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Abstract— 
Gamification approaches to learning use game-inspired design 

elements to improve learning. Given manifold design options to 
implement gamification in virtual environments, an important but 
underexplored research area is how the composition of 
gamification elements affects learning. To advance research in this 
area, we systematically identified key design elements that have 
shown promise in leading to positive learning results. We then 
conducted an experiment in which we varied gamification 
intensity in web-based virtual training environments for a 
procedural industrial task. 355 participants were divided into a 
baseline group without gamification, a basic, and an advanced 
gamification group. Analysis of participants’ learning included 
learning outcomes (time-to-completion and number of mistakes), 
affective learning factors (motivation, self-efficacy, satisfaction), 
learning system usability and perceived cognitive load throughout 
the learning process. The results did not show any statistically 
significant difference favoring the higher levels of gamification 
intensity with respect to lower ones. Conversely, we found that 
participants’ computer gaming habits and technical equipment 
(display size and computer pointing device) significantly 
influenced learning.  
 

Index Terms— Gamification, virtual reality, industrial training, 
virtual training, virtual assembly, game-based learning, non-
immersive virtual reality 
 

I. INTRODUCTION 
One of the advantages of virtual 2D or 3D environments is 

that they enable novel opportunities to implement gamification 
to increase the training motivation of learners and enhance 
learning outcomes [1], [2]. Gamification is defined as the use 
of game design elements in non-game contexts [3]. However, 
empirical understanding of gamification’s potential to enhance 
virtual training remains limited, particularly in industrial 
learning contexts [4], [5]. Given manifold design options to 
implement gamification in virtual training environments, an 
important but underexplored research question is how different 
gamification elements affect learning. We focus on this 
research gap with an experiment comparing three different 
gamification intensities (defined by the number of game 
elements used) and their effect on the trainee’s learning. 
Therefore, we investigated objectively measured learning 
outcomes as well as subjectively measured affective learning 
factors, learning system usability and perceived cognitive load 
throughout the learning process. To further investigate the 
learnings’ sustainability, our research additionally measured 
knowledge retention over the time of 3-4 weeks after the initial 
training. Our research advances learning technologies research 

by contributing new empirical evidence on gamification 
intensity and how choices of game element configuration and 
learners’ technological equipment influence learning. The 
insights of our study have important implications for educators 
and designers of virtual trainings contemplating gamification 
and aiming to advance future research on the optimal 
application of gamification in virtual learning contexts. In what 
follows below, we outline the theoretical foundation of our 
research, explain our research design, present results, and then 
discuss our findings and their limitations and opportunities for 
future research. 

II. THEORETICAL BACKGROUND 

A. Virtual training and its evaluation  
The learning context of our study is industrial training which 
can be defined as a systematic organizational process that 
equips employees with the required knowledge, attitudes, and 
skills to achieve an organization’s mission and goals [6]. To 
evaluate the effectiveness of these training processes and 
frameworks several qualitative and quantitative schemes have 
been proposed [7]. Drawing on previous studies, we 
particularly considered a multilevel training evaluation 
framework because it includes subjective affective indicators 
and objective performance indicators [8]. Affective indicators 
typically include motivation, satisfaction, and self-efficacy. 
Performance indicators tend to vary depending on specific 
learning objectives. For learning industrial tasks, for example, 
common key performance indicators (KPI) are time-to-
completion (TTC) and number of mistakes.  
When investigating performance indicators, it is also important 
to assess their development over time because research has 
shown knowledge and skills decay over time [9], [10]. 
Scientific attempts to predict knowledge decay range from 
mathematical models to non-gradual knowledge collapse 
theories [11], [12]. Empirical studies indicate that retention 
intervals affect sustained knowledge [10], [13], [14]. With each 
additional training session taking up personnel and costs, 
organizations are generally interested in designing training to 
minimize the number of knowledge-refreshment needed.  
Recent studies show that other metrics, such as perceived 
usability of the training platform are also important, especially 
for virtual training [15]–[19]. In general, high usability induces 
improved learning effects [17], [18]. Common attempts to 
quantify a system’s usability include the System Usability Scale 
(SUS) which consists of 10 scale-based questions [20].  
Cognitive load (CL) is induced throughout a training process. 
Cognitive load theory (CLT) proposes that human memory is 
composed of three memory systems: long-term memory 
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(LTM), working memory (WM) and sensory memory (SM) 
[21]. LTM is where the permanent or semi-permanent 
information is stored, WM is the structure devoted to the 
maintenance of information in short term during concurrent 
processing activities while SM is where sensory information is 
stored before being transferred to the WM. Thus, new 
information needs to pass by the WM to be stored permanently. 
CLT further claims that humans’ WM storage and processing 
capabilities are limited, whereas the LTM theoretically does not 
face any constraint of that type [21]. Cognitive load theory is 
backed by recent studies revealing that without rehearsal, 
information in the WM is lost within 20 seconds [22]. Since 
comprehension and learning are determined by the capability of 
the WM, learning researchers conclude that the WM should 
solely be occupied by task-relevant information [23]. This 
results in the training objective to minimize the cognitive load 
by, for example, removing external or redundant information 
[24]. Based on the human brain’s complexity, measuring the 
multidimensional concept of cognitive load proves to be a 
challenge, yet three measurement categories have emerged: 
(subjective) rating scales, psychophysiological methods, and 
secondary task techniques. Although the subjectivity of self-
ratings may appear questionable, it has been demonstrated that 
people are quite capable of giving an accurate numerical 
indication of their perceived CL in past studies [25]. The most 
common NASA-TLX scale considers six different CL-
dimensions: mental demand, physical demand, temporal 
demand, performance, effort and frustration [26], [27]. 

B. Gamification 
While cognitive load theory recommends removing all 
information not directly task-related to enhance learning 
outcomes, it neglects any positive effects such information or 
objects might have that outweigh their additional cognitive load 
[28]. These objects could, for example, increase other training 
evaluation metrics (e.g., motivation) while inducing only slight 
additional CL and resulting in an overall benefit  [29], [30]. The 
concept of gamification is based on this strategy and can be 
defined and distinguished from other concepts as set out by [3]:  

● “the use (rather than the extension) of  
● design (rather than game-based technology or other 

game-related practices)  
● elements (rather than full-fledged games) 
● characteristic for games (rather than play or 

playfulness)  
● in non-game contexts (regardless of specific usage 

intentions, contexts or media)”. 
Based on this definition, gamification is characterized by the 
presence of several game-like design elements (game 
elements). This results in two difficulties: firstly, gamification 
is manifold due to the potential composition of different game 
elements. Secondly, the lines between conventional design 
elements (e.g., instructional design elements) and game 
elements are sometimes blurry. We tackled the latter by 
grouping the game elements from the literature into basic game 
elements and advanced game elements. Basic game elements 
are design elements which some studies classify as instructional 
elements while others classify them as game elements. The 

advanced game elements on the other hand were solely 
classified as game elements across all previous studies. 
Our literature review revealed 35 different game elements 
which are listed in the Appendix [31]–[35]. Mathematically and 
assuming – for the sake of simplicity – that each element can 
only be used in one way, this could possibly result in more than 
30 billion different game element combinations, which makes 
research reproducibility all but impossible. Consequently, 
conducting empirical studies and selecting a set of game 
elements are important to progress knowledge [2]. A promising 
attempt to identify a suitable and consistent set of game 
elements is by considering their compatibility with 
underpinning gamification theories. The most frequently 
mentioned theories in this context are Flow Theory [36], Self-
Efficacy Theory [37], Social Comparison Theory [38], 
Goalsetting Theory [39], Operant Conditioning Theory [40], 
and Self-Determination Theory (SDT) with its micro-theory 
Basic Needs Theory (BNT) [41]. Based on its wide range of 
applicability and acceptance [32], our research draws on SDT 
and BNT.  

