i’s machine.
For example, i might be happy as long as his machine
takes fewer steps than j’s.

We assume that nature has a type in {0, 1}∗. While
there is no need to include a type for nature in stan-
dard Bayesian games (we can effectively incorporate
nature’s type into the type of the players), once we
take computation into account, we obtain a more ex-
pressive class of games by allowing nature to have a
type (since the complexity of computing the utility
may depend on nature’s type). We assume that ma-
chines take as input strings of 0s and 1s and output
strings of 0s and 1s. Thus, we assume that both types
and actions can be represented as elements of {0, 1}∗.
We allow machines to randomize, so given a type as
input, we actually get a distribution over strings. To
capture this, we assume that the input to a machine is
not only a type, but also a string chosen with uniform
probability from {0, 1}∞ (which we can view as the
outcome of an infinite sequence of coin tosses). The
machine’s output is then a deterministic function of
its type and the infinite random string. We use the
convention that the output of a machine that does
not terminate is a fixed special symbol ω. We define
a view to be a pair (t, r) of two bitstrings; we think
of t as that part of the type that is read, and r is the
string of random bits used. (Our definition is slightly
different from the traditional way of defining a view,
in that we include only the parts of the type and the
random sequence actually read. If computation is not
taken into account, there is no loss in generality in
including the full type and the full random sequence,
and this is what has traditionally been done in the
literature. However, when computation is costly, this
might no longer be the case.) We denote by t; r a
string in {0, 1}∗; {0, 1}∗ representing the view. (Note
that here and elsewhere, we use “;” as a special symbol
that acts as a separator between strings in {0, 1}∗.)
If v = (t; r) and r is a finite string, we take M(v) to
be the output of M given input type t and random
string r · 0∞.

We use a complexity function C : M ×
{0, 1}∗; {0, 1}∗ ∪ {0, 1}∞→ IN , where M denotes the
set of Turing machines to describe the complexity of a
machine given a view. If t ∈ {0, 1}∗ and r ∈ {0, 1}∞,
we identify C (M, t; r) with C (M, t; r′), where r′ is the
finite prefix of r actually used byM when running on
input t with random string r.

For now, we assume that machines run in isolation,

so the output and complexity of a machine does not
depend on the machine profile. We remove this re-
striction in the next section, where we allow machines
to communicate with mediators (and thus, implicitly,
with each other via the mediator).

Definition 2.1 (Bayesian machine game) A
Bayesian machine game G is described by a tuple
([m],M, T,Pr, C1, . . . ,Cm, u1, . . . , um), where
• [m] = {1, . . . ,m} is the set of players;
• M is the set of possible machines;
• T ⊆ ({0, 1}∗)m+1 is the set of type profiles, where

the (m + 1)st element in the profile corresponds
to nature’s type;
• Pr is a distribution on T ;
• Ci is a complexity function;
• ui : T × ({0, 1}∗)m × INm → IR is player i’s util-

ity function. Intuitively, ui(�t,�a,�c) is the utility of
player i if �t is the type profile, �a is the action pro-
file (where we identify i’s action with Mi’s out-
put), and �c is the profile of machine complexities.

We can now define the expected utility of a ma-
chine profile. Given a Bayesian machine game G =
([m],M,Pr, T, �C , �u) and �M ∈ Mm, define the ran-
dom variable uG, �Mi on T × ({0, 1}∞)m (i.e., the space
of type profiles and sequences of random strings) by
taking

uG,
�M

i (�t, �r) = ui(�t,M1(t1; r1), . . . ,Mm(tm; rm),
C1(M1, t1; r1), . . . ,Cm(Mm, tm)).

Note that there are two sources of uncertainty in
computing the expected utility: the type t and real-
ization of the random coin tosses of the players, which
is an element of ({0, 1}∞)k. Let PrkU denote the uni-
form distribution on ({0, 1}∞)k. Given an arbitrary
distribution PrX on a space X , we write Pr+k

X to de-
note the distribution PrX ×PrkU on X×({0, 1}∞)k. If
k is clear from context or not relevant, we often omit
it, writing PrU and Pr+

X . Thus, given the probability
Pr on T , the expected utility of player i in game G if
�M is used is the expectation of the random variable
uG,

�M
i with respect to the distribution Pr+ (techni-

cally, Pr+m): UGi ( �M) = EPr+ [uG, �Mi ]. Note that this
notion of utility allows an agent to prefer a machine
that runs faster to one that runs slower, even if they
give the same output, or to prefer a machine that has
faster running time to one that gives a better out-
put. Because we allow the utility to depend on the
whole profile of complexities, we can capture a situ-
ation where i can be “happy” as long as his machine
runs faster than j’s machine. Of course, an impor-
tant special case is where i’s utility depends only on
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his own complexity. All of our results continue to hold
if we make this restriction.

2.1 Nash Equilibrium in Machine Games
Given the definition of utility above, we can now

define (ε-) Nash equilibrium in the standard way.

Definition 2.2 (Nash equilibrium in machine
games) Given a Bayesian machine game G =
([m],M, T,Pr, �C , �u), a machine profile �M ∈ Mm,
and ε ≥ 0, Mi is an ε-best response to �M−i if, for
every M ′i ∈M,

UGi [(Mi, �M−i)] ≥ UGi [(M ′i , �M−i)]− ε.

(As usual, �M−i denotes the tuple consisting of all ma-
chines in �M other than Mi.) �M is an ε-Nash equilib-
rium of G if, for all players i, Mi is an ε-best response
to �M−i. A Nash equilibrium is a 0-Nash equilibrium.

There is an important conceptual point that must
be stressed with regard to this definition. Because we
are implicitly assuming, as is standard in the game
theory literature, that the game is common knowl-
edge, we are assume that the agents understand the
costs associated with each Turing machine. That is,
they do not have to do any “exploration” to com-
pute the costs. In addition, we do not charge the
players for computing which machine is the best one
to use in a given setting; we assume that this too is
known. This model is appropriate in settings where
the players have enough experience to understand the
behavior of all the machines on all relevant inputs, ei-
ther through experimentation or theoretical analysis.
We can easily extend the model to incorporate uncer-
tainty, by allowing the complexity function to depend
on the state (type) of nature as well as the machine
and the input.

One immediate advantage of taking computation
into account is that we can formalize the intuition
that ε-Nash equilibria are reasonable, because play-
ers will not bother changing strategies for a gain of
ε. Intuitively, the complexity function can “charge” ε
for switching strategies. Specifically, an ε-Nash equi-
librium �M can be converted to a Nash equilibrium
by modifying player i’s complexity function to incor-
porate the overhead of switching from Mi to some
other strategy, and having player i’s utility function
decrease by ε′ > ε if the switching cost is nonzero;
we omit the formal details here. Thus, the framework
lets us incorporate explicitly the reasons that players
might be willing to play an ε-Nash equilibrium. This
justification of ε-Nash equilibrium seems particularly
appealing when designing mechanisms (e.g., crypto-
graphic protocols) where the equilibrium strategy is

made “freely” available to the players (e.g., it is acces-
sible on a web-page), but any other strategy requires
some implementation cost.

Although the notion of Nash equilibrium in
Bayesian machine games is defined in the same way
as Nash equilibrium in standard Bayesian games, the
introduction of complexity leads to some significant
differences in their properties. We highlight a few of
them here. First, note that our definition of a Nash
equilibrium considers behavioral strategies, which in
particular might be randomized. It is somewhat more
common in the game-theory literature to consider
mixed strategies, which are probability distributions
over deterministic strategies. As long as agents have
perfect recall, mixed strategies and behavioral strate-
gies are essentially equivalent [15]. However, in our
setting, since we might want to charge for the ran-
domness used in a computation, such an equivalence
does not necessarily hold.

Mixed strategies are needed to show that Nash equi-
librium always exists in standard Bayesian games. As
the following example shows, since we can charge for
randomization, a Nash equilibrium may not exist in
a Bayesian machine game, even in games where the
type space and the output space are finite.

Example 2.3 (Rock-paper-scissors) Consider
the 2-player Bayesian game of roshambo (rock-paper-
scissors). Here the type space has size 1 (the players
have no private information). We model playing
rock, paper, and scissors as playing 0, 1, and 2,
respectively. The payoff to player 1 of the outcome
(i, j) is 1 if i = j ⊕ 1 (where ⊕ denotes addition mod
3), −1 if j = i⊕ 1, and 0 if i = j. Player 2’s playoffs
are the negative of those of player 1; the game is a
zero-sum game. As is well known, the unique Nash
equilibrium of this game has the players randomizing
uniformly between 0, 1, and 2.

Now consider a machine game version of roshambo.
Suppose that we take the complexity of a determin-
istic strategy to be 1, and the complexity of strategy
that uses randomization to be 2, and take player i’s
utility to be his payoff in the underlying Bayesian
game minus the complexity of his strategy. Intu-
itively, programs involving randomization are more
complicated than those that do not randomize. With
this utility function, it is easy to see that there is no
Nash equilibrium. For suppose that (M1,M2) is an
equilibrium. If M1 uses randomization, then 1 can
do better by playing the deterministic strategy j ⊕ 1,
where j is the action that gets the highest probabil-
ity according to M2 (or is the deterministic choice of
player 2 ifM2 does not use randomization). Similarly,
M2 cannot use randomization. But it is well known
(and easy to check) that there is no equilibrium for
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roshambo with deterministic strategies. (Of course,
there is nothing special about the costs of 1 and 2 for
deterministic vs. randomized strategies. This argu-
ment works as long as all three deterministic strategies
have the same cost, and it is less than that of a ran-
domized strategy.) It is well known that people have
difficulty simulating randomization; we can think of
the cost for randomizing as capturing this difficulty.
Interestingly, there are roshambo tournaments (in-
deed, even a Rock Paper Scissors World Champi-
onship), and books written on roshambo strategies
[16]. Championship players are clearly not random-
izing uniformly (they could not hope to get a higher
payoff than an opponent by randomizing). Our frame-
work provides a psychologically plausible account of
this lack of randomization.

The non-existence of Nash euqilibrium does not de-
pend on charging directly for randomization; it suf-
fices that it be difficult to compute the best random-
ized response. Consider a variant of roshambo where
we do not charge for the first, say, 10,000 steps of
computation, and after that there is a positive cost
of computation. It is not hard to show that, in fi-
nite time, using coin tossing with equal likelihood of
heads and tails, we cannot exactly compute a uniform
distribution over the three choices, although we can
approximate it closely.1 Since there is always a de-
terministic best reply that can be computed quickly
(“play rock”, “play scissors”, or “play paper”), from
this observation it easily follows, as above, that there
is no Nash equilibrium in this game either.

