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Abstract

We provide an overview and synthesis of the literatures analyzing games in which players are con-
nected via a network structure. We discuss, in particular, the impact of the structure of the network
on individuals’ behaviors. We focus on game theoretic modeling, but also include some discussion of
analyses of peer effects, as well as applications to diffusion, employment, crime, industrial organization,
and education.

Keywords: Network games, Social networks, Games on networks, Graphical games, Games with incom-
plete information, Peer effects

JEL Codes: A14, C72, D85

3.1. INTRODUCTION ANDOVERVIEW

Social networks are important in many facets of our lives. Most decisions that people
make, from which products to buy to whom to vote for, are influenced by the choices of
their friends and acquaintances. For example, the decision of an individual of whether to
adopt a new technology, attend a meeting, commit a crime, find a job is often influenced
by the choices of his or her friends and acquaintances (be they social or professional). The
emerging empirical evidence on these issues motivates the theoretical study of network
effects.

Here, we provide an overview of literatures on the analysis of the interaction of
individuals who are connected via a network and whose behaviors are influenced by
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those around them.1 Such interactions are natural ones to model using game theory, as
the payoffs that an individual receives from various choices depends on the behaviors of
his or her neighbors.

This particular view of games on networks, where an agent chooses an action and
then the payoffs of each player is determined by those of his or her neighbors is a
special perspective, but one that applies to many different contexts including the peer
effects mentioned above. There are also other applications that involve strategic decision
making and networks of relationships, such as exchange or trade on networks (networked
markets). These sorts of analyses tend to be much more particular in their structure
(e.g., following a specific bargaining protocol or timing on interactions) whereas there
are many things that can be said about games on networks in the more basic context.
We very briefly discuss other settings, but our focus is on the canonical case.

Of course, one can view these settings as special cases of game theory more generally,
and so some results from the general literature directly apply: for example, existence of
various forms of equilibria can be deduced from standard results. The interest, therefore,
is instead in whether there is anything we can deduce that holds systematically regarding
how play in a game depends on the network structure of interactions. For example, if
individuals only wish to buy a new product if a sufficient fraction of their friends do, can
we say something about how segregation patterns in the network of friendships affects
the purchase of the product? Can we say anything about who is the most influential
individual in a network where people look to their peers in choosing an effort level
in education? Thus, our discussion of the literature focuses on investigations relating
network characteristics to behavior.

The main challenge that is faced in studying strategic interaction in social settings is
the inherent complexity of networks.Without focusing in on specific structures in terms
of the games, it is hard to draw any conclusions. The literature has primarily taken three
approaches to this challenge, and these form the basis for our discussion. One involves
looking at games of strategic complements and strategic substitutes,where the interaction

1 As game theoretic models of network formation have been surveyed extensively elsewhere (see, e.g., De
Martí Beltran and Zenou, 2011; Goyal, 2007; Jackson, 2003, 2004, 2005b, 2008a, 2011), we concentrate
here on games on networks. We also do not survey the literature on communication structures in
cooperative games. This is another large literature, following Myerson (1977) that has been surveyed
elsewhere (see Slikker and van den Nouweland, 2001, for the graph-based literature and Jackson, 2005a,
2008a, for the allocation rule literature and allocation rules). There is also a large literature on agent-based
models including networked interactions (e.g., see Tesfatsion, 2006, for some references) that is already
surveyed elsewhere, and not included here. Exploiting the growing capabilities of computers, agent-based
methods have been used to analyze dynamic systems of interacting agents in cases where the network is
fixed (see Wilhite, 2006) as well as where the relationships are endogenous (Vriend, 2006). Finally, the
games on networks literature has informed the recent empirical literature incorporating network analyses
into studies of peer effects and behavior (see Jackson, Rogers and Zenou, 2014, and Jackson, 2014, for
surveys).
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in payoffs between players satisfies some natural and useful monotonicity properties.
With strategic complementarities, a player’s incentives to take an action (or a “higher”
action) are increasing in the number of his or her friends who take the (higher) action;
and with strategic substitutes the opposite incentives are in place. We show that the
monotonicity properties of these structured interactions have allowed the literature to
deduce a number of results related to equilibrium behavior as well as dynamics, and
how those depend on network structure. A second approach relies on looking at a
quite tractable “linear-quadratic” setting where agents choose a continuous level of
activity. That simple parametric specification permits an explicit solution for equilibrium
behavior as a function of a network, and thus leads to interesting comparative statics and
other results that are useful in empirical work. A third approach considers settings with
an uncertain pattern of interactions, where players make choices (such as learning a
language) without being certain about with whom they will interact. The uncertainty
actually simplifies the problem since behavior depends on anticipated rates of interaction,
rather than complex realizations of interactions. Together all of these various approaches
and models make a number of predictions about behavior, relating levels of actions to
network density, relating players’ behaviors to their position in the network, and relating
behavior to things like the degree distribution and cost of taking given actions. The
theory thus makes predictions both about how a player’s behavior relates to his/her
position in a network, as well as what overall behavior patterns to expect as a function
of the network structure.

3.2. BACKGROUND DEFINITIONS

We begin with a class of canonical and widely applicable games; specifically, games where
there is a fixed and given network of interactions. Links indicate which players’ strategies
affect which others’ payoffs. In particular, a given player’s payoff depends only on the
play of his or her neighbors. Of course, this results in indirect network effects since there
may be chains of influence.

We provide some basic definitions of games on networks.2

3.2.1 Players and networks
We consider a finite set of players N = {1, . . . , n} who are connected in a network.

A network (or graph) is a pair (N ,g), where g is a network on the set of nodes N .
These represent the interaction structure in the game, indicating the other players whose
actions impact a given player’s payoff.

2 We provide terse definitions here. For a reader new to these definitions, Chapter 2 in Jackson (2008a)
provides more discussion and background.
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We abuse notation and let g denote the two standard ways in which networks are
represented: by their adjacency matrices as well as by listing the pairs of nodes that are
connected. Thus, g will sometimes be an n× n adjacency matrix, with entry gij in {0, 1}
denoting whether i is linked to j and can also include the intensity of that relationship
(in which case g takes on more general real values). At other times g denotes the set
of all relationships that are present, and so we use notation ij ∈ g to indicate that i is
linked to j.

A network is undirected if g is required to be symmetric so that relationships are
necessarily reciprocal and gij = gji for all i and j, and is directed if relationships can be
unidirectional.

A relationship between two nodes i and j, represented by ij ∈ g, is referred to as
a link. Links are also referred to as edges or ties in various parts of the literature; and
sometimes also directed links, directed edges, or arcs in the specific case of a directed
network. Shorthand notations for the network obtained by adding or deleting a link ij
to or from an existing network g are g + ij and g − ij, respectively.

A walk in a network (N ,g) refers to a sequence of nodes, i1, i2, i3, . . . , iK−1, iK such
that ikik+1 ∈ g for each k from 1 to K − 1.3 The length of the walk is the number of
links in it, or K − 1.

A path in a network (N ,g) is a walk in (N ,g), i1, i2, i3, . . . , iK−1, iK , such that all
the nodes are distinct.

A cycle in a network (N ,g) is a walk in (N ,g), i1, i2, i3, . . . , iK−1, iK , such that
i1 = iK .

A network (N ,g) is connected if there is a path in (N ,g) between every pair of nodes
i and j.4

A component of a network (N ,g) is a subnetwork (N ′,g′) (so N ′ ⊂ N and g′ ⊂ g)
such that
• there is a path in g′ from every node i ∈ N ′ to every other node j ∈ N ′, j �= i,
• i ∈ N ′ and ij ∈ g implies j ∈ N ′ and ij ∈ g′.

Thus, a component of a network is a maximal connected subnetwork with all
adjacent links, so that and there is no way of expanding the set of nodes in the subnetwork
and still having it be connected.

The distance between two nodes in the same component of a network is the length
of a shortest path (also known as a geodesic) between them.

3 Standard definitions of walks, paths, and cycles specify them as sets of nodes together with sets of links. The
definitions here simplify notation, and for the purposes of this chapter the difference is inconsequential.

4 Each of these definitions has an analog for directed networks, simply viewing the pairs as directed links
and then having the name directed walk, directed path, and directed cycle. In defining connectedness for
a directed network one often uses a strong definition requiring a directed path from each node to every
other node.
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The neighbors of a node i in a network (N ,g) are denoted by Ni(g). As we
predominantly discuss settings where N is fixed, we omit dependence on the set of
nodes N , and so write Ni(g) rather than Ni(N ,g). Thus,

Ni(g) = {j|ij ∈ g}
The degree of a node i in a network (N ,g) is the number of neighbors that i has in

the network, so that di(g) = |Ni(g)|.5
The kth power gk = g × (k times). . . g of the adjacency matrix g keeps track of indirect

connections in g. More precisely, the coefficient g[k]ij in the (i, j) cell of gk gives the
number of walks of length k in g between i and j.

An independent set relative to a network (N , g) is a subset of nodes A ⊂ N for which
no two nodes are adjacent (i.e., linked). A is a maximal independent set if there does not
exist another independent, set A′ �= A, such that A ⊂ A′ ⊂ N . A dominating set relative
to a network (N , g) is a subset of nodes A ⊂ N such that every node not in A is linked
to at least one member of A. For example, the central node in a star forms a dominating
set and also a maximal independent set, while each peripheral node is an independent set
and the set of all peripheral nodes is a maximal independent set. Any set including the
central node and some peripheral nodes is a dominating set, but not an independent set.

Let G(N) be the set of networks on the nodes N under consideration, which will
often be the set of simple6 networks unless otherwise stated.

3.2.2 Games on networks
Players in N have action spaces Ai. Let A = A1 × · · ·An. In most of our discussion, the
action spaces are finite sets or subsets of a Euclidean space.

Player i’s payoff function is denoted ui : A×G(N) → R.
Unless otherwise indicated equilibrium refers to a pure strategy Nash equilibrium7: a

profile of actions a ∈ A = A1 × · · ·An, such that

ui(ai, a−i,g) ≥ ui(a
′
i , a−i,g)

for all i and a′i ∈ Ai.

5 Unless otherwise stated, let us suppose that gii = 0, so that nodes are not linked to themselves.
6 Simple networks are undirected, unweighted and with at most one link between any pair of nodes.
7 Mixed strategy equilibria also exist in such settings, but in many cases might be less applicable. While
often modeled as a simultaneous game, many applications of games on networks are ones in which
players are able to adjust their actions over time (e.g., changing technologies). In many (but not all)
such games mixed strategy equilibria are unstable and so would be less likely to apply well. In addition,
mixed strategy equilibria in such settings can be very difficult to characterize. For instance in games of
strategic complements, there can exist many mixed strategy equilibria that are computationally infeasible
to find and catalog, whereas extremal equilibria, which are pure strategy equilibria, are very easy
to find.
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A given player’s payoff depends on other players’ actions, but only on those to whom
the player is linked in the network. In fact, without loss of generality the network can be
taken to indicate the payoff interactions in the society. More formally, i’s payoff depends
only on ai and {aj}j∈Ni(g), so that for any i, ai, and g:

ui(ai, a−i,g) = ui(ai, a
′−i,g),

whenever aj = a′
j for all j ∈ Ni(g).

To fix ideas, let us consider a couple of examples.

Example 3.1. The Majority Game.8

Players’ action spaces are Ai = {0, 1}. This covers applications where a player can
choose to either do something or not to, for instance, buying a product, attending a
party, and so forth. In this particular game, if more than one half of i’s neighbors choose
action 1, then it is best for player i to choose 1, and if fewer than one half of i’s neighbors
choose action 1 then it is best for player i to choose action 0.

Specifically, the payoff to a player from taking action 1 compared to action 0 depends
on the fraction of neighbors who choose action 1, such that

ui(1, aNi(g)) > ui(0, aNi(g)) if

∑
j∈Ni(g) aj

|Ni(g)| >
1
2

and

ui(1, aNi(g)) < ui(0, aNi(g)) if

∑
j∈Ni(g) aj

|Ni(g)| <
1

2
.

There are clearly multiple equilibria in this game. For example, all players taking action
0 (or 1) is an equilibrium. Figure 3.1 displays another equilibrium of the majority game.

Example 3.2. “Best-Shot” Public Goods Games

Another canonical example of a game on a network is based on what are known as
“best-shot” public goods games (see Hirshleifer, 1983). For instance, the action might
be learning how to do something, where that information is easily communicated; or
buying a book or other product that is easily lent from one player to another. Taking
the action 1 is costly and if any of a player’s neighbors takes the action then the player is
better off not taking the action; but, taking the action and paying the cost is better than
having nobody in a player’s neighborhood take the action.

8 This game has been studied extensively in physics (see, e.g., Conway’s “game of life”) and in various agent-
based models that followed, such as the “voter model” (see, e.g., Clifford and Sudbury, 1973; Holley and
Liggett, 1975).
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Figure 3.1 An equilibrium in the majority game.

ui(a,g) =
⎧⎨⎩

1 − c if ai = 1,
1 if ai = 0, aj = 1 for some j ∈ Ni(g)

0 if ai = 0, aj = 0 for all j ∈ Ni(g),

where 1 > c > 0. So, a player would prefer that a neighbor take the action than having
to do it himself or herself, but will take the action if no neighbors do.

There are many possible equilibria in the best-shot public goods game and Figure 3.2
displays one of them. Interestingly, the equilibria in this game correspond exactly to
having the set of players who choose action 1 form a maximal independent set of nodes in
the network (as noted by Bramoullé and Kranton (2007a)); that is, a maximal set of nodes
that have no links to each other in the network. In Figure 3.2, it is clear that nobodywants
to deviate from their Nash equilibrium actions. Take, for example, the central player who
chooses action 1. His/her utility is 1 − c. Since all his/her neighbors choose action 0,
deviating by choosing action 0 would give him/her a utility of 0 < 1 − c. Similarly,
for each player who chooses action 0, his/her utility is 1 since at least one of his/her
neighbors choose action 1. Choosing action 1 would give him/her 1 − c < 1.
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Figure 3.2 An equilibrium in the best-shot public good game, and a maximal independent set.
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3.3. STRATEGIC COMPLEMENTS AND STRATEGIC SUBSTITUTES

Although there are many forms that games on networks can take, there are two
prominent and broadly encompassing classes of games. In fact, the two previous examples
are typical members of these two classes of games. The distinction between these types of
games relates to whether a given player’s relative payoff to taking an action versus not is
increasing or decreasing in the set of neighbors who take the action. To see the nature of
the distinction, let us take the actions in the games to be well-ordered, such as a subset
of the real line (or more generally a lattice, as detailed shortly). The first class of examples,
of which coordination games are the canonical example, are games of strategic complements.
In games of strategic complements, an increase in the actions of other players leads a
given player’s higher actions to have relatively higher payoffs compared to that player’s
lower actions. Examples of such games include things like the adoption of a technology,
human capital decisions, criminal efforts, smoking behaviors, etc. Games of strategic
substitutes are such that the opposite is true: an increase in other players’ actions leads
to relatively lower payoffs to higher actions of a given player. Applications of strategic
substitutes include, for example, local public good provision and information gathering.

3.3.1 Defining strategic complements and substitutes
Let us take Ai (the action space) to be a complete lattice with an associated partial
order ≥i, for each i.9 Then it is easy to see that A is also complete lattice, if we define
a ≥ a′ if and only if ai ≥ a′i for every i, and where for any S ⊂ A we define inf (S) =
(inf i{ai : a ∈ S})i and sup(S) = (supi{ai : a ∈ S})i.

A game exhibits strategic complements if it exhibits increasing differences; that is, for all i,
ai ≥i a′i and a−i ≥−i a′−i:

ui(ai, a−i,g) − ui(a
′
i , a−i,g) ≥ ui(ai, a

′−i,g) − ui(a
′
i, a

′−i,g).

A game exhibits strategic substitutes if it exhibits decreasing differences; that is, for all i, j,
with i �= j, ai ≥i a′i and a−i ≥−i a′−i:

ui(ai, a−i,g) − ui(a
′
i , a−i,g) ≤ ui(ai, a

′−i,g) − ui(a
′
i, a

′−i,g).

These notions are said to apply strictly if the inequalities above are strict whenever
ai >i a′i and a−i ≥−i a′−i with aj >j a′j for some j ∈ Ni(g).

The majority game (Example 3.1) is one of strategic complements while the best-
shot public goods game (Example 3.2) is one of strategic substitutes.