C. Self-Determination Theory (SDT) and Basic Needs 
Theory (BNT) 
SDT is a macro theory comprised of several micro-theories that 
inform predictions made in self-controlled motor learning 
studies. The most relevant micro-theory is BNT which assumes 
that humans have three basic psychological needs that 
contribute additively to human thriving and work motivation 
[41], [42]. These three needs are autonomy, competence, and 
relatedness [41]. Autonomy involves feeling internal assent 
regarding one’s behavior, instead of feeling controlled or 
pressured by outside forces. Competence involves feeling 
efficient, effective, and even masterful in one’s behavior. 
Lastly, relatedness includes feeling meaningfully connected to 
others instead of feeling alienated or ostracized. Furthermore, 
research attributes universal relevance to these psychological 
needs independent of cultural background [41]. Due to its 
proven relevance for learning and working outcomes, we used 
BNT as a criterion to select suitable game elements for our 
gamification setting in the virtual learning environment [43].  

D. Selection of Game Elements 
Previous studies have reported mixed findings regarding 
gamification’s influence on learning in virtual training 
environments, with some reporting positive effects with 
varying effect sizes and others reporting no effects [44]–[46]. 
One of the weaknesses of many previous studies is that the 
selection of game elements was essentially unsystematic and 
rarely justified on theoretical grounds. To advance research in 
this domain, we chose a structured approach considering 35 
game elements and selected 14 elements based on three 
individual factors and two compositional factors. 
The three individual factors of the five-factor methodology are: 

● Sufficient effect size  
● Compatibility with BNT 
● Compatibility with Learning Objective and Learning 

Context 
The first factor is the sufficient effect size of the game element 
on learning. Since most empirical gamification studies have 
investigated the impact of multiple game elements in 
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composition it is difficult to pinpoint how and to what extent 
each individual game element contributed to user motivation 
and behavior [47]–[49]. To tackle this problem, our research 
considers several studies per game element to identify 
individual impact. Sufficient effect size means that most of the 
previous studies in which the respective game element was 
investigated yielded positive learning results. The second factor 
considered if the game element’s mechanisms align with BNT. 
Lastly, the game element must also suit the learning objective 
of procedural knowledge acquisition in an industrial context, 
which was the learning context of our study.  
In addition to individual factors, we considered two 
compositional factors during the game element selection 
process: redundancy and counterworking. Both focus on game 
element interaction and whether game elements are redundant 
or counterworking. The category-based assessment of all game 
elements can be found in the Appendix. 
Table II.1 summarizes a list of the 14 most promising game 
elements for our learning environment. 
 
Table II.1: List of game elements applied in this study 

Game 
Element 

Description 

Exploration Gives the user the possibility to investigate and 
discover features of the system, through 
exploratory tasks [50] 

Feedback Returns relevant information about the (game) state 
to the user [51] 

Virtual 
Instructor 

Virtual (often human-like) persona accompanying 
the user [52] 

Goalsetting Clear goals are presented to the user [33] 
Learning 
Examples  

Exemplary demonstration of another user or the 
virtual system [53] 

Signposting Guiding signs by the system to support the user [54] 
Prize A reward that a user wins for his/her actions [38] 
Badge Visual representation of the user’s achievements 

[55] 
Choice Enables the users to have the autonomy to 

determine their verdict among many possibilities 
[56] 

Meaning Allows the user to auto-identify with the virtual 
system via common purpose [57] 

Narratives Giving context to the user’s tasks by implementing 
plots and stories [58] 

Progress Milestones and objects indicating the user’s 
progress [34] 

Reward 
Schedule 

Schedule item that strengthens the user’s behavior 
in anticipation of new rewards [58] 

Roles Role-playing elements of characters [35] 
 

III. RESEARCH DESIGN 
To investigate gamification’s potential to enhance the effect 

of web-based virtual training, we focused on five main 
hypotheses. Each hypothesis consists of the same independent 
variable (gamification intensity) and varying dependent 
variables covering the training evaluation metrics. 

A. Hypotheses 
The first set of hypotheses investigates the positive effect of 
gamification during the training process on the objective 
learning outcome of increased labor productivity after the 
training. Labor productivity in industry can be quantified by the 
number of mistakes (H1a) and the TTC (H1b) throughout a 
certain task. Based on previous findings, we hypothesize that 
higher levels of gamification intensity reduce both number of 
mistakes and TTC [59], [60].  
The second group of hypotheses investigates the effect of 
implementing gamification during the training process on 
affective learning factors such as motivation (H2a), satisfaction 
(H2b) and self-efficacy (H2c). While previous studies revealed 
mixed results due to different game elements applied, we 
hypothesize that higher levels of gamification intensity 
significantly increase all three factors [2], [35], [58].  
Furthermore, hypothesis H3 proposes a positive effect of 
gamification intensity on the system’s usability perceived by 
the learner. Even though there are limited insights on whether 
gamification itself increases usability, the opposite effect of 
usability enhancing gamification was already identified [61]. 
Moreover, research identified usability to have a moderating 
effect on gamification’s potential results [62]. Building on these 
findings, we hypothesize similar tendencies for the opposite 
effect. Since any additional visual element requires information 
processing by the sensory memory and the working memory, 
gamification intensity and its visual game elements are 
expected to induce an increased perceived cognitive load, 
which is expressed through hypothesis H4 [21], [24], [63].  
Lastly, knowledge retention is considered to evaluate 
gamifications potential to enhance web-based virtual trainings. 
Based on previous studies investigating similar objectives, we 
hypothesize that higher levels of gamification intensity lead to 
increased knowledge retention with respect to lower levels (H5) 
[60], [64], [65]. All hypotheses are summarized in Table III.1.  
 
Table III.1: Research hypotheses 

 Hypotheses 
H1 A higher level of gamification intensity during the training 

process increases labor productivity of assembly tasks as 
measured by: 
H1a: number of mistakes 
H1b: time-to-completion 

H2 A higher level of gamification intensity during the training 
process improves affective learning factors as measured by: 
H2a: motivation 
H2b: satisfaction 
H2c: self-efficacy 

H3 A higher level of gamification intensity during the training 
process increases the perceived system usability 

H4 A higher level of gamification intensity during the training 
process induces higher perceived cognitive load 

H5 A higher level of gamification intensity during the training 
process enhances knowledge retention 
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B. Experimental Study 
As all hypotheses posit a positive effect of an independent 
variable (gamification intensity) on several dependent variables 
(e.g., number of mistakes), we designed an experimental study 
to investigate the hypotheses. 
 
1) Learning objective: manual assembly task 
To investigate the hypotheses in a way that reflects real tasks, 
ideally a task was chosen that can be found across different 
applications. An adequate level of task complexity was needed 
to prevent ceiling effects. Based on these prerequisites, we 
chose the partial assembly of the low-voltage frequency 
converter. The product consists of 10 individual assembly steps, 
which are listed in Table III.2. Each step requires a sequence of 
pick and place tasks and the use of common tools (e.g., 
screwdriver), which mainly reflects procedural knowledge 
acquisition throughout the training as can be found in many 
industrial settings.  
 
