
Games in the Classroom:
Using Games as a Motivator
for Studying Computing: Part 1

This article, the first in a two-part series that

explores using games as a gateway to study-

ing computing in the classroom, explores the

need for a motivator in today’s educational en-

vironment and places games in the context of

constructivist learning approaches. In addition,

it provides an overview of several recent

approaches and looks at issues associated with

student perception, exploring how existing

paradigms relate to these perceptions.

The second article will focus not only on the

underlying educational models for which

games are particularly well suited, but also on

the results of our approach. In addition, the

second article will address gender issues as

they relate to gaming in the classroom. In addi-

tion to this two-part article, we will present our

own experiences related to the topic in the

Multimedia at Work column in the next issue.

Overcoming the crisis
For the past several years, computer science

has faced a crisis revolving around the percep-

tion and efficacy of the field, with computing

departments around the US reporting troubling

statistics regarding recent trends. For example,

the 2006!2007 Taulbee Survey reported that

in the Fall of 2007, there were approximately

50 percent fewer entering students for com-

puter science programs in comparison to the

Fall of 2000.1 Some of this downturn is a result

of perceptions related to the job industry, as po-

tential students are still influenced by the in-

dustry problems from the early part of this

decade, while others are concerned with cur-

rent economic conditions and continued wor-

ries regarding downsizing and outsourcing.

In addition, potential students are prejudiced

by the perceptions of people in computing, still

associating computing with antisocial, nerdy

behavior in which practitioners sit behind a

desk all day, isolated from others, and work

on uninteresting and irrelevant problems that

provide little personal or societal gratification.

Even when students are attracted to computing,

it’s often difficult to keep their interest, particu-

larly through introductory coursework that

imparts needed skills before more interesting

problems can be explored.

Frequently, a student’s first exposure to com-

puting is through introductory programming,

which requires the student to learn syntax, de-

sign, logic, debugging, and more, without ade-

quate instruction in the relationship of this

introductory material to long-term objectives.

Students might not see the relevance of intro-

ductory experiences, as many introductory ex-

amples are not synonymous with the student’s

expectations, and thus students cannot make

connections between the exercises—such as

Media Impact William I. Grosky
University of Michigan-Dearborn

Andrew M. Phelps,
Christopher
A. Egert, and

Jessica D. Bayliss
Rochester Institute

of Technology

Editor’s Note
It’s no secret that undergraduate computer science enrollment,

which has suffered through one of its periodic downturns, seems to

have bottomed out but is now on an upswing. This cyclic behavior

has been occurring for many years now, producing many exciting

ideas concerning how to revamp introductory computer science

courses to make them more exciting and relevant, and to show begin-

ning students that computer science entails more than just program-

ming. Georgia Tech, one of the active participants in this revamp,

has developed the concept of threads (a means to connect chunks of

related knowledge across different courses) and is devising techniques

to enrich beginning courses using minirobots and multimedia. The

present article, written by Andrew Phelps and his group at the Roches-

ter Institute of Technology, describes a parallel effort to use gaming as a

way to improve learning and to demonstrate to students that computer

science is indeed exciting and cool.

—William I. Grosky

1070-986X/09/$25.00 !c 2009 IEEE Published by the IEEE Computer Society4

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on December 20, 2009 at 19:03 from IEEE Xplore. Restrictions apply.

text-based problems, business formulas, and

text manipulation—andwhat they have already

experienced as the richness of computing.

It’s no wonder, then, that failure rates in

computing courses over the first year are stag-

geringly high, indicating that students are frus-

trated, disenfranchised, and disconnected from

their intended career path. We believe that one

way to counteract these failure rates is to en-

gage student interest by associating computing

with a domain that speaks to the student’s gen-

eration. One such domain is that of video game

design and development.