9 Let ≥i be a partial order on a (nonempty) set Ai (so ≥i is reflexive, transitive and antisymmetric). (Ai,≥i)

is a lattice if any two elements ai and a′i have a least upper bound (supremum for i, supi, such that
supi(ai, a

′
i) ≥ ai and supi(ai, a

′
i) ≥ a′i), and a greatest lower bound (infimum for i, such that inf i(ai, a

′
i) ≤ ai

and inf i(ai, a
′
i) ≤ a′i), in the set. A lattice (Ai,≥i) is complete if every nonempty subset of Ai has a supremum

and an infimum in Ai.
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3.3.2 Existence of equilibrium
3.3.2.1 Games of strategic complements
Beyond capturing many applications, games of strategic complements are well-behaved
in a variety of ways. Not only do equilibria generally exist, but they form a lattice so
that they are well-ordered and there are easy algorithms for finding the maximal and
minimal equilibria.

Theorem 3.1. Consider a game of strategic complements such that:
• for every player i, and specification of strategies of the other players, a−i ∈ A−i, player i has a

nonempty set of best responses BRi(a−i) that is a closed sublattice of the complete lattice Ai,10
and

• for every player i, if a′−i ≥ a−i, then supi BRi(a
′−i) ≥i supi BRi(a−i) and inf i BRi(a

′−i)≥i inf i BRi(a−i).
An equilibrium exists and the set of equilibria form a (nonempty) complete lattice.11

Variations on this theorem can be found in Topkis (1979) and Zhou (1994), and for
arbitrary sets of players in Acemoglu and Jackson (2011).

In games of strategic complements such that the set of actions is finite, or compact
and payoffs are continuous, the conditions of the theorem apply and there exists an
equilibrium. Note that the equilibria exist in pure strategies, directly in terms of the
actions A without requiring any additional randomizations. The same is not true for
games of strategic substitutes.

Finding maximal and minimal equilibria in a game of strategic complements is then
quite easy. Let us describe an algorithm for the case where A is finite. Begin with
all players playing the maximal action a0 = a. Let a1i = supi(BRi(a

0−i)) for each i and,
iteratively, let aki = supi

(
BRi

(
ak−1
−i

))
. It follows that a point such that ak = ak−1 is the

maximal equilibrium point, and given the finite set of strategies this must occur in a
finite number of iterations. Analogously, starting from the minimal action and iterating
upward, one can find the minimal equilibrium point.12

This also means that dynamics that iterate on best response dynamics will generally
converge to equilibrium points in such games (e.g., see Milgrom and Roberts, 1990).

10 Closure requires that supi(BRi(a−i)) ∈ BRi(a−i) and inf i(BRi(a−i)) ∈ BRi(a−i)).
11 The set of equilibria is not necessarily a sublattice of A (see Topkis, 1979; Zhou, 1994). That is, the

sup in A of a set of equilibria may not be an equilibrium, and so sup and inf have to be restricted
to the set of equilibria to ensure that the set is a complete lattice, but the same partial order can
be used.

12 Calvó-Armengol and Jackson (2004, 2007) use this technique to calculate the maximal equilibrium in
their dynamic game with strategic complementarities. They propose an application of this game by
looking at labor-market networks and showing that investing in human capital depends on having access
to job information.
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3.3.2.2 Games of strategic substitutes and other games on networks
Moving beyond games of strategic complements, existence of equilibria and the structure
of the set are no longer so nicely behaved.

Existence of equilibria can be guaranteed along standard lines: for instance equilibria
exist if Ai is a nonempty, compact, and convex subset of a Euclidean space and ui is
continuous and quasi-concave for every i. This covers the canonical case where Ai are
the mixed strategies associated with an underlying finite set of pure actions and ui is the
expected payoff and hence quasi-concave. Nonetheless, this means that pure strategy
equilibria may not exist unless the game has some specific structure (and we discuss
some such cases below).

In addition, with the lack of lattice structure, best responses are no longer so nicely
ordered and equilibria in many network games can be more difficult to find.13

Nonetheless, some games of strategic substitutes on networks still have many
important applications and are tractable in some cases. For example, consider the best-
shot public goods game discussed above (Example 3.2). As we showed above, best-shot
public goods games on a network always have pure strategy equilibria, and in fact
those equilibria are the situations where the players who take action 1 form a maximal
independent set.

Finding all of the maximal independent sets is computationally intensive, but finding
one such set is easy. Here is an algorithm that finds an equilibrium.14 At a given step k, the
algorithm lists a set of the providers of the public good (the independent set of nodes),
Pk, and a set of non-providers of the public good (who will not be in the eventual
maximal independent set of nodes), NPk, where the eventual maximal independent set
will be the final Pk. In terms of finding an equilibrium to the best-shot game, the final
Pk is the list of players who take action 1, and the final NPk is the set of players who
take action 0.
Step 1: Pick some node i and let P1 = {i} and NP1 = Ni(g).
Step k: Iterate by picking one of the players j who is not yet assigned to sets Pk−1 or

NPk−1. Let Pk = Pk−1 ∪ {j} and NPk = NPk−1 ∪Nj(g).15

End: Stop when Pk ∪ NPk = N .
More generally, one might ask the question of whether it is possible to find the “best”

equilibrium in the best-shot game. Given that in every equilibrium all players get a payoff
of either 1 or 1 − c, minimizing the number of players who pay the cost c would be one

13 For results on the complexity of finding equilibria in games on networks beyond the strategic
complements and strategic substitutes cases see, for example, Kearns et al. (2001), Kakade et al. (2004),
Daskalakis et al. (2009), and Papadimitriou and Roughgarden (2008).

14 This is from Jackson (2008a, pp. 304-306), based on an obvious algorithm for finding a maximal
independent set.

15 Note that this is well-defined, since no neighbors of j can be in Pk−1 as otherwise j would have been in
NPk−1.
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metric via which to rank equilibria. As discussed by Dall’Asta et al. (2011), finding such
equilibria can be difficult but finding them (approximately) through an intuitive class of
mechanisms that tradeoff accuracy against speed is possible.16

There are other games of strategic substitutes where at least some equilibria are also
easy to find.

Example 3.3. A “Weakest-Link” Public Goods Game

Another example of a local-public goods game on a network is based on what are
known as “weakest-link” public goods games (see Hirshleifer, 1983).17

Here each player chooses some level of public good contribution (so Ai = R+) and
the payoff to a player is theminimum action taken by any player in his or her neighborhood
(in contrast to the maximum, as in the best-shot game). In particular,

ui(ai, aNi(g)) = min
j∈Ni(g)∪{i}

{
aj
} − c(ai)

where c is an increasing, convex and differentiable cost function.
If there is a smallest a∗ such that c′(a∗) ≥ 1, and each player has at least one neighbor

in the network g, then any profile of actions where every player chooses the same
contribution ai = a∗ is an equilibrium of this game. Note that in a network in which
every player has at least one neighbor, everyone playing ai = 0 is also an equilibrium
(or any common a ≤ a∗), and so the game will have multiple equilibria when it is
nondegenerate.

3.3.2.3 Games with strategic substitutes, continuous action spaces
and linear best-replies
We have seen that equilibria in games with strategic substitutes are difficult to charac-
terize and multiple equilibria rather than unique equilibrium are the rule. If, however,
the best-reply functions are linear, then some further results can be obtained, both in
terms of characterization of equilibria and comparative statics. Bramoullé and Kranton
(2007a) and Bramoullé et al. (2014) study these type of games. In their models, players
experiment to obtain new information and benefit from their neighbors’ experimenta-
tion. Each player i selects an action ai ≥ 0, and obtains a payoff ui(a,g) that depends on
the action profile a and on the underlying network g, in the following way:

16 See also Dall’Asta et al. (2009) and Boncinelli and Pin (2012).
17 Another example is that of anticoordination games as in Bramoullé (2007).
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ui(a,g) = v

⎛⎝ai + φ

n∑
j=1

gijaj

⎞⎠ − c ai [3.1]

where v(.) is an increasing, differentiable and strictly concave function on R+ and c > 0
is the constant marginal cost of own action such that v′ (0) > c > v′ (x) for some x > 0.
As in Bramoullé and Kranton (2007a), consider the case when φ = 1. This is clearly a
game with (strict) strategic substitutes since

∂ui(a,g)

∂ai∂aj
= v′′

⎛⎝ai + n∑
j=1

gijaj

⎞⎠ < 0

Denote by a∗ the action level of a player who experiments by him/herself, i.e. a∗ =
v′−1 (c). Then, the best-reply function, for each individual i, i’s best response to a−i is
linear and given by:

a∗i =
{
a∗ − ∑n

j=1 gijaj if a
∗ >

∑n
j=1 gijaj

0 if a∗ ≤ ∑n
j=1 gijaj

We can distinguish between two types of equilibria. An action profile a is specialized
if players actions are such that ai = 0 or ai = a∗ for every i. A player for which ai = a∗
is a “specialist.” An action profile a is distributed when all players choose a positive action
less than the individually optimal action level: 0 < ai < a∗, ∀i ∈ N . Hybrid equilibria
are other than these extremes.

Because actions are strategic substitutes, maximal independent sets are a natural
notion in this model (see Section 3.3.2.2). Indeed, in equilibrium, no two specialists
can be linked. Hence, specialized equilibria are characterized by this structural property
of a network, i.e. the specialists are equal to a maximal independent set of the network.
A result of Bramoullé and Kranton (2007a) can be stated as follows:

Proposition 3.1. A specialized profile is a Nash equilibrium of the above game if and only if
its set of specialists is a maximal independent set of the structure g. Since for every g there exists
a maximal independent set, there always exists a specialized Nash equilibrium.

Figure 3.3 illustrates this proposition for a star-shaped network with four players.
Observe that, in a star network, there are two maximal independent sets: the one that
only includes the central player and the one that includes all peripheral players. As a result,
using Proposition 3.1, there are two specialized equilibria: (i) the center is a specialist and
provides action a∗ while peripheral players choose actions of 0 (Figure 3.3, left panel);
(ii) the center chooses action 0 while peripheral players are specialists and exert effort a∗
each (Figure 3.3, right panel).
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Figure 3.3 Equilibria in a local public good game.

Bramoullé et al. (2014) provide more results on these types of games. Denote
by μ0(g), the lowest eigenvalue of the adjacency matrix g. They show that if
φ < −1/μ0(g), there exists a unique Nash equilibrium of this game while, when
φ > −1/μ0(g), there always exists a corner equilibrium, i.e. for some player i, a∗i = 0.
In terms of comparative statics, they also show that any increase in φ or any additional
link to the network leads to an equilibrium with lower total actions. Thus, while some
players may increase their actions, the decreases dominate.

3.3.3 Two-action games on networks
The class of (complete information) games on networks where players can choose one
of two actions, so that Ai = {0, 1} for all i, is an important class of games in terms of its
applications, one that has been widely studied, and one that allows us to see some general
insights. It includes coordination games, and generally all sort of games where players
choose whether to do something (adopt a new technology, participate in something,
provide a public good effort) or not. These were called graphical games by Kearns et al.
(2001) and Kakade et al. (2004) who studied the complexity of finding equilibria in
such games.

In particular, let us concentrate on a class of such games that are referred to as “semi-
anonymous” by Jackson (2008a). These games are not fully anonymous because players
are connected in a network and only care about their neighbors’ actions, but players care
about their neighbors equally. That is, they care only about how many of their neighbors
take action 1 and how many take action 0, but not which particular neighbors choose
1 versus 0. Thus, such games are anonymous except to the extent of the interaction
patterns governed by the network. In addition, in keeping with the semi-anonymity, we
can consider payoff functions that do not depend on a player’s identity, but only on how
many neighbors that he or she has.

Such games then have some nice properties and best responses are easily described.
Letting d be a player’s degree, in the case of strategic complements there is a threshold
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t(d) such that if more than t(d) neighbors choose action 1 then the player prefers to
choose action 1, while if fewer than t(d) neighbors choose 1 then the player prefers to
choose 0. It is possible to have situations where an individual is exactly indifferent at the
threshold, although that would not occur for generic specifications of payoff functions.
Analogously, for the case of strategic substitutes, there is also a threshold, but the best re-
sponse of the player is reversed, so that he or she prefers to take action 0 if more than t(d)
neighbors take action 1, and prefers action 1 if fewer than t(d) neighbors take action 1.

The majority game (Example 3.1) is a game of strategic complements where the
threshold is d/2, whereas the best-shot public good game (Example 3.2) is a game of
strategic substitutes where the threshold is anything between 0 and 1.

3.3.3.1 Changes in behaviors as the network varies
The threshold expression of the two-action semi-anonymous games on networks allows
us to easily deduce a few useful comparative statics.

For example, as discussed by Galeotti et al. (2010),18 it is easy to see that in games of
complements where the threshold is nonincreasing in degree, adding links will lead to
(weakly) higher actions as players will have higher numbers of neighbors taking action 1.

Proposition 3.2. Consider a semi-anonymous two-action game of strategic complements on a
network (N ,g) and such that the threshold for taking action 1 is nonincreasing as a function of
degree (so that t(d + 1) ≤ t(d) for each d). If g′ is obtained by adding links to the network g (so
that g ⊂ g′), then for any equilibrium a under g, there exists an equilibrium a′ under g′ such
that a′ ≥ a, so that all players play at least as high an action under a′ as under a.

The case of strategic substitutes does not lead to the same clear-cut conclusions
since adding links can change the structure of payoffs in unpredictable ways. Decreasing
actions for some players can lead to increasing actions for others in the case of strategic
substitutes, and so changing network structure leads to more complex changes in
behavior (see Figure 2 in Galeotti et al., 2010, for an illustration of this, and Jackson,
2008a, for additional examples and results).

The comparative statics in equilibrium behavior become clearer in games with
incomplete information, as detailed in Section 3.5.

3.3.3.2 Coordination games
Perhaps one of the most important and extensively studied classes of games of strategic
complements on networks are coordination games. It is an important class of games
because of its many applications: including the choice of a language, a technology,
whether to buy a new product, adopt a particular behavior, and so forth; when there are
complementarities in actions between friends or acquaintances.

18 See the working paper version, or Jackson (2008a) for details.



110 Handbook of game theory

The majority game is an example of this class, but more generally the threshold for
wanting to match one’s neighbors may differ from 50%, depending both on the payoff
to matching versus failing to match one’s neighbors. A standard representation of such a
game would be as follows (normalizing the payoff to action 0 to zero and then keeping
track of the difference in payoffs):

1 0
1 (b, b) (−c, 0)
0 (0,−c) (0, 0)

where b and c are both strictly positive. Thus, coordinating on action 1 is overall better
for society, but involves some risk from miscoordination −c. A player has to choose
either 0 or 1 and then matches against each neighbor. Here there is a threshold fraction
q = c

c+b such that action 1 is a best response for a given player if and only if at least
a fraction q of the player’s neighbors choose 1. This fraction is the same for all players
independent of their degrees. Thus, this is a game of strategic complements where the
threshold in terms of numbers of neighbors of degree d is simply qd.

Here the Pareto efficient equilibrium (and sometimes referred to as the payoff
dominant equilibrium) is for all players to play action 1. However, reaching this play
will depend on what players expect their neighbors to play. In setting where q > 1/2
(so c > b), then the equilibrium in which players both play action 0 is said to be the “risk
dominant” equilibrium (as named by Harsanyi and Selten, 1988), in the sense that if a
player had a uniform prior over other players’ plays—so an equal chance of each other
player playing 0 or 1, then action 0 would be the best expected payoff maximizing choice
for the player. In a case where q < 1/2, then the equilibrium in which both players play
action 1 is both risk dominant and payoff dominant (Pareto efficient).

We know from Theorem 3.1 that the set of equilibria form a lattice, and here
the maximum equilibrium is where all players choose action 1 while the minimum
equilibrium is where all players choose action 0.

What else can we deduce about the set of equilibria? Do there exist equilibria where
some players choose 1 and others choose 0? What happens if we start with some small
initial seed of players choosing 1 and others choosing 0, and then iterate on best replies?
Morris (2000) provides some answers to these questions.19

If we let S be the set of players who play action 1 in an equilibrium, then it is clear
that each player in S must have at least a fraction q of his/her neighbors in the set S,
and also each player outside of S must a fraction of no more than q of his/her neighbors
in S, or equivalently has a fraction of at least 1 − q of his/her neighbors outside of S.

19 The analysis here follows Jackson’s (2008a) adaptation of Morris’s results to a finite population setting.
See also Ellison (1993) and Blume (1993) for some related analyses.
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To capture this, given 1 ≥ r ≥ 0, Morris (2000) defined the set of nodes S to be
r-cohesive with respect to a network (N ,g) if each node in S has at least a fraction r of
its neighbors in S. That is, S is r-cohesive relative to g if

min
i∈S

|Ni(g) ∩ S|
di(g)

≥ r, [3.2]

where 0/0 is set to 1.
The cohesiveness of a given set S relative to a network (N ,g) is then the maximum r

such that S is r-cohesive. The following proposition of Morris (2000) follows directly:

Proposition 3.3. Consider a network (N ,g) and a coordination game as described above.
There exists an equilibrium where action 1 is played by S ⊂ N and action 0 by N\S if and only
if S is q-cohesive and such that its complement N\S is (1 − q)-cohesive.