Table III.2: Assembly steps 

Step Sub-step Description 
1 1a Place screening shield on the main part 
 1b Place two M4x12 screws 
 1c Fasten the two screws using the electric 

screwdriver 
2 2a Fit the main housing on the main part 
3 3a Place four M4x20 screws  
 3b Fasten the four screws (cross-wise) using the 

electric screwdriver 
4 4a Place the earth strap on the main part 
 4b Place two M4x9.5 screws  
 4b Fasten the two screws using the manual 

screwdriver 
5 5a Place the internal stirring fan on the main part 

 
The assembly task has a complexity value of CProduct = 6.34, 
which ranks the task in the upper range of the medium 
complexity category, according to formula (2) [66]. 
 
 
𝐶!"#$%&' = #

𝑛!
𝑁!

+ 𝐶𝐼!"#$%&'( ∗ (𝑁! + 1) +
𝑛(
𝑁(
∗ (𝑁( + 1)		 (2) 

𝐶!"#$%&' = 𝑝𝑟𝑜𝑑𝑢𝑐𝑡	𝑜𝑟	𝑡𝑎𝑠𝑘	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦   
𝐶𝐼!"#$%&' = 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	𝑖𝑛𝑑𝑒𝑥	(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)	  

𝑛! = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑝𝑎𝑟𝑡𝑠	  

𝑁! = 𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑝𝑎𝑟𝑡𝑠	  
𝑛( = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑢𝑛𝑖𝑞𝑢𝑒	𝑓𝑎𝑠𝑡𝑒𝑛𝑒𝑟𝑠	  
𝑁( = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑓𝑎𝑠𝑡𝑒𝑛𝑒𝑟𝑠	  

 
 
2) Experimental procedure  
As can be seen in Figure III.2, our experimental study consists 
of two separate remote online experiments: the main 
experiment and the retention test. The retention test was 
conducted in the period 3-4 weeks after the main experiment. 
Apart from the training phase in the main experiment, each 
participant went through the exact same process.  
The main experiment included six steps which take 
approximately 45 minutes to complete. After obtaining 
participants’ consent, each participant completed a pre-survey 
covering items such as demographics, computer gaming habits, 
pre-motivation, and previous assembly and VR experience. As 
any kind of pre-experience or initial motivation might influence 
the assembly task performance, we checked them a-priori. 
Moreover, in the unlikely case participants had already 
assembled the converter they were excluded from proceeding 
to the next phase.  
 

 
Figure III.1: Interface during the familiarization phase 

During a familiarization phase, participants were shown the 
virtual environment and interaction controls to ensure their 
performance was not biased by insufficient interaction skills in 
the virtual environment. Implementing a familiarization phase 
is a common practice in virtual reality experiments [67], [68]. 
As can be seen in Figure III.1, the familiarization phase’s 
design, including workstation and tools, was similar to the real 
training and assessment phases to simplify orientation for the 
participants. A virtual part rotation tool (gizmo) was introduced 
to each learner and an overview of all controls was presented 

Figure III.2: Experimental study overview 
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throughout the experiment if participants pressed the key “C” 
on their keyboard. The familiarization phase was completed 
once all essential controls were explained to and performed by 
the participant.  
Upon successful completion of the familiarization phase, 
participants progressed to the training phase during which they 
were trained on the assembly of the converter. Each of the 10 
assembly steps (see Table III.2) was learned by reading the 
instructions and virtually performing them. We designed three 
different virtual training environments (Treatment Groups, TG) 
which differed in their gamification intensity (i.e., number and 
type of game elements). All other factors were kept constant. 
Each participant was randomly allocated to one of the TGs with 
the help of a distributed algorithm and the participants did not 
know about the other TGs.  
 

 
Figure III.3: Interface during the training phase 

After completing the training phase by performing all assembly 
steps, participants were forwarded to the post-training survey 
which assessed the participants’ post-training state in terms of 
affective learning factors and perceived system usability. 
Besides gathering data about the participants' post-training 
state, our survey served as a distraction break between learning 
(training phase) and being tested (assessment phase).  
During the assessment phase, participants were asked to 
virtually assemble the converter, which was identical to the 
training phase. As can be seen in Figure III.4, the same objects 
are presented but no assembly instructions were shown nor 
given via audio. Participants were requested to perform the 
assembly to the best of their knowledge. Participants received 
feedback for incorrect placement of objects, as illustrated in the 
upper left corner of Figure III.3.  
 

 
Figure III.4: Interface during the assessment phase 

Since the assembly was procedural, participants were not able 
to proceed to the next step before completing the previous one. 
This could have resulted in some participants dropping out at 
an early step even though they might perform very well at the 
consecutive steps. To minimize this risk and to gather data 
based on the participant’s performance throughout the entire 
assembly process a help function was implemented. After a pre-
defined interval (60s) passed without progress, the participant 
received the option to ask help and the respective assembly 
step’s information was shown on the information board, 
similarly to the training. This process also simulated real 
industrial procedures of checking, for example, the assembly 
manual again. In analogy to industrial assembly performance 
indicators, we measured the participant’s number of mistakes 
and TTC of the assembly process during the assessment phase.   
After completing all assembly steps, the participants were 
forwarded to the final step of the main experiment, the post-
assessment survey. The post-assessment survey investigated 
the participants’ setting and environment while conducting the 
experiment and measured perceived cognitive load. Since 
remote experiments may be prone to disruptions, it was 
essential to identify any disruptions causing data distortions. 
After successfully finishing the main experiment, the final step 
of the experimental study was a retention test. Three weeks after 
the participant had finished the main experiment, they received 
an access link to the retention test. Retention tests are promising 
tools to assess long-term learning outcomes and several studies 
have already implemented them [16], [69], [70]. 
The retention web link sent to the participants was valid for one 
week. The precise time slots are important to allow comparison 
among the participants because knowledge deterioration 
increases over time. Moreover, previous studies indicate 
significant knowledge decay for retention intervals (RIs) of 
more than one week and provide promising results for retention 
intervals of 18 days [13], [14]. Thus, we chose 3-4 weeks as a 
suitable retention interval.  
After the participant consent and information sheets were 
approved by the participant, the pre-motivation was assessed 
and general questions about the assembly process asked. In the 
next step, the assembly knowledge assessment took place. As 
can be seen in Figure III.4, the participant’s knowledge about 
the assembly sub-steps was assessed by multiple choice 
questions, all following the same pattern. The participant was 
requested to define any assembly step by defining the part to be 
placed and select the target location. Moreover, screwdriver 
selection and crosswise screwing strategy were assessed using 
multiple choice methods. Thus, the retention test investigated 
the participant’s retained knowledge about the process. 
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Figure III.5: Interface during the retention test 

 
3) Experimental measurements 
This section covers the variables measured and the respective 
measurement scales and methodologies applied during the 
experiment. All relevant scales are also listed in the Appendix. 
During the pre-survey demographics, computer gaming habits, 
pre-motivation, and previous assembly and VR experience was 
recorded. Pre-motivation was investigated using the 
motivational scale developed by Noe and Wilk in 1993 and was 
compared with the level of motivation after the training to 
detect motivational changes [71]. The scales are listed in the 
Appendix section.  
The post-training survey consists of 29 questions. The first 
block of questions investigated the participant’s perceived 
usability of the training environment using the System Usability 
Scale which consists of 10 questions based on a 7-point Likert-
scale (see Appendix) [20]. The next semantic block investigated 
the participants’ perceived self-efficacy using one 7-point 
Likert scale question (see Appendix). To quantify the level of 
self-efficacy induced by the training session, the participants 
were asked to what extent they felt able to accomplish the task 
effectively [17]. After assessing self-efficacy, participants’ 
motivation was examined. This consisted of four 7-point Likert-
scale questions examining the intrinsic motivation, similar to 
previous virtual training motivation studies [72]. Lastly, post-
training satisfaction was investigated with a 7-point Likert-
scale question asking to what extent they felt happy about the 
training method, similarly to previous studies on virtual 
learning environments [73].  
Since learners’ motivation is quantified using subjective scales 
and is further highly dependent on their pre-motivation [74], it 
is essential to investigate the change in motivation induced by 
the training session. Thus, the variable training motivation is 
defined as the ratio of post-training motivation and pre-training 
motivation, as summarized by formula (4). 
 