The influence of video games on today’s

youth represents a larger trend of technology

that inspires new forms of communication, social

interactions, information retrieval, and entertain-

ment. Video games are not just a short-term

phenomenon. They are iconic, and permeate

literature, art, and cinema. Video games also

represent an outlet of creative expression even

by those who do not produce games them-

selves, inspiring fan fiction, art, and other expe-

riences. These observations point to how students

perceive technology as a creative medium

through which interactive experiences, stories,

and exploration can be experienced on a per-

sonal and social level.

It’s no wonder, then, that when a professor

speaks about technology careers, students appear

to be captivated by the idea of making the next

triple-A game title. Clearly, using games in the

classroom can be a wonderful way to illustrate

how computer science can integrate with and

augment creative expression. After all, game de-

velopment is not undertaken in a technology

vacuum. Practitioners are expected to interact

with artists, musicians, writers and many others

whose professions are aligned with the creative

arts and content production. In addition, game

development provides an appropriate context

for computing concepts, such as program design,

data structures, graphics programming, artificial

intelligence, language theory, human!computer

interaction, computermusic, optimization,multi-

core and parallel processing, algorithms, and

the theory of computation.

However, despite the potential video games

have to offer, there are several barriers that

must be overcome to use game technology in

the classroom. Effectively using video games

in the classroommeans bridging the generational

gap between faculty and students, dismissing

faculty perceptions that games are not suitable

for education, providing adequate technology

for what students consider to be real game de-

velopment, and eliminating negative stereo-

types associated with commercial video game

development.

Games as a motivator
To understand a student’s needs in approach-

ing computer science, it’s helpful to examine the

role of cognition and learning. One approach to

cognition is to classify the different behaviors

associated with learning, and to classify the var-

ious tasks and objectives in the introductory

classroom. Bloom’s taxonomy is frequently

used as a starting point for such endeavors, and

can help educators analyze instructional design

and assess class activities.2 Classifications built

upon such taxonomies rely on a pyramid struc-

ture, with knowledge at the bottom, followed

by understanding, application, analysis, synthe-

sis in the middle, and evaluation at the top.

The tenet is that items toward the bottom in-

volve rote memorization whereas those toward

the top involve deeper levels of understanding.

Classification schemes can form the basis for

cognitive models that attempt to define learn-

ing processes. Corresponding to Bloom’s lower

levels, cognitive models can help educators un-

derstand how students internalize core con-

cepts, such as variable assignment, selection,

looping, arrays, and other language constructs.

They can also help educators understand con-

cepts such as problem comprehension, task

decomposition, and the means by which intro-

ductory programmers implement and evaluate

the effectiveness of their solutions.

Games are an intuitive and natural route from

the bottom to the top of Bloom’s taxonomy.

While most introductory courses focus on the

lower three portions of the taxonomy (knowl-

edge, understanding, and application), the use

of games in an introductory programming course

leads naturally to synthesis. Students find that

after they have constructed a game, they can

use their computing knowledge to critique the

games they already play. Doing so allows stu-

dents to create links between classroom activities

and activities performed outside the class.

Classification by affective domain

Another approach to understanding student

learning is to classify learning on the basis of

the affective domain, as characterized by the

A
p
ril!

Ju
n
e
2
0
0
9

5

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on December 20, 2009 at 19:03 from IEEE Xplore. Restrictions apply.

second volume of Bloom’s taxonomy.3 The

affective domain model describes changes in

student interest, attitudes, behavior, and val-

ues, with key features that include how students

are sensitized to stimuli and phenomena, how

students become motivated to participate,

how students ascribe value to behavior, how stu-

dents organize values and resolve conflicts, and

how students internalize values. Games are a nat-

ural match to all levels of the affective domain.

Introductory courses go to great lengths to

have students understand cause and effect dur-

ing design and development. The highly visual

and interactive nature of games and their rela-

tive complexity can help in this understanding

by creating appropriate scenarios that act as an

anchor for discussion and a way to for students

to internalize key concepts. Games provide a fa-

miliar anchor for exploring the affective do-

main, as students tend to approach problems

with preconceived notions about games. Instruc-

tors can leverage or challenge such knowledge,

depending on the particular programming

activity at hand.