In these examples, computing an appropriate ran-
domized response was expensive, either because we
charged directly for randomizing, or because getting
the “right” response required a lot of computation.
It turns out that the cost of randomization is the
essential roadblock to getting a Nash equilibrium in
Bayesian machine games. We make this precise in
the full version of the paper; here we provide only an
informal statement of the result.

Theorem 2.4 (Informally stated) Every finite
Baysian machine game, where (1) the utility func-
tions and the type distribution are computable, and
(2) “randomization is free”, has a Nash equilibrium.

As an intermediate result, we first establish the fol-
lowing “computational” analog of Nash’s Theorem,
which is of interest in its own right.

1Consider a probabilistic Turing machine M with running
time bounded by T that outputs either 0, 1, or 2. Since M ’s
running time is bounded by T , M can use at most T of its
random bits. If M outputs 0 for m of the 2T strings of length
T , then its probability of outputting 0 is m/2T , and cannot be
1/3.

Theorem 2.5 (Informally stated) Every finite
Bayesian game where the utility functions and the
type distribution are computable has a Nash equi-
librium that can be implemented by a probabilistic
Turing machine.

As noted above, no Turing machine with bounded run-
ning time can implement the Nash equilibrium strat-
egy even for roshambo; the Turing machine in Theo-
rem 2.5 has, in general, unbounded running time. We
remark that the question of whether Nash equilib-
rium strategies can be “implemented” was considered
already in Nash’s original paper (where he showed
the existence of games where the Nash equilibrium
strategies require players to samples actions with ir-
rational probabilities). Binmore [17] considered the
question of whether Nash equilibrium strategies can
be implemented by Turing machines, but mostly pre-
sented impossibility results.

Our proof relies on results from the first-order the-
ory of reals guaranteeing the existence of solutions to
certain equations in particular models of the theory
[18]; similar techniques were earlier used by Lipton
and Markakis [19] and Papadimitriou and Roughgar-
den [20] in a related context.

In the full version, we present several other differ-
ences between Nash equilibrium in traditional games
and in Bayesian machine games. In particular, we
show several examples where our framework can be
used to give simple (and, arguably, natural) explana-
tions to experimentally observed behavior in classical
games where traditional game-theoretic solution con-
cepts fail. For instance, we show that in a variant
of the finitely repeated prisonner’s dilemma (FRPD)
where players are charged for the use of memory, the
strategy tit-for-tat—which does exceedingly well in
experiments [21]—is also a Nash equilibrium, whereas
it is dominated by defecting in the classical sense.
(This follows from the facts that (1) any profitable
deviation from tit-for-tat requires the use of memory,
and (2) if future utility is discounted, then for suf-
ficiently long games, the potential gain of deviating
becomes smaller than the cost of memory.)

3 A Game-Theoretic Definition of Se-
curity

The traditional cryptographic definition of secure
computation considers two types of players: honest
and malicious. Roughly speaking, a protocol is se-
cure if (1) the malicious players cannot influence the
output of the computation any more than they could
have by selecting a different input; this is called cor-
rectness, and (2) the malicious players cannot “learn”
more than what can be efficiently computed (i.e., in
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polynomial-time) from only the output of the func-
tion; this is called privacy and is formalized through
the zero-knowledge simulation paradigm [13]. Note
that this definition does not guarantee that honest
players actually want to execute the protocol with
their intended inputs.

By way of contrast, this property is considered
in the game-theoretic notion of implementation (see
[11, 22]), while privacy and correctness are not re-
quired. Roughly speaking, the game-theoretic notion
of implementation says that a strategy profile �σ im-
plements a mediator if, as long as it is a Nash equi-
librium for the players to tell the mediator their type
and output what the mediator recommends, then �σ is
a Nash equilibrium in the “cheap talk” game (where
the players just talk to each other, rather than talk-
ing to a mediator) that has the same distribution over
outputs as when the players talk to the mediator. In
other words, whenever a set of parties have incentives
to tell the mediator their inputs, they also have in-
centives to honestly use �σ using the same inputs, and
get the same distribution over outputs in both cases.

There have been several recent works that attempt
to bridge these two notions (e.g., [5, 23–28])). Most
notably, Izmalkov, Lepinski and Micali [26] (see also
[27]) present a “hybrid” definition, where correctness
is defined through the game-theoretic notion,2 and
privacy through the zero-knowledge paradigm. We
suggest a different approach, based on the game-
theoretic approach.

Roughly speaking, we say that Π implements a me-
diator F if for all games G that use F for which (the
utilities in G are such that) it is an equilibrium for
the players to truthfully tell F their inputs, running
Π on the same set of inputs (and with the same util-
ity functions) is also an equilibrium and produces the
same distribution over outputs as F .3 Note that by
requiring the implementation to work for all games,
not only do we ensure that players have proper incen-
tives to execute protocols with their intended input,
even if they consider computation a costly resource,
but we get the privacy and correctness requirements
“for free”. For suppose that, when using Π, some in-
formation about i’s input is revealed to j. We consider
a game G where a player j gains some significant util-
ity by having this information. In this game, i will
not want to use Π. However, our notion of implemen-
tation requires that, even with the utilities in G, i

2In fact, Izmalkov, Lepinski, and Micali [26] consider an
even stronger notion of implementation, which they call perfect
implementation. See Section 3.1 for more details.

3While the definitions of implementation in the game-theory
literature (e.g., [11, 22]) do not stress the uniformity of the
implementation—that is, the fact that it works for all games—
the implementations provided are in fact uniform in this sense.

should want to use Π if i is willing to use the medi-
ator F . (This argument depends on the fact that we
consider games where computation is costly; the fact
that j gains information about i’s input may mean
that j can do some computation faster with this in-
formation than without it.) As a consequence, our
definition gives a relatively simple (and strong) way
of formalizing the security of protocols, relying only
on basic notions from game theory.

To make these notions precise, we need to introduce
some extensions to our game-theoretic framework.
Specifically, we will be interested only in equilibria
that are robust in a certain sense, and we want equi-
libria that deal with deviations by coalitions, since
the security literature allows malicious players that
deviate in a coordinated way.

Computationally Robust Nash Equilibrium
Computers get faster, cheaper, and more powerful ev-
ery year. Since utility in a Bayesian machine game
takes computational complexity into account, this
suggests that an agent’s utility function will change
when he replaces one computer by a newer computer.
We are thus interested in robust equilibria, intuitively,
ones that continue to be equilibria (or, more precisely,
ε-equilibria for some appropriate ε) even if agents’
utilities change as a result of upgrading computers.

Definition 3.1 (Computationally robust NE)
Let p : IN → IN . The complexity function C ′ is at
most a p-speedup of the complexity function C if, for
all machines M and views v,

C ′(M, v) ≤ C (M, v) ≤ p(C ′(M, v)).

Game G′ = ([m′],M′,Pr′, �C ′, �u′) is at most a p-
speedup of game G = ([m],M,Pr, �C , �u) if m′ = m,
Pr = Pr′ and �u = �u′ (i.e., G′ and G′ differ only in
their complexity and machine profiles), and C ′i is at
most a p-speedup of Ci, for i = 1, . . . ,m. Mi is a p-
robust ε-best response to �M−i in G, if for every game
G̃ that is at most a p-speedup of G, Mi is an ε-best
response to �M−i. �M is a p-robust ε-equilibrium for G
if, for all i, Mi is an p-robust ε-best response to �M−i.

Intuitively, if we think of complexity as denoting run-
ning time and C describes the running time of ma-
chines (i.e., programs) on an older computer, then
C ′ describes the running time of machines on an up-
graded computer. For instance, if the upgraded com-
puter runs at most twice as fast as the older one (but
never slower), then C ′ is 2̄-speedup of C , where k̄ de-
notes the constant function k. Clearly, if �M is a Nash
equilibrium of G, then it is a 1̄-robust equilibrium.
We can think of p-robust equilibrium as a refinement
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of Nash equilibrium for machine games, just like se-
quential equilibrium [29] or perfect equilibrium [30];
it provides a principled way of ignoring “bad” Nash
equilibria. Note that in games where computation is
free, every Nash equilibrium is also computationally
robust.

Coalition Machine Games We strengthen the no-
tion of Nash equilibrium to allow for deviating coali-
tions. Towards this goal, we consider a generaliza-
tion of Bayesian machine games called coalition ma-
chine games, where, in the spirit of coalitional games
[31], each subset of players has a complexity function
and utility function associated with it. In analogy
with the traditional notion of Nash equilibrium, which
considers only “single-player” deviations, we consider
only “single-coalition” deviations. Roughly speaking,
given a set Z of subsets of [m], �M is a Z-safe Nash
equilibrium for G if, for all Z ∈ Z, a coalition con-
trolling players in Z does not want to deviate. See
Appendix A for the formal definitions.

Machine Games with Mediators We extend
Bayesian machine games to allow for communication
with a trusted mediator. A Bayesian machine game
with a mediator is a pair (G,F), whereG is a Bayesian
machine game (but where the machines involved now
are interactive TMs) and F is a mediator. A particu-
lar mediator of interest is the communication media-
tor, denoted comm, which corresponds to what cryp-
tographers call authenticated channels and economists
call cheap talk. We defer the details to the full version.

3.1 A Computational Notion of Game-
Theoretic Implementation

In this section we extend the traditional notion of
game-theoretic implementation of mediators to con-
sider computational games. Our aim is to obtain a
notion of implementation that can be used to cap-
ture the cryptographic notion of secure computation.
For simplicity, we focus on implementations of medi-
ators that receive a single message from each player
and return a single message to each player (i.e., the
mediated games consist only of a single stage).

We provide a definition that captures the intuition
that the machine profile �M implements a mediator
F if, whenever a set of players want to to truthfully
provide their “input” to the mediator F , they also
want to run �M using the same inputs. To formalize
“whenever”, we consider what we call canonical coali-
tion games, where each player i has a type ti of the
form xi; zi, where xi is player i’s intended “input” and
zi consists of some additional information that player
i has about the state of the world. We assume that
the input xi has some fixed length n. Such games are

called canonical games of input length n.4
Let ΛF denote the machine that, given type t = x; z

sends x to the mediator F and outputs as its action
whatever string it receives back from F , and then
halts. (Technically, we model the fact that ΛF is
expecting to communicate with F by assuming that
the mediator F appends a signature to its messages,
and any messages not signed by F are ignored by
ΛF .) Thus, the machine ΛF ignores the extra infor-
mation z. Let �ΛF denote the machine profile where
each player uses the machine ΛF . Roughly speaking,
to capture the fact that whenever the players want to
compute F , they also want to run �M , we require that
if �ΛF is an equilibrium in the game (G,F) (i.e., if it is
an equilibrium to simply provide the intended input
to F and finally output whatever F replies), running
�M using the intended input is an equilibrium as well.