Cohesiveness provides enough of a “separation” in a network for different behaviors
to exist on different parts of a network.

With this proposition as background, it is then easy to see how behavior might spread
in a network. In particular, start from a network (N ,g)with all players choosing action 0.
Next, “infect” a set of players by switching them to play action 1 (and they can never
switch back). Next, let players (other than the initially infected) best respond to the
current actions of their neighbors, switching players to action 1 if their payoffs are at least
as good with action 1 as with action 0 against the actions of the other players. Repeat this
process starting from the new actions, and stop at a stage where no new players change to
action 1. If there is some set of players S whose initial infection leads to all players taking
action 1 under the best response dynamics, then we say that there is a contagion from S.

Define a set S to be uniformly no more than r-cohesive if there is no nonempty subset
of S that is more than r-cohesive. We then can deduce the following proposition.

Proposition 3.4. Consider a network (N ,g) and a coordination game as described above.
Contagion from the set S occurs if and only if its complement is uniformly no more than (1 − q)-
cohesive.

The proof of this proposition is straightforward: If the complement of S has a subset
S′ that is more than (1 − q)-cohesive, then S′ will all play 0 under the process above,
at every step. Thus, it is necessary for the complement to be uniformly no more than
(1 − q)-cohesive in order to have contagion to all remaining players outside of S. To
see that this condition is also sufficient, note that if the complement is uniformly no
more than (1 − q)-cohesive, then the complement is no more than (1 − q)-cohesive.
This means that there must be at least one player in the complement who has at least
a fraction of q of his or her neighbors in S. So, at the first step, at least one player
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changes strategies. Subsequently, at each step, the set of players who have not yet changed
strategies is no more than (1 − q)-cohesive, and so some player must have at least q
neighbors who are playing 1 and will change. Thus, as long as some players have not yet
changed, the process will have new players changing, and so every player must eventually
change.

The cohesion conditions used in the above results can be difficult to check in a
network, but the concept is still quite useful in terms of outlining what is necessary
to maintain different behaviors in a society: one needs a sufficient schism between
(at least) two groups. This is closely related to homophily in the network, whereby a
group’s members tend to be relatively more connected to each other than with outsiders
(see e.g., Bramoullé et al., 2012; Currarini et al., 2009, 2010; Golub and Jackson,
2010, 2012a,b,c; Jackson, 2008b; Jackson and Lopez-Pintado, 2013; McPherson et al.,
2001).20

3.3.3.3 Stochastically stable play in coordination games on networks
While analyses of equilibria in complete information games on networks provide some
insights and intuitions, they often lack the randomness (and heterogeneity) that are
pervasive in many applications. In fact, in some cases adding randomness can substantially
refine the multiplicity of equilibria that exist in the complete information noiseless
setting. To see how this works, let us visit some of the literature on stochastic stability
in coordination games.

Let us consider the following variation on settings considered by Kandori et al. (1993)
and Young (1993).21 Start with (N ,g) being the complete network, so that each player
plays with all others and chooses strategy either 1 or 0 in the coordination game from
Section 3.3.3.2. Players play the game repeatedly over time. However, they are myopic: in
each period a player chooses a best reply to the play of the others in the previous period.
So far, this is similar to our analysis of the previous section except for the complete
network. Indeed, here there are two obvious trajectories of society: all playing 1 and all
playing 0 in every period. In fact, it is clear that if the starting proportion is sufficiently

20 Chwe (1999, 2000) studies related classes of games, but instead where players care not only about the
behavior of their own neighborhood, but of the collective, with an application to collective actions like
participating in a large protest or revolution. His motivation is similar, in looking at the network structure
and investigating where it is possible to sustain a collective action when players can only be sure of their
neighbors’ play and worry about a failed collective action: so they will only participate if they are sure
that some quota is exceeded. Granovetter (1978) and Schelling (1978) also provide dynamic models to
analyze such issues, but avoiding a clear linkage of outcomes to the social network structure in society. In
particular, a snowball effect might be generated only if there are initially enough activists who are willing
to participate, independently of others decisions. Once these activists start the process.

21 For more background on the origins of stochastic stability arguments in game theory, see Wallace and
Young (2014).
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different from q (at least 1/(n− 1) above or below suffices), then one of these two states
is reached after the first period, and even away from that, if q is not too close to 1/2
(at least 1/n above or below suffices), then one of the states is reached after at most two
periods.22

However, to refine the predictions of the system, let us add slight perturbations to
the choice of actions: in each period, a player’s choice is reversed (1 to 0 or 0 to 1)
with a slight probability ε > 0, and this is done independently across players. Players
still best reply to what was played in the previous period, but sometimes their chosen
action is changed by some exogenous perturbation. This dynamic process is now a
Markov chain that is irreducible and aperiodic. This process thus has very nice ergodic
properties that are easy to deduce from standard results in Markov theory. In fact, without
even relying on much of the mathematics, it is easy to see some basic properties of
this process:
• Any configuration of play is possible in any period since there is at least an ε

probability of each player playing either action in every period, given that the
perturbations are independent across players.

• If ε is sufficiently small then once the population has sufficiently more or fewer than
a fraction of q playing 1, then the next period with a high probability, all players
play 1 or all players play 0.

• Thus, the process will continue to exhibit all possible plays infinitely often over time,
but, as ε tends to 0, it will spend most of its time with all players choosing the same
action.

The important insight that emerged from Kandori et al. (1993) and Young (1993) is that
if q is not too close to 1/2 (more than 1/(n− 1) away), then, as ε tends to 0:
• if q > 1/2 + 1/(n− 1), then the fraction of periods where all players play action 0

tends to one, and
• if q < 1/2 − 1/(n− 1), then the fraction of periods where all players play action 1

tends to one.
Thus, if q is not too close to 1/2, then stochastic stability picks out the risk dominant
action: the action that is better for a player when others play uniformly at random.

The intuition behind this result is relatively straightforward. Considering that most
of the time all players choose the same action, the important determinant of the system
is how long it takes to transition from an extreme where all play 0 to the other extreme
where all play 1, and vice versa. Here q enters. If we start with all playing 0, then we need
roughly qn “perturbations” of the best replies within a single period before the system
transitions to all playing 1, and, in the reverse direction, at least (1 − q)n perturbations

22 Some starting configurations that have a fraction of players sufficiently close to q playing 1, when q is
sufficiently close to 1/2, can cycle endlessly, where two approximately equal-sized groups continue to
switch back and forth between 1 and 0, each miscoordinating with the other group over time.
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are needed. For small ε, the probabilities of this happening are effectively on the order of
εqn and ε(1−q)n, respectively. As ε tends to 0, if q < 1/2 then the first becomes infinitely
more likely than the second, and if q > 1/2 then the reverse is true.

Thus, introducing very slight trembles to a coordination game can end up making
very stark predictions in terms of the ergodic play of a society. What are some issues
with relying on this approach to make predictions about behavior? One is that as
ε tends to 0, it could take an enormous amount of time to reach a transition. For
example, suppose that q = 1/3 and we start with all players choosing 0. Even though
we know that in the “long run,” for small ε the process spends most of its time with
all players choosing 1, it could take a very long time before we leave the starting
state of everybody playing 0. In a sense, the “short run” could last a very long time
in a large society, as many very unlikely simultaneous trembles could be needed to
transition.23

The more interesting case in terms of many applications is when one turns to a
setting of less than complete networks. A first work in this direction was Ellison (1993)
who pointed out that this could have important implications for the speed of transitions
from one state to another. In particular, as shown by Ellison (1993), for example, if
players are connected in a “circle” so that each player has two adjacent neighbors (so, i’s
neighbors in the network are i− 1 and i+ 1, with the wrap-around convention that n is
connected to 1), then the transition can happen much more quickly. Instead of waiting
for n/3 perturbations when q = 1/3, if two adjacent players are perturbed, then that
is enough to spread behavior 1 to the whole society; something which is much more
likely to happen. Thus, network structures significantly affect the times to transition in
the network.

The network structure can also have profound effects on the long-run distribution
of play, as shown by Jackson and Watts (2002a,b).

Jackson and Watts (2002b) propose a model in which the interaction pattern is an
arbitrary network g. In each period t, a player i chooses an action ati ∈ {1, 0} and then
receives a payoff equals to

ui(a
t,g) =

∑
j �=i

gijvi(a
t
i , a

t
j)

where vi(ati , a
t
j) is a payoff that depends on the actions chosen. The dynamic process

is described as follows. In each period one player is chosen at random (with equal
probability across players) to update his/her strategy. A player updates his/her strategy
myopically, best responding to what the other players with whom he/she interacts did

23 Another issue is raised by Bergin and Lipman (1996)who point out that this depends on the error structure
being the same ε regardless of circumstances. If the probability of trembles is enriched arbitrarily, then
the relative probability of various transitions can be made arbitrary and the selection is lost.
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in the previous period. There is also a probability 1 > ε > 0 that a player trembles,
and chooses a strategy that he/she did not intend to. Thus, with probability 1 − ε,
the strategy chosen is ati = argmaxai ui(ai, a

t−1
−i ,g) and with probability ε the strategy is

ati �= argmaxai ui(ai, a
t−1
−i ,g). The probabilities of trembles are identical and independent

across players, strategies, and periods. Again, this is a well-defined Markov chain where
the state is the vector of actions at, that are played in period t. Since this process
is aperiodic and irreducible, the Markov chain has a unique stationary distribution,
denoted με(a).

If we consider the complete network where all players are connected to each other so
that each player has n− 1 links, then the analysis is as above from the models of Kandori
et al. (1993) and Young (1993)24 and the unique stochastically stable state is the risk-
dominant equilibrium (provided that q is not too close to 1/2).

However, instead let us consider a star network where player 1 is the at the center of
the star, connected to every other player but where other players are only connected to
player 1. Jackson and Watts (2002b) show that, in this case, there are two stochastically
stable states: one where all players play 1 and the other where all players play 0; regardless
of q. Note that now peripheral players i > n care only about what player 1 is playing, and
they update to play whatever 1 played last period when called on to update. Player 1, in
contrast, cares about what all the players are doing. Thus one tremble by player 1 can
lead from a network where all play 1 to one where all play 0. Thus starting from either
equilibrium of all play 1 or all play 0, we need only one tremble to have updating lead
naturally to the other equilibrium. As the relative number of trembles is the important
factor in determining the set of stochastically stable states, both of these states are
stochastically stable.

The important difference from the complete network setting is that regardless
of the starting condition, if the central player changes actions, that can change the
subsequent play of all other players. Thus, all playing 1 and all playing 0 are both more
“easily” destabilized, and the long-run distribution does not place all weight on just one
equilibrium.25

24 The Jackson and Watts process involves changes of players’ actions one at a time, which is easier to handle
when the network is endogenized (see Section 3.6.1), but differs from the Kandori et al. (1993) and
Young (1993) where decisions and trembles are simultaneous. That difference is largely inconsequential
when applied to a fixed network.

25 The results on this do depend on the perturbation structure. As shown by Blume (1993) and Young
(1998), if one uses a structure in which errors are exponentially proportional to the payoff loss of making
the error, then the center makes infinitely fewer errors in moving away from 1 than away from 0 when
q < 1/2 (and vice versa when q > 1/2), which can then restore the original conclusion that the risk-
dominant play is obtained. However, that then relies on some errors by individual players becoming
infinitely more likely than others, which seems implausible if errors can result from things like errors in
calculation or some unmodeled preference shock, and so forth. For more discussion of this error structure
see Wallace and Young (2014).
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This shows that network structure can influence the play of a society, even in terms
of selecting among (strict) Nash equilibria. Exactly what emerges depends on a number
of details and how the long-run play depends on the structure of the network can be
quite complex. Nonetheless, there are some clean results that emerge when one further
enriches the structure to allow players also to choose the network along with their play,
as discussed in Section 3.6.

3.4. A MODELWITH CONTINUOUS ACTIONS, QUADRATIC PAYOFFS,
AND STRATEGIC COMPLEMENTARITIES

Although models with finite numbers of actions capture many applications, there are
others that are well-approximated by continuous actions; for instance in which players
have choices of how much time or effort to exert in an activity like education or crime.
In this section, we analyze a simple model of a game with strategic complements where
the utility function is linear-quadratic. An advantage of this formulation is that it allows
for an easy characterization of equilibrium as a function of network structure.26

3.4.1 The benchmark quadratic model
Consider a game in which players decide how much time or effort to exert in some
activity, denoted ai ∈ R+. The payoff to player i as a function of the action profile and
network, ui(a,g), is given by

ui(a,g) = α ai − 1

2
a2i + φ

n∑
j=1

gijaiaj, [3.3]

where α,φ > 0. In this formulation, players are ex ante homogeneous in terms of
observable characteristics (i.e., they all have the same α,φ) and their heterogeneity stems
entirely from their position in the network. The first two terms of [3.3], α ai − 1

2a
2
i , give

the benefits and costs of providing the action level ai. The last term of this utility function,
φ
∑n

j=1 gijaiaj, reflects the strategic complementarity between friends’ and acquaintances’
actions and own action. This peer effect depends on the different locations of players
in the network g. When i and j are directly linked, i.e. gij = 1, the cross derivative is
φ > 0 and reflects strategic complementarity in efforts. When i and j are not direct friends,
i.e. gij = 0, this cross derivative is zero.

Ballester et al. (2006) have analyzed this game, determining its unique Nash
equilibrium in pure strategies (when it exists, provided that φ is not too large). The

26 The definitions of strategic complements and substitutes apply to such games exactly as before. We focus
in this section mainly on games of strategic complements due to space constraints. For more discussion
of the case of strategic substitutes, see Bramoullé et al. (2014).
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first-order necessary condition for each player i’s choice of action to maximize his or her
payoff is:

∂ui(a,g)

∂ai
= α − ai + φ

n∑
j=1

gijaj = 0,

which leads to:

a∗i = α + φ

n∑
j=1

gija
∗
j . [3.4]

In matrix form:

a∗ = α1 + φga∗
where 1 is the column vector of 1 and g is the adjacency matrix. Solving this leads to:

a∗ = α
(
I−φg

)−1
1 [3.5]

where I is the identity matrix (and provide the inverse of
(
I−φg

)
is well-defined).

3.4.1.1 Katz-Bonacich network centrality and strategic behavior
The equilibrium action profile of this quadratic model is related to a centrality measure.
Let

M
(
g,φ

) = (
I−φg

)−1 =
+∞∑
p=0

φpgp

As defined by Katz (1953) and Bonacich (1987),27 given w ∈ R
n+ and φ ≥ 0, the

vector of weighted Katz-Bonacich centralities relative to a network g is:

bw
(
g,φ

) = M
(
g,φ

)
w = (

I − φg
)−1

w =
+∞∑
p=0

φpgpw. [3.6]

In particular, when w = 1, the unweighted Katz-Bonacich centrality of node i is
b1,i(g,φ) = ∑n

j=1Mij(g,φ), and counts the total number of walks in g starting from i,
discounted exponentially by φ. It is the sum of all loops Mii(g,φ) from i to i itself, and
of all the outer walks

∑
j �=i Mij(g,φ) from i to every other player j �= i, that is:

b1,i(g,φ) = Mii(g,φ) +
∑
j �=i

Mij(g,φ).

By definition, Mii(g,φ) ≥ 1, and thus bi(g,φ) ≥ 1, with equality when φ = 0.

27 For more background and discussion of this and related definitions of centrality, see Jackson (2008a).
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3.4.1.2 Nash equilibrium
We now characterize the Nash equilibrium of the game where players choose their effort
level ai ≥ 0 simultaneously. Let μ1(g) denote the spectral radius of g.

Proposition 3.5. If φμ1(g) < 1, the game with payoffs [3.3] has a unique (and interior)
Nash equilibrium in pure strategies given by:

a∗ = α b1
(
g,φ

)
. [3.7]

This results shows that Katz-Bonacich centrality embodies the feedback calculations
that underlie equilibrium behavior when utility functions are linear-quadratic. In [3.3],
the local payoff interdependence is restricted to neighbors. In equilibrium, however,
this local payoff interdependence spreads indirectly through the network. The condition
φμ1(g) < 1 stipulates that local complementarities must be small enough compared to
own concavity, which prevents excessive feedback which can lead to the absence of a
finite equilibrium solution.

There are different ways of proving Proposition 3.5. Ballester et al. (2006) show that
the condition φμ1(g) < 1 ensures that the matrix I − φg is invertible by Theorem
III of Debreu and Herstein (1953, p. 601). Then, using [3.5], it is straightforward
to see that the optimal efforts are equal given by Katz-Bonacich centrality. Finally,
they rule out corner solutions to establish uniqueness. Since ∂ui(a,g)

∂ai
|a=0= α > 0, then

a = 0 cannot be a Nash equilibrium. It is also clear from the first-order condition
that a deviation to positive effort is profitable if only some subgroup S ⊂ N of players
provides zero effort.28 As a result, the Nash equilibrium is unique and each a∗i is
interior.