Constructivist learning model

Another approach to the introductory class-

room is to change the interaction model by

decentralizing the authority of the instructor.4

This model, based upon several core ideas that

relate to power in the classroom, positions the

learner’s knowledge and experiences as a start-

ing point for new learning. As students approach

a particular problem, individual learning and

knowledge are reflected and refined through

classroom participation. The constructivist

model relies on tasks that are more complex

than simple problems. For the model to be ef-

fective, the tasks must consist of real-world

scenarios in which discovery and action can

have compelling effects.

Those who use the constructivist model in the

classroom seek to cultivate knowledge and con-

cepts that are uniquely identifiable and personal

to the learner. Some educators have suggested

techniques to integrate constructivist principles

directly into the introductory programming

curriculum, while others have suggested gen-

eral guidelines to maximize the impact of con-

structivist theories. Investigations into the

impact of constructivist techniques in the class-

room have revealed a range of outcomes, from

anecdotal evidence of classroom success to em-

pirical studies showing positive results.

Some educators find constructivist tech-

niques challenging because they displace a cen-

tral authority figure who can maintain control

of classroom interaction and a specific approach

to the materials. As such, the constructivist class-

room requires a great deal of planning and imple-

mentation of effective mechanisms to provide

nonintrusive guidance to learners. Despite these

challenges, the constructivist classroom appears

to be well suited to learning about game develop-

ment, especially because, as a general rule, game

developers must trade between design and opti-

mization considerations, a factor that leads to

more than one solution for a given problem.

The constructivist classroom allows the stu-

dent to shift his or her knowledge from game

consumer to game developer, transforming

the ideals of play strategy, game choices, and

outcomes into the logic that produces a game

solution. In this way, games can aid in discus-

sions about choices and intended outcomes.

In addition, games provide an appropriate level

of complexity for constructivist exploration.

Even simple arcade games from the 1980s pro-

vide enough richness and challenge when dis-

sected into their basic principles.

Self-efficacy in the classroom

Another approach to the study of introduc-

tory computing is to focus on self-efficacy.5

The concept of self-efficacy entails beliefs re-

garding one’s own abilities. Self-efficacy is a

function of multiple inputs, including current

skills and proficiencies; physiological states;

psychological well-being; the ability to under-

stand and internalize observed phenomena;

and the influence of other people, such as

instructors and peers. Thus, self-efficacy can

vary on the basis of the type of student activities

as well as the mode of student participation.

Games might have a positive impact upon

self-efficacy because participants can interact

with games on several levels. As students con-

struct games, they receive immediate feedback

framed within a functional framework they

can easily understand. That is, the concrete na-

ture of game construction can serve to minimize

feelings related to lack of self-confidence be-

cause scenarios that occur when mistakes are

made can be contextualized for the learner.

In addition, the concept of self-efficacy can

be used itself in conjunction with games to ex-

pose learners to areas that are less comfortable

for them or about which learners feels theyIE
E
E
M
u
lt
iM

e
d
ia

6

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on December 20, 2009 at 19:03 from IEEE Xplore. Restrictions apply.

have less knowledge. Students can adjust their

comfort levels by doing tasks in which they

feel higher levels of self-confidence instead of

those that create anxiety and doubt. Even with-

in novice classrooms, instructors can rely on

tasks related to higher self-efficacy in terms of

game design, interactive choices, and game

outcomes to help learners achieve their goals.

Programming paradigms

Another way of looking at introductory pro-

gramming is in terms of the paradigm used.

