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Abstract

We describe the work and underlying ideas of the Helsinki Logic
Group in infinitary logic. The central idea is to use trees and Ehren-
feucht-Fraissé games to measure differences between uncountable mod-
els. These differences can be expressed by sentences of so-called in-
finitely deep languages. This study has ramified to purely set-theo-
retical problems related to properties of trees, descriptive set theory
in “wy, detailed study of transfinite Ehrenfeucht-Fraissé games, new
constructions of uncountable models, non-well-founded induction, in-
finitely deep languages, non-structure theorems, and stability theory.
The aim of this paper is to give an overview of the underlying ideas
of this reasearch together with a survey of the main results.

1 Introduction

The so called finite quantifier languages L., and their fragments have given
rise to a rich and interesting definability theory. This theory works partic-
ularly nicely on countable structures and in the case x = w;. The obvious
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generalisation, the infinite quantifier languages L, have given rise to almost
no interesting mathematics at all. In particular, the generalisation L,,,, of
L., has led to no general theory of models of cardinality w;.

Hintikka and Rantala 1976 introduced a different approach to generalizing
L,.,. They considered so called constituents of mathematical structures and
were led to the following idea: Rather than allowing transfinite sequences of
strings of existential quantifiers and transfinite sequences of universal quan-
tifiers, one should allow transfinite sequences of quantifier and connective
alternations. This leads to powerful logics which extend not only the infini-
tary languages L, but also extensions of L., by the usual game-quantifier.

Karttunen realized that while it is essential that the new infinitary ex-
pressions of Hintikka and Rantala 1976 have infinite descending sequences of
subformulas, an important distinction is made, if no uncountable descending
sequences of subformulas are allowed (Karttunen 1984). This distinction is
of the same nature as the distinction between a game-quantified sentence of
L, ¢ and its approximations in L.,.

Most of the work on the new infinitary languages has centered around the
problem of distinguishing models with infinitary sentences. This problem
can be formulated in terms of a transfinite Ehrenfeucht-Fraissé game. In
Section 2 of this paper we describe the relevant notions related to this game.
A central concept in this approach to infinitary logic is the concept of a
tree with no uncountable branches. These trees are used as measures of
similarity of two structures. We find strong parallels between the role of
such trees in the study of uncountable models and the role of ordinals in
the study of countable models. Section 3 is devoted to a survey of the
structure of such trees. Section 4 builds on the contention that the most
fundamental mathematical properties of classes of models of cardinality wy
are really topological properties of “'w; viewed as a generalized Baire space.
We survey the basics of descriptive set theory in the space “'w;. Section 5
gives an account of the analysis of isomorphism-types of uncountable models
using trees. Finally, in Section 6 we introduce the infinitely deep languages
and survey their basic properties.

We use standard set-theoretic notation. In particular, ZFC denotes the
Zermelo-Fraenkel axiom system with the Axiom of Choice, M A denotes Mar-
tin’s Axiom and C'H denotes the Continuum Hypothesis. We refer to Jech
1978 for any unexplained set-theoretic notation.

We are indebted to the editors of this volume as well as to H. Heikkila,
L. Hella, T. Hyttinen, J. Oikkonen and H. Tuuri for suggesting improvements



to the preliminary version of this paper.

2 The Ehrenfeucht-Fraissé-game

To see how the new powerful infinitary logics behave and help us study un-
countable models, it is not necessary to introduce the languages themselves
at all. We can go a long way by studying Fhrenfeucht-Fraissé-games only.
This is also in line with the approach of Hintikka and Rantala 1976, since
consituents are descriptions of positions in Ehrenfeucht-Fraissé-games. The
new feature, analogous to allowing transfinite sequences of quantifier alter-
nations, is that we study Ehrenfeucht-Fraissé-games of length > w. We use

EF,(2A, %)

to denote the Ehrenfeucht-Fraissé-game of length o between 2 and B, which
we now define. There are two players, called 9 and V. During a round of
the game V first picks an element of one of the models and then 3 picks an
element of the other model. Let a; be the element of A and b; the element of
B picked during round ¢ of the game. There are altogether o rounds. Finally,
3 wins the game if the resulting mapping a; — b; is a partial isomorphism
and otherwise V wins. We say that a player wins EF,(2,B) if he has a
winning strategy in it.
A trivial but fundamental observation is:

Lemma 1 If 2 and B have cardinality < k, then
1. 3 wins EF.(A,B) if and only if A = B.
2. ¥ wins EF,(A,B) if and only if A 2 B.

Proof. If f: 2 = B, then 3 wins easily by using f to copy the moves of V
between the models. If, on the other hand A 2 98, then V lists in his moves
systematically all elements of the models. If 3 wins a round of a game like
this, an isomorphism has been created between 2 and 8. Since we assume
no such exists, V is bound to win. [

One consequence of the above Lemma is that EF, (A, B) is determined
whenever 2 and 8 have cardinality < k. For models of cardinality > k the
game EF,(2,%B) need not be determined, as the following result shows:



Theorem 2 (Mekler, Shelah and Vaananen 1993 ) There are models 2 and
B of cardinality ws so that the game E'F,, (U, B) is non-determined. It is con-
sistent relative to the consistency of a measurable cardinal, that EF,, (A, B)
is determined for all models of cardinality < wsy. It is consistent relative to
the consistency of ZFC, that EF,, (U, B) is non-determined for some models
of cardinality < ws.

The question of determinacy of EF,, (2, B) has been further studied in
Huuskonen 1991 and Hyttinen 1992.

In the case kK = w we have the notion of a ranked game. To see what this
means, suppose 7 is a winning strategy of V in E'F,,(2(,B). Every round of
the game, V playing 7, ends after a finite number of moves at the victory
of V. So we can put an ordinal rank on the moves of V and demand that
the rank goes down on each move. In this way we get a rank on the triple
(2,98, 7). The Scott rank of A is the smallest « such that if % 2 2 then for
some winning strategy 7 of V in EF,, (U, %), the rank of (2, B, 7) is at most
a.

We shall now introduce a similar concept for EF, (2, B). Of course we
cannot use ordinals to rank the moves of V since the rank may have to
decrease transfinitely many times in succession. Instead we take an arbitrary
winning strategy 7 of V and form the tree

SQ[,%,T

of all possible sequences of successor length of moves of 34 against 7 so that 3
has not yet lost the game. We get a tree with no branches of length x and we
use this tree itself as a rank for (2,8, 7). The smaller these trees are, when
7 varies, the faster V can locate a difference between 20 and B and beat 3,
and the more 2 and ‘B are dissimilar. The larger these trees are, the bigger
partial isomorphism 3 can build, however fiercely V tries block it, and the
more 2 and ‘B are similar. We arrive at the following idea:

e The trees Sy - for various 7 provide a measure of the degree of simi-
larity of 2l and ‘B.

Rather than taking first a winning strategy of ¥V and then the tree of all
plays of 4, we may also directly consider winning strategies of 3 in short
games (Hyttinen 1987). Let

Ko
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be the set of winning strategies of 3 in the games EF, (2, B), where a < k
is a successor ordinal. We order the strategies as follows. Suppose o is a
winning strategy of 3 in EF,(A,%) and 7 is a winning strategy of 3 in
EF3(2,8). Then 0 < 7 if @ < 8 and 7 agrees with o for the first & moves
of EF3(U,B). This ordering makes Ky s a tree. If this tree has a branch of
length x, then 3 can follow the strategies on the branch and win EF, (2, B).
So the larger the tree Ky o is, the longer 3 can play EF,(2(,B) and the more
20 and B look alike. On the other hand, the smaller the tree Kg s is, the
sooner 3 runs out of possible winning strategies, and the more 2f and 8 look
different. In analogy with the trees Sy s -, we arrive at the following idea:

e The tree Kg o provides a measure of the degree of similarity of 2 and

B.

Starting from the concept of Scott rank, we have introduced two differ-
ent measures of similarity of structures. Before we can compare these two
measures to each other and to other trees, we have to develop tools for com-
paring trees. The big difference in using (non-well-founded) trees to estimate
structural differences, rather than ordinals is that the structure of ordinals
is well-understood but the structure of trees is not. This explains why we
have to investigate structural properties of the class of all trees before we can
proceed in our study of the transfinite Ehrenfeucht-Fraissé-game.

3 Structure of trees

A tree is a partially ordered set with a smallest element (ro0t) in which the
set of predecessors of every element is well-ordered by the partial ordering.

