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Abstract—Recent attacks show that threats to cyber infras-
tructure are not only increasing in volume, but are getting more
sophisticated. The attacks may comprise multiple actions that are
hard to differentiate from benign activity, and therefore common
detection techniques have to deal with high false positive rates.
Because of the imperfect performance of automated detection
techniques, responses to such attacks are highly dependent on
human-driven decision-making processes. While game theory has
been applied to many problems that require rational decision-
making, we find limitation on applying such method on security
games. In this work, we propose Q-Learning to react auto-
matically to the adversarial behavior of a suspicious user to
secure the system. This work compares variations of Q-Learning
with a traditional stochastic game. Simulation results show the
possibility of Naive Q-Learning, despite restricted information on
opponents.

I. INTRODUCTION

Computer systems are tempting targets for attackers. Suc-
cessful invasion of data and control can threaten the avail-
ability of the computer system and compromise the integrity
and confidentiality of information processed or stored in the
system. To defend systems from exploits, sensors and monitors
are deployed at different layers of the system, and system and
user activities are logged and audited to filter out suspicious or
malicious activities and/or trigger an in-depth investigation or
response to a potential attack. While that type of monitoring
and response has been an effective method for detecting
hostile activities against systems, recent analysis shows a
change in attack trends against cyber systems. For example,
according to [1], attacks are not only increasing in number,
but are also getting more sophisticated and intelligent, which
is accelerating an increase in the number and variety of security
measures applied to systems. However, naive deployment of
more security monitors and policies does not always lead to
better detection. While such increments bring better security
coverage, they also increase the complexity of analysis and
overhead in terms of performance degradation. In [2], an
analysis of security incidents shows that a significant portion
of alarms that trigger human investigation turn out to be false
positives. In addition, it was shown that most of the incidents
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were detected only after actual damage was done. Those obser-
vations reveal a need for an automated intrusion response that
can react to malicious actions threatening a computer system.
In this paper, we propose a game-theoretic model to emulate
the decision-making process in responding to cybersecurity
incidents. Given an attack model and a reward model based
on expert knowledge, our approach determines the optimal
action that minimizes damage. We focus on intrusion response;
detection of zero-day attacks and unknown attacks are outside
the scope of this paper.

In order to better model learning in security games, we
considered variations of Q-Learning where Q-Learning (QL)
[3] is a model-free reinforcement learning technique, used to
learn the optimal policy that maximizes the expected reward
(e.g., the monetary value of the information exploited or an
estimated loss caused by compromised system availability).
We claim that our approach is more realistic than pure game
theoretic approaches[4], as it uses an algorithm that releases
the restrictions on the rationality of the players or the com-
pleteness of information. Q-Learning algorithms are discussed
in more detail in section IV.

With respect to learning, earlier work has shown the
effectiveness of applying machine learning for cyber security.
However, we find that rationality has been neglected in the
existing machine learning approaches. For the models trained
on the dataset, the model becomes specific to the observations
from history. Hence, such approaches take time to adapt to
unforeseen patterns. Q-Learning on the other hand makes
decisions based on a model that was derived from human
intelligence. Moreover, assuming the possible incompleteness
of the model, the approach reinforces the model by adapting
to the patterns from the previous iterations.

In this paper, the performance of Q-Learning algorithms
(MMQL, NQL) for detecting execution of a multistage attack
is evaluated through comparisons of the cumulative earnings of
the attacker after multiple iterations over the game. Simulating
a security game of attackers and defenders with different
abilities and knowledge, we show that Nave Q-Learning has
a potential on minimizing the loss against non-fully rational
attackers. The main contributions of this paper are:

• Motivates the approach through a study of real inci-
dents. From an analysis of the Target data breach and
earlier work on security incidents, we show the need
for automation in incident response.