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 =

𝑃𝑜𝑠𝑡 − 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛
𝑃𝑟𝑒 − 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔	𝑀𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 	 (4) 

 
During the assessment phase of the main experiment, two 
absolute variables are measured: TTC and number of mistakes. 
Measuring TTC is self-explanatory as the time the participant 
needs to complete all assembly steps. A mistake was counted 
each time the participant did not complete a sub-step at the first 
try. Furthermore, the participants could not make more than one 
mistake during a single sub-step. Thus, the maximum number 
of mistakes is equal to the number of sub-steps listed in Table 
III.2. These mistakes could be either grabbing the wrong part or 
trying to place the correct part in an incorrect position. 
The post-assessment survey consisted of 14 questions and 
investigated the participants’ setting and environment while 
conducting the experiment and measured perceived cognitive 
load. Also, we investigated the participant’s post-assessment 
satisfaction using a 7-point Likert-Scale to compute the overall 
variable satisfaction by taking the average value of two data 
points: post-training satisfaction and post-assessment 
satisfaction. We further used five 7-point Likert-scale questions 
to investigate the participants’ settings and one question to 
investigate participants’ computer system performance. Due to 
the remote nature of this experiment, the NASA Raw Task Load 
Index (NASA-RTLX) rating scale was used (see Appendix). 
The scale consists of six components, which are individually 
assessed: mental demand, physical demand, performance, effort 
and frustration. Each component is assessed on a scale from 0 - 
100 and the average of all six components reflects the final 
NASA-RTLX value [26], [27], [75]. 
The level of knowledge retention was measured during the 
retention test by using a visual multiple-choice survey and 
tracking the participant’s number of incorrect answers. In total, 
14 knowledge retention questions were asked during this period 
which yielded the maximum number of possible incorrect 
answers (14). The decision to not conduct the exact same 
assessment as in the main experiment had several reasons. First, 
answering a short survey (15 min.) induces lower participation 
thresholds for participants and supports lower drop-out rates 
and thus higher data quality for a retention survey. Secondly, 
even though the two assessment scores cannot be compared due 
to the different assessment types, the knowledge retention of the 
different TGs can be compared. 
 
4) Treatment groups (TG) 
As explained in the previous sections, this study applied three 
different virtual training environments on the participant 
sample to compare their impact on learning.  
The three different environments represent experimental 
treatment groups (TG) which differ in the level of gamification 
intensity, ranging from “No Gamification” (TG1), “Basic 
Gamification” (TG2), to “Advanced Gamification” (TG3). As 
can be seen from Table III.3, TG1 contains two essential 
elements and served as the study’s control group. Despite the 
presence of Exploration and Feedback, TG1 is labelled as non-
gamified because these elements are prerequisites for non-
immersive virtual learning environments. TG2 includes four 
game elements. TG3 consists of TG2’s elements plus 8 
additional game elements.  
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Table III.3: Game element composition for the three treatment groups 

Game 
Element 

TG1 –  
No 

Gamification 

TG2 –  
Basic 

Gamification 

TG3 – 
Advanced 

Gamification 
Exploration X X X 
Feedback X X X 
Virtual 
Instructor 

 X X 

Goalsetting  X X 
Learning 
Examples 

 X X 

Signposting  X X 
Prize   X 
Badge   X 
Choice   X 
Meaning   X 
Narratives   X 
Progress   X 
Reward 
Schedule 

  X 

Roles   X 
 
While the theoretical background of each of the game elements 
can be obtained from section II.D, the following paragraphs 
elaborate how we designed and implemented the respective 
game element in our web-based virtual environment. 
Exploration was implemented by allowing the learner to 
navigate inside the virtual environment and to interact freely 
with objects. Feedback was implemented by giving the user 
visual and auditive feedback on each action, including task 
related and non-related interactions. As can be seen in Figure 
III.3, the game element Virtual Instructor (VI) was 
implemented with a human-like virtual instructor. Since facial 
expressions do not seem to influence learning outcomes the 
instructor was designed to embody a neutral-looking industrial 
worker [76]. While participants could not communicate with 
the VI, it accompanied and supported learners during the 
assembly training by directing them through the assembly steps. 
Goalsetting was implemented as a clear goal definition at the 
beginning of the training. Participants were told to be as fast as 
possible and conduct as few mistakes as possible. Learning 
examples were shown at the final part of the respective step. 
Signposting included visual attention cues marking the objects 
needed for the next assembly step. The required objects started 
color-flashing if they were required to be used in the current 
step. The game element Prize was implemented by golden coins 
emerging once an object was placed correctly. This aimed to 
trigger participants’ extrinsic drive to collect monetary. 
Badges involved three different levels of achievement. Three 
badges were used and named Beginner, Professional and 
Expert. For each correct interaction during the training process, 
the badge filled a little more. If one badge was filled it was 
rewarded to the participant and the progression to the next 
badge began. 
The game element Choice was implemented by allowing the 
user to choose the level of difficulty for the training. However, 
the level of difficulty remained the same and the choice was just 
a perceptional one. Despite no non-linear gameplay being 
implemented, the mere perception of having a choice induces 
similar gamification effects on learners and can motivate the 

learner to assess their choice properly [77]–[79]. The game 
elements Meaning, Narrative and Roles were implemented in 
the same scene by informing the learner via text and audio about 
the context of the training and assigning them a role as an 
industrial worker assembling an important part for car tunnel 
ventilation. Prior to the actual training, participants received a 
motivational story about the importance of the converter for 
human safety in car tunnels and the participant’s own special 
role in the assembly team. Moreover, the virtual environment 
surrounding the workstation was altered to an industrial setting, 
as can be seen in Figure III.3. While the game element Progress 
was implemented using a permanently visible, orange-colored 
progress bar, the game element Reward Schedule refers to the 
visibility of all three badges at any time. Thus, participants got 
a feeling of scheduled rewards in terms of badges. Both 
elements’ designs can be seen in Figure III.3. The progress bar 
also included percentage information supporting the user’s 
capability to track the individual progress during the training. 
 
5) Recruiting strategy 
Participants were able to take part at any time and no specific 
software was needed, apart from a computer. Access to the 
virtual training was granted via a web link to the application and 
the link was distributed across private networks and the 
crowdsourcing platform Amazon Mechanical Turk (MTurk) as 
the platform’s experimental potential has been used in previous 
research and more than 15,000 papers have been published 
using MTurk as a source for data collection [80], [81]. Since the 
task required no previous knowledge, no required background 
knowledge was needed and any participant older than 18 years 
could participate. We tracked technological pre-experience 
prior to the experiment to identify potential moderator effects 
and variables. On MTurk, we only allowed people with an 
approval rating of more than 90% to take part in the experiment, 
which is a common threshold to ensure data quality [82]. Seven 
attention check questions (ACQ) were implemented in the 
experiment to filter potentially fraudulent or automated activity. 
To improve participation and data quality, all participants 
completing the experiment were given a £7 Amazon voucher 
for the main experiment and another £3 if they completed the 
retention test. 
 