We can think of ordinals as well-founded trees, i.e., trees with no infinite
branches. For example, we may identify an ordinal a with the tree B, of
sequences (a, g, g, ..., ), Where o, < ... < ag < « and the sequences are
ordered by end-extension. It is easy to see that if we assign ordinals to nodes
of B, in such a way that extensions of nodes get smaller ordinals, then « is
the smallest ordinal that can be assigned in this process to the root of B,. In
this way we can assign an ordinal o(7T") to any well-founded tree T'. So there
is a nice correspondence between ordinals and well-founded trees. On the
other hand, we can think of an ordinal a as a one-branch (non-wellfounded,
if a > w) tree. We use « itself to denote this linear tree.



When we move to the non-well-founded case, especially to trees with no
uncountable branches, several immediate observations can be made:

o Well-founded trees obey Konig’s lemma: Every well-founded infinite
tree has an infinite level. In the non-well-founded case we have Aron-
szajgn trees, i.e., uncountable trees with countable levels but no un-
countable branches.

e Trees of height w obey Cantor’s lemma: If a tree of height w has finite
levels and uncountably many infinite branches, it has continuum many
infinite branches. Trees of height w; may not obey such a law: there
may be Kurepa trees, i.e., trees of height wy, with countable levels, but
with exactly wy uncountable branches, while 2“1 > wy.

e [nduction is possible along a well-founded tree. In the non-well-founded
case ordinary induction is out of question. In some cases this can be
overcome by assuming the existence of an ws-complete normal ideal
with a o-closed dense collection of positive measure sets (Shelah, Tuuri
and Véddnanen 1993). The existence of such an ideal is equiconsistent
with the existence of a measurable cardinal. On the other hand, induc-
tive definability can be developed game-theoretically and this approach
makes sense also in the non-well-founded case (Oikkonen and Vianénen

1993).

e Any two well-founded trees are comparable by order-preserving em-
beddability. This is not so in the non-well-founded case: There are
non-comparable trees and the order-structure of the class of all trees
is quite involved (Hyttinen and Vadnanen 1990, Mekler and Vaananen
1993.

e There is a family of w; countable well-founded trees (corresponding
to the second number class) so that any countable well-founded tree is
order-preservingly mappable to some member of the family. The analo-
gous question in the non-well-founded case is undecidable in ZFC+CH
(Mekler and Vééanédnen 1993).

These facts have a clear message: there will be manifest differences be-
tween the well-founded case (countable models) and the non-well-founded
case (uncountable models). The following questions arise:



e Can we isolate some crucial assumptions about trees that decide the
particular tree-theoretic questions relevant from the point of view of
Ehrenfeucht-Fraissé-games?

e In what specific and exact ways are properties of uncountable models
interwoven with properties of trees?

We order the family of all trees as follows: T < T" if there is an order-
preserving f : T'— T (i.e. x < y implies f(z) < f(y)). Note that this f
need not be one-one. The strict ordering 7' < 7" is defined to hold if T < T”
and 7" L T. Finally, T=T'if T <T'and T" < T. We use ¢T to denote the
tree of all ascending chains from 7. Kurepa observed that T < ¢7. With
the o-operation we define a stronger ordering of trees: T' < T" iff oT < T".
The following properties of these orderings are fairly easy to prove:

Lemma 3 (Hyttinen and Véédndnen 1990) 1. T £ T, ie., if T < T,
then T < T'.

< and < are transitive relations.
T < oT but there is no T" with T < T' < oT

The relation < is well-founded.

For well-founded trees both T < T' and T < T’ are equivalent to
o(T) < o(T").

The reason for introducing the relation < is that it comes up very natu-
rally in applications. Also, proving T < 7" is a handy direct way of achieving
T LT.

The ordering of trees can be defined also in terms of a comparison game
G(T,T"). There are two players 3 and V. Player V starts and moves an
element of 7. Then player J responds with an element of 7. The game goes
on, V playing elements of 7" and 3 playing elements of 7', both in a strictly
ascending order. The first player unable to move loses.



Lemma 4 (Hyttinen and Vaananen 1990) 1. T" < T if and only if 3
wins G(T,T").

2. T < T if and only if ¥ wins G(T,T").

We need some operations on trees. Let T and 71" be trees. The tree
T @ T’ consists a disjoint union of T" and T” identified at the root. So T' @ 1"
is the supremum of T and T relative to <. The tree T ® T" consists of
pairs (¢,t'), where t € T, ¢ € T" and t has the same height in 7" as ¢’ has in
T'. The elements of T'® T" are ordered coordinatewise. Clearly, T ® T" is
the infimum of T and T" relative to <. The operations €,.; and §),.; are
defined similarly. We can also define “arithmetic” operations on trees. The
tree T+ T" is obtained from T by adding a copy of 1" at the end of each
maximal branch of 7'. With this definition, B, + Bg = Bst,. The product
T - T' consists of triples (g,t,t'), where t € T, t' € T’ and g is a mapping
which associates every predecessor of ¢ with a maximal branch of T. We
set (g,t,t) < (g1,t1,t)) if (' =1¢] and t < ;) or (¥ < t|, g coincides with
g1 on predecessors of ¢ and t € ¢'(t')). Again, B, - Bg = B,.3. Intuitively,
T - T' is obtained from T" by replacing every element by a copy of T'. Since
T is likely to have branching, there are different ways of progressing from a
node of 7" to its successor through the copy of T'. This is why the elements
of T - T" have the g-component. If we limit the way a branch of T"- 7" can
pass through 7", we arrive at the following variant T - T". Let G be a set of
maximal branches of T'. The tree T'-¢ T" consists of triples (g,¢,t') € T - T"
such that, if t” < ¢/, then ¢g(t") € G. The ordering is defined as in T"- T".

A phenomenon that is possible in non-well-founded trees, but impossible
in well-founded trees, is reflexivity. A tree T is reflexive if T < {s € T :
t <7 s} for every t € T'. Every tree T can be extended to a reflexive tree in
the following way (Huuskonen 1991, Hyttinen and Tuuri 1991): Let R(T') be
the set of finite sequences (to, ..., t,) of elements of T. We can think of this
sequence as a linear ordering which starts with {t € T : t < ty}, continues
with {t € T : t < 1}, then with {t € T': t < ¢y}, etc. until ¢,, comes in the
end. In this way R(T') gets a natural tree-ordering: if s and s are elements
of R(T'), then we define s < s’ to mean that as linear orderings, s is equal
to s’ or is an initial segment of s'. It is easy to see that T < R(T") and that
R(T) is reflexive. It is also interesting to note that if 7" has no branches of
length x > w, then neither has R(T"). We can split R(7T') into parts that are
called phases in Hyttinen and Tuuri 1991. Namely, if s = (¢, ..., t,) € R(T),



we call the number n the phase of s and denote it by p(n). Elements of phase
0 form an isomorphic copy of T'. Each element (¢, ..., t,) of phase n extends
to an isomorphic copy {(tg,...,tns1) : tny1 € T} of T.

We can picture the mutual ordering of the two types of trees that arise
from ordinals as follows:

By<Bi<..<B,<..<B, <. <w<w+l<..<w <..

Note that w has a proper class {B, : a € On} of predecessors. The pre-
decessors of w; are all the various trees without uncountable branches. An
interesting example is the tree T, = (P, ,,, @) - w, introduced in Huuskonen
1991. This tree has the remarkable property that

T,<TorT<T,

for any tree T" of height wy (Huuskonen 1991). So T, has a very special
place among predecessors of wy;. The whole picture of the ordering of all
trees is quite complicated. We shall now show that some trees are mutually
<-incomparable.

Let A C wy. Recall that A is closed unbounded if it is uncountable and
contains the supremum of each of its proper initial segments. We say that A is
stationary, if it meets every closed unbounded subset of w;. The complement
of a stationary set is co-stationary. Finally, a stationary and co-stationary set
is called bistationary. It is a not-too-hard consequence of the Axiom of Choice
that there are bistationary subsets of wy (see e.g. Jech 1978). In fact, there
are wi disjoint stationary subsets of w; and hence 2“! bistationary subsets
A, of wy such that A, \ Ag is bistationary whenever « # 3. Bistationary sets
can be used to construct interesting trees without uncountable branches. If
A is a bistationary subset of wy, let T(A) be the tree of sequences of elements
of A that are ascending, continuous and have a last element.

Lemma 5 (Hyttinen and Véédndnen 1990, Todorcevié 1981, 1984)

1. If A is bistationary, then T'(A) is a tree of height wy with no uncountable
branches.

2. If A, B and B\ A are bistationary, then T'(B) £ T(A). If also A C B,
then T(A) < T(B).

3. If A and B are bistationary, then T(A) L T(B).
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4. If T is an Aronszagn tree and A is bistationary, then T £ T'(A).