Over the past decade, instruction has shifted

from the imperative to the object-oriented para-

digm. Although the term objects-first is not uni-

versally known, the ACM/IEEE Joint Task Force

for Computing Curricula provides a working

model for the concept.6 The objects-first approach

to object-oriented programming begins with con-

cepts of objects and inheritance, followed by tra-

ditional control structures, such as selection and

loops. Students learn traditional programming

concepts within the context of objects, with

both design and programming sharing an equal

role. Others have gone further by defining the

objects-first approach asmeaning the exploration

of encapsulation, inheritance, and polymor-

phism in the introductory course.7

Despite the popularity of object-oriented lan-

guages, there is much debate about when ob-

ject-oriented principles should be introduced.8

Some practitioners believe that object-oriented

concepts should be taught after traditional im-

perative concepts to reduce the cognitive

demands upon the student. Others suggest

introducing objects early in the process or

state that the objects-first approach should be

taught in a manner in which task decomposi-

tion, responsibility management, delegation,

and programming share equal classroom time.

We believe games can be effective in helping

students learn several paradigms and can be par-

ticularly useful with an objects-first approach.

Games can help students learn object-oriented

principles and abstractions, such as objects

that manage game elements, objects that act

as containers for groups of game components,

objects that act as event handlers for input or

timed operations, and objects that maintain

state and perform appropriate transitions within

games. Moreover, game construction can help

teach the concepts of inheritance and polymor-

phism, which scale well to the complexity of

game design. For example, game components

controlled by both the player and the computer

can use inheritance to derive new functionality

in terms of motion or other behavior, while ef-

fective use of polymorphism can help maintain

the collection of game elements uniformly.

Games in the classroom
As is the case with approaches to teaching and

learning in general, there are several ways instruc-

tors can use video games as motivators in the

classroom. At a recent conference on game devel-

opment and education, participants explored

several approaches.9 One technique is to provide

sufficient support through libraries, examples,

and applications to allow students to work with

a particular concept. For example, some univer-

sities use predeveloped games to teach students

introductory concepts, such as loops and arrays.

By using an existing game framework and sets

of libraries, students can experiment by changing

the game application and library calls through a

process of trial and error, creating deeper under-

standing of the subject matter.

Another approach is to use commonly

played, well-understood games, such as tic-tac-

toe, hangman, and other favorites, as a means

of understanding state, abstraction, and event

handling. Some institutions use commercial

and open-source frameworks, such as Adobe

Flash, Adobe Director, Microsoft XNA, and

YoYo Games GameMaker as playgrounds for

teaching introductory programming concepts

in interactive environments. Some approaches

even use simple 2D game projects, such as Aste-

roids and Tetris, to illustrate introductory pro-

gramming examples.

Another technique is to use game concepts ei-

ther in a second-semester or second-year course

as a way to ground critical concepts learned in

prior work. This approach can be implemented

in conjunction with game experiences from the

first year, or as a standalone follow-up to an in-

troductory course. For example, some programs

use the downstream courses as a way to ground

introductory material while teaching newmate-

rial in areas such as interface control, artificial

intelligence, animation, collision detection, me-

chanics, and finite state machines. Some teach-

ers use strategy and puzzle games, such as

Scrabble, Othello, and Connect Four, in the sec-

ond semester as a way to help students learn

data structures such as stacks, queues, and trees.

Still another approach is to have students

program in a rich, interactive environment

A
p
ril!

Ju
n
e
2
0
0
9

7

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on December 20, 2009 at 19:03 from IEEE Xplore. Restrictions apply.

that is similar to what would be experienced in

commercial game development, with appropriate

attention given to level of detail, interaction

clues, and task contextualization. An excellent

example of one such environment is Karel the

Robot, a project designed to allow students to

build functions to control movements and add

complexity by reusing behaviors.10 The Karel

project gives students the ability not only to

design relatively complex behaviors in a

short period, but also to make changes to the

robot’s programming to observe the results.

Another rich, interactive environment is the

Alice project, which is designed to allow stu-

dents to explore introductory programming.11

In the Alice project, students create Java objects

using a visual interface, selecting language con-

structs from graphical menus that help mini-

mize syntactical errors. Students don’t have to

understand 3D mathematical principles to pro-

gram graphically rich applications in the Alice

system. Instead, students can concentrate on

the thinking skills that are critical for program-

ming and logic implementation.