6) Data Analysis 
Prior to the actual data analysis, incomplete data were excluded 
from the dataset. This included unfinished participation or 
participants who failed at least one of the ACQs, had technical 
difficulties, or faced distractions during the experiment, all of 
which are important for ensuring high data quality in remote 
experiments [83]. The latter was measured by metadata and 
participant self-assessment questionnaires. The remaining 
sample was then tested in terms of scale consistency by 
computing Cronbach’s alpha (𝛼!) which must be larger than 
0.7 [84]. Prior to the hypotheses testing, all control variables 
(e.g. demographics and pre-experience) were analyzed on their 
statistical correlation with the TGs to ensure an equal 
distribution across all three TGs. Both, the control variables, 
and the hypotheses were investigated by testing the null 
hypothesis stating that there are no significant differences 
between the groups. Depending on whether normal distribution 
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or homoscedasticity were given for the respective variable, 
either the Kruskal-Wallis Test (KW-Test) or an Analysis of 
Variance (ANOVA) were conducted. Statistically significant 
differences were then identified if the resulting error probability 
(p-value) is below 0.05. Non-parametric effect size r was 
computed using formula (3). While medium effect sizes range 
between 0.3 and 0.5, small effect sizes are below 0.3 and large 
effect sizes are above 0.5.  
 

𝑟 = %
𝑍
√𝑛
%	 (3) 

n = number of data points  
Z = Z-value computed with Mann-Whitney U-Test  

 

IV. RESULTS 

A. Participant Sample 
In total, 423 participants finished the experiment. 31 were 
filtered out because they failed at least one of the ACQs. 36 
participants were excluded from the remaining 392 because 
they reported technical issues which impacted their 
performance. Lastly, 1 participant was excluded based on the 
environment check questions, resulting in a final sample size of 
355 and an exclusion rate of 16.1%. 
The final main experiment sample (n = 355) is distributed 
across the three treatment groups TG1 (n = 127), TG2 (n = 126) 
and TG3 (n = 102). The average completion time of the main 
experiment was 55 minutes. The mean age is 31.23 (SD = 9.32) 
and 27.3% of the participants are female, while 0.8% stated 
non-binary and 71.9% are male. Regarding the country of 
residence, the largest group was from Germany (43.1%) 
followed by the United States of America (36.6%), the United 
Kingdom (8.7%) and India (6.2%). 13 other countries were 
represented in the sample but with low ratios. 
While 73.2% of the participants reported spending more than 
six hours per day using a computer, 80.3% reported playing 
computer games less than 3 hours per day. Most of the sample 
stated prior experience with VR (72.7%) and assembly tasks 
(74.6%). Only a small ratio (13.5%) had already faced other 
virtual assemblies. Office workers represented the largest ratio 
of occupations (36.6%). 
The Cronbach’s alpha value was larger than the 0.7 threshold 
for all scales, including pre-motivation (alpha=.924), post-
motivation (alpha=.947), satisfaction (alpha=.778), usability 
(alpha=.876) and NASA-TLX (alpha=.746). Moreover, all 
control variables were tested on their correlation with the TGs 
using either ANOVA or KW-Test depending on the data 
characteristics. Since no statistically significant correlation was 
identified, we conclude that the TGs are balanced and 
independent regarding the following control variables: 
education, age, English language proficiency (listening and 
writing), occupation, computer use, computer gaming habits, 
VR experience, assembly experience, virtual assembly 
experience, display size, computer pointing device, recruiting 
channel and pre-motivation. Each control variable’s mean value 
and standard deviation are listed in the Appendix. 

B. Hypothesis H1 – Performance Indicators 
The results regarding an effect of the level of gamification 
intensity on the learning performance indicators can be seen in 
Figure IV.1.  
 

 
Figure IV.1: Boxplot diagrams for objective learning outcomes per 
treatment group 

The total number of mistakes among the participant sample 
ranges from 0 to 8 mistakes and yields a median number of four 
mistakes which indicates sufficient variance. Regarding the 
three treatment groups, TG1 yielded the lowest mean number 
of mistakes (3.74, Sd=1.84), followed by TG2 (4.11, Sd=1.82) 
and TG3 (4.21, Sd=1.67). While this indicates a reverse 
tendency compared to H1a, the differences were not statistically 
significant based on the Kruskal-Wallis Test yielding an error 
probability of p = 0.11 > 0.05 for the null hypothesis H1a0. H1a 
is rejected based on the results of our study.  
Similar results can be obtained from the second performance 
indicator, namely time-to-completion. Prior to the data analysis, 
10 extreme outliers allocated outside the range [1st quartile – 3* 
(interquartile range); 3rd quartile + 3* (interquartile range)] 
were excluded. This exclusion is an additional filter mechanism 
to eliminate participants that might have faced interruptions or 
software lagging during the assessment phase of the remote 
experiment without stating this in the post-survey. The 
remaining 345 data points ranged from 89s completion time to 
up to 1278s. The fastest (best) mean completion time occurred 
in TG2 (359s; Sd=188) followed by TG3 (373s; Sd=218) and 
TG1 (387s; Sd=248). Yet, the differences were not statistically 
significant based on the Kruskal-Wallis Test yielding an error 
probability of p = 0.889 > 0.05 for the null hypothesis H1b0. 
Thus, H1b is rejected based on the results of our study. We did 
not find statistically significant evidence that implementing 
higher gamification intensity during the training process 
enhances learning outcomes as measured by number of 
mistakes or task completion time. 

C. Hypothesis H2: Affective Indicators 
The results regarding the effect of the level of gamification 
intensity on the training’s affective factors can be obtained from 
Figure IV.2.  
 

 
Figure IV.2: Boxplot diagrams for motivation and satisfaction per 
treatment group 
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The resulting training motivation ranges from decreased 
motivation (0.14) to increased motivation (1.67). Regarding the 
three treatment groups, TG2 yields the largest mean training 
motivation value (0.883; Sd=0.199), followed by TG1 (0.879; 
Sd=0.236) and TG3 (0.851; Sd=0.293). Yet, the differences in 
training motivation across the different levels of gamification 
intensity were not statistically significant, as determined by the 
Kruskal-Wallis Test (p = 0.791 > 0.05). Consequently, 
hypothesis H2a is rejected based on the results of this study.  
Similar to motivation, learners’ satisfaction also represents a 
subjective metric which usually changes throughout the training 
process [8]. As can be seen in Figure IV.2, TG1 yields the 
highest mean satisfaction value (5.44; Sd=1.29), followed by 
TG2 (5.27; Sd=1.25) and TG3 (5.07; Sd=1.59). Nevertheless, 
the marginal differences were not statistically significant based 
on the Kruskal-Wallis test yielding an error probability of 
p = 0.316 > 0.05 for the respective null hypothesis H2b0. 
Consequently, the null hypothesis stands and H2b is rejected 
based on our findings.  
The results of the third affective indicator, learners’ perceived 
self-efficacy, are visualized in Figure IV.3. 
 