Proof. Every stationary set has closed subsets of all order-types < w;. This
implies that T'(A) has height w;. An uncountable branch in 7'(A) would give
rise to a closed unbounded subset of A contrary to the co-stationarity of A.
The first claim is proved. For the second claim, suppose f : T(B) — T(A)
is order-preserving. For countable a, let F,, be a function on T'(B) so that
F,(s) is some s’ > s with max(s’) > a. For any countable limit ordinal «,
let S, be a countable subset of T'(B) containing () and closed under every
Fp, where < a. Let C be the closed unbounded set of countable o such
that if s € S, , then max(s) < a and max(f(s)) < a. Let « € C N (B \ A).
Let (s,) be an ascending sequence in S, with @ = sup, max(t,). Then
sup,, max(f(t,)) = a. Since o € B\ A, we have a contradiction. The second
claim is proved. The third and fourth claims are proved similarly. [J

By combining the above lemma and the fact that there are 2“* bistation-
ary subsets A, of wy such that A, \ Az is bistationary whenever a < 3, we
get the following result:

Proposition 6 (Hyttinen and Viidnanen 1990) There is a set of trees {T, :
a < 291} such that for all o < B:

(1) T, has height wy and cardinality 2%.
(2) T, has no uncountable branches.
(8) T, and Ty are incomparable by <.

The claim remains true if condition (3) above is replaced by one of the fol-
lowing:

(3’) T, < Tg.
(3”) T, > Tﬁ.

So there is an explosion in the hierarchy of trees between the trees of
countable height and the one-branch tree w;. This is in sharp contrast with
the situation between trees of finite height and the one-branch tree w, where
we have all the well-founded trees in nice linear order one after another.

Stationarity has also a game-theoretic characterization, which is most
helpful for us in the sequel. This characterization is from Kueker 1977. If A
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is an unbounded subset of wy, let G4 be the following game: There are two
players V and 4. Player V starts by playing some countable ordinal crg. Then 3
plays some bigger countable ordinal ;. The game goes on players choosing
bigger and bigger countable ordinals until an infinite ascending sequence
Qp, 1, ..., Oy, ... is created. Now 3 is declared winner if sup,_, o, € A.
Kueker showed that A contains a closed unbounded set if and only if 3 has a
winning strategy in this game. Respectively, V has a winning strategy in G 4
if and only if the complement of A contains a closed unbounded set. Hence
A is bistationary if and only if G4 is non-determined.

If 4 has a winning strategy in G4, he actually wins the seemingly more
difficult game where the players construct an ascending sequence of length
w1, and 3 wins if all limit points of this sequence are in A. This observation
leads to the following ranked game: Let T be a tree. The game G 4(T") has at
most w; moves. During the game the players V and 3 construct an ascending
sequence s of length < w; of elements of w; as in the game G4. Whenever
YV moves, he first has to choose an element of 7. Moreover, his moves in T’
have to form an ascending chain. If V is not able to make his move in T, the
game ends. Player 3 wins if all countable limits of the sequence s are in A.

Lemma 7 (Hyttinen and Véaanénen 1990) Suppose A is bistationary.
1. Y wins G4(T) if and only if T(A) < T.
2. 3 wins G4(T) if and only if T < T(A).

Proof. If V wins G(T(A),T), he can win G4(T") by simply translating the
sequence of moves of 3 in G4(T') to a move of 3 in G(T'(A),T). For the
converse, we assume YV has a winning strategy 7 in G 4(7") and demonstrate
how he wins G(T'(A),T). At every point of G4(7T') and for all a < wy, player
3 has a counter strategy of length ¢ in G 4(T') which helps him evade defeat
during the next ¢ moves, provided that V plays 7. Let us assume that we
are in the middle of G(T'(A),T) and the players have so far contributed an
ascending chain ag < a; < ... < a¢ < ... in T(A) and an ascending chain
to <ty <..<te<..inT. As an inductive hypothesis we assume that the
players have played simultaneously the game G 4(T") and in this game V has
consistently used 7. So the players have contributed in G4(7T") an ascending
sequence o < a1 < ... < a¢ < .... Simultaneously V has played the above
chain tg < t; < ... <tg < ..inT. Let § = sup; max(s¢). If § ¢ A, player
3 faces a one-move defeat, since 7 gives V still one move. So let us assume
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0 € A. Le ¢ be the smallest ¢ such that § + ¢ > supg(ae). If ¢ = 0, we
let 3 play ¢ in GA(T"). Otherwise we let 3 use his counter strategy of length
¢ in G4(T) for the next ¢ moves. The emerging T-moves of V let V play
G(T(A),T) for the next ¢ moves. The point of this is that when we come
to a limit stage, we have sup, max(s¢) = sup,(c¢). This means that 3 faces
a one-move defeat in G4(7T) only if he has the same problem in G(T'(A),T).
So V can go on using 7 to guide his playing in G(T'(A),T’) until 3 is defeated.
[l

We have observed that the class of trees with no uncountable branches
has ascending chains, descending chains and antichains of cardinality 2“'.
All these chains arise from the trees T'(A), A bistationary. Several questions
suggest themselves. Maybe these trees are essentially all there is in this
family. Or maybe there is some relatively small number of “representatives”
of these trees into which everything else can be reduced. As to the first
question, H. Tuuri has pointed out, that if 7" is the tree of one-one sequences
of rationals such that the sequence has a last element, then 7' £ T'(A) (proved
like Lemma 5 (3)) and T(A) £ T for bistationary A (as T'(A) is non-special
by Todorcevié 1984). So this T is an example of a tree substantially different
from the trees T'(A).

We approach the question of “representatives” with the notion of a uni-
versal family of trees. A family U of trees is universal for a class V of trees
if i CV and

VI e VIS elU(T <S).

If we want to find a universal family for the class of all trees with no un-
countable branches, there is an obstacle: If the universal family is a set, as
it is reasonable to assume, we can apply the g-operation to its supremum,
and obtain a tree which contradicts the universality of the family. So we can
only hope to find universal families for restricted classes of trees.

Let 7., be the class of trees of cardinality w; and with no uncountable
branches. If C'H holds, then there cannot be a universal family of size < w;
for 7,,,, because of the function o. On the other hand, Hella observed that if
2% = 2¥1_ then an upper bound for 7, is obtained from the full binary tree
of height w by simply extending all its branches by different elements of 7, .
The resulting tree has cardinality 2¢.

Theorem 8 (Mekler and Véidnanen 1993) The statement “There is a uni-
versal family of cardinality wo for T, ” is independent of ZFC+CH+2*" > ws.
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We may also ask whether the trees T'(A) can be majorized by one single
tree. In Mekler and Shelah 1993 a tree T is called a Canary tree if it has
cardinality 2¢, has no uncountable branches, and in any extension of the
universe in which no new reals are added and in which some stationary
subset of wy is destroyed, T has an uncountable branch. This is equivalent to
saying that T has cardinality 2*, has no uncountable branches, and satisfies
T(A) < T for each bistationary A (Mekler and Vaanénen 1993).

Theorem 9 (Mekler and Shelah 1993) The statement “There is a Canary
tree” is independent from ZFC + GCH.

The structure of trees with no uncountable branches is far from being
understood even in the light of the above results. More investigation is
needed. It is now quite clear that ZF'C' alone is not sufficient for deciding
questions about these trees. The Continuum Hypothesis, for example, makes
a big difference. It would be interesting to find new axioms which would fix
the structure of trees more or less completely.

4 Topology of the space N

There are properties of countable models and infinitary formulas which are
so basic that they can be formulated in purely topological terms. To arrive
at these one identifies countable models with elements of the Baire space
N = “w, whereby classes of countable models are identified with subsets
of N. D. Scott established the basic relation between the space N and
Ly,w: An invariant subset of N is Borel iff it is (in this identification) the
class of countable models of a sentence of L, (Scott 1965). R. Vaught
developed further the connection between model theoretic properties of L, .,
and topological properties of the Baire space (Vaught 1971).