• Models the battle of an attacker and a defender as



TABLE I: Summary of attacks in a large organization

ID Time Event

1

09:52 log in from known host using public key authentication

09:59 changed ’authorized key’

10:05 logged in from new host / updates ’known hosts’

11:19 download malware from remote host

11:20 attempt root escalation

2

17:34 log in through WinVNC exploit

17:49 download malware from remote host

17:52 connection to blacklisted command & control systems

3

07:38 access network with weak credentials

07:39 download malware from remote host

07:40 start bruteforce ssh scan

09:15 attemp ssh scan on a DDoS black list

a security game. Using real incident data from the
Organization X, we derive an attack model that reflects
both the attackers and defenders perspective, and we
use the model to formulate a security game. In terms
of a security game, this model represents the worse
case where the attacker can perform all attacks shown
in the dataset.

• Presents an experimental result showing the possibility
of applying Nave Q-Learning for effectively learning
the opponents behavior and making a proper deci-
sion. Comparing the performance of different decision
making algorithms, we present simulation results that
show Naive Q-Learning performing better than algo-
rithms with restricted assumptions, especially against
irrational attackers, and show that Naive Q-Learning
performs as well as Minmax Q-Learning, despite the
relatively limited information.

II. MOTIVATON

Unlike earlier attacks, whose goal was to invade a target
and leave as quickly as possible after causing damage, re-
cent attacks show that attackers are willing to remain in the
system undetected. Hence, the attack sequences are designed
to consist of a set of actions that are hard to differentiate
from legitimate ones. These type of attacks are often called
Advanced Persistent Threats (APT). [5] For example, from an
analysis of a recent data breach attack [6], it was shown that
the attackers resided in the system undetected for more than
a month. We notice two interesting aspects of that incident.
One is the decision model that lay underneath the attack. The
attack consisted of multiple states (phases), and a decision on
the next action to be taken had to be made in each state.
From that decision model, we recognized the possibility of
applying game-theoretic approaches to counteract malicious
intent. Also, we concentrate on the fact that the system was
able to detect the intrusion but no proper response was made
for easily assuming the alarms as false positives. Often, alarms
lack on confidentiality as they rely on limited observation.
Instead, an attack has to be understood as a sequence of
events that calls for the detection/response model to encompass
observations from varying dimensions. In addition, we note the
insights from a study of security incidents at a large computing
organization. [2] That study has shown how many alerts turn
out to be false positives, how they affect the detection of real
incidents, and how dependent the organization is on human
expertise. According to the paper, the majority of incidents

are not detected until the actual damage to the system has
been initiated.

From those observations, we see a need for an automated
decision-making process to respond to potential attacks. Such a
process should provide a decision based not only on the current
observation, but also on results from the past and the expected
result of taking each action available at the decision-making
state. In this paper, we discuss a method to automatically
determine the response, given the observations on the system
states from a set of monitors.

III. ATTACK MODEL

In modeling an attack, we are considering parties with
a conflict of interests: the attacker and the defender. The
defender, often a system administrator, manages the system.
The main interest of the defender is to secure the cyber infras-
tructure from malicious activities. The attacker, on the other
hand, is a malicious opponent who attempts to compromise the
target system. We model the interaction between the attacker
and the defender based on data on actual security incidents.

A. Attacker

The attacker is an opponent who accesses the system with
the intention of threatening its security. Attacks can vary from
a single action to a sequence of activities. In this paper, we
limit our interest to attacks that consist of multiple activities
that lead to an ultimate goal.

Attack State ASx represents the state of the attack, i.e.,
the depth/degree of intrusion. Each attack state is assigned
a numeric value(reward) which quantifies the damage to the
target system. The bigger the impact, the more severe the
damage to the system and/or the greater the unauthorized
control over the system. Transition from one state to another
depends on the result of the action.

Activity A is a set of actions ai available to the attacker.
It can lead to malicious control over the system, or if the
attacker decides to remain in the current state, the transition
will result in a loop. The set of available activities in state ASx

is denoted by Ax. Therefore, Ax is a subset of A. The causal
relation between activities and attack states can be represented
as a state diagram.