Another simple way of proving Proposition 3.5 is, as noted by Bramoullé et al.
(2014) and König (2013), is to observe that this game is a potential game (as defined
by Monderer and Shapley, 1996)29 with potential function30:

P(a,g,φ) =
n∑
i=1

ui(a,g) − φ

2

n∑
i=1

n∑
j=1

gijaiaj

28 From Theorem I of Debreu and Herstein (1953, p. 600), φμ1(g) < 1 also guarantees that I − φgS is
invertible for gS ⊂ g, where gS is the adjacency matrix for the subgroup S ⊂ N of players.

29 A game is a potential game if there is a function P : X → R such that, for each i ∈ N , for each x−i ∈ X−i,
and for each xi, zi ∈ Xi,

ui(xi, x−i) − ui(zi, x−i) = P(xi, x−i) − P(zi, x−i).

30 Here the potential P(x,g,φ) is constructed by taking the sum of all utilities, a sum that is corrected by a
term which takes into account the network externalities exerted by each player i.



Games on networks 119

=
n∑
i=1

α ai − 1

2

n∑
i=1

a2i + φ

2

n∑
i=1

n∑
j=1

gijaiaj,

or in matrix form:

P(a,g,φ) = αa�1−1

2
a�a + a� φ

2
ga

= αa�1−1
2
a� (

I−φg
)
a.

It is well-known (see, e.g., Monderer and Shapley, 1996) that solutions of the program
maxa P(a,g,φ) are a subset of the set of Nash equilibria.31 This program has a unique
interior solution if the potential function P(a,g,φ) is strictly concave on the relevant
domain. The Hessian matrix of P(a,g,φ) is easily computed to be − (

I−φg
)
. The

matrix I−φg is positive definite if for all non-zero a:

a� (
I−φg

)
a > 0 ⇔ φ <

(
a�ga
a�a

)−1

.

By the Rayleigh-Ritz theorem, we have μ1(g) = supa�=0

(
a�ga
a�a

)
. Thus, a necessary and

sufficient condition for having a strict concave potential is that φμ1(g) < 1, as stated in
Proposition 3.5.

To illustrate the results and to describe a social multiplier, let us consider the case of a
dyad, i.e. n = 2. In that case, the utility [3.3] can be written as:

ui(a,g) = α xi − 1
2
a2i + φaiaj.

If there were no social interactions, the unique Nash equilibrium would be:

a∗1 = a∗2 = α,

while, for a dyad where the two individuals are linked to each other (i.e., g12 = g21 = 1),
the unique Nash equilibrium is given by (if φ < 1)32:

a∗1 = a∗2 = α

1 − φ
.

31 To establish uniqueness of the equilibrium, one has to show a one-to-one correspondence between
the set of Nash equilibria and the solutions to the first-order conditions of the maximization problem
(see Bramoullé et al., 2014 for details).

32 It is straightforward to check that:

b1
(
g,φ

) = (
I − φg

)−1 1 =
(
1/ (1 − φ)

1/ (1 − φ)

)
.
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In the dyad, complementarities lead to an effort level above the equilibrium value for an
isolated player (a∗1 = a∗2 = α). The factor 1/(1 − φ) > 1 is often referred to as a social
multiplier.33,34

In terms of comparative statics, it is clear that, by standard strategic-complementarity
arguments, increasing the number of links of any player raises his/her effort, and for this
specification of utility functions also increases his/her payoff.

3.4.1.3 Welfare
It is obvious that the Nash equilibrium in such a game is inefficient, as there are positive
externalities in efforts. There is too little effort at the Nash equilibrium as compared to
the social optimum outcome, because each individual ignores the positive impact of
her effort on others. As a result, there are benefits from subsidizing effort, as we now
detail.

To analyze welfare, we first relate the equilibrium utility of player i to Katz-Bonacich
centrality:

ui(a
∗,g) = α a∗i − 1

2
a∗2i + φ

n∑
j=1

gija
∗
i a

∗
j

= a∗i
⎛⎝α + φ

n∑
j=1

gija∗j
⎞⎠− 1

2
a∗2i .

By [3.4] where a∗i = α + φ
∑n

j=1 gija
∗
j :

ui(a
∗,g) = a∗2i − 1

2
a∗2i = 1

2
a∗2i = 1

2

[
b1,i

(
g,φ

)]2 . [3.8]

The total equilibrium welfare (i.e., the sum of all equilibrium utilities) is then:

W(a∗,g) = u(a∗,g) · 1 =1

2
b�
1
(
g,φ

)
b1

(
g,φ

)
. [3.9]

33 See, for instance, Glaeser et al. (2003), and references therein.
34 Belhaj and Deroïan (2011) have extended the previous model by considering two substitute activities, so

that player i chooses both a1,i and a2,i such that a1,i + a2,i = 1. The payoff is:

ui(a1, a2,g) = α1 a1,i − 1

2
a21,i + α2a2,i − 1

2
a22,i +

n∑
j=1

gij
(
φ1a1,ia1,j + φ2a2,ia2,j

)
.

The model incorporates local synergies and both lower and upper bounds on efforts, which facilitates the
analysis of equilibrium. Belhaj and Deroïan (2014) study both interior and corner solutions, and provide
comparative statics with respect to activity cost.
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Following Helsley and Zenou (2014), let us show that the Nash equilibrium [3.5]
is not efficient. For that, the planner chooses a1, . . . , an that maximize total welfare,
that is:

max
a

W(a,g) = max
a1,...,an

i=n∑
i=1

ui(a,g) = max
a1,...,an

⎧⎨⎩
i=n∑
i=1

[
α ai − 1

2
a2i

]
+ φ

i=n∑
i=1

n∑
j=1

gijaiaj

⎫⎬⎭ .

The first-order conditions are that for each i = 1, . . . , n:

α − ai + φ
∑
j

gijaj + φ
∑
j

gjiaj = 0,

which implies that (since gij = gji):

aOi = α + 2φ
∑
j

gija
O
j , [3.10]

where the superscript O refers to the “social optimum.” In matrix form,

aO = α
(
I − 2φ g

)−1
1 = αb1

(
g, 2φ

)
. [3.11]

Examination of [3.7] and [3.11] shows that the two solutions differ and that the Nash
equilibrium effort of each individual i is inefficiently low.

Analogously to the derivation of [3.9], we see that

W(aO,g) = 1
2
b�
1

(
g, 2φ

)
b1

(
g, 2φ

)
. [3.12]

Here, a Pigouvian subsidy can lead individuals to choose the socially optimal effort
levels. Let us derive this optimal subsidy that can restore the first-best outcome [3.10].

The timing is as follows. First, the government announces the per-effort subsidy
si(a) ≥ 0 for each individual i = 1, . . . , n. Then each individual i chooses effort ai to
maximize his or her payoff accounting for the subsidy. Because of the planner’s subsidy,
individual i’s utility is now given by:

ui(a,g; si) = [α + si] ai − 1
2
a2i + φ

n∑
j=1

gijaiaj. [3.13]

Helsley and Zenou (2014) show the following result:

Proposition 3.6. Assume that 2φμ1
(
g
)

< 1. If subsidies that satisfy si = φ
∑

j gija
O
j are

in place, then the first-best efforts form a Nash equilibrium. In equilibrium, this per-effort subsidy
is equal to: si = 1

2

[
b1,i

(
g, 2φ

)− α
]
. Thus, the planner gives a higher per-effort subsidy to more

central players in the network.
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This proposition does not address the financing of the subsidy. Here since the
anticipated total cost of the subsidies is calculable ex ante (knowing the network and
players’ preferences), the planner can raise the value of the subsidies by any tax scheme
that is independent of a.

3.4.2 The model with global congestion
In some applications, in addition to local complementarities, players might experience
global competitive effects. When global competition or congestion matters (e.g., see
our discussion of applications of this model to crime, Cournot competition, etc.), we
can modify the utility function [3.3] to allow for global competitive effects. One such
formulation is:

ui(a,g) = α ai − 1
2
a2i + φai

n∑
j=1

gijaj − γ ai

n∑
j=1

aj [3.14]

where global congestion is captured by the factor −γ
∑n

j=1 aj that multiplies player i’s
action. Compared to the previous case without global substitutes where no player had
interest in providing zero effort (see [3.4]), it is now possible that corner solutions arise
at the Nash equilibrium. Ballester et al. (2006) show that, if φμ1(g) < 1 + γ , then there
exists a unique interior Nash equilibrium given by:

a∗ = α

1 + γ
[
1 + b1(g,φ/(1 + γ ))

]b1 (g,φ/(1 + γ )
)
, [3.15]

where b1(g,φ/(1 + γ )) = 1�M
(
g,φ, γ

)
1 (where M

(
g,φ, γ

) = [
(1 + γ ) I−φg

]−1)
is the sum of unweighted Bonacich centralities of all players, i.e.,

b1(g,φ/(1 + γ )) = b1,1(g,φ/(1 + γ )) + · · · · +bn,1(g,φ/(1 + γ )).

Thus, the model is easily adapted to include such effects, provided they also fit into a
linear-quadratic form.

In terms of comparative statics, the standard complementarity argument for the
benchmark model, which implies that equilibrium efforts increase (on a player by player
basis) in any component with in which links are added, does not apply here because
of the competition effect. However, the following result regarding total aggregate effort
can be shown:

Proposition 3.7. Let g and g′ be symmetric and such that g′ ≥ g and g′ �= g. If φμ1(g) <

1 and φ′μ1(g
′) < 1, then

∑
i a

∗(g′)i >
∑

i a
∗(g)i.

Proposition 3.7 shows that an increase in network relationships (in a partial order
sense) increases aggregate activity. This result is due to the fact that neighbors are the



Games on networks 123

source of local complementarities. As a result, players obtain more local complemen-
tarities in g′ than in g, and equilibrium aggregate activity is thus higher in g′ than in
g. Symmetry of the adjacency is not really needed here: using Farkas’ lemma, Belhaj
and Deroïan (2013) have shown that, even with asymmetric g and g′, Proposition 3.7
holds. They show that if the transposed system admits a positive solution, then any
perturbation of the linear system that enhances complementarities leads to an increase
of average effort.

3.4.3 The model with ex ante heterogeneity
So far, players were only heterogeneous due to their positions in the network. Let us
now extend the model to allow for players who are also heterogeneous in terms of
characteristics; e.g., age, race, gender, education, etc., which is important when one
would like to bring the model to the data and to test it. One way to introduce some
aspects of heterogeneity while still maintaining tractability is to allow the utility function
of player i to be given by:

ui(a,g) = αi ai − 1
2
a2i − γ

n∑
j=1

aiaj + φ

n∑
j=1

gijaiaj, [3.16]

where αi depends on the characteristics of player i. In many empirical applications (see,
e.g., Calvó-Armengol et al., 2009, for education, or Patacchini and Zenou, 2012, for
crime), αi could also includes the average characteristics of individual i’s neighbors,
i.e. the average level of parental education of i’s friends, etc., which are referred to as
contextual effects. In particular, assume that

αi =
H∑
h=1

βhx
h
i + 1

di(g)

H∑
h=1

n∑
j=1

γ hgij x
h
j [3.17]

where (xhi )h is a set of H variables accounting for individual characteristics and βh, γ h
are parameters.

Let bα
(
g,φ/(1 + γ )

) = α�M
(
g,φ, γ

)
α be the weighted sum of weighted

Bonacich centralities of all players, i.e. bα = α1bα,1 + · · · · +αnbα,n. Calvó-Armengol
et al. (2009) show the following.

Proposition 3.8.
(i) If α = α1, then the game has a unique Nash equilibrium in pure strategies if and only if

φμ1(g) < 1 + γ . This equilibrium a∗ is interior and described by [3.15].
(ii) If α �= α1, then let α = max {αi | i ∈ N} > α = min{αi | i ∈ N} > 0. In this case,

if φμ1(g) + nγ
(
α/α − 1

)
< 1 + γ , then this game has a unique Nash equilibrium in

pure strategies and it is interior and described by:
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a∗ = 1
1 + γ

[
bα

(
g,φ/(1 + γ )

)
) − γ bα

(
g,φ/(1 + γ )

)
1 + γ + γ b1

(
g,φ/(1 + γ )

)
×b1

(
g,φ/(1 + γ )

) ]
. [3.18]

3.4.4 Some applications of the quadratic model
Part of the usefulness of the quadratic model is that it can provide explicit relationships
between network structure and behavior, and thus can make sharp predictions in context.
Let us examine some specific contexts where it generates further results.

3.4.4.1 Crime
Criminal activity is, to some extent, a group phenomenon, and the crime and delin-
quency are related to positions in social networks (see, e.g., Sarnecki, 2001; Sutherland,
1947;Warr, 2002). Indeed, delinquents often have friends who have committed offenses,
and social ties are a means of influence to commit crimes. In fact, the structure of
social networks matters in explaining an individual’s delinquent behavior: in adolescents’
friendship networks, Haynie (2001), Patacchini and Zenou (2008), Calvó-Armengol
et al. (2005) find that individual Katz-Bonacich centrality together with the density of
friendship links affect the delinquency-peer association. This suggests that the properties
of friendship networks should be taken into account to better understand peer influence
on delinquent behavior and to craft delinquency-reducing policies.

Glaeser et al. (1996) were among the first to model criminal social interactions.
Their model clearly and intuitively shows how criminal interconnections act as a
social multiplier on aggregate crime. They consider, however, only a specific network
structure where criminals are located on a circle. Following Calvó-Armengol and
Zenou (2004) and Ballester et al. (2010), we examine a model that can encompass
any social network. Let us reinterpret the local-complementarity model with global
congestion described in Section 3.4 in terms of criminal activities. Let ai be the criminal
effort level of delinquent i. Following Becker (1968), assume that delinquents trade
off the costs and benefits of delinquent activities. The expected delinquency gains to
delinquent i are:

ui(a,g) = yi(a)︸︷︷︸
benefits

− pi(a,g)︸ ︷︷ ︸
prob.caught

f︸︷︷︸
fine

, [3.19]

where {
yi(a) = α′

i ai − 1
2a

2
i − γ

∑n
j=i aiaj

pi(a,g) = p0aimax
{
1 − φ′ ∑n

j=1 gijaj, 0
}
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The proceeds yi(a) include the global payoff interdependence. The expected cost
of criminal activity, pi(a,g)f , is positively related to ai as the apprehension probability
increases with one’s involvement in delinquency. The crucial assumption is that delin-
quents’ activity has complementarities with their friends’ criminal activity, but a criminal
also faces global competition as well as increased expected costs as he or she increases
activity.

By direct substitution:

ui(a,g) = (
α′
i − p0f

)
ai − 1

2
a2i − γ

n∑
j=i

aiaj + p0f φ
′
n∑
j=1

gijaiaj. [3.20]

It should be clear that these utilities, [3.20] and [3.14], are equivalent if αi =
α′
i − p0f > 0 and φ = p0f φ′. Thus, we can apply Proposition 3.8 (ii): if p0f φ′μ1

(
g
)+

nγ
(
α/α − 1

)
< 1 + γ , then there exists a unique Nash equilibrium:

a∗ = 1
1 + γ

[
bα

(
g, p0f φ

′/ (1 + γ )
)− γ bα

(
g, p0f φ′/ (1 + γ )

)
1 + γ + γ b1

(
g, p0f φ′/ (1 + γ )

)
×b1

(
g, p0f φ

′/ (1 + γ )
) ]

.

An interesting aspect of a network analysis of criminal activity is that it allows us to
derive a key player policy: If we could choose to push one player’s activity to 0 and remove
all his/her existing links, which player’s removal would lead to the highest overall criminal
activity reduction when examining the resulting impact on others’ behaviors?35 Given
that delinquent removal has both a direct and an indirect effect on the group outcome,
the choice of the key player results from considering both effects. In particular, the key
player need not necessarily be the one with the highest criminal activity (the one with
the highest Bonacich centrality measure). Formally, the planner’s problem is:

max
i

{a∗(g) − a∗−i(g−i)},
where a∗ = a∗�1. The program above is equivalent to:

min
i

{a∗−i(g−i)} [3.21]

Following Ballester et al. (2006, 2010), define a network centrality measure dα(g,φ)

that corresponds to this program. Recall that bα(g,φ) = ∑n
i=1 bα(g,φ)i.

(i) If α = α1, then the intercentrality measure of player i is:

d1(g,φ)i = b1(g,φ) − b1(g−i,φ) =
[
b1(g,φ)i

]2
Mii(g,φ)

. [3.22]

35 See Dell (2011) for related analyses of spillover effects and reactions of criminals to enforcement with
respect to Mexican drug cartels.
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(ii) If α �= α1, then the intercentrality measure of player i is:

dα(g,φ)i = bα(g,φ) − bα(g−i,φ) = bα(g,φ)i
∑n

j=1Mji(g,φ)

Mii(g,φ)
. [3.23]

The intercentrality measure dα(g,φ)i of player i is the sum of i’s centrality measures
in g, and i’s contribution to the centrality measure of every other player j �= i also in g.
The following result establishes that intercentrality captures the two dimensions of the
removal of a player from a network: the direct effect on criminal activity and the indirect
effect on others’ criminal activities.