A characteristic example of this connection is the undefinability of well-
order in L., proved in Lopez—Escobar 1966, which can be seen as a con-
sequence of the relatively simple topological property of N, that the codes
of well-orderings is a non-analytic set. Similarly the interpolation theorem
of L,,., may be thought of as a logical version of the topological fact that
disjoint X1 sets can be separated by a Borel set. Finally, the basic topological
property of the Baire space, that every closed set is the disjoint union of a
countable set and a perfect set, and its elaboration that the cardinality of
an analytic set is either < w; or 2¥, appear behind many results of model
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theory. We have in mind examples such as the result in Kueker 1968 that the
number of automorphisms of a countable structure is w or 2¥, and the result
in Morley 1970 that the number of non-isomorphic countable models of a
sentence of L, is either < w; or 2¥. In such cases as the above we feel that
the underlying topological fact reveals the actual mathematical construction
behind the logical result.

We may analogously identify models of cardinality w; with elements of a
generalized Baire space N1 = “‘w; and raise the question:

e Do topological properties of N help us prove and understand infinitary
properties of models of cardinality w; in the spirit of the above results
of Scott, Vaught, Lopez-Escobar, Kueker and Morley?

The reduction to topology seems even more important in the case of
uncountable models. This is so because we tend to run into statements that
are hard to decide on the basis of the standard axioms of set theory, and it
is therefore of vital importance to isolate the real mathematical core of each
problem. On the other hand the topological space N is much less known
than N. In particular descriptive set theory of A has been studied only
recently (Mekler and Véaandnen 1993, Vidnanen 1991).

A basic neighborhood of an element f € N is a set of the form

N(f,a) ={g € M1 :g(B) = f(B) for B < a},

where @ < w;. Note that the intersection of a countable family of basic
neighborhoods is still a basic neighborhood, and that there is a dense set
of the cardinality of the continuum, namely the set of eventually constant
functions. The space N7 is what Sikorski calls w;-metrizable space (Sikorski
1949).

In this context we are mostly interested in properties of analytic and co-
analytic sets of this space. These concepts are defined in the standard way,
which we now recall: A set A C N is analytic or ¥}, if there is a closed set
B C N x N such that for all f: f € A if and only if 3g((f,g) € B). A set
is co-analytic or 11} if its complement is 31, and A}l if it is both I} and 3.

The standard example of a co-analytic non-analytic subset of N is the
set of codes of well-orderings of w. This may be rephrased as the statement
that the set of codes of countable trees with no infinite branches is a co-
analytic non-analytic subset of A/. Analogously, the set of “codes” of trees
of cardinality w; with no uncountable branches is a prime candidate for a
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co-analytic non-analytic subset of N;. To arrive at this set, we introduce
some notation. Let m be a bijection from w; X w; onto wy. If f € N, let
<= {(, B) : f(m(e, B)) = 0}. We may think that f “codes” the binary
relation <;. Clearly, every binary relation on w; is coded by some f € N in
this way. Let Tf = (wy, <s) and

TO ={f € N, : Ty is a tree with no uncountable branches}.

Lemma 10 (Mekler and Véédndnen 1993)
1. The set TO is co-analytic.

2. If A CTO is analytic, then there is a tree W of cardinality < 2 with
no uncountable branches such that T, < W holds for all g € A.

3. If CH holds, TO 1is non-analytic.

Proof. The first claim is trivial, so we move to the second claim. If f € N
and a < wy, let f(a) be the sequence (f(3))s<a- Let R be a closed set such
that f € A holds if and only if 3g(f,g) € R. Let U(f) be the set of sequences
g(a) = (9(§))¢<a such that N((f,g),a) "R # 0. Now U(f) is a tree and it
is easy to see, that

f €A < U(f) has an uncountable branch.

Let W be the tree of triples (f(a),t, h(a)), where f € N so that T} is a
tree, t is an element of T} of height a and h(«) € U(f). Any uncountable
branch of W would give rise to an element f of A\ T'O. Hence W cannot
have uncountable branches. Suppose now f € A is arbitrary. Let (h(a))a<w,
be uncountable branch in U(f). If ¢ € Ty has height a, let ¢(t) be the
triple (f(a),t, h(a)). The mapping ¢ shows that Ty < W. This ends the
proof of the second claim. For the third claim, we assume that T'O were
analytic, and derive a contradiction. We consider the second claim with the
choice A =TO. Since we assume C'H, we can find f € TO so that o(W) is

isomorphic to Ty. We get the contradiction o(W) < Ty < W < o(W). O

A subset C' C N is IT}-complete if C is co-analytic and for every co-
analytic set A there is a continuous mapping ¢ on N such that for all f:
f € Aif and only if ¢(f) € C. Assuming C'H, the set TO is II}-complete.

Without C'H the set TO need not be IIj-complete:
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Proposition 11 (Mekler and Véanédnen 1993) If M A+—CH holds then TO
is Al

The proof of Lemma 10 can be elaborated to give a more general result.
Let A be a co-analytic set. If we assume C'H, we can use II}-completeness
of TO to construct a continuous mapping ¢ so that f € A if and only if
o(f) € TO. Let

Agg={f €N 0(f) < T}

The proof of the following result is essentially contained in the proof of
Lemma 10.

Proposition 12 (Mekler and Vaananen 1993) Assume CH. Suppose A is
co-analytic and ¢ is as above. Then:

1. Ay g is analytic for each g € TO.

2. If B C A is analytic, then there is a g € TO such that B C Ay,
(Covering Property).

3. A is A{ if and only if there is a g € TO such that Ty < T, for all
feA

An interesting analytic subset of V] is the set CU B of characteristic func-
tions of subsets of w; which contain a closed unbounded set. Respectively,
we have the co-analytic set ST AT of characteristic functions of stationary
subsets of w;. The continuous mapping ¢ associated with this co-analytic
set, assuming C'H, can be chosen to be the following very natural mapping:
If feN and A ={a: f(a) # 0}, let ¢(f) be a canonical code of the tree
T(A). Now f € STAT if and only if ¢(f) € TO. Hence, assuming C'H,
the set STAT is A} if and only if there is an f € TO such that T(A4) < T}
for all co-stationary A. In Section 3 we called such a tree a Canary tree and
we noted (Theorem 9) that the existence of a Canary tree is independent of
ZFC + CH. The following Proposition follows from Proposition 12:

'Added 2009: The published proof has an error and the status of the claim
is open.
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Proposition 13 The following conditions are equivalent:
1. CUB is Af.
2. STAT is 3.

3. There is a Canary tree.

So we cannot decide in ZFC + CH the question whether CUB is Aj or
not. The best that is known at the moment is that CUB is not %3 or TI3
(Mekler and Véédnanen 1993).

Proposition 14 (Mekler and Véédnanen 1993) Assume CH. Let A and B
be disjoint analytic sets. There is a Ai-set C such that A C C and CNB = ().
(Separation Property)*

Proof. Suppose ¢ is continuous so that f ¢ B if and only if ¢(f) € TO. By
the Covering Property there is a g € T'O so that A C C, where C' = (—B) 4.
Clearly CN B = (. O

The Separation Property becomes more interesting if we can generate the
Al-sets via a Borel type hierarchy analogously with the Borel hierarchy of
the classical Baire space N. In fact, such a generalized Borel hierarchy, called
Borel* hierarchy, can be defined for Ny (Mekler and Vainanen 1993). Then
Al-subsets of N will be exactly the so called determined Borel*-sets (Tuuri
1992, Mekler and Véédnanen 1993).

The Cantor-Bendixzson Theorem says that any closed subset of N/ can be
divided into a perfect part and a scattered part. The perfect part is empty
or of the cardinality of the continuum. The scattered part is countable. The
corresponding result for analytic sets says that any analytic subset of N
contains a non-empty perfect subset or else has cardinality < w;. We shall
now address the question whether similar results hold for N;.

It is easy to see that every closed subset of N; can be represented as the set
of all uncountable branches of a subtree of ;. So the possible cardinalities
of closed subsets of N; are limited to the possible numbers of uncountable
branches of trees of height w;. There are trivial examples of trees where the
number of uncountable branches is any number < wq, 2¥ or 2“'. Nothing

2Added 2009: I do not see now why I claim C is Aj-set. Mekler and Viénéinen
1993 makes no such claim.
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more can be said on the basis of ZFC or even ZFC + C'H, alone. An
analysis of the Cantor-Bendixson Theorem for N; is contained in Vaananen
1991. The implication to the question of cardinality of closed subsets of N
is:

Proposition 15 (Véédnidnen 1991) The statement “Every closed subset of
Ni has cardinality < w; or = 2“7 is independent of ZFC + CH+ there is
an inaccessible cardinal.

A similar result holds for analytic sets (Mekler and Véédnanen 1993).