 
Figure IV.3: Boxplot diagrams for self-efficacy and usability per 
treatment group 

As indicated in Figure IV.3, TG1 yielded the highest mean 
perceived self-efficacy (5.22; Sd=1.50), followed by TG2 
(4.98; Sd=1.44), and TG3 (4.78; Sd=1.49). Conducting a 
pairwise Mann-Whitney U-Test yielded statistically significant 
differences between TG1 and TG3 (p = 0.01) but not between 
TG2 and TG3 (p = 0.265). Furthermore, the effect size is 
r = 0.136 which can be classified as a low effect size. 
Consequently, the difference in self-efficacy was statistically 
significant for learners in the non-gamified training 
environment compared to the advanced gamified. Thus, 
hypothesis H2c was rejected based on this study’s results.  

D. Hypothesis H3: Usability 
The results regarding an effect of the level of gamification 
intensity and the training’s perceived usability can be obtained 
from Figure IV.3. Based on the System Usability Scale (SUS) 
conducted after the training session, TG1 yielded the highest 
mean perceived usability (5.14; Sd=0.99). In contrast, the 
gamified learning environments TG2 (5.06; Sd=1.11) and TG3 
(4.86; Sd=1.23) were described as less usable. Even though this 
indicates that gamification decreases the perceived usability, 
the differences between the gamification levels were not 
statistically significant, as determined by the Kruskal-Wallis 
Test (p = 0.237 > 0.05). As a result, hypothesis H3 is rejected 
based on our findings.  

E. Hypothesis H4: Cognitive Load 
The results regarding an effect of the level of gamification 
intensity on the training session’s induced cognitive load on 
learners can be seen in Figure IV.4. 
The cognitive load values were computed by using the NASA-
RTLX which reflects the mean value across all sub-
components. The lowest (best) cognitive load value was 
perceived in TG1 (44.4; Sd=20.4) followed by TG3 (45.9; 
Sd=19.5) and TG2 (46.0; Sd=20.9). Even though the results 
indicate alignment with the hypothesis that gamification 
increases the cognitive load, the differences were not 
statistically significant based on the ANOVA yielding an error 
probability of p = 0.784 > 0.05. Consequently, the respective 
null hypothesis stands and hypothesis H4 is rejected.  

 
 
Figure IV.4: Boxplot diagrams for cognitive load per treatment group 

F. Further factors influencing Learning 
Additional factors influencing learning were identified during 
the data analysis. These factors include the computer pointing 
device, screen size, and the learner’s computer gaming habits.  
Participants who used a computer mouse (n = 300) for their 
computer interaction performed significantly better than those 
using a trackpad (n=50), as measured by the completion time 
during the post-training assessment. As indicated in Figure 
IV.5, computer mouse users yielded a mean TTC of 354s, while 
the trackpad users needed 444s to complete the task. These 
differences were proven to be statistically significant by the 
asymptotic Kruskal-Wallis Test (p < 0.01). Furthermore, using 
a computer mouse significantly increased the perceived 
usability of the training session, as computed by the KW-Test 
(p = 0.046 < 0.05). On average, computer mouse users stated a 
usability value of 5.08, while trackpad users only indicated 
4.72. Both effects, TTC (r = 0.179) and usability (r = 0.106) can 
be categorized as small effect sizes.  
Another equipment-related factor influencing the learning 
experience and outcome of the virtual training was the 
desktop’s screen size. As can be seen in Figure IV.5, 
participants who used a large display (> 13inch) performed 
significantly better in the post-training assessment than those 
who used a small display (<= 13inch), as measured by TTC. 
The large display participants (n=301) yielded an average TTC 
of 355s, while the small display (n=49) participants needed 
445s to complete the task. The statistical significance of these 
differences was computed using the KW-Test (p = 0.023) with 
a small effect size (r = 0.122).  
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Figure IV.5: Boxplot diagrams for time-to-completion per technical 
equipment 

Lastly, participants’ computer gaming habits significantly 
influenced learning outcomes as measured by number of 
mistakes, TTC, satisfaction, self-efficacy, and usability. 
Computer gaming habits were investigated by assessing daily 
hours spent gaming during the pre-survey. As can be seen in 
Figure IV.6, trainees were asked to choose one out of six 
options ranging from less than one hour to more than eight 
hours per day.  
 

 
Figure IV.6: Boxplot diagrams for time-to-completion per computer 
gaming habit group 

Since the groups playing the most [5-8h; >8] contained too few 
participants (n < 20) to yield valid results, they were excluded 
from the data analysis.  
 
Table IV.1: Effect sizes of gaming habits' influence on time-to-
completion 

Group A Group B Effect size 
(r) 

Tendency 

Group 1  
(< 1 h/d) 

Group 2  
(1-3 h/d) 

r = .248 
(medium) 

A >B 

Group 1  
(< 1 h/d) 

Group 4  
(4-5 h/d) 

r = .183 
(small) 

A > B 

Group 3  
(3 h/d) 

Group 4  
(4-5 h/d) 

r = .120 
(small) 

A > B 

 
As summarized in Table IV.1, the pairwise comparison using 
the U-Test revealed significant differences with small to 
medium effect sizes across the computer gaming habit groups 
regarding the completion time in the post-training learning 
assessment. 
Similar findings were made for the number of assembly 
mistakes and affective learning factors. In summary, computer 
gaming habits influence satisfaction, self-efficacy, usability, 

and learning outcomes (total number of mistakes, TTC), as can 
be seen in the matrix in Figure IV.7.  
 

 
Figure IV.7: Influence of computer gaming habits on learning 
outcomes 

To summarize our findings, Figure IV.8 lists all variable 
correlations identified in this study in a matrix format. An “x” 
symbolizes that a statistically significant correlation was 
identified based on the common error probability of p = 0.05. 
Brown colored fields were not tested. 
 

 
Figure IV.8: Variable correlation 

G. Hypothesis H5: Knowledge Retention (Retention Test) 
In total, 110 out of the 355 participants completed the retention 
test within a pre-defined retention interval and thereby meeting 
the retention test’s ACQs requirements. The retention sample 
was distributed across the treatment groups with TG1 (n = 37), 
TG (n = 38), and TG3 (n = 35). The average time-to-
completion for the whole retention session was 31.52min. 
(SD = 226.56s). Participants aged between 18 and 54 years took 
part in the retention test, resulting in an average age of 29.76 
years (SD = 8.16). The sample’s gender distribution is 66.4% 
male, 31.8% female and 1.8% non-binary. Despite the 
international mix of the retention test’s sample, consisting of 
participants from 10 different countries, nearly half of the 
sample were from Germany (43.6%), followed by the United 
States of America (34.5%), United Kingdom (11.8%), and India 
(4.5%). In terms of current occupation, the largest group of this 
sample were office workers (42.7%), followed by university 
students (29.1%). The retention sample’s treatment groups were 
independent regarding all control variables.  
As can be seen in Figure IV.8, the number of mistakes in the 
knowledge retention test ranges from 0 mistakes to the 
maximum amount of 14 with median values in the range of 5-
8. TG1 yielded the best knowledge retention including the 
lowest average number of mistakes (M=5.68; Sd=3.54), 
followed by TG2 (M=6.45; Sd=3.24) and TG3 (M=7.09; 
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Sd=3.29). Yet, these differences were not statistically 
significant based on the Kruskal-Wallis Test (p = 0.248 > 0.05) 
and H5 is rejected. Implementing gamification during a non-
immersive virtual training session therefore did not improve 
learning outcomes, as measured by knowledge decay over time 
based on our findings.  
 