We actually consider a more general notion of im-
plementation: we are interested in understanding how
well equilibrium in a set of games with mediator F
can be implemented using a machine profile �M and a
possibly different mediator F ′. Roughly speaking, we
want that, for every game G in some set G of games,
if �ΛF is an equilibrium in (G,F), then �M is an equi-
librium in (G,F ′). In particular, we want to under-
stand what degree of robustness p in the game (G,F)
is required to achieve an ε-equilibrium in the game
(G,F ′). We also require that the equilibrium with
mediator F ′ be as “coalition-safe” as the equilibrium
with mediator F .

Definition 3.2 (Universal implementation)
Suppose that G is a set of m-player canonical
games, Z is a set of subsets of [m], F and F ′ are
mediators, M1, . . . ,Mm are interactive machines,
p : IN × IN → IN , and ε : IN → IR. ( �M,F ′) is a
(G,Z, p)-universal implementation of F with error
ε if, for all n ∈ IN , all games G ∈ G with input
length n, and all Z ′ ⊆ Z, if �ΛF is a p(n, ·)-robust
Z ′-safe Nash equilibrium in the mediated machine
game (G,F) then

1. (Preserving Equilibrium) �M is a Z ′-safe ε(n)-
Nash equilibrium in the mediated machine game
(G,F ′).

2. (Preserving Action Distributions) For each type
profile �t, the action profile induced by �ΛF in
(G,F) is identically distributed to the action pro-
file induced by �M in (G,F ′).

4Note that by simple padding, canonical games represent
a setting where all parties’ input lengths are upper-bounded
by some value n that is common knowledge. Thus, we can
represent any game where there are only finitely many possible
types as a canonical game for some input length n.
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As we have observed, although our notion of uni-
versal implementation does not explicitly consider the
privacy of players’ inputs, it can nevertheless capture
privacy requirements.

Note that, depending on the class G, our notion of
universal implementation imposes severe restrictions
on the complexity of the machine profile �M . For in-
stance, if G consists of all games, it requires that the
complexity of �M is the same as the complexity of �ΛF .
(If the complexity of �M is higher than that of �ΛF ,
then we can easily construct a gameG by choosing the
utilities appropriately such that it is an equilibrium to
run �ΛF in (G,F), but running �M is too costly.) Also
note that if G consists of games where players strictly
prefer smaller complexity, then universal implemen-
tation requires that �M be the optimal algorithm (i.e.,
the algorithm with the lowest complexity) that imple-
ments the functionality of �M , since otherwise a player
would prefer to switch to the optimal implementation.
Since few algorithms algorithms have been shown to
be provably optimal with respect to, for example, the
number of computational steps of a Turing machines,
this, at first sight, seems to severely limit the use of
our definition. However, if we consider games with
“coarse” complexity functions where, say, the first T
steps are “free” (e.g., machines that execute less than
T steps are assigned complexity 1), or n2 computa-
tional steps count as one unit of complexity, the re-
strictions above are not so severe. Indeed, it seems
quite natural to assume that a player is indifferent
between “small” differences in computation in such a
sense.

Our notion of universal implementation is related
to a number of earlier notions of implementation. We
now provide a brief comparison to the most relevant
ones.
• Our definition of universal implementation cap-

tures intuitions similar in spirit to Forges’ [22] no-
tion of a universal mechanism. It differs in one
obvious way: our definition considers computa-
tional games, where the utility functions depend
on complexity considerations. Dodis, Halevi and
Rabin [5] (and more recent work, such as [23, 23–
25, 27, 32]) consider notions of implementation
where the players are modeled as polynomially-
bounded Turing machines, but do not consider
computational games. As such, the notions con-
sidered in these works do not provide any a priori
guarantees about the incentives of players with
regard to computation.
• Our definition is more general than earlier no-

tions of implementation in that we consider uni-
versality with respect to (sub-)classes G of games,
and allow deviations by coalitions.

• Our notion of coalition-safety also differs some-
what from earlier related notions. Note that if
Z contains all subsets of players with k or less
players, then universal implementation implies
that all k-resilient Nash equilibria and all strong
k-resilient Nash equilibria are preserved. How-
ever, unlike the notion of k-resilience considered
by Abraham et al. [23, 33], our notion provides a
“best-possible” guarantee for games that do not
have a k-resilient Nash equilibrium. We guaran-
tee that if a certain subset Z of players have no
incentive to deviate in the mediated game, then
that subset will not have incentive to deviate in
the cheap-talk game; this is similar in spirit to the
definitions of [26, 32]. Note that, in contrast to
[26, 34], rather than just allowing colluding play-
ers to communicate only through their moves in
the game, we allow coalitions of players that are
controlled by a single entity; this is equivalent to
considering collusions where the colluding play-
ers are allowed to freely communicate with each
other. In other words, whereas the definitions of
[26, 34] require protocols to be “signalling-free”,
our definition does not impose such restrictions.
We believe that this model is better suited to
capturing the security of cryptographic protocols
in most traditional settings (where signalling is
not an issue).
• We require only that a Nash equilibrium is pre-

served when moving from the game with medi-
ator F to the communication game. Stronger
notions of implementation require that the equi-
librium in the communication game be a sequen-
tial equilibrium [29]; see, for example, [35, 36].
Since every Nash equilibrium in the game with
the mediator F is also a sequential equilibrium,
these stronger notions of implementation actu-
ally show that sequential equilibrium is preserved
when passing from the game with the mediator
to the communication game.
While these notions of implementation guaran-
tee that an equilibrium with the mediator is pre-
served in the communication game, they do not
guarantee that new equilibria are not introduced
in the latter. An even stronger guarantee is pro-
vided by Izmalkov, Lepinski, and Micali’s [26]
notion of perfect implementation; this notion re-
quires a one-to-one correspondence f between
strategies in the corresponding games such that
each player’s utility with strategy profile �σ in
the game with the mediator is the same as his
utility with strategy profile (f(σ1), . . . , f(σn)) in
the communication game without the mediator.
Such a correspondence, called strategic equiva-
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lence by Izmalkov, Lepinski, and Micali [26],
guarantees (among other things) that all types
of equilibria are preserved when passing from one
game to the other, and that no new equilibria are
introduced in the communication game. How-
ever, strategic equivalence can be achieved only
with the use of strong primitives, which cannot
be implemented under standard computational
and systems assumptions [34]. We focus on the
simpler notion of implementation, which requires
only that Nash equilibria are preserved, and leave
open an exploration of more refined notions.

Strong Universal Implementation Intuitively,
( �M,F ′) universally implements F if, whenever a set
of parties want to use F (i.e., it is an equilibrium to
use �ΛF when playing with F), then the parties also
want to run �M (using F ′) (i.e., using �M with F ′ is
also an equilibrium). We now strengthen this notion
to also require that whenever a subset of the players
do not want to use F (specifically, if they prefer to
do “nothing”), then they also do not want to run �M ,
even if all other players do so. We use ⊥ to denote
the special machine that sends no messages and writes
nothing on the output tape.

Definition 3.3 (Strong Universal Implementa-
tion) Let ( �M,F ′) be a (G,Z, p)-universal implemen-
tation of F with error ε. ( �M,F ′) is a strong (G,Z, p)-
implementation of F if, for all n ∈ IN , all games
G ∈ G with input length n, and all Z ∈ Z, if �⊥Z is a
p(n, ·)-robust best response to ΛF−Z in then �⊥Z is an
ε-best response to �M−Z in (G,F ′).

4 Relating Cryptographic and Game-
Theoretic Implementation

We briefly recall the notion of precise secure compu-
tation [37, 38], which is a strengthening of the tradi-
tional notion of secure computation [12]; more details
are given in Appendix B. An m-ary functionality f is
specified by a random process that maps vectors of in-
puts to vectors of outputs (one input and one output
for each player). That is, f : (({0, 1}∗)m×{0, 1}∞)→
({0, 1}∗)m, where we view fi as the ith component of
the output vector; that is, f = (f1, . . . , fm). We of-
ten abuse notation and suppress the random bitstring
r, writing f(�x) or fi(�x). (We can think of f(�x) and
fi(�x) as random variables.) A mediator F (resp., a
machine profile �M) computes f if, for all n ∈ N , all
inputs �x ∈ ({0, 1}n)m, if the players tell the media-
tor their inputs and output what the mediator F tells
them (resp., the output vector of the players after an
execution of �M where Mi gets input xi) is identically
distributed to fn(�x). Roughly speaking, a protocol

�M for computing a function f is secure if, for every
adversary A participating in the real execution of �M ,
there exists a “simulator” Ã participating in an ideal
execution where all players directly talk to a trusted
third party (i.e., a mediator) computing f ; the job
of Ã is to provide appropriate inputs to the trusted
party, and to reconstruct the view of A in the real ex-
ecution such that no distinguisher D can distinguish
the outputs of the parties and the view of the adver-
sary A in the real and the ideal execution. (Note that
in the real execution the view of the adversary is sim-
ply the actual view of A in the execution, whereas in
the ideal execution it is the view output by the simula-
tor Ã). The traditional notion of secure computation
[12] requires only that the worst-case complexity (size
and running-time) of Ã is polynomially related to that
of A. Precise secure computation [37, 38] additionally
requires that the running time of the simulator Ã “re-
spects” the running time of the adversary A in an
“execution-by-execution” fashion: a secure computa-
tion is said to have precision p(n, t) if the running-
time of the simulator Ã (on input security parameter
n) is bounded by p(n, t) whenever Ã outputs a view
in which the running-time of A is t.