Transition Matrix Pa(s, s
′) is the probability that an action

from state s will lead to a transition to the next state s’. In an
attack model, a transition matrix represents the probability of
a successful attack. Depending on the monitoring system con-
figured on the defender’s side, an attack can be either detected
or missed. The transaction matrix models the uncertainty of
the result of an action.

Immediate Reward Ra(s, s
′) is the reward of the attacker

as a result of a transition from state s to s’ for performing
action a. The reward is a quantitative representation of the
earnings that the attacker can get from a successful attack.

B. Defender

The defender is a party that is in charge of making proper
responses to secure the system from malicious attacks. The
defender has a set of monitors to protect the system. The



(a) Attack model from the Attacker’s Perspective

(b) Attack model from the De-
fender’s perspective

(c) Snapshot of the Security Game

Fig. 1: State Diagram Representations of the Attack Phase (a,
b) and a Snapshot of the Security Game (c).

main objective of this player is to make prooper responses
in a preemptive manner based on a limited view of the system
status, relying on monitors.

Attack State DSx represents the state of the attack from
the defender’s perspective. The observations that defenders use
rely on the monitoring systems, and lack the granularity needed
to reveal the details of users’ actions.

Defender Action D is a set of actions(d) available to the
defender in a given state. For security incident detection and
response, a monitor detects changes in system status. However,

such detections do not directly map to the attacker’s definite
actions. The monitor may miss an action (false negative)
or misidentify a benign action as malicious (false positive).
Hence, the defender needs to take an appropriate action while
relying on imperfect information. Assuming that there are
proper responses for each action, we abstract the defender
action to either ”Reponse” or ”No Response,” where ”No
Response” is useful for monitored events that are hard to
differentiate from benign ones, and/or events that do not cause
immediate harm to the system.

C. Attacker-Defender interaction

While each attacker has a logic flow for making decisions,
his or her decisions are not independent, but are related to the
opponents decision process. Hence, we model the interaction
between the two players. In Figure 1c, we show a subset of
the security game. Once an attacker has taken an action, the
defender chooses his or her action based on the information
from the monitoring system. An attackers action results in a
transition to the intended state only if the defender does not
make a proper response. Once the defender has responded to
the observed action, the attacker is forced to transit to the
default state. Assuming a zero-sum game, a successful attack
will result in an immediate reward, and the defender will have
a symmetric loss. As a result of the execution of the attack, the
attack state will change accordingly. Otherwise, if the defender
detects the attack and makes a proper response, the attack
state will be reset to the default for the identified attacker.
In that case, a reward will be assigned to the defender, with
an equivalent loss to the attacker.

D. Study of Organization X Data

In [2], it was shown that 62% of the incidents in the
study were detected only after attacks have already damaged
the system, for the monitoring relies heavily on alerts from
the IDS; no significant evidence is available until the actual
attack has started. Analyzing the incidents at Organization X,
we find a common pattern in the attack phase. For example,
as shown in the sample incidents summarized in Table I,
suppose a malware file has to be downloaded for an attack
to progress. Unless the attacker has downloaded well-known
malware whose signature will match the malware detection
database, the monitoring system will report the event as a
general file download. Since downloading of a file is a general
action often performed by benign users, it would be difficult to
use a file download as the basis for determining that an attack
is occurring. However, once the malware has been executed,
the system has already been exploited, with visible damage.
Hence, it would be ideal if a useful decision on the response
could be made at the download phase.