Proposition 3.9. A player i∗ is the key player who solves [3.21] if and only if i∗ has the
highest intercentrality in g: dα(g,φ)i∗ ≥ dα(g,φ)i, for all i = 1, . . . , n.

The key player policy is such the planner perturbs the network by removing a
delinquent and all other delinquents are allowed to change their effort after the removal
but the network is not “rewired,” and so is a short-term policy.36

The individual Nash equilibrium efforts are proportional to the Katz-Bonacich
centrality network measures, while the key player is the delinquent with the highest
intercentrality measure. This difference is not surprising, as the equilibrium index derives
from individual considerations, while the intercentrality measure solves the planner’s
optimality collective concerns. The measure dα(g,φ) goes beyond the measure bα(g,φ)

by keeping track of the cross-contributions that arise.

3.4.4.2 Education
The influence of peers on education outcomes has been studied extensively (see, e.g.,
Evans et al., 1992; Sacerdote, 2001; Zimmerman, 2003; for a survey, see Sacerdote,
2011).37 Following Calvó-Armengol et al. (2009), let us reinterpret the benchmark
model of Section 3.4 in terms of education: ai is an educational effort. Applying
Proposition 3.5, if φμ1(g) < 1, the equilibrium effort levels are a∗i = b1(g,φ)i.

In practice, we are not interested in the effort per se, but in the outcome of effort; i.e.
the educational achievement obtained by each student. Let the educational achievement
of student i be denoted by β∗

i and described by

36 Liu et al. (2012) develop a dynamic network formation model where, once a delinquent is removed
from the network, the remaining delinquents can form new links. They do not have a formula like the
intercentrality measure here, but test the model empirically. The invariant and dynamic models often lead
to the same key player in the AddHealth data.

37 For recent models of human capital investment, social mobility and networks, see Calvó-Armengol
and Jackson (2009), Jackson (2007), and Bervoets et al. (2012). The papers study the intergenerational
relationship between parents’ and offsprings’ educational outcomes. They show that a positive correlation
emerges between their education status, without any direct interaction, because of the overlap in the
surroundings that influence their education decisions.
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β∗
i = αi + a∗i

where αi is again a parameter that depends on the characteristics of student i. Thus,

β∗
i = αi + b1(g,φ)i.

Calvó-Armengol et al. (2009) estimate this last equation using the AddHealth data.
Estimating such an equation is useful because it allows the authors to disentangle
between the effects of own characteristics αi from a student’s location in the network
on the educational outcome (i.e., the grades of the student).38 In terms of magnitude,
they find that a standard deviation increase in the Katz-Bonacich centrality of a
student increases his or her performance in school by about 7% of one standard
deviation.

Again, one can ask what an optimal subsidy would be in this setting. Ballester et al.
(2011) determine the optimal per-effort subsidy for each student in order to maximize
total output (i.e., the sum of all students’ efforts). They take the planner’s objective to
be to choose s to maximize

a∗ =
∑
i

a∗i =
∑
i

bα+s
(
g,φ

)
i = 1�M(α + s)

subject to a budget constraint:∑
i

sia
∗
i ≤ B and si ≥ 0, ∀i,

where B > 0 is the budget that the government has for this policy.
Assume that α1 < . . . < αn. Ballester et al. (2011) demonstrate the following result.

Proposition 3.10. Assume φμ1(g) < 1 and αn <

√
4B+bwα
b1

. There exists a unique solution
and it is interior and described by

s∗ = 1

2

[√
4B+ bwα

b1
1 − α

]
. [3.24]

The optimal subsidy s∗ for each student depends on the heterogeneity αi and on
overall network characteristics (i.e., b1 and bwα), but not on the individual position in
the network. Ballester et al. (2011) show that

38 To evaluate the effect of Katz-Bonacich centrality, they first estimate a∗i = αi + φ
∑n

j=1 gija
∗
j . This leads

to an estimated value of φ, denoted by φ̂, for each network of friends in the AddHealth data. Remember
that φ̂ not only captures the intensity of complementarities in the utility function [3.3] but also the decay
factor in the Katz-Bonacich centrality, i.e., how much weight to put on distant walks in the network.
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∂s∗i
∂αi

� 0 ⇔ b1 �
(
bα,i

)2
4 (4B + bwα)

,

implying that the planner does not always give higher per-effort subsidies to either the
more or less advantaged students in terms of background characteristics.

3.4.4.3 Industrial organization
Another application of the model is to collaboration between firms. Collaboration takes
a variety of forms which includes creation and sharing of knowledge about markets and
technologies (via joint research activities), setting market standards and sharing facilities
(such as distribution channels). Recent studies (see for instance Hagedoorn, 2002) sug-
gest that joint ventures seem to have become less popular while non-equity contractual
forms of R&D partnerships, such as joint R&D pacts and joint development agreements,
have become more prevalent modes of inter-firm collaborations. Little is known,
however, about how the structure of these collaboration networks affects the profits
of firms. The linear-quadratic model of Section 3.4 can be applied to this question.39

Following, König et al. (2014b), we study competition in quantities a la Cournot
between n firms with homogeneous products and price, given the following linear
inverse market demand for each firm i:

pi = θ i −
∑
j∈N

qj,

where θ i > 0 and qj is the quantity produced by firm j. Assume throughout that θ i is
assumed to be large enough for all i = 1, . . . , n so that price and quantities are always
strictly positive. The marginal cost of each firm i is:

ci(g) = φ0 − φ

⎡⎣ n∑
j=1

gijqj

⎤⎦ , [3.25]

where φ0 > 0 represents the firm’s marginal cost when it has no links and φ > 0
influences the cost reduction induced by each link formed by a firm. The marginal
cost of each firm i is a decreasing function of the quantities produced by all firms j �= i
that have a direct link with firm i. Assume that φ0 is large enough so that ci(g) ≥ 0,
∀i ∈ N , ∀g. The profit function of firm i in a network g is thus:

39 There is a growing literature on industrial organization and networks, much of which has focused on
network formation. See, e.g., Manshadi and Johari (2009) for Bertrand competition; Goyal and Moraga
(2001), Goyal and Joshi (2003), Deroian and Gannon (2006), Goyal et al. (2008), and Westbrock (2010)
for Cournot competition and R&D networks; Candogan et al. (2012) and Bloch and Quérou (2013) for
monopoly pricing.
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π i(q,g) = pqi − ci(g)qi = αiqi − q2i −
∑
j �=i

qiqj + φ

n∑
j=1

gijqiqj [3.26]

where αi ≡ θ i − φ0. We can apply Proposition 3.8 (ii) to obtain the following result.
Let α > α > 0. If φμ1(g) + n

(
α/α − 1

)
/3 < 1, then this game has a unique Nash

equilibrium in pure strategies q∗, which is interior and given by:

q∗ = ba
(
g,φ

)− ba
(
g,φ

)
1 + b1

(
g,φ

)b1 (g,φ) . [3.27]

This characterizes the equilibrium quantities produced by firms as a function
of their position in the network (again, as measured by their Katz-Bonacich
centrality).

Proposition 3.7 then provides comparative statics for the total activity in the
industry. Overall industry output increases when the network of collaboration
links expands, irrespective of the network geometry and the number of additional
links.40

3.4.4.4 Cities
Helsley and Zenou (2014) use the quadratic model to investigate the interaction between
the social space (i.e., the network) and the geographical space (i.e., the city). For that,
they consider a city which consists of two locations, a center, where all social interactions
occur, and a periphery. Players are located in either the center or the periphery. The
distance between the center and the periphery is normalized to one.

Let li ∈ {0, 1} represent the location of player i, defined as his/her distance from the
interaction center. Players derive utility from a numeraire good zi and interactions with
others according to the utility function:

ui(a,g) = zi + α ai − 1
2
a2i + φ

n∑
j=1

gijaiaj [3.28]

where ai (effort) is the number of visits that player i makes to the center. Thus, utility
depends on the visit choice of player i, the visit choices of other players and on player i’s
position in the social network g. Players located in the peripherymust travel to the center
to interact with others. Letting I represent income and τ represent marginal transport

40 For the case of a linear inverse demand curve, this generalizes the findings in Goyal and Moraga
(2001) and Goyal and Joshi (2003), where monotonicity of industry output is established for the case
of regular collaboration networks, where each firm forms the same number of bilateral agreements.
For such regular networks, links are added as multiples of n, as all firms’ connections are increased
simultaneously.
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cost, budget balance implies that expenditure on the numeraire is zi = I − τ li ai. Using
this expression to substitute for zi in [3.28], we obtain:

ui(a,g) = I + αiai − 1
2
a2i + φ

n∑
j=1

gijaiaj, [3.29]

where αi = α − τ li > 0. Consider the case where location li of each player i is fixed.
Then, using Proposition 3.8 (ii) for γ = 0, if φμ1(g) < 1, there is a unique (and
interior) Nash equilibrium given by: a∗ = bα(g,φ). The Nash equilibrium number
of visits a∗i thus depends on position in the social network and geographic location.
This implies that a player who is more central in the social network makes more visits to
the interaction center in equilibrium, as he or she has more to gain from interacting
with others and so exerts higher interaction effort for any vector of geographic
locations.

Helsley and Zenou (2014) extend this model to allow players to choose between
locating in the center and the periphery. They assume that because the center has
more economic activity, there is an exogenous cost differential C > 0 associated with
locating at the center. This cost differential might arise from congestion effects or reflect a
difference in location rent from competition among other activities for center locations.
They show that, in equilibrium, players who are most central in the social network
locate at the interaction center, while players who are less central in the social network
locate in the periphery. This expresses the salient relationship between position in the
social network and geographic location. If interaction involves costly transportation, then
players who occupy more central positions in the social network have the most to gain
from locating at the interaction center.

Applying the logic of Proposition 3.6, it is again clear that the Nash equilibrium
outcome is inefficient and there will be too little social interaction. The first-best
outcome can be restored if the planner subsidizes i’s activity with the optimal subsidy
φ
∑

j gijaj. In this case, it is optimal for the planner to give higher subsidies to more
central players in the social network.

3.4.4.5 Conformity and conspicuous effects
Let us consider one last application of the quadratic model, with some modifications. In
that model, it is the sum of friends’ activities that impact a player’s utility from increasing
his or her action [3.3]. This is clearly not always the right model, as it might be some
other function of friends’ activities that matters. Patacchini and Zenou (2012) and Liu
et al. (2014) alter the model so that it is the average effort level of friends that affects a
player’s marginal utility of own action.
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Let ĝij = gij/di(g), and set ĝii = 0. By construction, 0 ≤ ĝij ≤ 1.
Let ai the average effort of individual i’s friends: given by:

ai(g) = 1
di(g)

n∑
j=1

gijaj =
n∑
j=1

ĝijaj. [3.30]

Player i’s payoff is described by:

ui(a,g) = α ai − 1
2
a2i − δ

2
(ai − ai(g))2 [3.31]

with δ ≥ 0. The last term δ (ai − ai)2 is a standard manner of capturing conformity.41

Each player wants to minimize the distance between his or her action and the average
action of his or her reference group, where δ is a parameter describing the taste for
conformity.

First-order conditions imply that:

a∗i = α

1 + δ
+ δ

(1 + δ)

n∑
j=1

ĝija
∗
j

or in matrix form

a∗ = α

1 + δ

(
I− δ

(1 + δ)
ĝ

)−1

1 = α

1 + δ
b1(̂g, δ/(1 + δ)).

Using the AddHealth data, Liu et al. (2014) test which model (local average or local
aggregate) does a better job of matching behaviors with regards to effort in education,
sport, and screen activities (e.g., video games) for adolescents in the United States. They
find that peer effects are not significant for screen activities. For sports activities, they find
that students are mostly influenced by the aggregate activity of their friends; while for
education they show that both the aggregate performance of friends as well as conformity
matter, although the magnitude of the effect is higher for the latter.42

41 See, for instance, Kandel and Lazear (1992), where peer pressure arises when individuals deviate from
a well-established group norm, e.g., individuals are penalized for working less than the group norm;
Berman (2000), where praying is more satisfying the more average participants there are; and Akerlof
(1980, 1997), Bernheim (1994), where deviations from an average action imply a loss of reputation and
status. Calvó-Armengol and Jackson (2010) model explicit peer pressure (as a strategy in the game).

42 Ghiglino and Goyal (2010) propose an alternative model with conspicuous effects so that individuals are
happier the higher is their effort compared to that of their peers (direct links) and derive negative utility
if they effort is below that of their peers. They also compare the local aggregate and the local average
model in the context of a pure exchange economy where individuals trade in markets and are influenced
by their neighbors. They found that with aggregate comparisons, networks matter even if all people have
same wealth. With average comparisons networks are irrelevant when individuals have the same wealth.
The two models are, however, similar if there is heterogeneity in wealth.
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Finally, we can provide a more general function for how own action interacts with
the average of a player’s friends actions. For that, we can adapt the models proposed by
Clark and Oswald (1998) to include a network. Consider the following utility function:

ui(a,g) = α ai − 1
2
a2i + φ v(ai − ai(g)),

where ai is defined by [3.30], v(.) is an increasing function of ai − ai and v′′ < 0. First-
order conditions imply that if there is an interior equilibrium then it must satisfy:

ai = α + φ v′(ai − ai(g))

and also

∂ai
∂ai

= v′′(ai − ai(g))

−1 + φ v′′(ai − ai(g))
.

If v′′ < 0, then a rise in others’ efforts leads to an increase in own effort. This is due
to the fact that if other individuals set a high ai(g), that reduces ai − ai(g), and this
increases the marginal benefit from effort ai for those with such a comparison-concave
utility. If v′′ > 0, then a rise in others’ efforts leads to a decrease in own effort.

To illustrate this model, consider an example in which:

ui(a,g) = α ai − 1
2
a2i + φ

ai
ai(g)

, [3.32]

and where φ can be positive or negative. If φ > 0, then there is a conspicuous effect since
individuals increase their utility by having higher effort than their peers. If φ < 0, then
it becomes costly for individuals to differentiate themselves from their peers. First-order
conditions imply that if there is an interior equilibrium then:

a∗i = α + φ

a∗i (g)
.

An advantage of [3.32] is that the characterization of the Nash equilibrium is easy.

3.5. NETWORK GAMESWITH INCOMPLETE INFORMATION

While settings with a fixed and known network are widely applicable, there are also
many applications where players choose actions without fully knowing with whom they
will interact. For example, learning a language, investing in education, investing in a
software program, and so forth. These can be better modeled using the machinery of
incomplete information games.

It is also important to point out that this class of games also helps in tractability
relative to complete information games. The results on games on networks that we have
outlined so far primarily rely on either games of strategic complements or in cases with



Games on networks 133

a continuum of actions and quadratic payoff functions. The analysis of other games, and
in particular of games of strategic substitutes, even with just two actions, is difficult in
the context of complete information, but becomes much more tractable in the context
of incomplete information, as we detail below.

3.5.1 Incomplete information and contagion effects
The following discussion builds on the models of Jackson and Yariv (2005, 2007, 2011),
Jackson and Rogers (2007), Sundararajan (2007), and Galeotti et al. (2010), primarily
incorporating aspects of Jackson and Yariv (2007) and Galeotti et al. (2010).

3.5.1.1 Amodel of network games with incomplete information
Instead of a known network of interactions, players are now unsure about the network
that will be in place in the future, but have some idea of the number of interactions that
they will have. To fix ideas, think of choosing whether to adopt a new software program
that is only useful in interactions with other players who adopt the software as well, but
without being sure of with whom one will interact in the future.

In particular, the set of players N is fixed, but the network (N ,g) is unknown when
players choose their actions. A player i knows his or her own degree di, when choosing
an action, but does not yet know the realized network.

Players choose actions in {0, 1}, and we normalize the payoff to choosing 0 to be 0,
and so effectively consider the difference in payoffs between choosing action 0 and 1.
Player i has a cost of choosing action 1, denoted ci. Player i’s payoff from action 1 when i
has di neighbors and expects them each independently to choose 1 with a probability x is

v(di, x) − ci,

and so action 1 is a best response for player i if and only if ci ≤ v(di, x).
It is easy to see how this incorporates some of the games we considered earlier. For

instance, in the case of a best-shot public goods game of Example 3.243:

v(di, x) = (1 − x)di .

In the case of our coordination game from Section 3.3.3.2, the payoff is

v(di, x) =
di∑

m=0

Bdi(m, x) [mb− (di − m)c] ,

where Bdi(m, x) is the binomial probability of having exactly m neighbors out of di play
action 1 when they independently choose action 1 with probability x.