In a similar manner, the Rapunsel project

provides introductory programmers with a

microworld that gradually introduces them to

computing principles.12 Rapunsel is designed

so that students can make mistakes. Instead of

causing critical errors, however, these mistakes

can be leveraged into valuable learning experi-

ences that help foster student empowerment

and self-management. The Rapunsel project

specifically addresses gender differences in pro-

gramming education and tailors experiences to

help engage female students.

Conclusion
We believe that for today’s student consid-

ering a career in computing, video game de-

velopment can provide a compelling learning

framework that helps refine computer science

skills through tangible experiences. Video

games provide concrete, real-world examples

of computing that extend beyond operating sys-

tems and other such intangibles, intersecting

with both the academic field and the general

public. When properly handled by instructors,

video games can give entering students a solid

framework for relating their studies socially to

their peers and for grounding their intellectual

curiosity in the functional rather than the ab-

stract. In our next article, which will appear in

the July!September issue of MultiMedia, we

plan to explore the educational models associ-

ated with these observations and provide an

assessment of the effectiveness of our approach

to a games-based curricula. MM

References

1. S. Zweben, ‘‘2006-2007 Taulbee Survey: Record

Ph.D. Production Exceeds 1,700; Undergraduate

Enrollment Trends Still Unclear,’’ Computing Re-

search News, vol. 20, no. 3, 2008.

2. B. Bloom et al., Taxonomy of Educational Objec-

tives: The Classification of Educational Goals:

Cognitive Domain, Longman, 1956.

3. D. Krathwohl et al., Taxonomy of Educational

Objectives: The Classification of Educational Goals:

Affective Domain, McKay, 1964.

4. J.G. Brooks and M.G. Brooks, In Search of Under-

standing: The Case for Constructivist Classrooms,

Assoc. for Supervision and Curriculum Develop-

ment, 1999, p. 136.

5. V. Ramalingam et al., ‘‘Self-Efficacy and Mental

Models in Learning to Program,’’ Proc. 9th Ann.

Conf. Innovation and Technology in Computer

Science Education, ACM Press, 2004, pp. 171-175.

6. Joint Task Force on Computing Curricula, Comput-

ing Curricula Final Report: Computer Science, 2001;

http://www.computer.org/portal/cms_docs_ieeecs/

ieeecs/education/cc2001/cc2001.pdf.

7. P. Ventura, On the Origins of Programmers: Identi-

fying Predictors of Success for an Objects-First CS1,

doctoral Dissertation, Computer Science and

Engineering, University at Buffalo, SUNY, 2004.

8. K.B. Bruce, ‘‘Controversy on How to Teach CS 1:

A Discussion on the SIGCSE-Members Mailing List,’’

SIGCSE Bulletin, vol. 36, no. 4, 2004, pp. 29-34.

9. Proc. 3rd Int’l Conf. Game Development in Com-

puter Science Education, ACM Press, 2008.

10. R. Pattis, Karel the Robot: A Gentle Introduction to

the Art of Programming with Pascal, John Wiley

and Sons, 1981.

11. S. Cooper et al., ‘‘Teaching Objects-First in Intro-

ductory Computer Science,’’ Proc. 34th SIGCSE

Technical Symp. Computer Science Education, ACM

Press, 2003, pp. 191-195.

12. M. Flanagan et al., ‘‘Values at Play: Design Trade-

offs in Socially-Oriented Game Design,’’ Proc.

SIGCHI Conf. Human Factors in Computing Systems,

ACM Press, 2005, pp. 751-760.

Contact author Andrew M. Phelps at andy@

mail.rit.edu.

Contact editor William I. Grosky at wgrosky@

umich.edu.IE
E
E
M
u
lt
iM

e
d
ia

8

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on December 20, 2009 at 19:03 from IEEE Xplore. Restrictions apply.