Figure 1 represents the attack model from the attackers
and defenders perspectives; the meanings of the labels are
explained in the table below the figure. Figure 1a models
an attack in four phases. AS0.0 is a base state. It is the
default state, in which the attacker has not taken any malicious
action. In this state, an attacker cannot be differentiated from
a benign user. Using stolen credentials or already exploited
backdoors, attackers gain access to the system, which leads
to AS1.0. In AS1.0, the attacker has 4 options: to download



TABLE II: Comparison on Different Approaches

MG [4] QL [3] MMQL [7] NQL [8]

Number of Agents multiple single multiple multiple

Required Opponent Info full n/a limited no

Learning no yes yes yes

Adapt to Opponent no n/a partial partial

malware (well-known, rare, or new) or download benign soft-
ware. Downloading benign software would not give immediate
benefit to the attacker, but we model it to represent a case in
which the attacker is trying to obfuscate the user profile. A
successful download leads to AS2.X . Once the attacker has
reached AS2.1, AS2.2, or AS2.3, he or she can execute the
malware and exploit the system. Our goal is to be able to
make a proper response before the exploit happens. Figure 1b
depicts the defenders view of the same attack model depicted
in Figure 1a. Because of the limitations of the monitoring
system, the defender has a limited view of the files downloaded
in AS2.X . If the malware has a known signature predefined in
the monitoring system, the file can be recognized as malware
(d2). Otherwise, a malware download will be seen as a benign
file download (d3).

IV. GAME MODEL

In this section, the interaction of an attacker and a defender
is discussed in terms of games. We refer to [7], [9] and [4]
for the definitions and equations for formulating the game.
The game consists of two rational players with conflict, and
their goal is to maximize their reward by deriving the optimal
policy for each state. The comparison of different methods is
summarized in table II.

A. Stochastic Game

First we define the terminologies used for solving the game
as a Stochastic game[4].
Set of actions A contains all possible actions, a that are
available to the player. We use o for the opponent’s action.
Reward R(s, a, o) defines the immediate reward based on the
attack state s and player’s actions, a and the opponent’s action
o in the tth iteration.

A stochastic game that consists of multiple stages is often
called a Markov game. In a Markov game, the concepts of
quality of state and value of state are introduced to represent
the expected reward of the player’s decision.
Value of state V (s) is the expected reward when the player,
starting from state s, follows the optimal policy. It is equivalent
to the maximum reward that the player can expect, assuming
that the opponent’s action o will be the action that minimizes
the expected reward. The player maximizes the value of state
by deriving the optimal policy, i.e., the probability distribution
among the actions available to the player in a given state.

V (s) = max
π

min
o′∈Os

∑

a′∈As

π(s, a′)Q(s, a′, o′) (1)

Quality of state Q(s, a, o) is the expected reward each player
can gain by taking actions a and o from state s and then
following the optimal policy from then on. The quality of state
is a sum of the immediate reward from this iteration (Rt−1)

and the reward expected as a result of transitioning to state
s’ (V t(s′)), which was derived from the previous t iterations.
Note that the value of state is weighted by a discount factor
(γ).

Qt+1(s, a, o) = Rt+1(s, a, o) + γV t(s′) (2)

Discount factor γ is assigned by the user’s intention on
balancing between future and current rewards. A myoptic
player, who only considers current reward, is modeled by a
value of 0 while 1 is assigned for a player who strives for a
long-term high reward.
Optimal policy π is the set representing the probability dis-
tribution of actions (π(s, .)) available at each state(s). It is
chosen to maximize the value of state(V (s)) which represents
the expected reward of the player if the player follows the
optimal policy. π(s, a) indicates the likelihood of taking action
a in state s where π is the overall distribution that maximizes
the value of state (V (s)).

π(s, .) = arg max
π′(s,.)

min
o∈Os

∑

a′∈As

π(s, a′)Q(s, a′, o′) (3)

B. Minimax Q-Learning

To solve stage-based games, a Markov game assumes
full rationality and complete information about the opponent.
However, an empirical study involving a guessing game has
shown that the assumption on complete information and full
rationality is not realistic in all cases [10].

In a security game, the assumption of complete information
and rationality is even more unrealistic. In security games,
players generally make decisions with limited information, and
compendate for their lack of information with learning[11].
To account for that characteristic of security games, we apply
Minimax Q-Learning as a decision making algorithm. Instead
for a need of complete information on the attack model, the
Minmax Q-Learning algorithm allocates partial weight on its
earlier results to combine knowledge of history, the actual
earnings on the current iteration, and the future expected
reward.
Quality of state for Minimax Q-Learning is defined as follows
to embed the learning aspect into the algorithm.