For our results, we slightly weaken the notion of
precise secure (roughly speaking, by changing the or-
der the quantifiers in analogy with the work of of
Dwork, Naor, Reingold, and Stockmeyer [39]). We
also generalize the notion by allowing arbitrary com-
plexity measures �C (instead of just running-time) and
general adversary structures [40] (where the specifi-
cation of a secure computation includes a set Z of
subsets of players such that the adversary is allowed
to corrupt only the players in one of the subsets in
Z; in contrast, in [12, 37] only threshold adversaries
are considered, where Z consists of all subsets up
to a pre-specified size k). The formal definition of
weak �complex-precise secure computation is given in
Appendix B.1. Note that the we can always regain
the “non-precise” notion of secure computation by in-
stantiating CZ(M, v) with the sum of the worst-case
running-time of M (on inputs of the same length as
the input length in v) and size of M . Thus, by the
results of [12, 13, 41], it follows that there exists weak
�C -precise secure computation protocols with preci-

sion p(n, t) = poly(n, t) when CZ(M, v) is the sum
of the worst-case running-time of M and size of M .
The results of [37, 38] extend to show the existence
of weak C -precise secure computation protocols with
precision p(n, t) = O(t) when CZ(M, v) is the sum
of the running time (as opposed to just worst-case
running-time) of M(v) and size of M . The results
above continue to hold if we consider “coarse” mea-
sures of running-time and size; for instance, if, say, n2
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computational steps correspond to one unit of com-
plexity (in canonical machine games with input length
n). See Appendix 4.2 for more details.

4.1 Equivalences
As a warm-up, we show that “error-free” secure

computation, also known as perfectly-secure compu-
tation [41], already implies the traditional game-
theoretic notion of implementation [22] (which does
not consider computation). To do this, we first
formalize the traditional game-theoretic notion us-
ing our notation: Let �M be an m-player profile
of machines. We say that ( �M,F ′) is a traditional
game-theoretic implementation of F if ( �M,F ′) is a
(Gnocomp, {{1}, . . .{m}}, 0)-universal implementation
of F with 0-error, where Gnocomp denotes the class of
all m-player canonical machine games where the util-
ity functions do not depend on the complexity profile.
(Recall that the traditional notion does not consider
computational games or coalition games.)

Proposition 4.1 If f is an m-ary functionality, F
is a mediator that computes f , and �M is a perfectly-
secure computation of F , then ( �M, comm) is a game-
theoretic implementation of F .

Proof: We start by showing that running �M is a
Nash equilibrium if running �ΛF with mediator F is
one. Recall that the cryptographic notion of error-free
secure computation requires that for every player i
and every “adversarial” machineM ′i controlling player
i, there exists a “simulator” machine M̃i, such that the
outputs of all players in the execution of (M ′i , �M−i)
are identically distributed to the outputs of the play-
ers in the execution of (M̃i, �ΛF−i) with mediator F .5
In game-theoretic terms, this means that every “de-
viating” strategy M ′i in the communication game can
be mapped into a deviating strategy M̃i in the medi-
ated game with the same output distribution for each
type, and, hence, the same utility, since the utility de-
pends only on the type and the output distribution;
this follows since we require universality only with re-
spect to games in Gnocomp. Since no deviations in the
mediated game can give higher utility than the Nash
equilibrium strategy of using ΛFi , running �M must
also be a Nash equilibrium.

It only remains to show that �M and �ΛF induce the
same action distribution; this follows directly from
the definition of secure computation by considering
an adversary that does not corrupt any parties.
We note that the converse implication does not hold.
Since the traditional game-theoretic notion of imple-
mentation does not consider computational cost, it

5The follows from the fact that perfectly-secure computation
is error-free.

does not take into account computational advantages
possibly gained by using �M , issues that are critical
in the cryptographic notion of zero-knowledge sim-
ulation. We now show that weak precise secure
computation is equivalent to strong G-universal im-
plementation for certain natural classes G of games.
For this result, we assume that the only machines
that can have a complexity of 0 are those that “do
nothing”: we require that, for all complexity func-
tions C , C (M, v) = 0 for some view v iff M = ⊥
iff C (M, v) = 0 for all views v. (Recall that ⊥ is a
canonical representation of the TM that does noth-
ing: it does not read its input, has no state changes,
and writes nothing.) If G = ([m],M,Pr, �C , �u) is a
canonical game with input length n, then

1. G is machine universal if the machine set M is
the set of terminating Turing machines;

2. G is normalized if the range of uZ is [0, 1] for all
subsets Z of [m];

3. G is monotone (i.e., “players never prefer to com-
pute more”) if, for all subset Z of [m], all type
profiles �t, action profiles �a, and all complexity
profiles (cZ ,�c−Z), (c′Z ,�c−Z), if c′Z > cZ , then
uZ(�t,�a, (c′Z ,�c−Z)) ≤ ui(�t,�a, (cZ ,�c−Z));

4. G is a �C ′-game if CZ = C ′Z for all subsets Z of
[m].

Let G �C denote the class of machine-universal, nor-
malized, monotone, canonical �C -games. For our the-
orem we need some minimal constraints on the com-
plexity function. For the forward direction of our
equivalence results (showing that precise secure com-
putation implies universal implementation), we re-
quire that honestly running the protocol should have
constant complexity, and that it be the same with
and without a mediator. More precisely, we assume
that the complexity profile �C is �M -acceptable, that
is, for every subset Z, the machines (ΛF )bZ and M bZ
have the same complexity c0 for all inputs; that is,
CZ((ΛF )bZ , ·) = c0 and CZ(M bZ , ·) = c0.6 As men-
tioned in Section 3, an assumption of this nature is
necessary to satisfy universality with respect to gen-
eral classes of games; it is easily satisfied if we consider
“coarse” complexity functions. For the backward
direction of our equivalence (showing that universal
implementation implies precise secure computation),
we require that certain operations, like moving out-
put from one tape to another, do not incur any ad-
ditional complexity. Such complexity functions are
called output-invariant; we provide a formal defini-
tion in Appendix C.

We can now state the connection between secure
computation and game-theoretic implementation. In

6Our results continue to hold if c0 is a function of the input
length n, but otherwise does not depend on the view.
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the forward direction, we restrict attention to proto-
cols �M computing some m-ary functionality f that
satisfy the following natural property: if a subset of
the players “aborts” (not sending any messages, and
outputting nothing), their input is intepreted as λ.7
More precisely, �M is an abort-preserving computation
of f if for all n ∈ N , every subset Z of [m], all inputs
�x ∈ ({0, 1}n)m, the output vector of the players after
an execution of (�⊥Z , �M−Z) on input �x is identically
distributed to f(λZ , �x−Z).

Theorem 4.2 (Equivalence: Information-
theoretic case) Suppose that f is an m-ary
functionality, F is a mediator that computes f , �M
is a machine profile that computes f , Z is a set of
subsets of [m], �C is a complexity function, and p a
precision function.
• If �C is �M -acceptable and �M is an abort-

preserving weak Z-secure computation of f
with �C -precision p and ε-statistical error, then
( �M, comm) is a strong (G �C ,Z, p)-universal im-
plementation of F with error ε.
• If �C is �M -acceptable and output-invariant, and

( �M, comm) is a strong (G �C ,Z, p)-universal im-
plementation of F with error ε′, then for every
ε < ε′, �M is a weak Z-secure computation of f
with �C -precision p and ε-statistical error.

As a corollary of Theorem 4.2, we get that
known (precise) secure computation protocols di-
rectly yield appropriate universal implementations,
provided that we consider complexity functions that
are �M -acceptable. For instance, by the results of
[38, 41], every efficient m-ary functionality f has
a weak Z-secure computation protocol �M with C -
precision p(n, t) = t if CZ(M, v) is the sum of the run-
ning time ofM(v) and size ofM , and Z consists of all
subsets of [m] of size smaller than |m|/3. This result
still holds if we consider “coarse” measures of running-
time and size where, say, O(nc) computational steps
(and size) correspond to one unit of complexity (in
canonical machine games with input length n). Fur-
thermore, protocol �M is abort-preserving, has a con-
stant description, and has running-time smaller than
some fixed polynomial O(nc) (on inputs of length n).
So, if we consider an appropriately coarse notion of
run-time and description size, CZ is �M -acceptable.
By Theorem 4.2, it then immediately follows that
that every efficient m-ary functionality f has a strong
(G �C ,Z, O(1))-universal implementation with error 0.

Theorem 4.2 also shows that a universal implemen-
tation of a mediator F computing a function f with

7All natural secure computation protocols that we are aware
of (e.g., [12, 41]) satisfy this property.

respect to general classes of games is “essentially” as
hard to achieve as a secure computations of f . In par-
ticular, as long as the complexity function is output-
invariant, such a universal implementation is a weak
precise secure computation. Although the output-
invariant condition might seem somewhat artificial,
Theorem 4.2 illustrates that overcoming the “secure-
computation barrier” with respect to general classes of
games requires making strong (and arguably unnatu-
ral8) assumptions about the complexity function. We
have not pursued this path. In Section 5, we instead
consider universal implementation with respect to re-
stricted class of games. As we shall see, this provides
an avenue for circumventing traditional impossibility
results with respect to secure computation.

In Section 4.2 we also provide a “computational”
analogue of Theorem 4.2, as well as a characteriza-
tion of the “standard” (i.e., “non-precise”) notion of
secure computation. We provide a proof overview of
Theorem 4.2 here; we defer the complete proof to the
full version.
Proof overview Needless to say, this oversimplified
sketch leaves out many crucial details that complicate
the proof.
Weak precise secure computation implies strong uni-
versal implementation. At first glance, it might seem
like the traditional notion of secure computation of
[12] easily implies the notion of universal implementa-
tion: if there exists some (deviating) strategy A in the
communication game implementing mediator F that
results in a different distribution over actions than
in equilibrium, then the simulator Ã for A could be
used to obtain the same distribution; moreover, the
running time of the simulator is within a polynomial
of that of A. Thus, it would seem like secure com-
putation implies that any “poly”-robust equilibrium
can be implemented. However, the utility function
in the game considers the complexity of each execu-
tion of the computation. So, even if the worst-case
running time of Ã is polynomially related to that of
A, the utility of corresponding executions might be
quite different. This difference may have a signifi-
cant effect on the equilibrium. To make the argument
go through we need a simulation that preserves com-
plexity in an execution-by-execution manner. This is
exactly what precise zero knowledge [37] does. Thus,
intuitively, the degradation in computational robust-
ness by a universal implementation corresponds to the
precision of a secure computation.

More precisely, to show that a machine profile �M
is a universal implementation, we need to show that

8With a coarse complexity measure, it seems natural to as-
sume that moving content from one output tape to another
incurrs no change in complexity.
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whenever Λ is a p-robust equilibrium in a game G
with mediator F , then �M is an ε-equilibrium (with the
communication mediator comm). Our proof proceeds
by contradiction: we show that a deviating strategy
M ′Z (for a coalition Z) for the ε-equilibrium �M can be
turned into a deviating strategy M̃Z for the p-robust
equilibrium �Λ. We here use the fact that �M is a weak
precise secure computation to find the machine M̃Z ;
intuitively M̃Z will be the simulator for M ′Z . The
key step in the proof is a method for embedding any
coalition machine game G into a distinguisher D that
“emulates” the role of the utility function in G. If
done appropriately, this ensures that the utility of the
(simulator) strategy M̃Z is close to the utility of the
strategy M ′Z , which contradicts the assumption that
�Λ is an ε-Nash equilibrium.