5 Measuring similarity of models

In this Section we return to the idea introduced in Section 2 of using trees
to measure similarity of models of cardinality w;. For this purpose we intro-
duced the trees Sy, and Ky 9. We are now ready to compare these trees
to each other. Let x be the common cardinality of 2 and B and

Sym = ®{SQ[7%77— : 7 is a winning strategy of V in EF, (2, B)}.

We let Sy g consist of just one branch of length  in the special case that
A =B,

Proposition 16 Let A and B be two structures of cardinality k and of the
same vocabulary. Then Ko g < Sowm. If Kys is well-founded, then Ky g =
SQ[’%.

Proof. Suppose 0 € Kyg. If A = B, then Syg has a s-branch and
Ko s < S holds trivially. Suppose then 7 is a winning strategy of V in
EF,.(A,8B). Let f(o) be the sequence of moves in EF, (2, B) when V plays
7 and 3 plays o. Clearly, f(o) € Syms, and f is order-preserving. Suppose
then Ky g is well-founded but there is no winning strategy 7 of V such that
Suer < Ky Note that 2 22 B, for otherwise Kg o has a branch of length
k. Let Sg (o, bo,...,an—1,b,—1) be the tree of all possible sequences of
successor length of moves of 3 against 7 so that 3 has not yet lost the game,
and the first n» moves of the game have been (ag,by), ..., (@n-1,b,—1). Let
I(ag,bo,...,an_1,b,—1),n > 0, be the set of such winning strategies 7 of V
in EF,(A,B) that the sequence of first n moves (ag, by), - - -, (ap_1,bp—1) in
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EF,(2,%B) is consistent with 7. To derive a contradiction, we describe a
winning strategy of 3 in EF, (2, ). Suppose V starts this game with ag. If
there is no by such that for all 7 € I(ag, by) we have Sy -(ao,bo) £ Ko s,
then there is 7 € I() such that Sg s, < Ky, contrary to our assumption.
Hence 3 must have a move by with the property that for all 7 € I(ao,by)
we have Sy, (a0, by) £ Ko ». Next V plays (e.g.) by. As above, we may
infer that there has to be a move a; for 3 so that for all 7 € I(ag, by, ai,b;)
we have Sy, (ag, by, a1,01) £ Kye. Going on in this manner yields the
required winning strategy of 3 in EF,,(2,B). O

So if the difference between 21 and B is so easy to detect that Ky g is
even well-founded, which is the case if A #;__ B, then Ko = Sym. We
shall see below (Proposition 22) that for non-isomorphic models 2 and B
with A =, ‘B, there may be a huge gap between Ky g and Sy .

A basic concept in our closer analysis of similarity of models is the fol-
lowing approximated Ehrenfeucht-Fraissé-game: Let T be a tree. The game
EF,(A,%8,T) is like EF,(A,B) except that V has to go up the tree T' move
by move. Thus there are two players, 4 and V. During a round of the game
V first picks an element of one of the models and an element of T', and then
3 picks an element of the other model. Let a; be the element of A, b; the ele-
ment of B and t; the element of T picked during round 7 of the game. There
are altogether o rounds. Finally, 3 wins the game if the resulting mapping
a; — b; is a partial isomorphism or the sequence of elements ¢; does not form
an ascending chain in 7. Otherwise V wins.

Proposition 17 1. 3 wins EF,(A,B,T) if and only if T < Kg .
2. YV wins EF,(A,B,T) with strategy T if and only if Sy, < T.

Proof. The point here is that while V goes up the tree Kg s, he reveals longer
and longer strategies for 3. Player 3 can simply use these strategies against
V. At limits we envoke the fact that strategies in Kg s are of successor length.
The strategy of V in EF, (U, B, 0S5y »,) is to play in oSy & - the sequence of
previous moves of 3, and otherwise follow 7. [

We call a tree T of height o an equivalence-tree of (2,B) if 3 wins the
game EF,(,B,T), and a non-equivalence tree of (A, B) if V wins the game
EF,(2,8,T). Proposition 17 above implies that Ko g is the largest equiva-
lence tree of (A, B). The tree Kg 5 is unsatisfactory in one respect, though:
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there is no reason to believe that it has cardinality < w; even if C'H is as-
sumed. A tree T' € T, is a Karp tree of (2,B) if it is an equivalence tree of
(A,B) but o7 is not. Respectively, a tree T' € 7, is a Scott tree of (A, B)
if 0T is a non-equivalence tree of (A, B) but 7" is not.

Theorem 18 (Hyttinen and Vdananen 1990) Every pair of models (2, B)
has a Karp tree Ty and a Scott tree Ty, and Ty < T,

The structure of Karp trees and Scott trees of pairs of structures is not
fully understood yet. For rather trivial reasons, the families of Karp trees
and Scott trees of a given pair of structures are closed under supremums. The
following theorem contains some less obvious results that have been obtained
about the ordering of Scott or Karp trees of a pair of models.

Theorem 19 1. There are models 2 and B of cardinality wy such that
the pair (A, B) has 2“1 Scott trees which are mutually non-comparable
by <. (Hyttinen and Véiéinidnen 1990)

2. There are models A and B of cardinality wy such that the pair (A, B)
has two Scott trees the infimum of which is not a Scott tree. (Huuskonen
1991)

3. There are models A and B of cardinality wy such that the pair (A, B)
has two Karp trees the infimum of which is not a Karp tree. (Huusko-
nen 1991)

A tree T' € 1, is a universal equivalence tree of a model 2 of cardinality
wy if A =B holds for every B of cardinality w; for which 7" is an equivalence
tree of (2,B). If

Ky = @{Kmm DBl <wy, B E AL

and T = 0 Kg with |T| < wy, then T is a universal equivalence tree of 2. A
tree T' € T, is a universal non-equivalence tree of a model A of cardinality
wy if A 2 B implies T is a non-equivalence tree of (2A,B) for every B of
cardinality w;. This is equivalent to the claim that for every B 22 2 of
cardinality wy there is some winning strategy 7 of V in EF, (2, B) so that
SQ,[,%J— <T.

Note that a universal non-equivalence tree is necessarily also a universal
equivalence tree. Thus having a universal non-equivalence tree is a stronger
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property than having a universal equivalence tree. Every countable model
has universal non-equivalence trees. This tree is the canonical tree arising
from the Scott rank of the model. The concepts of universal non-equivalence
tree and universal equivalence tree are attempts to find an analogue of Scott
rank for uncountable models.

It is clear that many models of cardinality w; do have universal non-
equivalence trees. Let us consider an example. Let T be an w-stable first or-
der theory with N DOP (or countable superstable with NDOP and NOTOP,
see Shelah and Buechler 1989). By Shelah 1990 Chapter XIII Section 1, any
two Loow,-equivalent models of T' of cardinality w; are isomorphic. There is
a back-and-forth characterisation of L., -equivalence which, from the point
of view of V, is a special case of EF,.,(2,). Hence every model of T of
cardinality w; has a universal non-equivalence tree of height < w - w.

Theorem 20 (Hyttinen and Tuuri 1991) Let k = k<% > w. There is a
model A of cardinality k with the following property: For any tree T such
that |T| = k and T has no branches of length k there is a model B of cardi-
nality k so that A 2 B but 3 has a winning startegy in EF,(2A,B,T). Thus
20 has no universal equivalence tree.

Proof. Note that x = k<% implies k is regular. The models 2 and B are
constructed using the reflexivity operation R introduced in Section 3. Let
Ty be k<" as a tree of sequences of ordinals. We let 2 be the tree-ordered
structure (R(7p), <). Let

Ty = (o)1) +1

a<k

and Ty, = T1 ®Ty. Let f be the canonical projection T, — T7. We can extend
f to R(Tz) by letting f((so,..,Sn)) = f(sn). Let B be the tree-ordered
structure (R(73),<). Now 2 has branches of length x but 8 has none, so
2A 22 B. To finish the proof we have to describe the winning strategy of 3 in
EF,(A,8,T). Because of the special relation between T" and 77, it suffices to
show that 3 wins the game EF/ (2, B, 7)) which differs from EF,(,B,T)
by allowing V to play only elements of 2 and B the predecessors of which
have been played already.

Recall that elements of R(7,) and R(T3) come in different phases. An

!/

element (so,...,s,) of phase n may have extensions (s, ..., s)) inside phase

n but it also has extensions (s, ..., Sp, ..., Sn) of higher phase. During the
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game elements a,, of R(1p), elements b, of R(T3) and elements ¢, of T} are
played. Here « refers to the round of the game. The strategy of 3 is to play
in the obvious way but taking care that he never increases phase by more
that 1, and making sure that when p(b,) = p(as) + 1, then f(by) < tq.