Qt+1(s, a, o) = αQt(s, a, o)+ (1−α)Rt+1(s, a, o)+ γV t(s′)
(4)

Learning rate α leverages the ability of the player by assigning
a real value between 0 and 1. A learning rate of zero represents
full learning ability for the player while a rate of one models
the case where the player only considers only the most recent
information. In full learning, the player would not consider
the immediate reward R(s, a, o) and the expected future award
V (ns) but keep the quality of state constant. To account for
the absence of prior results to learn from at the initial stage
of the game, an α of 1.0 is assigned; α then decays as Q(s,
a, o) accumulates information on the performance of previous
iterations.[7]
Exploration rate exp is a distinct parameter for Q-Learning
which determines the degree of variation from the optimal
policy. Unlike the Markov game, in which the optimal solution
is known from the initial iteration, Q-Learning has to learn
the optimal policy by trial and error. The exploration rate



determines the relative rate of the action not following the
optimal policy to learn the results of different actions. An exp
value closer to 0 results to a Makov game while a value closer
to 1 means that the player will take random actions.

C. Naive Q-Learning

In a security game, information about the opponent is not
always available. The attacker often has information about the
target system from public resources. However, the amount of
information is limited. Similarly, the defender is playing a
game against an unspecified opponent. In order to model this
situation, Naive Q-Learning from [12] is applied. Naive Q-
Learning optimizes the strategy without information about the
opponent, such as the the opponent’s action o. It utilizes limited
information of the immediate reward and its own information
to derive the optimal policy.
Quality of state is updated accordingly to reflect the limited
information. Note that the opponent’s action is no longer
considered for differentiating the Quality of state.

Qt+1(s, a) = αQt(s, a) + (1− α)Rt+1(s, a) + γV t(s′) (5)

Value of state is the maximum expected reward when fol-
lowing the optimal policy. Note that because of the lack of
information about the opponent, o is no longer considered.

V (s) = max
π

∑

a′∈As

π(s, a′)Q(s, a′) (6)

Optimal policy is the optimal policy that maximizes the value
of state (V (s)). Note that the quality of state (Q) is only
defined for s and a but not o.

π(s, .) = arg max
π′(s,.)

∑

a′∈As

π(s, a′)Q(s, a′) (7)

V. EXPERIMENT

To evaluate and analyze the game, a simulation was per-
formed. The simulation started with initialization of the value
V and quality Q of all states, optimal policy and the learning
rate(α). For Q-Learning, initially there is no information that
the algorithm can learn from. Therefore, α is set to 1.0 indi-
cating that initially, the decision relies on the rationality(game
model) only. Markov game would evaluate the game model
and determines the optimal policy before determining what
action to take. Once the model has converged to a convergence
coefficient(ǫ), the optimal policy is fixed. Q-Learning, on the
other hand, needs to take actions before updating the quality
and value of state. The next action is decided based on the
exp value. A random action is chosen with a probability of
exp; otherwise the action follows the optimal policy. Once the
opponent’s action has been determined in a similar manner,
the quality of state is updated. Then through the use of linear
programming, the optimal policy (π) and the value of state
(V(s)) can be derived. Recall that the optimal policy is the
probability distribution of available actions at a given state
that maximizes the value of state V.

Using the simulator, we compared the performances of
the algorithms by assuming a random, Makov, Minimax Q-
Learning and Naive Q-Learning attacker and pairing with a

Markov, Minimax Q-Learning and Naive Q-Learning defend-
ers. We did not consider the unrealistic situation in which
a defender is a random player. For the attacker, on the
other hand, a random player is a considerable assumption for
modeling unprofessional attackers such as script kiddies.