The main obstacle in embedding the utility func-
tion of G into a distinguisher D is that the utility of
a machine M̃Z in G depends not only on the types
and actions of the players, but also on the complexity
of running M̃Z . In contrast, the distinguisher D does
not get the complexity of M̃ as input (although it gets
its output v). On a high level (and oversimplifying),
to get around this problem, we let D compute the
utility assuming (incorrectly) that M̃Z has complex-
ity c = C (M ′, v) (i.e., the complexity of M ′Z in the
view v output by M̃Z). Suppose, for simplicity, that
M̃Z is always “precise” (i.e., it always respects the
complexity bounds).9 Then it follows that (since the
complexity c is always close to the actual complex-
ity of M̃Z in every execution) the utility computed
by D corresponds to the utility of some game G̃ that
is at most a p-speed up of G. (To ensure that G̃ is
indeed a speedup and not a “slow-down”, we need to
take special care with simulators that potentially run
faster than the adversary they are simulating. The
monotonicity of G helps us to circumvent this prob-
lem.) Thus, although we are not able to embed G into
the distinguisher D, we can embed a related game G̃
into D. This suffices to show that �Λ is not a Nash
equilibrium in G̃, contradicting the assumption that
�Λ is a p-robust Nash equilibrium. A similar argu-
ment can be used to show that ⊥ is also an ε-best
response to �M−Z if ⊥ is a p-robust best response to
�Λ−Z , demonstrating that �M in fact is a strong uni-
versal implementation. We here rely on the fact �M
is abort-preserving to ensure that aborting in (G,F)
has the same effect as in (G, comm).

Strong universal implementation implies weak precise
secure computation. To show that strong universal
implementation implies weak precise secure compu-

9This is an unjustified assumption; in the actual proof we
actually need to consider a more complicated construction.

tation, we again proceed by contradiction. We show
how the existence of a distinguisher D and an adver-
sary M ′Z that cannot be simulated by any machine
M̃Z can be used to construct a game G for which �M
is not a strong implementation. The idea is to have a
utility function that assigns high utility to some “sim-
ple” strategy M∗Z . In the mediated game with F , no
strategy can get better utility thanM∗Z . On the other
hand, in the cheap-talk game, the strategy M ′Z does
get higher utility than M∗Z . As D indeed is a func-
tion that “distinguishes” a mediated execution from
a cheap-talk game, our approach will be to try to em-
bed the distinguisher D into the game G. The choice
of G depends on whether M ′Z = ⊥. We now briefly
describe these games.

If M ′Z = ⊥, then there is no simulator for the ma-
chine ⊥ that simply halts. In this case, we construct
a game G where using ⊥ results in a utility that is
determined by running the distinguisher. (Note that
⊥ can be easily identified, since it is the only strategy
that has complexity 0.) All other strategies instead
get some canonical utility d, which is higher than the
utility of ⊥ in the mediated game. However, since
⊥ cannot be “simulated”, playing ⊥ in the cheap-talk
game leads to an even higher utility, contradicting the
assumption that �M is a universal implementation.

If M ′Z 	= ⊥, we construct a game G′ in which each
strategy other than ⊥ gets a utility that is deter-
mined by running the distinguisher. Intuitively, ef-
ficient strategies (i.e., strategies that have relatively
low complexity compared to M ′Z) that output views
on which the distinguisher outputs 1 with high prob-
ability get high utility. On the other hand, ⊥ gets a
utility d that is at least as good as what the other
strategies can get in the mediated game with F . This
makes ⊥ a best response in the mediated game; in
fact, we can define the game G′ so that it is actu-
ally a p-robust best response. However, it is not even
an ε-best-response in the cheap-talk game: M ′Z gets
higher utility, as it receives a view that cannot be
simulated. (The output-invariant condition on the
complexity function C is used to argue that M ′Z can
output its view at no cost.)

4.2 A Computational Equivalence Theo-
rem

To prove a “computational” analogue of our equiv-
alence theorem (relating computational precise secure
computation and universal implementation), we need
to introduce some further restrictions on the complex-
ity functions, and the classes of games considered.
• A (vector of) complexity functions �C is efficient

if each function is computable by a (randomized)
polynomial-sized circuit.
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• A secure computation game G =
([m],MT (n),Pr, �C , �u) with input length n
is said to be T (·)-machine universal if

– the machine setMT (n) is the set of Turing
machines implementable by T (n)-sized ran-
domized circuits, and

– �u is computable by a T (n)-sized circuit.
Let G �C ,T denote the class of T (·)-machine univer-
sal, normalized, monotone, canonical �C -games.
Let G �C ,poly denote the union of G �C ,T for all poly-
nomial functions T .

Theorem 4.3 (Equivalence: Computational Case)
Suppose that f is an m-ary functionality, F is a
mediator that computes f , �M is a machine profile
that computes f , Z is a set of subsets of [m], �C is
an efficient complexity function, and p a precision
function.
• If �C is �M -acceptable and �M is an abort-

preserving weak Z-secure computation of f with
computational �C -precision p, then for every poly-
nomial T , there exists some negligible function
ε such that ( �M, comm) is a strong (G �C ,T ,Z, p)-
universal implementation of F with error ε.
• If �C is �M -acceptable and output-invariant, and

for every polynomial T , there exists some negli-
gible function ε, such that ( �M, comm) is a strong
(G �C ,Z, p)-universal implementation of F with
error ε, then �M is a weak Z-secure computation
of f with computational �C -precision p.

A proof of Theorem 4.3 appears in the full ver-
sion. Note that Theorem 4.3 also provides a game-
theoretic characterization of the “standard” (i.e.,
“non-precise”) notion of secure computation. We sim-
ply consider a “coarse” version of the complexity func-
tion wc(v) that is the sum of the size of M and the
worst-case running-time of M on inputs of the same
length as in the view v. (We need a coarse com-
plexity function to ensure that C is �M -acceptable
and output-invariant.) With this complexity func-
tion, the definition of weak precise secure computation
reduces to the traditional notion of weak secure com-
putation without precision (or, more precisely, with
“worst-case” precision just as in the traditional defi-
nition). Given this complexity function, the precision
of a secure computation protocol becomes the tradi-
tional “overhead” of the simulator (this is also called
knowledge tightness [42]). Roughly speaking, “weak
secure computation” with overhead p is thus equiv-
alent to strong (G �wc,poly, p)-universal implementation
with negligible error.

5 Directions for Future Research
We have defined a general approach to taking com-

putation into account in game theory that subsumes
previous approaches, and shown a close connection
between computationally robust Nash equilibria and
precise secure computation. This opens the door to
a number of exciting research directions in both se-
cure computation and game theory. We describe a
few here:
• Our equivalence result for secure computation

might seem like a negative result. It demon-
strates that considering only rational players (as
opposed to adversarial players) does not facili-
tate protocol design. Note, however, that for the
equivalence to hold, we must consider implemen-
tations universal with respect to essentially all
games. In many settings, it might be reason-
able to consider implementations universal with
respect to only certain subclasses of games; in
such scenarios, universal implementations may
be significantly simpler or more efficient, and may
also circumvent traditional lower bounds. We list
some natural restrictions on classes of games be-
low, and discuss how such restrictions can be
leveraged in protocol design. These examples
illustrate some of the benefits of a fully game-
theoretic notion of security that does not rely on
the standard cryptographic simulation paradigm,
and shows how our framework can capture in a
natural way a number of natural notions of secu-
rity.

To relate our notions to the standard definition
of secure computation, we here focus on classes of
games G that are subsets of G �wc,poly (as defined
in Section 4.2). Furthermore, we consider only
2-player games and restrict attention to games
G where the utility function is separable in the
following sense: there is a standard game G′
(where computational costs are not taken into
account) and a function uCi on complexity pro-
files for each player i, such that, for each player
i, ui(�t,�a,�c) = uG′i (�t,�a) + uCi (�c). We refer to G′
as the standard game embedded in G. Intuitively,
this says that the utilities in G are just the sum
of the utility in a game G′ where computation is
not taken into account and a term that depends
only on computation costs.

Games with punishment: Many natural sit-
uations can be described as games where play-
ers can choose actions that “punish” an individ-
ual player i. For instance, this punishment can
represent the cost of being excluded from future
interactions. Intuitively, games with punishment
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model situations where players do not want to be
caught cheating. Punishment strategies (such as
the grim-trigger strategy in repeated prisoner’s
dilemma, where a player defects forever once his
opponent defects once [21]) are extensively used
in the game-theory literature. We give two exam-
ples where cryptographic protocol design is facil-
itated when requiring only implementations that
are universal with respect to games with punish-
ment.

Covert adversaries: As observed by Malkhi et
al. [43], and more recently formalized by Aumann
and Lindell [44], in situations were players do not
want to be caught cheating, it is easier to con-
struct efficient protocols. Using our framework,
we can formalize this intuition in a straightfor-
ward way. To explain the intuitions, we consider
a particularly simple setting. Let Gpunish consist
of normalized 2-player games G (with a standard
game G′ embedded in G), where (1) honestly re-
porting your input and outputting whatever the
mediator replies (i.e., playing the strategy imple-
mented by �Λ) is a Nash equilibrium in (G′,F)
where both players are guaranteed to get util-
ity 1/2 (not just in expectation, but even in the
worst-case), and (2) there is a special string pun-
ish such that player 1 − i receives payoff 0 in G
if player i outputs the string punish. In this set-
ting, we claim that any secure computation of
a function f with respect to covert adversaries
with deterrent 1/2 in the sense of [44, Defini-
tion 3.3] is a (Gpunish, poly,Z)- universal imple-
mentation of F with negligible error (where Z
= {{1},{2}}, and F is a mediator computing f).
Intuitively, this follows since a “cheating” adver-
sary gets caught with probability 1/2 and thus
punished; the expected utility of cheating is thus
at most 1/2 × 1 + 1/2 × 0, which is no greater
than the expected utility of playing honestly.