Suppose now V plays a, of limit height. There is a chain of predecessors
ag of a, converging to a,. The corresponding elements bg will eventually be
inside one phase and because of the “4+1” in the definition of 77, will converge
to some element b,. This is the response of 3.

Suppose then V plays a, of successor height and ag is the immediate
predecessor of a,. If p(bg) = plag) + 1, then f(bg) < tg < ta, so f(bs) is
not maximal in 7j. Then 3 can let b, be a successor of bg in R(T%) so that
plbs) = p(be) if and only if p(as) = p(aa) and F(bs) < ta. If p(bs) = plaa),
then f(bs) may be maximal in 77. In that case 3 lets b, be a successor of
bs in R(T») of the next phase. Then f(b,) is the root of T3, so f(ba) < t,.
Additionally, 3 has to avoid the < &k elements played already during the
game, but this is not a problem because of the “®T,” part of the definition
of T5.

The case that V plays b, rather than a, is similar, only easier. []

The models constructed in the above theorem are unstable. This is not
an accident, as the following result shows:

Theorem 21 (Hyttinen and Tuuri 1991) (CH) If T is a countable unstable
first order theory, then there is a model A of T of cardinality wy so that A
has no universal equivalence tree.

On the other hand, it is not just the unstable theories that have models
with no universal equivalence tree. The paper Hyttinen and Tuuri 1991 has
results about models without universal equivalence tree of certain stable the-
ories. Also, there is a p-group of cardinality w; without universal equivalence
tree (Mekler and Oikkonen 1993).

The situation is more complicated with universal non-equivalence trees.
We know already that models of w-stable theories with NDOP do have
universal non-equivalence trees.

Theorem 22 (A. Mekler) (CH) Let F be the free abelian group of cardi-
nality Wy. Suppose A C wy is bistationary. There is an Ny-free group H so
that 3 does not win EF,.3(F, H), and ¥ wins the game EF,, (F,H,0T(A)+
w - 2) but not the game EF, (F,H,T(A) +w-2).
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Proof. Let x, € Z*' so that z,(6) =0, if § # «, and z,(«) = 1. For limit
d < wy let {ns(n) : n < w} be an ascending cofinal sequence converging to 9,

and .
25 = Z 2”93775(”).
n=0

Let F be the free subgroup of Z“! generated by the elements z,, o < wy. Let
F, be the free subgroup of Z“* generated by the elements x4, 3 < a.. Let H
be the smallest pure subgroup of Z*! which contains the elements z,, o < w;
and the elements z5, where 6 € A is limit. Let H be the smallest pure
subgroup of Z“!' which contains the elements z,,a < w;, and the elements
zs, where 6 € AN « is limit.

Claim 1. 3 does not win EF,,3(F, H).

Proof. Suppose 3 has a winning strategy 7 in FF, 3(F, H). Let C be the
closed unbounded set of a such that as long as all moves of V are in F,, U H,,
also moves of 3 given by 7 are. Since A is co-stationary, there is § € C'\ A.
Now we let V play the first w moves of FF_.3(F, H) so that an isomorphism
f is generated between Fjs and Hs. During the next w moves V plays so that
f is extended to an isomorphism f’: I — Hgs 1, where I is a subgroup of F.
Now [/Fjy is free, but Hgs,1/Hs is not, for the element z5 + H; is infinitely
divisible by 2 in Hs,1/H;s. Claim 1 is proved.

Claim 2. V does not win EF,, (F,H,T(A) + w - 2).

Proof. Suppose V has a winning strategy 7 in EF, (F,H,T + w -2). If
we prove T'(A) < T, the claim follows. In order to prove that T'(A) < T,
it is enough to describe a winning startegy of V in the game G4(T). If
x € H, let r(z) be the least « for which = € H,. Define r(x) similarly for
x € F. We call r(x) the rank of x. The strategy T gives V elements = of the
models as well as nodes of the tree T". The ranks of these elements = are the
moves of ¥V in G4(7T"). Sometimes it may be necessary to wait a few moves
before 7 gives an element of sufficiently high rank. The moves of 3 in G 4(T)
are transformed into isomorphisms between subalgebras of F' and H. These
isomorphisms determine the moves of 3 in EF,, (F, H,T). Finally 7 gives V
a winning move in FF,, (F, H,T). At this point we remark that there must
be some reason for 3 to lose. The only conceivable reason is that we have
reached a limit stage § with § € A, and the non-freeness of Hy,1/Hs prevents
3 from continuing successfully. Here V needs extra w - 2 moves to verify the
non-freeness. Because of our arrangements, this limit ¢ is the limit of the
moves of V and 3 in G4(T), and thus V won G4(T"). Claim 2 is proved.
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Claim 3. V wins EF,,(F, H,0T(A) + w - 2).

Proof. If x € H, let 1'(z) be the least limit ordinal in A which is greater
than r(x). The strategy of V is to play first in F' forcing 3 to play eventually
elements = with bigger and bigger r'(z). As long as these ordinals '(x) are
in A, everything goes fine. Eventually 3 is bound to converge to a limit
ordinal 9 € A. At this point V uses his remaining w - 2 moves to demonstrate
non-freeness of Hs,1/Hs. Claim 3 is proved. [J

Note that for ' and H as above, the tree Kz g has height < w - 3, but
Sp u has height w;.

Corollary 23 (Mekler and Shelah 1993) (CH) There is a universal non-
equivalence tree for the free abelian group of cardinality Ny if and only if
there is a Canary tree.

Proof. Suppose there is a Canary tree T'. We show that T} = ¢T + w - 2
is a universal non-equivalence tree for F. Suppose H is an abelian group
of cardinality N;. We may safely assume H is N;-free, for otherwise V wins
easily. Hence we may as well assume H arises from a bistationary set A
as in the proof above. Now T'(A) < T. By the previous Theorem, V wins
EF,, (F,H,T)). Suppose then T is a universal non-equivalence tree of F'. To
show that T is a Canary tree, let A be bistationary. Let H arise from A as
above. Now V has a winning strategy 7 in EF,,(F, H,T). Let us then work
in a generic extension of the universe, where A contains a cub set but no new
reals are introduced. In that extension F' = H, but 7 still applies to any
sequence of moves of 3, whence T' contains an uncountable branch. So T' is
a Canary tree. [

So the statement that the abelian group F' does not have a universal non-
isomorphism tree is independent of ZFC + C'H. This is not an accident, as
the following general result demonstrates:

Theorem 24 (Hyttinen and Tuuri 1991) If ZFC is consistent, then the fol-
lowing statement is consistent with C'H: FEvery countable non-superstable
first order theory has a model of cardinality w, without a universal non-
equivalence tree.

If we give up C'H, the situation changes again dramatically. In Hyttinen,
Shelah and Tuuri 1993 it is proved consistent relative to the consistency of
an inaccessible cardinal, that (-C'H and ) every linear ordering of cardinality
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Every model has a universal non-equivalence tree
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The orbit of every model is A}

superstable l

The isomorphism type of every model is M, -definable

!

Every model has a universal equivalence tree

stable
Figure 1: A first order theory and its models of power w;.

w1y has a universal equivalence tree which is of the form 7"+ 1, where T" has
cardinality w;.

The orbit orb(R) of a relation on & is the set {S C k" : (k, R) = (k, S)}.
D. Scott (Scott 1965) proved that the orbit of a relation on w is a Aj-
subset of A. For orbits of relations on w; the corresponding question is
tied up with the problem of the existence of universal equivalence and non-
equivalence trees. Implication (2)—(1) in the following Proposition together
with a model-theoretic argument for its proof were suggested by H. Tuuri.

Proposition 25 (Mekler and Vééinédnen 1993) The following two conditions
are equivalent (assuming CH):

(1) (w1, R) has a universal non-equivalence tree.

(2) orb(R) is A].

Proposition 25 shows that the question, whether a model of cardinality
wp can be assigned a tree-invariant via the Ehrenfeucht-Fraissé game, which
is in close relation with stability-properties of the first order theory of the
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model, has also a topological formulation. Figure 1 displays some relation-
ships between stability theoretic properties of a complete first order theory
and infinitary as well as topological properties of its models of cardinality w;
(The logic M,,,,, will be defined later).

We end this Section with a result which further emphasizes the relation-
ship between properties of trees and properties of models:

Theorem 26 (Shelah, Tuuri and Vianéanen 1993) The following two condi-
tions are equivalent:

(1) There is a tree of cardinality and height wy with exactly N\ uncountable
branches.