To compare the performance of different algorithms, we
evaluated the accumulated immediate reward of the attacker. In
addition, we studied how the parameters affect the performance
of the Q-Learning based players.

VI. RESULT

A. Comparison between algorithms

First, we compare how each algorithms with varying
parameters perform against different opponents. Figure 2a
provides an overview of the comparison. We represent the
accumulated reward of the attacker using a heat map in which
a lighter (i.e., closer to white) color indicates higher reward.
Looking at the first column, we confirm that the defender,
on average, shows the best performance when the decision-
making is based on Markov games. In addition, we find low
variance within the column. From that observation, we see
that when the defender has full information about the attacker
and hence is playing a Markov game, the attackers choice of
algorithm does not make a significant difference. That insight
becomes obvious when we consider the assumption upon
which the algorithm relies. However, the same insight does not
always apply to all algorithm pairs. An interesting observation
is that Naive Q-Learning performs better than Minmax Q-
Learning, despite the limited information. Comparing the sec-
ond and third columns, we find that attacker performance when
played against a Naive Q-Learning defender (third column) is
represented by a darker color (lower accumulatedreward). In
addition, as shown in the upper-right corner of Figure 2a, we
find that NQL performs better than the Markov game when
played against a random attacker. Because the Markov game
and Minmax Q-Learning algorithms have more information
about the opponent, they are able to formulate a more accurate
model. However, as these models assume the rationality of the
opponent, they cannot adapt well to the behavior of a random
(irrational) attacker. Naive Q-Learning lacks the information
about the opponent that would be needed to formulate a
complete game model, and hence makes decisions based on its
own decision model; that gives it the flexibility to adapt to the
attackers empirical behavior. By observing the changes of the
optimal policy, we confirm that Naive Q-Learning defenders
converge to an optimal policy that has higher probability for
counteraction against attacks with higher immediate reward.

Figures 2b through 2d show, in detail, how the attackers
performance changes for different the combinations of algo-
rithms, exp, and . In Figure 2b, we confirm the insignificant
impact of the parameters (exp and ) on the performance. While
different exploration rates and learning rates are applied, the
rows have low variance for the defenders algorithm driving the
game. From Figures 2c and 2d, we can see how the parameters
affect the performance of the decision-maker. When the at-
tacker is playing the strongest algorithm (MG), the parameters
have no impact. That claim can be confirmed by observing the
consistent color across columns in the last row of both figures.
While the different columns stand for different parameter pairs,



no difference in attacker performance was found. As defined in
Section IV, Q-Learning introduces a new parameter called the
exploration rate (exp). This rate defines the ratio of actions that
are randomly chosen (rather than being chosen by following
the optimal policy). From looking at Figures 2c and 2d, we find
that there is no single trend for exp, but rather it depends on
the algorithms for both players. When the defender is playing
MMQL against an NQL attacker, as shown in the upper half
of Figure 2c, a higher exp rate of the attacker leads to a
higher accumulated reward, while a higher exp rate of the
defender lowers the accumulated reward of the attacker. On
the other hand, the lower half of Figure 2d shows that when
the defender is deploying NQL against an MMQL attacker,
the defender reduces the accumulated reward of the attacker
with a smaller exploration rate, while the attacker gains more
with a higher exploration rate. For both cases, we find that
the defender only needs a minimal exploration rate to assure
discovery of all possible actions. We find that deviating from
the defenders optimal policy does not benefit the defender.
Studying the impact of the learning rate, namely the relative
weight between the game model and the learning model, we
find no clear pattern in the accumulated reward. Instead, we
find a potential relationship to the time to convergence, which
we discuss in the following subsection.