Fairness: It is well-known that, for many func-
tions, secure 2-player computation where both
players receive output is impossible if we require
fairness (i.e., that either both or neither of the
players receives an output) [45]. Such impossibil-
ity results can be easily circumvented by consid-
ering universal implementation with respect to
games with punishment. This follows from the
fact that although it is impossible to get secure
computation with fairness, the weaker notion of
secure computation with abort [46] is achievable.
Intuitively, this notion guarantees that the only
attack possible is one where one of the players
prevents the other player from getting its out-

put; this is called an abort. This is formalized by
adapting the trusted-party in the ideal model to
allow the adversary to send a special abort mes-
sage to the trusted party after seeing its own out-
put, which blocks it from delivering an output to
the honest party. To get a universal implementa-
tion with respect to games with punishment, it is
sufficient to use any secure computation protocol
with abort (see [38, 46]) modified so that play-
ers output punish if the other player aborts. It
immediately follows that a player can never get
a higher utility by aborting (as this will be de-
tected by the other player, and consequently the
aborting player will be punished). This result can
be viewed as a generalization of the approach of
[5].10

Strictly monotone games: In our equivalence
results we considered monotone games, where
players never prefer to compute more. It is some-
times reasonable to assume that players strictly
prefer to compute less. We outline a few possible
advantages of considering universal implementa-
tions with respect to strictly monotone games.

Gradual-release protocols: One vein of research
on secure computation considers protocols for
achieving fair exchanges using gradual-release
protocols (see e.g., [47]). In a gradual-release pro-
tocol, the players are guaranteed that if at any
point one player aborts, then the other player(s)
can compute the output within a comparable
amount of time (e.g., we can require that if a
player aborts and can compute the answer in t
time units, then all the other players should be
able to compute it within 2t time units). We
believe that by making appropriate assumptions
about the utility of computation, we can en-
sure that players never have incentives to devi-
ate. Consider, for instance, a two-player com-
putation of a function f where in the last phase
the players invoke a gradual exchange protocol
such that if any player aborts during the gradual
exchange protocol, the other players attempts to
recover the secret using a brute-force search. In-
tuitively, if for each player the cost of computing
t extra steps is positive, even if the other player
computes, say, 2t extra steps, it will never be

10For this application, it is not necessary to use our game-
theoretic definition of security. An alternative way to capture
fairness in this setting would be to require security with respect
to the standard (simulation-based) definition with abort, and
additionally fairness (but not security) with respect to rational
agents, according to the definition of [5, 25]; this approach is
similar to the one used by Kol and Naor [27]. Our formalization
is arguably more natural, and also considers rational agents
that “care” about computation.
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worth it for a player to abort: by the security of
the gradual-release protocol, an aborting player
can only get its output twice as fast as the other
player. We note that merely making assumptions
about the cost of computing will not be sufficient
to make this approach work; we also need to en-
sure that players prefer to get the output than
not getting it, even if they can trick other play-
ers into computing for a long time. Otherwise,
a player might prefer to abort and not compute
anything, while the other player attempts to com-
pute the output. We leave a full exploration of
this approach for future work.
Error-free implementations: Unlike perfectly-
secure protocols, computationally-secure proto-
cols protocols inherently have a nonzero error
probability. For instance, secure 2-player compu-
tation can be achieved only with computational
security (with nonzero error probability). By our
equivalence result, it follows that strong universal
implementations with respect to the most gen-
eral classes of 2-player games also require nonzero
error probability. Considering universality with
respect to only strictly monotone games gives
an approach for achieving error-free implemen-
tations. This seems particularly promising if we
consider an idealized model where cryptographic
functionalities (such as one-way functions) are
modeled as black boxes (see, e.g., the random or-
acle model of Bellare and Rogaway [48]), and the
complexity function considers the number of calls
to the cryptographic function. Intuitively, if the
computational cost of trying to break the cryp-
tographic function is higher than the expected
gain, it is not worth deviating from the protocol.
We leave open an exploration of this topic. (A
recent paper by Micali and Shelat [49] relies on
this idea, in combination with physical devices,
to acheive error-free implementations in the con-
text of secret sharing.)
Using computation as payment. Shoham and
Tennenholtz [28] have investigated what func-
tions f of two players’ inputs x1, x2 can be com-
puted by the players if they have access to a
trusted party. The players are assumed to want
to get the output y = f(x1, x2), but each player i
does not want to reveal more about his input xi
than what can be deduced from y. Furthermore,
each player i prefers that other players do not get
the output (although this is not as important as
i getting the output and not revealing its input
xi). Interestingly, as Shoham and Tennenholtz
point out, the simple binary function AND can-
not be truthfully computed by two players, even

if they have access to a trusted party. A player
that has input 0 always knows the output y and
thus does not gain anything from providing its
true input to the trusted party: in fact, it always
prefers to provide the input 1 in order to trick
the other player.
We believe that for strictly monotone games this
problem can be overcome by the use of cryp-
tographic protocols. The idea is to construct
a cryptographic protocol for computing AND
where the players are required to solve a com-
putational puzzle if they want to use 1 as input;
if they use input 0 they are not required to solve
the puzzle. The puzzle should have the property
that it requires a reasonable amount of computa-
tional effort to solve. If this computational effort
is more costly than the potential gain of tricking
the other player to get the wrong output, then
it is not worth it for a player to provide input 1
unless its input actually is 1. To make this work,
we need to make sure the puzzle is “easy” enough
to solve, so that a player with input 1 will actu-
ally want to solving the puzzle in order to get
the correct output. We leave a full exploration of
this idea for future work.
More generally, we believe that combining com-
putational assumptions with assumptions about
utility will be a fruitful line of research for se-
cure computation. For instance, it is conceiv-
able that difficulties associated with concurrent
executability of protocols could be alleviated by
making assumptions regarding the cost of mes-
sage scheduling; the direction of Cohen, Kilian,
and Petrank [50] (where players who delay mes-
sages are themselves punished with delays) seems
relevant in this regard.
• As we have seen, universal implementation is

equivalent to a variant of precise secure compu-
tation with the order of quantification reversed.
It would be interesting to find a notion of imple-
mentation that corresponds more closely to the
standard definition, without a change in the or-
der of quantifier; in particular, whereas the tra-
ditional definition of zero-knowledge guarantees
deniability (i.e., the property that the interaction
does not leave any “trace”), the new one does not.
Finding a game-theoretic definition that also cap-
tures deniability seems like an interesting ques-
tion.
• We showed that Nash equilibria do not always

exist in games with computation. This leaves
open the question of what the appropriate so-
lution concept is.
• Our notion of universal implementation uses
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Nash equilibrium as solution concept. It is well
known that in (traditional) extensive form games
(i.e., games defined by a game tree), a Nash equi-
librium might prescribe non-optimal moves at
game histories that do no occur on the equilib-
rium path. This can lead to “empty threats”:
“punishment” strategies that are non-optimal
and thus not credible. Many recent works on
implementation (see e.g., [26, 35]) therefore fo-
cus on stronger solution concepts such as sequen-
tial equilibrium [29]. We note that when tak-
ing computation into account, the distinction be-
tween credible and non-credible threats becomes
more subtle: the threat of using a non-optimal
strategy in a given history might be credible if,
for instance, the overall complexity of the strat-
egy is smaller than any strategy that is optimal
at every history. Thus, a simple strategy that
is non-optimal off the equilibrium path might
be preferred to a more complicated (and thus
more costly) strategy that performs better off
the equilibrium path (indeed, people often use
non-optimal but simple “rules-of-thumbs” when
making decisions). Finding a good definition of
empty threats in games with computation costs
seems challenging.

One approach to dealing with empty threats to
to consider the notion of sequential equilibrium in
machine games. Roughly speaking, in a sequen-
tial equilibrium, every player must make a best
response at every information set, where an infor-
mation set is a set of nodes in the game tree that
the agent cannot distinguish. The standard as-
sumption in game theory is that the information
set is given exogenously, as part of the description
of the game tree. As Halpern [51] has argued,
an exogenously-given information set does not al-
ways represent the information that an agent ac-
tually has. The issue becomes even more signifi-
cant in our framework. While an agent may have
information that allows him to distinguish two
nodes, the computation required to realize that
they are different may be prohibitive, and (with
computational costs) an agent can rationally de-
cide not to do the computation. This suggests
that the information sets should be determined
by the machine. More generally, in defining solu-
tion concepts, it has proved necessary to reason
about players’ beliefs about other players’ beliefs;
now these beliefs will have to include beliefs re-
garding computation. Finding a good model of
such beliefs seems challenging. See the full paper
for further discussion of sequential equilibrium.
• A natural next step would be to introduce notions

of computation in the epistemic logic. There has
already been some work in this direction (see, for
example, [52–54]). We believe that combining
the ideas of this paper with those of the earlier
papers will allow us to get, for example, a cleaner
knowledge-theoretic account of zero knowledge
than that given by Halpern, Moses, and Tuttle
[52]. A first step in this direction is taken in [55].
• Finally, it would be interesting to use behavioral

experiments to, for example, determine the “cost
of computation” in various games (such as the
finitely repeated prisoner’s dilemma).
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Appendix

A Coalition Machine Games
We strengthen the notion of Nash equilibrium to

allow for deviating coalitions. Towards this goal, we
consider a generalization of Bayesian machine games
called coalition machine games, where, in the spirit
of coalitional games [31], each subset of players has
a complexity function and utility function associated
with it. In analogy with the traditional notion of Nash
equilibrium, which considers only “single-player” de-
viations, we consider only “single-coalition” devia-
tions.

More precisely, given a subset Z of [m], we let −Z

denote the set [m]/Z. We say that a machine M ′Z
controls the players in Z if M ′Z controls the input
and output tapes of the players in set Z (and thus
can coordinate their outputs). In addition, the ad-
versary that controls Z has its own input and out-
put tape. A coalition machine game G is described
by a tuple ([m],M,Pr, �C , �u), where �C and �u are se-
quences of complexity functions CZ and utility func-
tions uZ , respectively, one for each subset Z of [m];
m,M, and Pr are defined as in Definition 2.1. In con-
trast, the utility function uZ for the set Z is a func-
tion T × ({0, 1}∗)m × (IN × INm−|Z|+1) → IR, where
uZ(�t,�a, (cZ ,�c−Z)) is the utility of the coalition Z if �t
is the (length m+ 1) type profile, �a is the (length m)
action profile (where we identify i’s action as player i
output), cZ is the complexity of the coalition Z, and
�c−Z is the (length m − |Z|) profile of machine com-
plexities for the players in −Z. The complexity cZ
is a measure of the complexity according to whoever
controls coalition Z of running the coalition. Note
that even if the coalition is controlled by a machine
M ′Z that lets each of the players in Z perform inde-
pendent computations, the complexity of M ′Z is not
necessarily some function of the complexities ci of the
players i ∈ Z (such as the sum or the max). More-
over, while cooperative game theory tends to focus on
superadditive utility functions, where the utility of a
coalition is at least the sum of the utilities of any par-
tition of the coalition into sub-coalitions or individual
players, we make no such restrictions; indeed when
taking complexity into account, it might very well be
the case that larger coalitions are more expensive than
smaller ones. Also note that, in our calculations, we
assume that, other than the coalition Z, all the other
players play individually (so that we use ci for i /∈ Z);
there is at most one coalition in the picture. Having
defined uZ , we can define the expected utility of the
group Z in the obvious way.