(2) There is a model of cardinality wy with exactly \ automorphisms.

Note that the set of uncountable branches of a tree of cardinality and
height w; is (up to some identification) a closed subset of Aj. It is consistent
relative to the consistency of an inaccessible cardinal, that there are no closed
subsets C' of N7 with w; < |C| < 2“*. On the other hand, a Kurepa tree
satisfies (1) with A = wy and it is possible to have a Kurepa tree with ws
uncountable branches while 2“1 > w,. So there is a lot of freedom for the
number of automorphisms of a model of cardinality w;. For comparison,
recall that the number of automorphisms of a countable model is < w or
= 2%,

6 Infinitely deep languages

Let 2 be a fixed structure. The property of another structure 8 that 3 wins
EF, (2,8, T) can be expressed by an infinitary game sentence which imitates
the progress of the game EF, (A, %, T). These infinitary game sentences are
the origin of what we call infinitely deep languages. Mathematically speaking,
the game with all its problems remains the same whether we write it down
as an infinitary game sentence or as an informal description of a set of rules.
This is why we have up to now suppressed all syntactic notions. However,
the game expressions arising from Ehrenfeucht-Fraissé games are just very
special examples and the underlying more general concept deserves to be
made explicit.

Let A be a structure of cardinality w;. We assume the language of 2 to
be finitary and of cardinality < w;. The universe of 2 is denoted by A. We
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Figure 2: Formula F4, when A = {a, b}.

shall define an infinitary formula ¢gﬁ(2) by describing its syntax-tree. We
think of syntax-trees of formulas as labelled trees. Figure 2 is an example
of a syntax-tree of a formula, where ¢%,* etc are atomic formulas. In more
conventional style this formula is

Va(6" AYT) V (¢" A Y] A B0 A ) ATz (0" A1)

Figure 3 shows a syntax-tree Fy that we shall use to build up qﬁgﬁ(,?). Note
that this formula F splits at nodes \/,., and A,., into as many subtrees

as there are elements in A. In more conventional style the formula F4, would
be

Vo \/ (" Av*) A N Fz(6 Ane).
acA acA
The formula ¢ ;(2) is obtained from Fj4 by letting ¢ (2) “repeat” the
structure of F4 following the pattern of a given tree 1. If T" were a one-
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Figure 3: Formula Fjy.

branch tree of two elements, then ¢ ;(2) would be

V2o Vageal 0% (x0) A
V21 Vaea 9% (w0, 71)]A
[Nayea Tz 0% (zo, 21)])IA
[ Aayes Fxo( 9% (x0) A
V21 Vaea 9% (w0, 71)]A
[AayeaIrr P (w0, 21)])],

where the formula ¢*% (xg, z1) is the conjunction of all atomic and negated
atomic formulas ¥ (zg, 1) so that 2 = 1(ag,a;). The formula ¢ (xg) is
defined analogously. In this special case B gbga(g) clearly means that 3
wins EF,((,d), (B, b)).

We shall now define qbgla(l;) for more general T'. For this end, let 7" be
a tree of height w; in which every node has at most w; successors, there is
no branching at limits, and there are no maximal branches of limit length.
Let us consider an arbitrary maximal branch C' of F4. The branch C ends
in ¢% 1% 0% or n® for some a = a(C) € A. Let G be the set of branches C'
which end in 9* or n®. Let us consider the tree Fiy -¢T. To make Fx -¢ T a
syntax-tree, we assign lables [(g, w,t) to nodes (g, w,t) of Fy-¢T as follows.
Only nodes Vz, dx, ¢%, ¢ 0% and n* of the various copies of Iy are given a
label. For other nodes the label is as in the picture of F4. Suppose we are
at a node (g,Vx,t) of Fiy-¢T. Let (t¢)e<q be the sequence of {s € T': s < t}
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in ascending order. We let (g, Vz,t) = Vz,. Staying in the same copy of F4
we let I(g,3x,t) = Jz,. If ¢ is maximal in T, we let I(g, ¥, t) = I(g,n%t) =
Vao(zo = x). If t is not maximal in T', we let I(g, ¥, t) = I(g,n% t) = A. Let
ag = a(g(te)) for € < a. Welet I(g, 9%, t) and I(g, 6%, t) be the conjunction of
atomic and negated atomic formulas ¢(x¢)e<q such that 2 = ¢(ag)e<n. This
ends the definition of the labelling of nodes of F4 -¢ T. The labelled tree
(Fa-g T,1) is our ¢y 4(Z).

The formula ¢£,d(’g) can be given semantics by means of the obvious
semantic game. The dual formula o ;(2) of ¢y ;(Z) is obtained by replacing
in the lables of ¢g ;(%) everywhere A by V, V by A, ¥ by 3, 3 by V and the
labels (g, ¢, t),1(g, V" t),1(g,0%t) and I(g,n%, t) by their negations.

The formulas ¢ ;(2) and g ;(Z) are taylor-made so that player 3 has

=,

a winning strategy in the game EF, ((8,b),(,d),T), if and only if B =
awz(b), and player V has a winning strategy in EF,, ((3,0),(,d),T) if and
only if B |= ] ;(b). We shall now define a general concept of which formulas
wz(Z) and g o(7) are examples.
A quasiformula is a labelled tree (7', 1), where T is a tree with no maximal

branches of limit length and no branching at limits, and I(t) is

1. a countable conjunction of atomic and negated atomic formulas, if ¢ is
maximal in 7.

2. A or V, if t has more than one successor in 7.

3. Ju or Yu, where u is a variable symbol, otherwise.

Definition 27 (Karttunen 1984) The infinitary language M., consists quasi-
formulas (T, 1), where T is a tree of height wy in which every node has at most
wy successors, and there is no w and no branch b of T' such that [(t) alternates
infinitely many times between the values Yu and Ju on b.

The semantics of M,,,., is defined via a semantic game, exactly as for any
game formulas. A formula is determined if this semantic game is always de-
termined. The formulas ¢} ;(2) and 14 ;(Z) are clearly examples of formulas
of M,,.,. These formulas need not be determined, but they are determined
in models of cardinality < wy.

The quantifier-rank of a formula (T,1) of M,,,, is the subtree T" of T
which consists of nodes ¢t with I(t) = Vu or [(t) = Ju, where u is a variable
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symbol. The tree 7" may not have a unique root, but relations like 77 < T
still make sense.

The Ehrenfeucht-Fraissé games E'F, (,B,T) have dominated our dis-
cussion all the way from the beginning. The special connection between
EF.(A,%B,T) and M,,,., is revealed by the following easy fact:

Proposition 28 (Karttunen 1984) Let 2 and B be two models of the same
similarity type and T a tree of height wy in which every node has at most wq
successors, there is no branching at limits, and there are no maximal branches
of limit length. Then the following two conditions are equivalent:

(1) A and B satisfy the same sentences of M., of quantifier-rank < T.

(2) Player 3 has a winning strategy in the game EF, (A, B,T).

Note that M,,,, is, up to logical equivalence, closed under conjunctions
and disjunctions of length < 2“ and universal and existential quantification
over countable sequences of variables. Although M,,,., is closed under dual in
the obvious sense, there is no trivial reason for it to be closed under negation,
because the relevant semantic games need not be determined, as the example
below shows. In fact, Tuuri showed that a sentence of M,,., has a negation
in M,,,., if and only if it is definable by a sentence whose semantic game is
determined (Tuuri 1992).

Example 29 Let A C wy be bistationary. Let ¢4 be the following sentence
of M, -

/\ \/ /\ \/ s Plag...om..)

ap<wi a1>ap Q2n42>02n41 A2n43>02n 42

where
| Fz(r =) if sup,,., om € A
b ={ ey e £
Neither ¢ o nor the dual of ¢ 4 is true in any model. In this case the semantic
game is non-determined. We still have a negation for ¢4 in the semantic
sense, for example Ix(x = x).

A PC(M,,., )-sentence consists of a sequence of < w; existential second-
order quantifiers followed by an M,,,.,-sentence. The existentially quantified
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predicates are allowed to have any countable ordinal as their arity. The
PC(Ly,., )-sentences are defined analogously. It is easy to see that every
PC(M,,., )-sentence can be defined by a PC(L,,,, )-sentence. This observa-
tion combined with a standard Skolemization argument gives:

Proposition 30 (Karttunen 1984) Suppose ® is a PC(M,,., )-sentence and
20 is a model of ®. Then there is a submodel B of A so that |B| < 2¥ and
B = .