 
Figure IV.9: Boxplot diagrams for retention test performance (number 
of incorrect answers) per treatment group 

V. DISCUSSION 
The result that gaming intensity, which included systematically 
adding game elements proven to be effective in previous 
studies, did not improve learning for an industrial training is 
surprising and needs to be discussed. There have been previous 
studies finding mixed results for gamification [1], [2], [85], 
[86]. To identify potential causes for our finding, we conducted 
several additional analyses.  
Hypotheses H1a (number of mistakes) and H1b (TTC) were 
rejected based on our study’s experimental data. Our findings 
contrast with the literature which has identified a reduced 
number of technical assembly mistakes for gamified virtual 
reality training [4]. A possible explanation for our non-
significant result could be an insufficient level of task 
complexity and the related ceiling effect [87]. Our study’s 
assembly task can be categorized as medium-level complexity 
(CProduct = 6.34) [66]. Since previous virtual assembly training 
research indicates more significant results with rising task 
complexity (CProduct > 7), our assembly might not have met the 
required complexity threshold [88]. However, a 
counterargument to this line of reasoning is that the same task 
we used in the experiment yielded significant results in another 
experimental study [89], which in turn makes a ceiling effect 
explanation unlikely.  
In contrast to other studies, increased gamification intensity did 
not increase affective learning factors measured by motivation 
(H2a), satisfaction (H2b), and self-efficacy (H2c) [49], [55], 
[90]. Interestingly, our research even identified a reverse 
relationship between gamification intensity and self-efficacy 
(H2b). The advanced gamified learning environment (TG3) 
induced significantly lower self-efficacy compared to the non-
gamified environment (TG1). While the absence of a 
correlation between gamification intensity and self-efficacy is 
also common in other studies, the presence of a reverse effect 
is a surprising result [91]. A possible explanation for this result 
could be that even though our set of game elements aligns with 

BNT, gamification’s competitiveness could have lowered 
learners’ self-efficacy [32]. The effect size is very small 
(r = .136) which alleviates the implications of this finding. 
Lastly, the scales for satisfaction and self-efficacy only include 
two questions which also alleviates the implications. 
Most research involving gamification and usability focuses on 
the influence of usability on gamification outcomes. Game 
usability was already identified as a moderating factor 
influencing learning [61]. With hypothesis H3 investigating the 
inverse causality we open an unexplored aspect. Since no 
significant causality was identified, we cannot confirm that 
gamification intensity influences perceived system usability. 
Similarly, perceived cognitive load, as measured by NASA-
RTLX, did not vary significantly across the TGs (H4). This is 
contrary to previous studies detecting an increase in cognitive 
load due to implementing gamification [63]. This discrepancy 
could be explained by considering two limitations. First, the 
results of cognitive load tests vary across the different 
measurement methods [25]. Second, the investigation of the 
previous hypotheses indicates that our study’s game elements 
may not have provided significantly different training 
experiences across the TGs. It seems reasonable that cognitive 
load also does not vary across the TGs. 
No significant differences in knowledge retention were 
measured comparing the different levels of gamification 
intensity (H5), which contrasts with previous findings [60], 
[64], [65]. Yet, our finding aligns with the absence of learning 
enhancement investigated by H1. Similar to H1, insufficient 
task complexity could be a moderator blurring all gamification 
effects on learning in the first place and, subsequently, in the 
retention test [88] – although this seems unlikely in this case as 
mentioned above. The retention interval likely also influenced 
the level of knowledge decay [14], which leads to a second 
possible explanation for the absence of significant differences: 
the diversity of retention interval duration. Congruent with 
previous literature [13], our study identified a positive effect of 
retention interval duration and the level of knowledge decay. 
Therefore, varying retention periods ranging from min. 21 days 
to max. 26 days after the learning experience across the TGs 
may blur knowledge decay results.  
The fact that no impact of gamification was detected across all 
dependent variables leads to a more general discussion. The 
absence of significant differences could have two potential 
reasons. First, the different treatment groups did yield different 
training experiences and learning outcomes, but the 
experimental setup failed to measure them. Second, the 
different treatment groups did not yield significantly different 
learning experiences. Regarding the first case, previous studies 
have already applied the exact same metrics and scales and 
yielded significant results [17], [20], [75]. Furthermore, the 
objective metrics of time-to-completion (H1b) and number of 
mistakes (H1a and H5) were tracked automatically, which 
forestalls any measurement inconsistencies. Increasing the 
maximum number of mistakes of 10 for the main experiment 
and 14 for the retention test could yield more differentiated 
results regarding the mistakes metric. Nevertheless, our 
research did identify a statistically significant correlation 
between the outcome metrics and the participants’ 
technological equipment during the experiment, as well as their 
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computer gaming background. This supports the assumption 
that our study’s metrics are intact and a suitable tool for 
measuring learning outcomes.  
Assuming the three treatment groups’ training designs did not 
influence learning outcomes, two other factors must be 
considered for remote experiments. The virtual training design 
(software) and the real environment in which the participant 
executed the training (hardware and environment). Both factors 
may contribute individually but also additively to the 
participant’s training experience, which is directly related to the 
outcome metrics [83]. Both factors might balance and reinforce 
each other’s influence on learning outcomes, potentially 
causing outcome metric limitations. Even though participants 
who faced severe software lagging or disruptions during the 
execution of the remote experiment were excluded from the 
data analysis, similar experimental settings across participants 
are difficult to guarantee in remote experiments.  
Regarding the virtual design of the experimental study, the 
general structure of the experiment including the components 
of pre-survey, familiarization, training, assessment, post-survey 
and retention test have been shown to be a suitable experimental 
structure [16]. This leads to the consideration that the training’s 
TG design could have provided insufficient differences to 
measure statistically significant effects, as TGs only differed 
based on game elements. However, the virtual experiment was 
tested through several user-studies and pilot experiments and 
all game elements were successfully used in previous studies 
already [2], [35], [53], [55], [77], [92]. This leads us to a 
discussion of whether the five-factor game element selection 
methodology applied in this research represented a suitable 
technique. Compared to essentially random game element 
selection in most other previous studies, it seems unlikely that 
a more logically structured approach caused worse results. 
Other factors, such as a maximum number of elements to 
prevent over-stimulation or applying other theories instead of 
SDT and BNT, could be considered in the future. It would be 
interesting to see if other selection approaches, such as tangible 
and intangible game elements will yield stronger results for 
virtual assembly training [93]. 
Assuming the virtual design itself provides different learning 
experience, participants’ individual technical equipment and 
environment during the training could be limiting factors 
blurring the results. Since our experimental findings support 
this theory (see Figure IV.5), the assumption that the hardware 
and environment of the participants balanced the possibly 
positive effects induced by the game elements seems 
reasonable. This aligns with previous studies identifying, for 
example, display size as a factor influencing users’ 
performance, especially in 3D virtual environments [94].  
Another potential factor could be participants’ computer 
gaming background. As our data analysis indicates (see Figure 
IV.6), the number of weekly hours spent on computer games 
influenced learning outcomes. Even though sorting participants 
into gamers and non-gamers did not yield significance (possibly 
because it decreased the sample size), the influence of their 
computer gaming background could have also balanced 
positive effects induced by the game elements. This proposition 
is supported by previous research with similar findings [95]. In 
addition to participants’ computer gaming experience, other 

personal background factors or metrics related to computer 
gaming could be relevant, such as gender, age, or the attitude 
towards game-based learning and computer gaming, as 
investigated by previous studies [40], [96]. This idea aligns with 
theories proposing that gamification’s effects depend highly on 
the individual user’s personality and that personalized 
gamification yields the best results [31]. Attempts to investigate 
a person’s individual gamification attitude in education were 
already made but further research in needed [97]. According to 
recent studies, additional factors impacting individual 
gamification responses include technology acceptance and task 
technology fit [98].  
In summary, our research delivers three key findings: Firstly, 
increasing gamification intensity by selecting 14 game elements 
for gamified virtual training based on a five-factor method did 
not result in learning improvement. Secondly, users’ 
technological equipment influenced the virtual learning 
experience and outcome. Thirdly, users’ computer gaming 
habits and experiences influenced learning outcomes.  