The benign machine for coalition Z, denoted M bZ ,
is the one where that gives each player i ∈ Z its true
input, and each player i ∈ Z outputs the output of
Mi;M bZ write nothing on its output tape. Essentially,
the benign machine does exactly what all the players
in the coalition would have done anyway. We now
extend the notion of Nash equilibrium to deal with
coalitions; it requires that in an equilibrium �M , no
coalition does (much) better than it would using the
benign machine, according to the utility function for
that coalition.

Definition A.1 (NE in coalition machine games)
Given an m-player coalition machine game G, a
machine profile �M , a subset Z of [m] and ε ≥ 0, M bZ
is an ε-best response to �M−Z if, for every coalition
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machine M ′Z ∈M,

UGZ [(M bZ , �M−Z)] ≥ UGZ [(M ′Z , �M−Z)]− ε.

Given a set Z of subsets of [m], �M is a Z-safe ε-Nash
equilibrium for G if, for all Z ∈ Z, M bZ is an ε-best
response to �M−Z .

Our notion of coalition games is quite general. In
particular, if we disregard the costs of computation,
it allows us to capture some standard notions of coali-
tion resistance in the literature, by choosing uZ ap-
propriately. For example, Aumann’s [56] notion of
strong equilibrium requires that, for all coalitions, it
is not the case that there is a deviation that makes
everyone in the coalition strictly better off. To cap-
ture this, fix a profile �M , and define u �MZ (M ′Z , �M ′−Z) =
mini∈Z ui(M ′Z , �M ′−Z)− ui( �M).11 We can capture the
notion of k-resilient equilibrium [23, 33], where the
only deviations allowed are by coalitions of size at
most k, by restricting Z to consist of sets of cardi-
nality at most k (so a 1-resilient equilibrium is just a
Nash equilibrium). Abraham et al. [23, 33] also con-
sider a notion of strong k-resilient equilibrium, where
there is no deviation by the coalition that makes even
one coalition member strictly better off. We can cap-
ture this by replacing the min in the definition of u �MZ
by max.

B Precise Secure Computation
In this section, we review the notion of precise se-

cure computation [37, 38], which is a strengthening
of the traditional notion of secure computation [12].
We consider a system where players are connected
through secure (i.e., authenticated and private) point-
to-point channels. We consider a malicious adversary
that is allowed to corrupt a subset of the m players
before the interaction begins; these players may then
deviate arbitrarily from the protocol. Thus, the ad-
versary is static; it cannot corrupt players based on
history.

As usual, the security of protocol �M for computing
a function f is defined by comparing the real execu-
tion of �M with an ideal execution where all players
directly talk to a trusted third party (i.e., a media-
tor) computing f . In particular, we require that the
outputs of the players in both of these executions can-
not be distinguished, and additionally that the view
of the adversary in the real execution can be recon-
structed by the ideal-execution adversary (called the
simulator). Additionally, precision requires that the

11Note that if we do not disregard the cost of computation, it
is not clear how to define the individual complexity of a player
that is controlled by M ′Z .

running-time of the simulator in each run of the ideal
execution is closely related to the running time of the
real-execution adversary in the (real-execution) view
output by the simulator.

The ideal execution Let f be an m-ary functional-
ity. Let Ã be a probabilistic polynomial-time ma-
chine (representing the ideal-model adversary) and
suppose that Ã controls the players in Z ⊆ [m]. We
characterize the ideal execution of f given adversary
Ã using a function denoted idealf,Ã that maps an
input vector �x, an auxiliary input z, and a tuple
(rÃ, rf ) ∈ ({0, 1}∞)2 (a random string for the ad-
versary Ã and a random string for the trusted third
party) to a triple (�x, �y, v), where �y is the output vector
of the players 1, . . . ,m, and v is the output of the ad-
versary Ã on its tape given input (z, �x, rÃ), computed
according to the following three-stage process.

In the first stage, each player i receives its input
xi. Each player i /∈ Z next sends xi to the trusted
party. (Recall that in the ideal execution, there is a
trusted third party.) The adversary Ã determines the
value x′i ∈ {0, 1}∗ a player i ∈ Z sends to the trusted
party. We assume that the system is synchronous,
so the trusted party can tell if some player does not
send a message; if player i does not send a message,
i is taken to have sent λ. Let �x′ be the vector of
values received by the trusted party. In the second
stage, the trusted party computes yi = fi(�x′, rf ) and
sends yi to Pi for every i ∈ [m]. Finally, in the third
stage, each player i /∈ Z outputs the value yi received
from the trusted party. The adversary Ã determines
the output of the players i ∈ Z. Ã finally also out-
puts an arbitrary value v (which is supposed to be the
“reconstructed” view of the real-execution adversary
A). Let viewf,Ã(�x, z, �r) denote the the view of Ã in
this execution. We occasionally abuse notation and
suppress the random strings, writing idealf,Ã(�x, z)
and viewf,Ã(�x, z); we can think of idealf,Ã(�x, z) and
viewf,Ã(�x, z) as random variables.

The real execution Let f be anm-ary functionality,
let Π be a protocol for computing f , and let A be a
machine that controls the same set Z of players as Ã.
We characterize the real execution of Π given adver-
sary A using a function denoted realΠ,A that maps
an input vector �x, an auxiliary input z, and a tuple
�r ∈ ({0, 1}∞)m+1−|Z| (m−|Z| random strings for the
players not in Z and a random string for the adversary
A), to a triple (�x, �y, v), where �y is the output of play-
ers 1, . . . ,m, and v is the view of A that results from
executing protocol Π on inputs �x, when players i ∈ Z
are controlled by the adversary A, who is given auxil-
iary input z. As before, we often suppress the vector
of random bitstrings �r and write realΠ,A(�x, z).
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We now formalize the notion of precise secure com-
putation. For convenience, we slightly generalize the
definition of [37] to consider general adversary struc-
tures [40]. More precisely, we assume that the spec-
ification of a secure computation protocol includes a
set Z of subsets of players, where the adversary is al-
lowed to corrupt only the players in one of the subsets
in Z; the definition of [12, 37] considers only thresh-
old adversaries where Z consists of all subsets up to
a pre-specified size k. We first provide a definition
of precise computation in terms of running time, as
in [37], although other complexity functions could be
used; we later consider general complexity functions.

Let steps be the complexity function that, on in-
put a machine M and a view v, roughly speaking,
gives the number of “computational steps” taken by
M in the view v. In counting computational steps, we
assume a representation of machines such that a ma-
chine M , given as input an encoding of another ma-
chine A and an input x, can emulate the computation
of A on input x with only linear overhead. (Note that
this is clearly the case for “natural” memory-based
models of computation. An equivalent representation
is a universal Turing machine that receives the code
it is supposed to run on one input tape.)

In the following definition, we say that a function
is negligible if it is asymptotically smaller than the
inverse of any fixed polynomial. More precisely, a
function ν : IN → IR is negligible if, for all c > 0,
there exists some nc such that ν(n) < n−c for all
n > nc.

Roughly speaking, a computation is secure if the
ideal execution cannot be distinguished from the real
execution. To make this precise, a distinguisher
is used. Formally, a distinguisher gets as input a
bitstring z, a triple (�x, �y, v) (intuitively, the out-
put of either idealf,Ã or realΠ,A on (�x, z) and
some appropriate-length tuple of random strings)
and a random string r, and outputs either 0 or
1. As usual, we typically suppress the random bit-
string and write, for example, D(z, idealf,Ã(�x, z)) or
D(z,realΠ,A(�x, z)).

Definition B.1 (Precise Secure Computation)
Let f be an m-ary function, Π a protocol computing
f , Z a set of subsets of [m], p : IN × IN → IN , and
ε : IN → IR. Protocol Π is a Z-secure computation
of f with precision p and ε-statistical error if, for
all Z ∈ Z and every real-model adversary A that
controls the players in Z, there exists an ideal-model
adversary Ã, called the simulator, that controls
the players in Z such that, for all n ∈ N , all
�x = (x1, . . . , xm) ∈ ({0, 1}n)m, and all z ∈ {0, 1}∗,
the following conditions hold:

1. For every distinguisher D,
∣
∣
∣PrU [D(z,realΠ,A(�x, z)) = 1]−

PrU [D(z, idealf,Ã(�x, z))] = 1
∣
∣
∣ ≤ ε(n).

2. PrU [steps(Ã, v ≤ p(n, steps(A, Ã(v)))]) = 1,
where v = viewf,Ã(�x, z)).12

Π is a Z-secure computation of f with precision p
and (T, ε)-computational error if it satisfies the two
conditions above with the adversary A and the distin-
guisher D restricted to being computable by a TM with
running time bounded by T (·).

Protocol Π is a Z-secure computation of f with
statistical precision p if there exists some negligible
function ε such that Π is a Z-secure computation of
f with precision p and ε-statistical error. Finally, pro-
tocol Π is a Z-secure computation of f with compu-
tational precision p if for every polynomial T , there
exists some negligible function ε such that Π is a Z-
secure computation of f with precision p and (T, ε)-
computational error.

The traditional notion of secure computation is ob-
tained by replacing condition 2 with the requirement
that the worst-case running-time of Ã is polynomially
related to the worst-case running time of A.

The following theorems were provided by Micali
and Pass [37, 38], using the results of Ben-Or, Gold-
wasser and Wigderson [41] and Goldreich, Micali and
Wigderson [12]. Let Zmt denote all the subsets of [m]
containing t or less elements. An m-ary functionality
f is said to be well-formed if it essentially ignores ar-
guments that are not in ({0, 1}n)m for some n. More
precisely, if there exist j, j′ such that |xj | 	= |xj′ |, then
fi(�x) = λ for all i ∈ [m]. (See [45, p. 617] for motiva-
tion and more details.)

Theorem B.2 For every well-formed m-ary func-
tionality f , there exists a precision function p such
that p(n, t) = O(t) and a protocol Π that Zm�m/3�−1-
securely computes f with precision p and 0-statistical
error.

This result can also be extended to more general ad-
versary structures by relying on the results of [40].
We can also consider secure computation of specific
2-party functionalities.