43 We have normalized the payoff to action 0 to 0, so this is the difference between action 1 and action 0.
If no other player chooses action 1, then the difference in overall payoff is 1 − ci and otherwise it is −ci.
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The uncertainty about the network affects a player’s beliefs about the play of his or
her neighbors.

In particular, let us consider a case where a player’s probability distribution over the
types of neighbors that he or she faces is governed by beliefs about the distribution of
other players types. To keep things simple, let us examine a case where ci is described by
an atomless distribution F, independently across players, and independently of a players’
degree.

Let a player’s beliefs about the degree of each of his or her neighbors be described
by a degree distribution P̃(d), independently across neighbors.44 One example, is one
in which players are matched uniformly at random, and players have degrees distributed
according to some P, in which case the probability of matching to another player of
degree d is P(d)d/EP[d] = P̃(d). So for instance, a player is twice as likely to be matched
with someone who has two interactions as someone who has one. Galeotti et al. (2010)
discuss the more general case where the distribution of neighbors’ degrees can depend
on own degree.

With this structure, we can then consider (symmetric) Bayesian equilibria: players
choose an action based on their type di, ci, and so let the strategy be denoted by
σ(di, ci) ∈ {0, 1}. Given the atomless distribution of costs, it is enough to consider pure
strategy equilibria, as at most one (probability zero) cost type is ever indifferent for any
given di.

A simple equation is then sufficient to characterize equilibria. Again, letting x be the
probability that a randomly chosen neighbor chooses action 1, a player of type d, c plays
action 1 if and only if (up to ties)

v(d, x) ≥ c.

Thus, F(v(d, x)) is the probability that a random (best-responding) neighbor of degree
d chooses the action 1. A characterization of equilibrium is then that

x = Φ(x) =
∑
d

P̃(d)F(v(d, x)). [3.33]

In cases where F and v are continuous, existence of equilibrium follows directly from
the fact that the right hand side is a continuous function mapping from [0, 1] into [0, 1].

It is easy to keep track of equilibria directly in terms of x since that ties down
behaviors of all types of players (up to sets of measure 0).

44 When fixing a size of a society, only certain configurations of degrees are possible, and so in general there
are some interdependencies in the degrees of any player’s neighbors. This is thus a limiting case.
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3.5.1.2 Monotonicity of equilibria
The nice aspect of the equilibria in the incomplete information setting, is that behavior
can now be nicely ordered, depending on the properties of v. In many applications, v
is either increasing in x (strict strategic complements) or decreasing in x (strict strategic
substitutes). It also tends to be either increasing or decreasing in d, although there are
other cases of interest (e.g., as in a game where the player cares precisely about the average
payoff from play with neighbors).

The strategic substitute or complement nature of a game imply that strategies of
players can be represented (up to indifferences) by threshold functions τ (di, ci), so that i
plays 1 if and only if x exceeds τ in the case of complements or is below it in the case
of substitutes.

The monotonicity in degree affects how the thresholds behave as a function of d,
as seen in the following proposition, of which variations appear in Jackson and Yariv
(2005, 2007) and Galeotti et al. (2010).

Proposition 3.11. If v is increasing in d for every x, then there exists a symmetric pure strategy
Bayesian equilibrium such that equilibrium strategies are increasing in the sense that higher degree
players have higher (or at least as high) probabilities of choosing action 1 compared to lower degree
players, and correspondingly higher degree players have lower thresholds given the same ci. Similarly,
if v is decreasing in d for every x, then the reverse conclusion holds.

These observations are useful in understanding dynamics of equilibria and com-
parative statics of equilibria in response to various changes in the primitives of the
environment.

3.5.1.3 A dynamic best reply process
Let us consider a more general version of the contagion/diffusion process that we
discussed in Section 3.3.3.2. At time t = 0, a fraction x0 of the population is exogenously
and randomly assigned the action 1, and the rest of the population is assigned the action
0. At each time t > 0, each player45 best responds to the distribution of players choosing
the action 1 in period t − 1 under the distributions described above. We work with
expectations, or a mean-field approximation of the system.46

45 In contrast to our earlier discussion, in this process every player adjusts, including those assigned to action
1 at the outset.

46 A mean-field version of a model is a deterministic approximation of the statistical system where
interactions take place at their expected rates. See Vega-Redondo (2007) or Jackson (2008a) for some
discussion of these techniques in network analysis.
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Figure 3.4 Best response curve and equilibria.

In particular, let xt denote the expected probability that a player’s neighbor will
choose action 1 at time t as a function of xt−1:

xt = Φ(xt−1) ≡
∑
d

P̃(d)F(v(d, xt−1)).

Equilibria are again fixed points, but nowwe view this as a dynamic. In a game of strategic
complements, convergence of behavior from any starting point to some equilibrium is
monotone, either upwards or downwards, and any player switches behaviors at most
once. In a game of strategic substitutes, convergence is not ensured from some starting
points in some cases, but there are still things that we can deduce about the equilibria.

We can see that there can exist multiple equilibria, as pictured in Figure 3.4.
Equilibria are points where the curve Φ intersects the 45◦ line. In games of strategic

substitutes, Φ is a decreasing function, and so the equilibrium is unique. In contrast, in
games of strategic complements, Φ is increasing and can have multiple equilibria.47

Galeotti et al. (2010) and Jackson and Yariv (2005, 2007) provide comparative statics
in equilibria, as a function of various changes in networks and payoffs. In particular, it
is easy to see that as one shifts a continuous Φ upwards or downwards, equilibria shift
in predictable ways. In particular, as Φ is shifted upwards (so Φ(x) > Φ(x) for all x, the

47 As pointed out in Jackson and Yariv (2007), some of these equilibria are robust to small perturbations and
others are not, depending on the shape of Φ and how it intersects the 45◦ line. In short, stable equilibria
are ones where the curve Φ cuts through the 45◦ line from the left. In cases where the intersection is a
single point, such equilibria are stable in that the dynamics from a slight perturbation return naturally to
the original equilibrium. In contrast, if Φ cuts from the right or below the 45◦ line, then the equilibrium
is unstable. For example, in Figure 3.4, the equilibrium corresponding to x1 is unstable while those
corresponding to 0 and x2 are stable.
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Figure 3.5 The effects of shiftingΦ .

greatest equilibrium under Φ moves shifts upward (unless it was already 1), as pictured
in Figure 3.548: To understand what leads to such shifts, let us examine Φ as it is defined
in [3.33].

First, let us consider changes in the relative costs of the actions; for instance, an
increase in the cost of adopting action 1. This can be captured by a strict first-order
stochastic dominance (FOSD) shift of the cost distribution from F to F (so F(y) ≤ F(y)
for each y with strict inequalities for some y’s in the relevant range). It then follows that

Φ(x) =
∑
d

P̃(d)F(v(d, x)) ≤
∑
d

P̃(d)F(v(d, x)) = Φ(x)

for every x. Thus, an increase in costs shifts the curve downwards, and so the greatest
equilibrium shifts downward (as does any stable equilibrium for small changes).49 This
has a simple explanation: increasing the cost of choosing action 1 raises the thresholds
for adopting that action and lowers the adoption.

One can also deduce how changes in network structure, here captured via the degree
distribution, affect equilibrium, based on arguments developed by Jackson and Rogers
(2007) and Jackson and Yariv (2005, 2007), and also studied extensively in Galeotti et al.
(2010).

For example, consider an increase in the anticipated degree of each random neighbor
that a player has in the sense of FOSD. That is, suppose P̃′ FOSD P̃, so that

48 One can deduce more about the shifts in equilibria: the stable equilibria (weakly) decrease from local
shifts, and the unstable ones weakly increase from such local shifts of Φ. See Jackson and Yariv (2005,
2007) for details.

49 One can also deduce similar statements for the least and other equilibria.
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∑
d≤d′ P̃′(d) ≤ ∑

d≤d′ P̃(d) for each d′. Couple this with v(d, x) being non-decreasing
in d, so that individuals who have more interactions are at least as likely to adopt action
1 at the same level of behavior per neighbor. For instance, this holds if it is the number
of neighbors adopting action 1 that matters, or even if it is just the fraction that matters.
Then, it follows from the definition of FOSD that

Φ ′(x) =
∑
d

P̃′(d)F(v(d, x)) ≥
∑
d

P̃(d)F(v(d, x)) = Φ(x),

and, so under P′, the greatest equilibrium increases. If we reverse things so that v(d, x)
is non-increasing in d, then the conclusion is reversed.

Again, this has an intuition related to the best replies. If v(d, x) is increasing in d, then
higher degree individuals are more likely to adopt a behavior for any given anticipated
level of activity of neighbors. Thus, starting from themaximal equilibrium, as we increase
the anticipated degrees of each player’s neighbors, we increase the activity generated
for any given x. Regardless of how players respond to this (strategic substitutes or
complements), this shifts the whole curve upwards and the new equilibrium higher.50

This sort of analysis can also be extended to other changes in anticipated network
structure, such as mean preserving spreads (MPSs). For example, Jackson and Yariv
(2007) show that if F(v(d, x)) is non-decreasing and convex in d, then MPSs in the
degree distributions lead to nicely ordered Φs. For example, power, Poisson, and regular
degree distributions with identical means can be ordered in terms of MPSs and then lead
to respective Φpower,ΦPoisson, and Φregular such that

Φpower(x) ≥ ΦPoisson(x) ≥ Φregular(x)

for all x, which leads to a corresponding ranking of maximal equilibria.51

Finally, using this sort of approach, one can study the time series of adoption, since
xt − xt−1 = Φ(xt−1) − xt−1 is described by Φ(x) − x. Thus by studying the shape of
this curve as a function of x, one can deduce things about classic diffusion patterns
(e.g., “S-Shaped” rates of adoption), as shown by Jackson and Yariv (2007) as follows:

Proposition 3.12. Let F(v(d, x)) be twice continuously differentiable and increasing in x for
all d. If F(v(d, x)) is strictly concave (convex) in x for all d, then there exists x∗ ∈ [0, 1] such that
Φ(x) − x is increasing (decreasing) up to x∗ and then decreasing (increasing) past x∗ (whenever
Φ(x) �= 0, 1).

50 In the case of strategic complements, all players end up with (weakly) higher activity, while in the case
of strategic substitutes, some players’ actions may increase and others decrease, but the overall effect from
the shift in φ has to be upwards.

51 The welfare effects of changes in equilibria depend on changes in the overall population utilities, which
require a bit more structure to discern. See Galeotti et al. (2010) and Jackson and Yariv (2005, 2007) for
discussion.
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The idea is that as x increases, the concavity of F(v(d, x)) initially leads high feedback
effects of changes in x leading to greater changes in Φ(x), but then it eventually slows
down.

3.5.2 Incomplete information about payoffs
The previous analysis was centered on uncertainty about the interaction patterns. Instead,
one might also consider situations where the network of interactions is fixed and known,
but there is some uncertainty about payoffs.

Consider the payoff function from [3.3]. De Martí Beltran and Zenou (2012) analyze
the quadratic game of Section 3.4.1 when the parameter α is common to but unknown
by all players. Players know, however, the value of the synergy parameter φ.52 Let α

take two possible values: αH > αL > 0. All individuals share a common prior, which
is P(α = αH) = p ∈ (0, 1). Each player receives a private signal, si ∈ {h, l}, such that
P (si = h|αH) = P (si = l|αL) = q ≥ 1/2.

There is no communication between players. Player i chooses an action ai (si) ≥ 0 as
a function of the signal si ∈ {h, l}. Let ai = ai (l) and ai = ai (h). The expected utility of
player i is thus equal to:

Ei
[
ui(a,g) | si

] = Ei [α | si] ai − 1
2
a2i + φ

n∑
j=1

gijaiEi
[
aj | si

]
.

Let α̂L = Ei [α | si = l] and α̂H = Ei [α | si = h]. The best-reply functions are thus:

a∗i = α̂L + φ

n∑
j=1

gij
[
P
(
sj = l|si = l

)
a∗j + P

(
sj = h|si = l

)
a∗j
]

a∗i = α̂H + φ

n∑
j=1

gij
[
P
(
sj = l|si = h

)
a∗j + P

(
sj = h|si = h

)
a∗j
]

De Martí Beltran and Zenou (2012) show that if φμ1(g) < 1, then there exists
a unique Bayesian-Nash equilibrium of this game where equilibrium efforts are
given by:

a∗ = α̂ b1
(
g,φ

)−
(

1−γH
2−γH−γ L

)
(̂αH − α̂L) b1

(
g,
(
γH + γ L − 1

)
φ
)

a∗ = α̂ b1
(
g,φ

)+
(

1−γH
2−γH−γ L

)
(̂αH − α̂L) b1

(
g,
(
γH + γ L − 1

)
φ
)

52 We can also analyze a game where φ is unknown. The results are similar.
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where

α̂ =
(
1 − γH

)
α̂L + (

1 − γ L
)
α̂H

2 − γH − γ L
.

Here, the equilibrium efforts become a combination of two Katz-Bonacich cen-
tralities, b1

(
g,φ

)
and b1

(
g,
(
γH + γ L − 1

)
φ
)
, reflecting the uncertainty between the

two values that the parameter could take. Thus, the model can be adapted to incorporate
some uncertainty, and that ends up mitigating the effort levels.

3.5.3 Incomplete information with communication in networks
When players desire to coordinate their behaviors, and they face some uncertainty, it
is natural for them to communicate. This has interesting implications for who talks to
whom in a network setting.

For example, Hagenbach and Koessler (2011) develop an interesting model in
which players have to take actions and care about how those actions relate to three
things: (i) some private parameter, (ii) a state of nature common to all players, and
(iii) other players’ actions. The private information that players’ have about the state of
nature motivates communication. Players would like to convey information to others,
but their private biases may mean that revealing information to others could move
those players’ actions in the wrong directions. The tension is due to the fact that
a player wishes to have other players’ choose actions similar to his or her action,
which involves matching the state of nature; but those players have different desires
in terms of how close they wish to be to the state of nature, based on their private
parameters.53

This is a challenging setting to analyze, as even settings with two players are complex
(e.g., Crawford and Sobel, 1982). Nonetheless, Hagenbach and Koessler (2011) find
some very interesting features of equilibria. They find that there are multiple equilibria,
in terms of which players reveal their information to which others, and that players can
only talk to people whose private biases are similar enough to their own. However,
communication patterns between any two players depend not only on the private biases
of the two players, but also on the relative private biases of the other players with whom
each of them communicates, as that affects how information translates into actions. This
leads to the multiplicity of equilibria.

There are a variety of other related models, including Calvó-Armengol and de Martí
Beltran (2009), Galeotti et al. (2013), Acemoglu et al. (2011), Calvó-Armengol et al.
(2014). Also related is a literature on updating and learning originating from DeGroot

53 This is also related to Chwe (2000), who analyzes a game in which players want to coordinate their binary
decisions and guess the action of others based on the local information that players communicate to their
neighbors in the network about their preferences.
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(1974), with some earlier roots. That literature examines whether behavior converges
over time, how quickly it converges, whether a consensus opinion or behavior is reached,
and what the limit is (e.g., Bala and Goyal, 1998; DeMarzo et al., 2003; Golub and
Jackson, 2010, 2012a,b,c; see Jackson, 2008a, 2011 for more background). The DeGroot
model can be interpreted as one where players wish to behavior in ways similar to their
neighbors, and they myopically best respond.

3.6. CHOOSING BOTH ACTIONS AND LINKS

An important aspect of strategic behavior in network settings that has been looked at but
is far from being completely understood is the coevolution of networks and behavior.
Much of the literature that we have discussed to this point focused primarily on the
influence of a network on behavior. On the other side, there is also a large literature
that we have not discussed here that analyzes network formation taking the payoffs from
forming links as a given.54 It is clear, however, that there is feedback: People adjust their
behaviors based on that of their friends and they choose their friends based on behaviors.
Kandel (1978) provides interesting evidence suggesting that both effects are present in
friendship networks, so that over time players adjust actions to match that of their friends
and are more likely to maintain and form new friendships with other individuals who act
similarly to themselves. Bringing the formation and behavior literatures together is thus
important. In this section, we therefore study models where players choose both actions
and links. In particular, we would like to see (i) how this changes the conclusions one
gets from analyzing the choices separately, and (ii) whether this produces some interesting
patterns/dynamics.

3.6.1 Coordination games
Let us return to consider the widely applicable class of coordination games, such as those
examined in Sections 3.3.3.2 and 3.3.3.3.