B. Time to Convergence for Different Learning Rates

In Figure 3, we can see how the learning rate affects
the time to convergence. When we assume that the attacker
is playing the game under a consistent strategy, the time to
convergence indicates the time it takes for the defender to
derive the strategy that minimizes the loss. From Figure 2b
to figure 2d, we saw that the learning rate of the players did
not have a significant impact on the accumulated reward of the
attacker. To confirm how the learning rate affects the decision-
making process, we compare the values of the state at the
initial state of the attack model. That value of state (V (s0))
represents the expected reward that the attacker can earn when
the attacker follows the optimal policy from the starting state
and thereafter. Once V (s0) becomes constant, we claim that
the optimal policy of the defender becomes constant. Note that
this analysis does not assign meanings to the value of state for
its nature of representing the expected reward, not the actual
reward that has or could be earned.

From the formulation of Minmax Q-Learning algorithms, a
zero-sum game is expected to converge [7]. In this experiment,
we checked whether the learning rate affects the time to
convergence. Recall that a low learning rate indicates intensive
learning, as more weight is assigned to the previous quality
of state than to the sum of the immediate reward and the
future expected reward. From Figure 3, we observe two things.
One is that the expected reward of the attacker is larger if the
defenders learning rate is larger than or equal to that of the
attacker. That insight can be confirmed in the figure through
comparison of 0.8 0.5, 0.2 0.5, and 0.5 0.5, and comparison of
0.8 0.8 and 0.2 0.8. Recall that 0.8 0.5 is interpreted as Attacker
with learning rate 0.8 against a defender with learning rate 0.5.
Based on that observation, we can verify that if both parties
apply Minmax Q-Learning for decision-making, then it is more
likely for the defender to be able to protect the system against
a Minmax Q-Learning attacker when the defender weights
learning more than rationality. Another observation from the

(a) Comparison for Different Algorithm Pairs

(b) Performance of Markov Defender

(c) Performance of MMQL Defender

(d) Performance of NQL Defender

Fig. 2: Simulation Results: Comparing the Attackers Accumu-
lated Rewards from Playing a Security Game with Different
Decision-making Algorithm Pairs.



Fig. 3: Comparison of Value of state at initial state. The label
indicates the learning rate pair (learning rate of the attacker,
learning rate of the defender).

TABLE III: Summary of Related work

information repeated game attack type

Lye 2002[13] complete stochastic battle

Liu 2006[14] incomplete
no

(static Bayesian)
single

Alpcan 2006[8]
complete/

incomplete
stochastic single

Zonouz2009[15] complete yes single

Becker 2011[16] complete no single

Markov complete stochastic battle

MMQL incomplete
stochastic +

learning
battle

NQL incomplete
stochastic +

learning
battle

figure is that the game converges faster for the attackers with
lower learning rates. The learning rate of the opponent (the
defender, in this case) also affects the time to convergence
of the player. While there is a slight deviation between 0.5
and 0.8, a lower learning rate for the defender (opponent)
also accelerates the time to convergence of the attacker. A
similar analysis for Naive Q-Learning players is not applicable,
because the Naive Q-Learning algorithm is not guaranteed to
converge.

VII. RELATED WORK

Modeling attacker intent or attack flow in a graphical
model has been a well studied problem in security. For the
applicability and variation of game theoretic models, numerous
approaches exist for modeling security as a game. Bier[17]
provides a good study of a defender securing a set of potential
targets with limited resource. The author solves problem in a
resource constrained environment to answer policy questions to
better secure the physical target against threat of terror. Though
this paper solves a physical security problem, it provides a
good framework for cyber security games. Liu et. al present a
game theoretic model to infer attacker intent, objectives, and
strategies(AIOS)[18]. Considering the incomplete knowledge
of each players on the opponents, the authors choose a
Bayesian Game model. The model also introduces the state
of the attack. The attack state is normally predicted from
observable events.