Proposition 31 If C'H holds and there is a Kurepa tree, then some sentence
of M., does not have a negation. *

Proof. Let us consider the following game G of length w + 1 introduced in
Heikkila and Vaanadnen 1991: Player 3 plays nodes of a Kurepa tree 7' in
ascending order and V plays uncountable branches of 7" which are elements
of a set Z. The task of dis to play always a node which is not on any of the
branches mentioned so far by V. We can write a sentence ¢ of M,,,, which
describes models consisting of a tree T" and a set Z and which says that 3
wins G. Let 21 be a model which consists of a Kurepa tree T" and the set
Z of its uncountable branches. Now 2 = —), because a winning strategy
of 3 would create an uncountable level to T'. If =@ € M,,,.,, then there is
a submodel B of A so that B = —¢ and |B| < w;. But ¢ is true in any
submodel of 2 of cardinality < wso, because 3 can play elements of one of the
wq branches which are not in 8. [J

So, what can we express in the language M,,,,? We have already pointed
out that the formulas ¢ ;(2) and ¥g ;(Z) are in M,,,,. This immediately
gives the following nice characterisation of rigidity. Recall that a countable
model is rigid if and only if all its elements are definable in L, and a
relation on a countable model is invariant if and only if it is definable by a
formula of Ly,

Proposition 32 Suppose 2 is a model of cardinality w,. The following con-
ditions are equivalent:

1. A is rigid.

2. Every element of 2 is definable by a determined M., -formula.

3Recently T. Huuskonen proved this without assuming CH or a Kurepa tree.
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Proof. Suppose 2 is rigid. If b € A, we can find a tree T with no uncount-
able branches so that a # b if and only if 2 = wgfb(a). Now

AEVe(r=a+«< /\ w;bb(x))
b#a

O

Proposition 33 (Hyttinen 1990) The following conditions are equivalent for
any relation R on 2A:

(1) R is invariant (i.e., fized by all automorphisms of A ).
(2) R is definable on A by a determined M,,.,- formula.

Proof. Suppose R is invariant. If b € R and a ¢ R, we can find a tree T},
with no uncountable branches such that 2 = wa *(b). Now

Ql):VxxERH\//\wa“

beER a¥¢R
(]

If 2 is a model of cardinality wy, let I(2() denote the class {5 : B =
2A}. That is, I(A) is the isomorphism type of A. We say that I() is
(determinedly) M,,.,-definable if there is a sentence ¢ in M,,., so that I(2)
is the class of models of ¢ of cardinality < w; (and ¢ is determined in models
of power < wy).

Proposition 34 Let 2 be a model of cardinality w, .
(1) A has a universal equivalence tree if and only if I(2L) is M., -definable.

(2) A has a universal non-equivalence tree if and only if I(A) is determinedly

M,,,., -definable.

Proof. (1) If T is a universal equivalence tree of 2, then ¢} defines I(2)
among models of cardinality < w;. Conversely, assume ¢ = (T,1) defines
I(2) among models of cardinality < w;. To prove that 7" is a universal
equivalence tree of 2, suppose 3 wins EF,, (U,B,T). Since 2 = ¢, we have
by Proposition 28 that B = ¢. Hence 2 = 8.
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(2) If T is a universal non-equivalence tree of 2A, then first of all, ¢%
defines I(2() among models of cardinality < w;. Moreover, ¢} is determined
in models of cardinality < wy, for if B (£ ¢, then V wins EF, (A, B,T),
and hence B = 9g 5. Conversely, assume a determined ¢ = (T',1) defines
I(2) among models of cardinality < w;. To prove that 7" is a universal non-
equivalence tree of 2, suppose B 2 2. So B satisfies the dual of ¢. Now V
wins EF,, (,B,T) by following ¢ in 2 and the dual of ¢ in 8.0

So whenever we can find a universal equivalence tree for a model 2A of
cardinality wy, we can find an M,,,,-sentence which is an invariant of 2, i.e.,
identifies the isomorphism type of 2. What is the advantage of an M, -
sentence over a brute force invariant? By a brute force invariant we mean
listing all elements and relationships of elements of the model and taking as
an invariant the listing which is smallest in the lexicographic ordering of all
listings. Both invariants are uncountable objects. But checking the truth of
an M,,,.,-sentence in a given model involves playing a semantic game which
can last for countably many rounds only. So there is an important countable
vs. uncountable distinction between an M,,,, -sentence and the brute force
invariant. This may be quite relevant if we, for example, extend the universe
with forcing that does not add new reals. The truth of M,,,, -sentences is
preserved while new listings of a model of cardinality w; may have come
up. This is exemplified by the lack of a ZFC-provable M, -definition of
the isomorphism type of the free abelian group of cardinality w;: such a
definition would contradict the fact that an almost free group can be made
free without adding reals. This explains why having an M, -sentence as an
invariant of a model means we have understood the model better than after
merely enumerating the elements and relationships of elements of the model.

Let us now turn to the question, what cannot be expressed in M,,,,,,. The
most interesting concept undefinable in L, is the notion of well-ordering.
The analogous result for M,,,., is that the class of trees with no uncountable
branches is undefinable in M,,,. This fact alone is as central in the study
of M,,,., as undefinability of well-order is in the study of L, .. The proof we
present for this fact is topological. For this it is useful to observe that if ® is
a PC(M,,., )-sentence, then the set {R Cw; : (wy, R) | ®} is a Xl-subset
of N 1-

Proposition 35 (Hyttinen 1987, Oikkonen 1988) (C'H) The class of trees
(T, <) of cardinality wy with no uncountable branches is not PC(M,y., )-
definable.
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Proof. Suppose ® is a PC(M,,., )-sentence whose models are exactly the
trees (T,<) which have no uncountable branches. Let A = {f € N :
(w1, <s) E @}. Since @ is PC(M,,.,), A is a Zi-subset of TO. By Proposi-
tion 12 there is a tree W of cardinality w; with no uncountable branches so
that Ty < W for all f € A, contradiction. [

Proposition 36 (Hyttinen 1987) (CH ) For any PC(M,,.,)-sentence ® there
is a mapping T +— ®T from T, to M,,., so that

(1) Fe—N2":TeT,}
(2) A= N{®T: T €T, } — @ if A has cardinality < w;.

Proof. The analog of the classical game-representation of PC/(L,,,,,)-sentences
or Yl-sets, deriving from Svenonius and Moschovakis, is a game G of length
wy of the following kind. If 2 = &, then 3 wins G. If A = & and A has
cardinality < w;, then V wins G. Let G be obtained from G by demanding V
to go move by move up the tree T'. If T' € 7,,,, then the property that 3 wins
GT can be expressed by an M, -sentence ®T. If 2 [~ &, 2 has cardinality
< wi, and 7 is a winning strategy of V in GG, then 7 gives a winning strategy
for V even in the game G, where T is the tree of all possible sequences (of
successor length) of moves of 3 against 7 such that 3 has not lost yet. [J

Proposition 37 (Hyttinen 1990) (CH ) Suppose ® and ¥ are PC(M,,., )~
sentences so that ® ANV has no models. Then there is an M, -sentence 0
so that ® = 0 and W A 0 has no models. (Craig Interpolation Theorem for

MUJQWl)

Proof. Let T +— ®T be the mapping given by Proposition 36. If ®7 A ¥
has no models for some T' € 7, we are done. So let us assume 7 A ¥
has a model for all each 7" € 7,,. By Proposition 30, we may assume these
models have cardinality < w;. But this means that the class of trees (T, <)
of cardinality w; with no uncountable branches is PC/(M,,,, )-definable as
the class of trees (7", <’) of cardinality w; for which there is a tree (7, <), an
order-preserving mapping 7" — T, and a model of ®7 A ¥. This contradicts
Proposition 35. [
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A logic L satisifes the Souslin-Kleene Interpolation Theorem if every
PC(L)-expression, the negation of which is also definable by a PC(L)-
expression, is actually explicitly definable in £. It is well-known that L,
satisfies the Souslin-Kleene Interpolation Theorem but L,,,, does not.

Theorem 38 (Hyttinen 1990) (CH) The smallest extension of Ly,., to a
logic which satisfies the Souslin-Kleene interpolation theorem is the largest
fragment of M., which is closed under negation.

One interpretation of Theorem 38 is that L,,,, has implicit expressive
power which the syntax of the logic is not able to express explicitly. This
emphasizes the naturalness of M,,,, as an extension of L,,.,. Various ex-
tensions of Craig interpolation theorem for M,,,, have been proved in Tuuri
1992 and Oikkonen 1977.
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