We slightly re-normalize the game structure so that payoffs from any pairwise
interaction are given by

1 0
1 (b, b) (z, y)
0 (y, z) (x, x)

54 For example, see Jackson and Wolinsky (1996), Dutta and Mutuswami (1997), Bala and Goyal (2000),
Dutta and Jackson (2000), and the overview in Jackson (2008a). Those models can allow for the
equilibrium of a game on a network to generate payoffs as a function of the network, but do not explicitly
include such an analysis. For an analysis that takes endogenous network formation into account in peer
effects, see Goldsmith-Pinkham and Imbens (2013) and the accompanying papers in the same issue.
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where x > z and b > y. This allows for a coordination game with arbitrary payoffs.55

The threshold fraction q = x−z
x−z+b−y is such that action 1 is a best response for a

given player if and only if at least a fraction q of the player’s neighbors choose 1. Here,
the Pareto efficient equilibrium (payoff dominant equilibrium) depends on whether x
or b is larger. The risk dominant equilibrium is governed by the size of q. If q > 1/2
(so x− z > b− y), then action 0 is risk dominant, and if q < 1/2, then action 1 is both
risk dominant and payoff dominant (Pareto efficient).

As we saw in Section 3.3.3.3, in an evenly matched society, the stochastically stable
equilibrium was the risk dominant profile of actions, as it takes more trembles to move
away from the risk dominant profile than to it. We also saw that the network structure
of interactions can matter: for instance, in a star network all playing 0 and all playing 1
are both stochastically stable.

An important question emerges as to how this all depends on choice of partners.
A basic intuition arises that it is better to choose partners who are playing an action that
leads to a higher payoff. However, this is complicated by history: if one has many friends
choosing a low payoff action, how easy is it to change partners and get to better play?

Ely (2002)56 provides an analysis of this by allowing players to choose both actions and
neighborhoods (i.e., with whom they want to interact by choosing a location). In other
words, when a revision opportunity arises, a player simultaneously chooses a strategy and
location in order to maximize his/her expected payoff. In the model of Ely (2002), if
some player randomly moves to an unoccupied location and plays the efficient strategy,
then other players would like to move to that location and play the efficient strategy rather
than staying at a location where they play the inefficient strategy. As a result, Ely shows
that the limit distribution (with small trembles) places probability one on the efficient
outcome, so that risk-dominance ceases to play a role in determining long-run play.

This result depends on the locational aspect of the interaction patterns, and caring
about average play rather than numbers of interactions. In particular, in changing loca-
tions, players can sever all old ties, form new ties, and switch technologies simultaneously,
and the number of new versus old ties is not important to the players.

Jackson and Watts (2002b) instead propose a model which is not a location one, but
rather one where players choose their interaction patterns on an individual-by-individual
basis. In other words, they model the interaction pattern as a network where individuals
periodically have the discretion to add or sever links to other players.

In each period t, a player i chooses an action ati ∈ {1, 0} and then receives a payoff of

ui(a
t,gt) =

∑
j �=i

gtij
[
vi(a

t
i , a

t
j) − k(di(g

t))
]

55 In the previous analysis, it was fine to normalize payoffs of one of the actions to 0. Here, since there are
also costs of links to consider, absolute payoffs of actions matter (not just relative differences), and so we
keep track of the value all possible combinations of actions.

56 See also Mailath et al. (2001).
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where vi(ati , a
t
j) is a payoff that depends on the actions chosen, the network gt, and a cost

k(di(gt)) of having di(gt) links.
The full version of the Jackson and Watts (2002b) dynamic process is as follows.

• Period t begins with network gt−1 in place.
• One link ijt is chosen at random with probability pij. If the link is not in gt−1 then it

is added if both players weakly benefit from adding it and at least one strictly benefits,
under the myopic assumption that the rest of the network stays fixed and actions will
be at−1. If the link is in gt−1 then it is deleted if either player strictly benefits from
deleting it, under the myopic assumption that the rest of the network stays fixed and
actions will be at−1. With a probability γ , 1 > γ > 0, the decision to add or delete
the link is reversed. This results in a new network gt.

• Next, one player i is randomly chosen with some probability qi. That player chooses
ati to maximize ui(ati , a

t−1
−i ,gt). With a probability ε, 1 > ε > 0, the action of player i

is reversed. This results in a new action profile at.57

The probabilities of trembles are identical and independent across players, strategies, and
periods. This is well-defined Markov chain where the state is the vector of actions at,
that are played in period t. Since this process is aperiodic and irreducible, the Markov
chain has a unique stationary distribution, denoted μγ ,ε(g, a).

Jackson and Watts (2002b) analyze a variety of different cost structures, but
let us just consider one of those and refer the reader to the paper for other
details.

Consider a cost of link structure k(d) that is equal to kd for d ≤ D and infinite if
d > D. So, players have a constant marginal cost of links up to some level degree D, and
then the cost of maintaining additional costs is arbitrarily large, so that they effectively
have a capacity constraint on friendships.

Stochastic stability now involves looking at the limit of the process μγ ,ε(g, a) as γ

and ε both go to zero (at similar rates, so take γ = f ε for some constant f ). Jackson and
Watts (2002b) show58:

Proposition 3.13. Let D be even and such that n > D > 1. Also, let 1 − 2/D > q > 2/D
and q �= 1/2.

(i) If x− k > 0 and b− k < 0, then the set of stochastically stable states involve all players
playing 0; and, analogously, if x− k < 0 and b− k > 0, then the set of stochastically
stable states involve all players playing 1. There can be a variety of network configurations in
stochastically stable states.

57 Disconnected players choose a best response to the last period distribution of play of the others.
58 Jackson and Watts (2002b) provide more analysis of this model, and Goyal and Vega-Redondo (2005)

find similar results for a model with unilateral link formation. There is also an analysis by Droste et al.
(2000) for the case of geographic link costs.
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(ii) If y− k > 0 and z− k > 0, then in any stochastically stable state each player has D links
and plays the risk dominant action.

(iii) If y− k < 0 and/or z− k < 0, and x− k > 0 and b− k > 0, then in stochastically
stable states involve all players playing 0 as well as all players playing 1. There can be a
variety of network configurations in stochastically stable states.

Although the proof of the proposition is quite involved, some of the intuitions are
relatively easy to see. In case (i), there is only one of the actions that can lead to a
positive payoff and so links can only exist in the long run between players playing the
action leading to a positive payoff, and indeed that turns out to be stochastically stable
as if players randomly start playing the action that leads to a positive payoff then they
end up linking to each other, and so only a couple of trembles can start growing a
network of people playing the action that leads to positive payoffs. In case (ii), both
actions lead to positive payoffs (up to the capacity constraint) regardless of what ones
neighbors do. Here, standard risk dominance arguments take over as players form the
full number of D links, and then trembles in actions play the leading role in determining
the outcome. Case (iii) is perhaps the most subtle and interesting one. It addresses
the situation where at least one of the actions leads to sufficiently poor payoffs from
miscoordination, that it is better to sever a link to a player with whom one is not
coordinating when playing that action, than to maintain that link. In this situation,
trembles in actions can lead to changes in network structure, which then aids in changes
in behavior. For example, suppose that all players are initially playing the risk dominant
action. A tremble can lead a player who changes action to be disconnected from the
network. With two such trembles, two disconnected players can then form a component
playing the other action, which continues to grow as trembles accumulate. This process
moves symmetrically between all playing the risk dominant action, and the other case
(and each intermediate equilibrium with some mixture of play is destabilized by a single
tremble).

There are also questions as to the relative rates at which actions change compared to
network structure, and that can affect the overall convergence to equilibrium, as one sees
in Ehrhardt et al. (2006), as well as Holme and Newman (2006) and Gross and Blasius
(2008). There are also analyses of equilibrium play in games when players are matched
in heterogeneous roles (e.g., firms and workers, husbands and wives, etc.) as in Jackson
and Watts (2010).

While the details can be complicated, the main message is that endogenizing the
interaction structure between players can have a profound impact on the way in which
play evolves in a society. Thus, the endogeneity of relationships cannot be ignored when
trying to make robust predictions about behaviors in a society, despite the complexity
that endogenous relationships introduce.
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3.6.2 Network formation in quadratic games
In addition to the models discussed above, there are other models that have combined
action and link choices. For example, Bloch and Dutta (2009) proposed a model with
both link intensities and communication.

We expose two models, one static (Cabrales et al., 2011) and one dynamic (König
et al. 2010, 2014a), which both use the quadratic model from Section 3.4.

Consider a simultaneous move game of network formation (or social interactions)
and investment. T = {1, . . . , t} is a finite set of types for the players. We let n be a
multiple of t: n = mt for some integer m ≥ 1, and there is the same number of players
of each type. The case where n = t is referred to as the baseline game and the case where
n = mt as the m-replica of this baseline game. Let τ (i) ∈ T be player i’s type.

Let c > 0. Player i’s payoff is described by:

ui(a, s) = ατ(i) ai + φ

n∑
j=1,j �=i

gij (s) ajai − 1
2
c a2i − 1

2
s2i [3.34]

where ai ≥ 0 is the action (productive investment) taken by player i while si ≥ 0 is the
socialization effort of player i, with s = (s1, . . . , sn). The returns to the investment are
the sum of a private component and a synergistic component. The private returns are
heterogeneous across players and depend on their type.

The network of interactions gij (s) between players i and j are determined by

gij(s) = ρ (s) sisj [3.35]

where

ρ (s) =
{
1/

∑n
j=1 sj, if s �= 0

0, if s = 0
[3.36]

so that gi(s) = si. That is, players decide upon their total interaction intensity.
This sort of approach to network formation appears in the models of Curarrini et al.

(2009, 2010) and has also been used by Golub and Livne (2011), among others. An
important aspect is that the synergistic effort s is generic within a community—a scalar
decision. Network formation is not the result of an earmarked socialization process.
Using [3.35] and [3.36], one can see that the probability of forming a link, gij(s), is equal
to sisj/

∑n
j=1 sj. This means that the more time two players i and j spend socializing, the

more likely they form a link together.
Let

φ(α) = φ

∑t
τ=1 α2

τ∑t
τ=1 ατ

. [3.37]

Cabrales et al. (2011) demonstrate the following result:
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Proposition 3.14. Suppose that 2 (c/3)3/2 > φ(α) > 0. Then, there exists an m∗ such
that for all m-replicas with m ≥ m∗, there are two (stable) interior pure strategy Nash equilibria.
These pure strategy Nash equilibria are such that for all players i of type τ , the strategies (si, ai)
converge to (s∗τ(i), a

∗
τ (i)) as m goes to infinity, where s∗τ (i) = ατ(i)s, a∗τ (i) = ατ(i)a, and (s, a) are

positive solutions to {
s = φ(α)a2

a [c − φ(α)s] = 1
[3.38]

When φ(α) is small enough compared to the infra-marginal cost for a productive
investment, the system of two equations [3.38] with two unknowns has exactly two
positive solutions. As m gets large, each such solution gets arbitrarily close to a pure
strategy Nash equilibrium of the correspondingm-replica game. The multiplicity reflects
complementarities in socialization and in actions.

The approximated equilibria characterized in Proposition 3.14 display important
features. First, the level of socialization per unit of productive investment is the same for
all players, that is, s∗i /a∗i = s∗j /a∗j , for all i, j. This is equivalent to having amarginal rate of
substitution of socialization versus action uniform across all players. Second, differences
in actions reflect differences in idiosyncratic traits. More precisely, a∗i /a∗j = ατ(i)/ατ(j),
for all i, j. Third, in the presence of synergies, actions are all scaled up (compared to the
case without synergies) by a multiplier. This multiplier, which is homogeneous across all
players, is a decreasing function of the cost c, and an increasing function of the second-
order average type φ(α).

Figure 3.6 plots equations [3.38].
From this figure, it is clear that the system [3.38] need not always have a positive

solution. The upper bound on φ(α) in Proposition 3.14 is a necessary and sufficient
condition for the two graphs to cross in the positive orthant of the space (s, a). When
φ(α) is too large, the synergistic multiplier operates too intensively and there is no
intersection: there is a feedback where increases in socialization lead to increase actions
and vice versa.

The equilibrium actions can be ranked component-wise, and the equilibrium payoffs
can be Pareto-ranked accordingly. There is a Pareto-superior approximate equilibrium
(
(
s∗, a∗) in Figure 3.6) and a Pareto-inferior approximate equilibrium (

(
s∗∗, a∗∗) in

Figure 3.6) while the socially efficient outcome lies in between the two equilibria.59 For-
mally,

(
s∗, a∗) ≥ (

sO, aO
) ≥ (

s∗∗, a∗∗) and u
(
sO, aO

) ≥ u
(
s∗, a∗) ≥ u

(
s∗∗, a∗∗).

Another model based on the quadratic model where players choose with whom they
want to interact is that of König et al. (2014a). At each period of time, players play a
two-stage game: in the first stage, players play their equilibrium actions in the quadratic

59 The superscript O refers to the “social optimum” outcome.
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game, while in the second stage a randomly chosen player can update his/her linking
strategy by creating a new link as a best response to the current network. Links do not
last forever but have an exponentially distributed life time. A critical assumption is that
the most valuable links (i.e., the ones with the highest Bonacich centrality) decay at a
lower rate than those that are less valuable. As in the literature on evolutionary models
described in Section 3.6.1, the authors introduce some noise to this model. Indeed,
there is a possibility of error, captured by the stochastic term in the utility function.
The authors then analyze the limit of the invariant distribution, the stochastically stable
networks, as the noise vanishes.

The network generated by this dynamic process is a nested split graph when the
noise tends to zero. The authors also show that the stochastically stable network is a
nested split graph. These graphs, known from the applied mathematics literature (see, in
particular, Mahadev and Peled, 1995), have a simple structure that make them tractable.
In order to define nested split graphs, we first have to define the degree partition of
a graph.

Let (N ,g) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k),
and let d0 = 0 (even if no player with degree 0 exists in g). Further, define Di = {j ∈
N : dj = d(i)} for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is the
degree partition of g.

A network (N ,g) is a nested split graph if it satisfies the following. Let D =
(D0,D1, . . . ,Dk) be its degree partition. Then the nodes N can be partitioned into

Figure 3.6 Multiple equilibria when players choose actions and socialization.
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Figure3.7 Representation of a connectednested split graph (left) and the associated adjacencymatrix
(right) with n = 10 agents and k = 6 distinct positive degrees. A line betweenDi andDj indicates that
every node in Di is linked to every node in Dj . The solid frame indicates the dominating set and the

nodes in the independent sets are included in the dashed frame. Next to the set Di the degree of the
nodes in the set is indicated. The neighborhoods are nestedsuch that the degreesare given by d(i+1) =
d(i) + |Dk−i+1| for i �=

⌊
k
2

⌋
and d(i+1) = d(i) + |Dk−i+1| − 1 for i =

⌊
k
2

⌋
. In the correspondingadjacency

matrixA to the right the zero-entries are separated from the one-entries by a stepfunction.

independent sets Di, i = 1, . . . ,
⌊
k
2

⌋
and a “dominating” set

⋃k
i=
⌊
k
2

⌋
+1

Di in the

network (N\D0,g′), where g′ is the corresponding subnetwork.60 Moreover, the
neighborhoods of the nodes are nested: for each node j ∈ Di, i = 1, . . . , k,

Nj(g) =
⎧⎨⎩
⋃i
j=1 Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋
,⋃i

j=1 Dk+1−j � {j} if i =
⌊
k
2

⌋
+ 1, . . . , k.

[3.39]

Figure 3.7 illustrates a (path-connected) nested split graph. From the stepwise property
of the adjacency matrix it follows that a connected nested split graph contains at least
one spanning star, that is, there is at least one player that is connected to all other players.

Let us give some more intuition of the result that the stochastically stable network
is a nested split graph. In this model, because of complementarities, players always want
to link to others who are more central since this leads to higher actions (as actions
are proportional to centrality) and higher actions raise payoffs. Similarly, links decay to
those with lower centrality as these players have lower actions and hence lower payoff
effects. Notice moreover that, once a player loses a link, he/she becomes less central
and this makes it more likely that another link decays. Thus link gains and losses are self
reinforcing. This intuition suggests that if the probability of adding links is large then the
process should approximate complete network while if it is small then the process should
approximate the star network. The key insight of this model is that, for intermediate
values of this probability, the network is a nested split graph.

60 �x� denotes the smallest integer larger or equal than x (the ceiling of x). Similarly, �x� denotes the largest
integer smaller or equal than x (the floor of x).
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König et al. (2014a) also explicitly characterize the degree distribution P(d) in the
stochastically stable networks. Instead of relying on a mean-field approximation of the
degree distribution and related measures as some dynamic network formation models
do, because of the nature of nested split graphs, the authors are able to derive explicit
solutions for network statistics of the stochastically stable networks (by computing the
adjacency matrix). They find that, as rates at which linking opportunities arrive and
links decay, a sharp transition takes place in the network density. This transition entails a
crossover from highly centralized networks when the linking opportunities are rare and
the link decay is high to highly decentralized networks when many linking opportunities
arrive and only few links are removed.