12Note that the three occurrences of PrU in the first two
clauses represent slightly different probability measures, al-
though this is hidden by the fact that we have omitted the
superscripts. The first occurrence of PrU should be Prm−|Z|+3

U ,
since we are taking the probability over the m + 2 − |Z| ran-
dom inputs to realf,A and the additional random input to D;
similarly, the second and third occurrences of PrU should be
Pr3
U .
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Theorem B.3 Suppose that there exists an enhanced
trapdoor permutation.13 For every well-formed 2-ary
functionality f where only one party gets an output
(i.e., f1(·) = 0), there exists a a precision function
p such that p(n, t) = O(t) and protocol Π that Z2

1 -
securely computes f with computational-precision p.

Micali and Pass [37] also obtain unconditional results
(using statistical security) for the special case of zero-
knowledge proofs. We refer the reader to [37, 57] for
more details.

B.1 Weak Precise Secure Computation
Universal implementation is not equivalent to pre-

cise secure computation, but to a (quite natural)
weakening of it. Weak precise secure computation,
which we are about to define, differs from precise se-
cure computation in the following respects:
• Just as in the traditional definition of zero knowl-

edge [13], precise zero knowledge requires that for
every adversary, there exists a simulator that,
on all inputs, produces an interaction that no
distinguisher can distinguish from the real in-
teraction. This simulator must work for all in-
puts and all distinguishers. In analogy with the
notion of “weak zero knowledge” [39], we here
switch the order of the quantifiers and require
instead that for every input distribution Pr over
�x ∈ ({0, 1}n)m and z ∈ {0, 1}∗, and every distin-
guisher D, there exists a (precise) simulator that
“tricks” D; in essence, we allow there to be a dif-
ferent simulator for each distinguisher. As argued
by Dwork et al. [39], this order of quantification is
arguably reasonable when dealing with concrete
security. To show that a computation is secure in
every concrete setting, it suffices to show that, in
every concrete setting (where a “concrete setting”
is characterized by an input distribution and the
distinguisher used by the adversary), there is a
simulator.
• We further weaken this condition by requiring

only that the probability of the distinguisher out-
putting 1 on a real view be (essentially) no higher
than the probability of outputting 1 on a sim-
ulated view. In contrast, the traditional defi-
nition requires these probabilities to be (essen-
tially) equal. If we think of the distinguisher
outputting 1 as meaning that the adversary has
learned some important feature, then we are say-
ing that the likelihood of the adversary learning
an important feature in the real execution is es-
sentially no higher than that of the adversary

13See [45] for a definition of enhanced trapdoor permutations;
the existence of such permutations is implied by the "standard"
hardness of factoring assumptions.

learning an important feature in the “ideal” com-
putation. This condition on the distinguisher is
in keeping with the standard intuition of the role
of the distinguisher.
• We allow the adversary and the simulator to de-

pend not only on the probability distribution,
but also on the particular security parameter n
(in contrast, the definition of [39] is uniform).
That is why, when considering weak precise se-
cure computation with (T, ε)-computational er-
ror, we require that the adversary A and the
simulator D be computable by circuits of size
at most T (n) (with a possibly different circuit
for each n), rather than a Turing machine with
running time T (n). Again, this is arguably rea-
sonable in a concrete setting, where the security
parameter is known.
• We also allow the computation not to meet the

precision bounds with a small probability. The
obvious way to do this is to change the require-
ment in the definition of precise secure computa-
tion by replacing 1 by 1− ε, to get

PrU [steps(Ã, v) ≤ p(n, steps(A, Ã(v))] ≥ 1−ε(n),

where n is the input length and v = viewf,Ã(�x, z)
We change this requirement in two ways. First,
rather than just requiring that this precision in-
equality hold for all �x and z, we require that the
probability of the inequality holding be at least
1− ε for all distributions Pr over �x ∈ ({0, 1}n)m
and z ∈ {0, 1}∗.
The second difference is to add an extra argu-
ment to the distinguisher, which tells the distin-
guisher whether the precision requirement is met.
In the real computation, we assume that the pre-
cision requirement is always met, thus, whenever
it is not met, the distinguisher can distinguish
the real and ideal computations. We still want
the probability that the distinguisher can distin-
guish the real and ideal computations to be at
most ε(n). For example, our definition disallows
a scenario where the complexity bound is not
met with probability ε(n)/2 and the distinguisher
can distinguish the computations with (without
taking the complexity bound into account) with
probability ε(n)/2.
• In keeping with the more abstract approach used

in the definition of robust implementation, the
definition of weak precise secure computation is
parametrized by the abstract complexity measure
C , rather than using steps. This just gives us a
more general definition; we can always instanti-
ate C to measure running time.
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Definition B.4 (Weak Precise Secure Compu-
tation) Let f , Π, Z, p, and ε be as in the defini-
tion of precise secure computation, and let �C be a
complexity function. Protocol Π is a weak Z-secure
computation of f with �C -precision p and ε-statistical
error if, for all n ∈ N , all Z ∈ Z, all real-execution
adversaries A that control the players in Z, all distin-
guishers D, and all probability distributions Pr over
({0, 1}n)m × {0, 1}∗, there exists an ideal-execution
adversary Ã that controls the players in Z such that

Pr+({(�x, z) : D(z,realΠ,A(�x, z), 1) = 1})
−Pr+({(�x, z) : D(z, idealf,Ã(�x, z), p)) = 1}) ≤ ε(n),

where p = preciseZ,A,Ã(n, viewf,Ã(�x, z))), and
preciseZ,A,Ã(n, v) = 1 if and only if CZ(Ã, v) ≤
p(n,CZ(A, Ã(v))).14 Π is a weak Z-secure computa-
tion of f with �C -precision p and (T, ε)-computational
error if it satisfies the condition above with the ad-
versary A and the distinguisher D restricted to be-
ing computable by a randomized circuit of size T (n).
Protocol Π is a Z-weak secure computation of f with
statistical �C -precision p if there exists some negligible
function ε such that Π is a Z-weak secure computation
of f with precision p and statistical ε-error. Finally,
Protocol Π is a Z-weak secure computation of f with
computational �C -precision p if for every polynomial
T (·), there exists some negligible function ε such that
Π is a Z-weak secure computation of f with precision
p and (T, ε)-computational error.

Our terminology suggests that weak precise secure
computation is weaker than precise secure compu-
tation. This is almost immediate from the defini-
tions if CZ(M, v) = steps(M, v) for all Z ∈ Z. A
more interesting setting considers a complexity mea-
sure that can depend on steps(M, v) and the size
of the description of M . It directly follows by in-
spection that Theorems B.2 and B.3 also hold if, for
example, CZ(M, v) = steps(M, v) + O(|M |) for all
Z ∈ Z, since the simulators in those results incur
only a constant additive overhead in size. (This is
not a coincidence. As argued in [37, 57], the defi-
nition of precise simulation guarantees the existence
of a “universal” simulator S, with “essentially” the
same precision, that works for every adversaryA, pro-
vided that S also gets the code of A; namely given a
real-execution adversaryA, the ideal-execution adver-
sary Ã = S(A).15 Since |S| = O(1), it follows that

14Recall that Pr+ denotes the product of Pr and PrU (here,
the first Pr+ is actually Pr+(m+3−|Z|), while the second is
Pr+3).

15This follows by considering the simulator S for the universal
TM (which receives the code to be executed as auxiliary input).

|Ã| = |S| + |A| = O(|A|).) That is, we have the fol-
lowing variants of Theorems B.2 and B.3:

Theorem B.5 For every well-formed m-ary func-
tionality f , CZ(M, v) = steps(M, v) + O(|M |) for
all sets Z, there exists a precision function p such
that p(n, t) = O(t) and a protocol Π that weak
Zm�m/3�−1-securely computes f with �C -precision p and
0-statistical error.

Theorem B.6 Suppose that there exists an enhanced
trapdoor permutation, and CZ(M, v) = steps(M, v)+
O(|M |) for all sets Z. For every well-formed 2-ary
functionality f where only one party gets an output
(i.e., f1(·) = λ), there exists a precision function
p such that p(n, t) = O(t) and a protocol Π that
weak Z2

1 -securely computes f with computational �C -
precision p.

It is easy to see that the theorems above continue to
hold when considering “coarse” versions of the above
complexity functions, where, say, n2 computational
steps (or size) correspond to one unit of complexity
(in canonical machine game with input length n).

C Output-invariant complexity func-
tions

Recall that for one direction of our main theorem
we require that certain operations, like moving output
from one tape to another, do not incur any additional
complexity. We now make this precise.

Recall that in the definition of a secure computa-
tion, the ideal-execution adversary, MZ , is an algo-
rithm that controls the players in Z and finally pro-
vides an output for each of the players it controls and
additionally produces an output of its own (which is
supposed to be the reconstructed view of the real-
execution adversary). Roughly speaking, a complex-
ity function is output-invariant if MZ can “shuffle”
content between its tapes at no cost.

Definition C.1 A complexity function C is output-
invariant if, for every set Z of players, there exists
some canonical player iZ ∈ Z such that the following
three conditions hold:

1. (Outputting view) For every machine MZ
controlling the players in Z, there exists some
machine M ′Z with the same complexity as MZ
such that the output of M ′Z(v) is identical to
MZ(v) except that player iZ outputs y; v, where
y is the output of iZ in the execution of MZ(v)
(i.e., M ′Z is identical to MZ with the only excep-
tion being that player iZ also outputs the view of
M ′Z).
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2. (Moving content to a different tape) For ev-
ery machine M ′Z controlling players Z, there ex-
ists some machine MZ with the same complexity
as MZ such that the output of MZ(v) is iden-
tical to M ′Z(v) except if player iZ outputs y; v′
for some v′ ∈ {0, 1}∗ in the execution of M ′Z(v).
In that case, the only difference is that player iZ
outputs only y and MZ(v) outputs v′.

3. (Duplicating content to another output
tape) For every machine M ′Z controlling play-
ers Z, there exists some machine MZ with the
same complexity as MZ such that the output of
MZ(v) is identical to M ′Z(v) except if player iZ
outputs y; v′ for some v′ ∈ {0, 1}∗ in the execu-
tion of M ′Z(v). In that case, the only difference
is that MZ(v) outputs v′.

Note that the only difference between condition 2 and
3 is that in condition 2, player iz only outputs y,
whereas in condition 3 it still outputs its original out-
put y; v′.

We stress that we need to consider output-invariant
complexity functions only to show that universal im-
plementation implies precise secure computation.
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