A number of previous works apply traditional game theo-
retic approach for cyber security problems. In [19] and [20],

the authors apply a Markov decision process(MDP) to secure
information sharing in online social networks. In addition, [21]
and [22] apply a Markov game framework for optimal data
management in online social network. Nguyen et. al, apply
fictitious play[23] for solving a security game with incomplete
information[9]. Similar to [12], information on the opponent’s
payoff matrix is not available, hence the agent derives the
belief of its prediction on the opponents strategy by monitoring
the result of its own move. However, such approach has limi-
tation on applying to a Markov game consisting of numerous
states. Alpcan and Basar presents a comprehensive study on
modeling security games under different level of informa-
tion about the opponent[12]. In their model, the interaction
of two players are modeled as a stochastic(Markov) game.
Each player has an option of attack/no attack or respond/not
respond. They present a simulation model under three different
conditions: perfect information about the system (Q learning),
partial(action set, transaction history) information about the
opponent(Minimax Q-Learning) and no information about the
opponent(naive Q learning).

VIII. LIMITATIONS AND FUTURE WORK

Unlike many approaches using machine learning [24], [25],
our approach is not intended to detect new attacks. Instead,
our game theoretic approach, like other decision making ap-
plications, suggests a likelihood of taking a certain action to
maximize the benefit of the security administrator.

Also, while our approach is based on the attack and reward
model, because of the lack of agreement on security metrics,
there is no true measure for quantifying the rewards of a
successful attack or attack detection. Therefore, the current
configuration relies on expert knowledge to enumerate the
potential damage or overhead for taking a certain action.

One last limitation is that the attack models performance
depends on expert knowledge. Because the decision-making
process is based on the attack model, the granularity and
completeness of the attack model affect the performance. That
limitation is intrinsic to pure game-theoretic models, and we
claim that our approach can compensate for that shortcoming
of the attack model by adding the ability to learn from past
iterations. However, lack of coverage of undefined actions or
states still remains as a limitation.

While the present work was focused on automated intrusion
detection, we plan to test and evaluate our work by embedding
it in a security analytics testbed [26]. With real incident
data fed into the testbed and factor graph [27] detecting
malicious intentions; our approach will then determine the
right response to take. By combining our game theory based
response model with the detection framework, we expect to
verify the timeliness of intrusion detection and response and
determine the accuracy and impact of misdetection.

IX. CONCLUSION

In this paper, we presented our approach for modeling the
decision-making process of cyber security monitoring using a
game-theoretic approach. To reflect the realistic conditions of
decision-making in a security game, we considered variations
of Q-Learning algorithms. Minmax and Naive Q-Learning,
compared to traditional Markov games, are more realistic when



applied to security games, because they relax the requirement
for full information about the opponent. We compensated for
the lack of information by enabling learning of the optimal
policy, which has the advantage that it resembles situations
in which attackers probe system vulnerabilities (through tech-
niques like scanning) and defenders train and renew security
policies and devices based on earlier data. We noted that the
rich literature in online learning theory lacks efforts to reason
about pattern to capture the rationality of attackers in security
games.

From the experiments based on simulation, it was shown
that Naive Q-Learning performs well against irrational (non-
Markov) attackers, i.e., random decision-makers or attackers
based on probing and learning. When played against a Markov
attacker, the Naive Q-Learning approach was able to perform
at least as well as a Minmax Q-Learning defender. In the real
space of security games, players, especially the defenders, have
limited ability to obtain information about their opponents.
Any parties with access to the system are potential attackers,
and their ability and knowledge not only vary but are hidden.
Hence, a Markovian attacker, which represents the worst case
for the defender, is unrealistic. The simulation results show
that despite the limited information on which decisions are
based, our approach is promising compared to the traditional
Markov game approach and Minmax Q-Learning.

While the paper presents the possibility of Naive Q-
Learning as a decision-making logic in security games, some
limitations remain. For the lack of agreement in metrics that
represent impacts, there is no clear definition of the reward
model. In this paper, the reward was abstracted as the relative
severity under an assumption of a zero-sum game, indicating
that a players reward is his or her opponents loss. In addition,
for the dependency of the parameters to the opponent, it is
necessary to do further study on how to tune the parameters
of a Naive Q-Learning algorithm against an attacker from real
data, and to test the approach embedded in a framework with
real-time logs and specific detection logic.
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