Interestingly, some aspect of nestedness is seen empirically. For example, the organi-
zation of the New York garment industry (Uzzi, 1996), the trade relationships between
countries (De Benedictis and Tajoli, 2011) and of the Fedwire bank network (Soramaki
et al., 2007) show some nested features in the sense that their organization is strongly
hierarchical. If we consider, for example, the Fedwire network, it is characterized by
a relatively small number of strong flows (many transfers) between banks with the vast
majority of linkages being weak to non-existing (few to no interbank payment flows).
In other words, most banks have only a few connections while a small number of
interlinked-“hub nodes” have thousands.

3.6.3 Games with strategic substitutes
We now turn to discuss network formation in the context of games with strategic
substitutes. Let us extend the model of Bramoullé and Kranton (2007a) exposed in
Section 3.3.2.3 to introduce link formation. Remember that in a game with no link
formation, there were specialized equilibria in which the set of players exerting full
effort forms a maximal independent and vice versa.

Galeotti and Goyal (2010) consider a variation in which the utility function of player i
is given by:

ui(a,g) = v

⎛⎝ai + φ

n∑
j=1

gijaj

⎞⎠ − c ai − k di(g), [3.40]

where v(.) is a strictly increasing and strictly concave function on R+ and c > 0 is the
constant marginal cost of own action such that v′ (0) > c > v′ (x) for some x, and k > 0
is the cost of linking with an other player.

Consider directed networks, in which a player can unilaterally form a link with
another player without his/her consent and pays the cost of forming this link. As
in Section 3.3.2.3, let a∗∗ be the effort level of an individual who experiments by
him/herself, i.e. v′(a∗∗) = c. Assume k < c a∗∗ so that it is cheaper to link to another
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player who exerts effort than to exert effort directly. This ensures that some players
form links with others. Every (strict) equilibrium of this game has a core-periphery
architecture so that the players in the core acquire information personally, while the
peripheral players acquire no information personally but form links and get all their
information from the core players. Galeotti and Goyal (2010) also show that, under some
conditions, the socially optimal outcome is a star network in which the hub chooses some
positive level of effort while all other players choose 0.61

López-Pintado (2008) presents an interesting dynamic network formation model
with strategic substituabilities. She assumes that players make a binary decision, whether
or not to exert effort, rather than exerting a continuous effort. In each period, a player,
uniformly selected at random from the population, updates his/her strategy and chooses
a myopic best response. In other words, taking as given the behavior of others, the player
chooses the action that maximizes his/her current benefits. López-Pintado (2008) shows
that this dynamic process converges to a Nash equilibrium of the static model. She then
studies a mean-field version of the myopic best response dynamics and considers the
asymptotic properties of the equilibria in (general) random networks when the network
size becomes large. In this model, López-Pintado shows that the dynamics converge to
a unique, globally stable fraction of free-riders. She also demonstrates that the higher
is the degree of players in a homogeneous network, the higher is the proportion of
players free-riding and the proportion of links pointing to a free-rider. Under additional
conditions on the degree distribution, she shows that the proportion of links pointing
to a free-rider increases under a FOSD shift of the degree distribution and decreases
under a MPS of the degree distribution. These results suggest that there tends to be
more free-riding in denser or more equal networks.

3.7. REPEATED GAMES ANDNETWORK STRUCTURE

Several papers have provided a theoretical analysis of a repeated games in network
settings. This includes Raub and Weesie (1990), Vega-Redondo (2006), Ali and Miller
(2009, 2012), Lippert and Spagnolo (2011), Mihm et al. (2009), Jackson et al. (2012),
Fainmesser (2012), and Dall’Asta et al. (2012).62

There are several ideas that emerge from this literature. One relates to network
structure and information travel. The basic idea is that to enforce individual cooperation
in prisoner’s dilemma sorts of games, other players have to be able to react to a

61 The equilibrium and socially optimal networks are similar to those obtained by König et al. (2014a) in
the context of a dynamic network formation model with strategic complementarities (see Section 3.6.2)
since nested-split graphs have clearly a core-periphery structure.

62 There is also a related literature in evolutionary game theory where this some structure to interactions,
such as Nowak and May (1992) and Eshel et al. (1998).
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given player’s deviations. Raub and Weesie (1990) and Ali and Miller (2009) show
how completely connected networks shorten the travel time of contagion of bad
behavior which can quicken punishment for deviations. Players only observe their own
interactions, and so punishments travel through the network only through contagious
behavior, and the challenge to enforcing individual cooperation is how long it takes for
someone’s bad behavior to come to reach their neighbors through contagion.63

A second idea relates to heterogeneity. Haag and Lagunoff (2006) show how
heterogeneity can also favor cliques. They allow for preference differences that can
preclude cooperative behavior within a repeated game, and so partitioning society into
homogeneous subgroups can enable cooperative behavior that might not be feasible
otherwise.

A third idea relates to robustness of networks, which favor networks that look like
“quilts” of small cliques pasted together. Jackson et al. (2012) examine self-enforcing
favor exchange, where players can periodically do favors for their friends but at a cost.
In order to ensure that a player performs a favor when called upon, the player fears
losing several friendships and thus many future favors. There are many such networks
that can enforce favor exchange, by threatening to sever links to players who fail to
perform favors when they are asked to. However, as Jackson et al. (2012) show, only very
special networks are “robust.” Robustness requires two things: a form of renegotiation
so that the punishments are really credible, and immunity to large contagions—the
only people who end up losing links are friends of the player failing to do a favor.
These networks consist of (many) small cliques of players, where if a player fails to
perform a favor then a particular clique disintegrates, but that does not lead to further
contagion.Other networks experience further contagions where society loses more of its
links.

The many settings of repeated interactions between friends makes understanding
repeated games on networks essential. This literature is still at its beginning and many
open questions remain.

3.8. CONCLUDING REMARKS AND FURTHER AREAS OF RESEARCH

The settings where social network structure has profound implications for human be-
havior are quite numerous. Thus, it is not surprising that the literature that relates to this
subject is enormous. We have focused mainly on the central theoretical underpinnings
of games played on networks.

63 See Lippert and Spagnolo (2011) for more discussion on optimal strategies with word-of-mouth
communication. Contagion strategies are costly, and can deter truthful communication as players may not
wish to have the contagion occur. Other strategies that only result in punishment of the initial deviator can
improve in some environments. More generally, the issue of incentives for communication is a complex
one in such settings, as also discussed in Ali and Miller (2012).
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Networks are inherently complex, and so much of the progress that has been made
required some focus on specific game structures. There are three main ways in which
progress has been made. One involves looking at games of strategic complements and
strategic substitutes, where the interaction in payoffs between players satisfies some
natural and useful monotonicity properties. That monotonicity provides a basis for
understanding how patterns of behaviors relate to network structure. A second approach
relies on looking at a simple parametric specification of a game in terms of a quadratic
form that permits an explicit solution for equilibrium behavior as a function of a
network. A third approach considers settings where the specific pattern of interactions is
uncertain, in which case equilibrium can be expressed nicely as a function of the number
of interactions that players expect to have.

These models make a number of predictions about behavior, relating levels of
actions to network density, relating players’ behaviors to their position in the network,
and relating behavior to things like the degree distribution and cost of taking given
actions. Thus, we end up both with predictions about how a specific player’s behavior
relates to his/her position in a network, as well as what overall behavior patterns to
expect as a function of the network structure. While much progress has been made,
the innumerable applications and importance of the subject cry out for additional
study.

Let us close with a brief discussion of various areas of research that are closely related,
but we have not covered due to space constraints.

3.8.1 Bargaining and exchange on networks
An important area in terms of applications to economics concerns bargaining and
exchange on networks. Many business relationships are not centralized, but take place
through networks of interactions. A standard modeling technique in the literature that
has modeled this is to have only pairs of players connected in the network can trade.
The key questions addressed by this literature are: How does the network structure
influence market outcomes? How does a player’s position in the network determine
his/her bargaining power and the local prices he/she faces? Who trades with whom and
on what terms? Are trades efficient? If players can choose their links, do the efficient
networks form? How does this depend on the bargaining protocol and the costs of
links?

The literature on this subject includes the early experimental investigations of Cook
and Emerson (1978), and what followed in the literature on “exchange theory.”64 That
literature documents how positions in a network influence terms of trade, testing theories
of power and brokerage.

64 Early writings on exchanges in networks include Homans (1958, 1961), Blau (1964), and eventually
included explicit consideration of social network structure as in Emerson (1962, 1976).
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The theoretical analyses of this subject later emerged using models of trade based on
tools including auction theory, noncooperative analyses of bargaining games, and use
of the core. Much of that literature assumes that buyers have unit demands and sellers
have unit supply, and that these are pre-identified. For example, Kranton and Minehart
(2001) considered a setting where prices are determined by an ascending-bid auction
mechanism. They showed that the unique equilibrium in weakly undominated strategies
leads to an efficient allocation of the goods. They found that the network formation was
also efficient in a setting where buyers pay the cost of connection. Jackson (2003) shows
that this result does not generalize, but is special to buyers bearing the entire connection
cost, and that cost being born before buyers know their valuations for the good. He
shows that both under-connection (in cases where some players see insufficient shares
of the gains from trade) and over-connection (as players try to improve their bargaining
position) are possible sources of inefficiency.

The literature that followed explored a variety of different exchange mechanisms
and settings in terms of valuations. Calvó-Armengol (2003) explores the power of a
position in a network, in a context of pairwise sequential bargaining with neighbor
players. Polanski (2007) assumes that a maximum number of pairs of linked players are
selected to bargain every period. Corominas-Bosch (2004) considered an alternating
offer bargaining game. One of the most general analyses is by Elliott (2011) who allows
for general valuations among pairs of players and then characterizes the core allocations.
Using that as a basis, he then documents the inefficiencies that arise in network
formation, showing how under-connection and over-connection depend on how costs
of links are allocated. Elliott also documents the size of the potential inefficiencies, and
shows that small changes in one part of a network can have cascading effects. Manea
(2011) and Abreu and Manea (2012) provide a non-cooperative models of decentralized
bargaining in networks when players might not be ex ante designated as buyers or sellers,
but where any pair may transact. Condorelli and Galeotti (2012) provide a look at a
setting where there is incomplete information about potential valuations and possibilities
of resale.

Related models include those studying oligopoly games that are played by networked
firms as in Nava (2009), who analyzes when it is that competitive outcomes are reached,
and Lever (2011) who examines network formation. Blume et al. (2009) examine
the role of middlemen in determining profits and efficient trade, Fainmesser (2011)
examines a repeated game with reputations concerning past transactions, and Campbell
(2013) examines the role of selling products in the presence of network word-of-mouth
effects.

There are also studies, such as Kakade et al. (2004, 2005), that examine exchange on
random networks. One finding is that if the network is sufficiently symmetric so that
buyers have similar numbers of connections, as well as sellers, then there are low levels
of price dispersion, while sufficient asymmetry allows for more price dispersion.
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The literature to date provides some foundations for understanding how networks
influence terms of trade. Still largely missing are empirical tests of some of the theory
with field data. Some experimental evidence (e.g., Charness et al., 2005) validates some
of the bargaining predictions in lab settings.

3.8.2 Risk-sharing networks
Another important application where networks play a prominent role in shaping
behavior is in terms of risk-sharing. In much of the developing world, people face severe
income fluctuations due to weather shocks, diseases affecting crops and livestock, and
other factors. These fluctuations are costly because households are poor and lack access
to formal insurance markets. Informal risk-sharing arrangements, which help cope with
this risk through transfers and gifts, are therefore widespread.65,66

Again, this is an area where simple game theoretic models can add substantial insight.
Some studies to date include Bramoullé and Kranton (2007b), Bloch et al. (2008),
Karlan et al. (2009), Belhaj and Deroïan (2012), Jackson et al. (2012), and Ambrus et al.
(2014). This is an area where rich repeated game studies should help deepen our under-
standing of the relationship between networks of interactions and the (in)-efficiency of
risk-sharing.

3.8.3 Dynamic games and network structure
Most of our discussion has focused on static games or else simple variations on
dynamics with perturbations. Beyond those, and the repeated games mentioned above,
another important area where networks can have profound implications is in terms
of the dynamics of patterns that emerge. Just as an example, Calvó-Armengol and
Jackson (2004) study the dynamics of labor markets: the evolution over time of
employment statuses of n workers connected by a network of relationships where
individuals exchange job information only between direct neighbors.67 Accounting for
the network of interactions can help explain things like the duration of unemploy-
ment of each worker. A worker whose friends are unemployed has more difficulty
in hearing about job openings and this leads to increased spells of unemployment,
as well as decreased incentives to invest in human capital. The complementarities

65 Rosenzweig (1988) and Udry (1994) document that the majority of transfers take place between
neighbors and relatives (see also Townsend, 1994). Other empirical work confirms this finding with more
detailed social network data (Dercon and DeWeerdt, 2006; Fafchamps and Gubert, 2007; Fafchamps and
Lund, 2003).

66 Although this is clearly vital in the developing world, substantial sharing of risks is also prevalent in the
developed world.

67 See also the model of Calvó-Armengol et al. (2007) who study the importance of weak ties in crime and
employment.
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in that setting, coupled with the network structure, helps provide an understand-
ing of various empirical observations of employment. Calvó-Armengol and Jackson
(2004) also show that education subsidies and other labor market regulation policies
display local increasing returns due to the network structure. Subsidies and pro-
grams are more tightly clustered with network structure in mind can then be more
effective.

That is just an example of an area where the coupling of game theoretic analysis and
network structure can have important implications for dynamics and for policy. This is
an important and still under-studied area.

3.8.4 More empirical applications based on theory
Part of the reason that accounting for networks in studying behavior is so essential, is that
understanding the relationship can shape optimal policy. For example, in Section 3.4.4.1,
we discussed the idea of key player in crime, i.e. the criminal who once removed
generates the highest reduction in crime. Liu et al. (2012) examined this idea using
data on adolescent youths in the US (AddHealth) and show that, indeed, a key player
policy reduces crime more than a random-targeted policy. In other words, targeting
nodes or players in a network can have snow-ball effects because of the interactions
between players in the network. This is the idea of the social multiplier developed in
Section 3.4.1.

Other examples of areas where models of games on networks help inform policy and
learn from field work include financial networks, diffusion of innovations, and political
interactions. For example, financial markets can be considered as a network where links
are transactions of dependencies between firms or other organizations (Leitner, 2005;
Cohen-Cole etal., 2011; Elliott et al., 2014). Network analyses in financial settings can
enhance our understanding of the interactions and optimal regulation and policy. It is
also clear that networks influence adoption of technologies. There is indeed empirical
evidence of social learning (e.g., Conley and Udry, 2010). Theory (e.g., Section 3.5.1.3)
tells us that the adoption of a new technology is related to network structure. In a recent
paper, Banerjee et al. (2013) study the adoption of a microfinance program in villages in
rural India. They find that participation to the program is higher in villages when the
first set of people to be informed are more important in a network sense in that they
have higher diffusion centrality (a new centrality measure). As a last example, there is
evidence that personal connections amongst politicians have a significant impact on the
voting behavior of U.S. politicians (Cohen and Malloy, 2010). Here there is a need for
both theory and additional empirical work, that helps us understand how the network
of interactions between politicians shapes legislation and a host of other governmental
outcomes.
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As the theory of games on networks continues to develop, the interaction with field
work will continue to become richer and more valuable.

3.8.5 Lab and field experiments
While our knowledge of peer effects is growing, the complexities involved mean that
there is still much to be learned. Given the enormous difficulty of identifying social
effects in the field, essential tools in this area of research are laboratory and field
experiments, where one can control and directly measure how players’ behaviors relate
to network structure.

Experiments have been used to study strategic network formation (e.g., Callander
and Plott, 2005; Charness and Jackson, 2007; Falk and Kosfeld, 2003; Goeree et al.,
2009; Pantz and Zeigelmeyer, 2003), learning in network settings, (e.g., Celen et al.,
2010; Chandrasekhar et al., 2011; Choi et al., 2012; Möbius et al., 2010) as well as
games played on networks (see Jackson and Yariv, 2011; Kosfeld, 2004, for additional
background).68

For instance, Goeree et al. (2010) and Leider et al. (2009) find that play in games is
related to social distance in a network, with players being more cooperative or generous
to those who are direct friends or close in a social distance sense compared to those who
are more distant in the network. Kearns et al. (2009) find that a society’s ability to reach
a consensus action in a game of complementarity depends on network structure.

Moreover, experiments can be very useful in directly testing some of the theoretical
predictions given above. For example, Charness et al. (2014) test games of networks
by looking at two important factors: (i) whether actions are either strategic substitutes
or strategic complements, and (ii) whether subjects have complete or incomplete
information about the structure of a random network. They find that subjects conform
to the theoretical predictions of the Galeotti et al. (2010) model that we exposed in
Section 3.5.1. They also find some interesting selections of equilibria that suggest that
additional theory would be useful.
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