VI. LIMITATIONS AND OUTLOOK 

A. Limitations 
With a total of 355 participants during the main experiment 
(110 in the retention test) our study ranks in the field of large 
virtual training studies. However, we acknowledge it remains a 
small sample compared to all people possibly affected by 
desktop- or mobile-based procedural knowledge acquisition. 
Like most studies in more technical training, the sample was 
gender biased, including only 27.3% female and 0.8% non-
binary participants. To the best of our knowledge no evidence 
exists how a user’s gender might impact gamification’s effect 
size. A strong representation of Germany and the USA 
accounting for more than 2/3 of participants limits cross-
cultural comparisons.  
Another limitation is the participants’ background. Our 
participant sample is diverse in terms of background, assembly 
experience, and computer gaming habits. While this might be 
beneficial for analyzing the variables’ impact, the results’ 
transferability to a technical worker group is limited.  
The platform MTurk that was used for our experiment is not 
uncontroversial regarding data quality [82]. Even though we 
filtered fraudulent MTurk participants using ACQs and 
metadata (e.g., unique user IDs), dishonest answers and 
unmotivated performance are impossible to prevent completely. 
While some external effects can be filtered, other unexpected 
ones might pass undetected [99]. Future studies should be 
conducted in fully controlled environments to assure all 
extraneous variables are accounted for. 
The learning assessment took place remotely and virtually. 
Even though previous studies which have investigated 
knowledge transfer from virtual assembly to the physical 
assembly have concluded that knowledge in virtual assembly 
can be transferred, assessing knowledge only with a virtual 
assembly remains a limitation and a real-world physical 
assembly could yield different results.  
 
A set of game elements was chosen to represent the concept of 
gamification. While this is the case for basically all 
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gamification studies, any conclusion regarding the overarching 
concept of gamification based on a specific set of game 
elements is limiting validity. Replacing or altering only one of 
the 14 elements applied in this study could result in different 
results, as shown in previous studies [1], [2]. Thus, insights 
regarding the impact of individual game elements and their 
interactions are limited.  

B. Future Research Opportunities 
More research is needed to better understand gamification 
mechanisms and design guidelines. The diversity in 
gamification’s effect size on learning outcome is the result of 
the internal variety of gamification itself. Considering just the 
35 different game elements identified in our literature review, 
mathematically more than 30 billion different combinations 
could be investigated. Such an investigation does not seem 
feasible with human participants, though theoretically-based 
subsets of game elements could be investigated. Such a 
fractional factorial design seems currently the only possible 
way to advance knowledge. 
Our research applied SDT’s micro-theory BNT as the 
framework to identify suitable game elements. Other theoretical 
frameworks such as Flow Theory [100], Social Comparison 
Theory [38] and the Lean Gamification Canvas [101] could be 
investigated in future research. The learner’s personality and 
general attitude towards gaming could be further investigated 
to identify personality-based prerequisites or predictors for 
gamification effects. Such approaches could include broad 
concepts such as the Big Five Personality Test [102] or learning 
specific frameworks such as the Myers-Briggs Type Indicator 
personality test [103]. 
Future research could further examine the general feasibility of 
remote non-immersive virtual reality experiments and the 
influence of participants’ technical equipment [104]. In 
addition, self-assessed variables could be matched with 
physiological data to prevent subjective bias in participants' 
responses. With the world’s working and educational life 
shifting to more hybrid work settings, it is important to consider 
the potential of remote experiments and some promising remote 
lab concepts already exist [99].  
The transferability of our findings to other tasks with different 
levels of complexity and types of knowledge could be further 
investigated. While other tasks refer to different assembly 
objects, different types of knowledge include moving from 
procedural knowledge to other levels such as conceptual 
knowledge defined in Krathwohl’s taxonomy [105]. Another 
experimental parameter worth considering is the duration of the 
individual experiment (of the assembly task) and the retention 
period. A longitudinal study investigating learning outcomes 
through several repeating or type-like training sessions over a 
longer period could be valuable too.  
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APPENDIX 
Pre-Motivation Scale (7-point Likert Scale): 

1. I try to learn as much as I can from following the 
training material. 

2. I am motivated to learn the skills which are taught 
within the following training material. 

3. I would like to improve my skills.  
4. I am willing to invest effort in the following training 

material to improve my skills.  
5. The following training material has a high priority for 

me. 
 
System Usability Scale (7-point Likert Scale): 

1. I think that I would like to use this VR training 
frequently.  

2. I found this VR training unnecessarily complex.  
3. I thought this VR training was easy to use.  
4. I think I would need assistance to be able to use this 

VR training.  
5. I found the various functions in this VR training were 

well integrated.  
6. I thought there was too much inconsistency in this VR 

training.  
7. I would imagine that most people would learn to use 

this VR training very quickly  
8. I found this VR training very cumbersome/awkward to 

use.  
9. I felt very confident using this VR training.  
10. I needed to learn a lot of things before I could get going 

with this VR training.  
 
Self-Efficacy Scale (7-point Likert Scale): 

1. I believe I have the ability to accomplish the assembly 
task effectively (in the time given and without errors).  

 
Satisfaction Scale (7-point Likert Scale): 

1. I feel very happy and satisfied about the training 
method. 

 
Post-Motivation Scale (7-point Likert Scale): 

2. I enjoyed experiencing the virtual world very much.  
3. I thought experiencing the virtual world was quite 

enjoyable  
4. I would describe the experience as very interesting  
5. The experience in VR training was fun. 
6. I feel very happy about the training method.  

 
NASA-TLX (0-100 for each component): 

1. How much mental and perceptual activity did you 
spend for this task? (e.g. thinking, deciding, 
remembering, looking, searching, etc.) 

2. How much time pressure did you feel in order to 
complete the task? 

3. How much effort was required (mentally) to 
accomplish your level of performance? 

4. How insecure, discouraged, irritated, stressed, and 
annoyed were you during the task? 

5. How successful do you think you were in 
accomplishing the goals of the task? 

 
Control Variables per TG 

 
Variable TG1 TG2 TG3 
 Mean Sd Mean Sd Mean Sd 
Age 30.97 9.16 30.74 9.43 30.53 8.68 
Gender 1.29 .487 1.31 .481 1.30 .481 
English 
Reading 90.32 13.64 89.19 16.19 91.50 13.10 

English 
Listening 89.38 14.46 88.64 16.42 90.91 13.12 

Pre-
motivation 6.11 .891 6.14 .905 6.08 1.086 

VR 
Experience 1.15 .857 1.13 .940 1.24 .982 

Assembly 
Experience 1.56 1.186 1.59 1.364 1.57 1.335 

VR 
Assembly 
Experience 

.144 .352 .110 .313 .156 .364 

Computer 
Use 5.04 1.052 4.97 .999 5.04 1.066 

Computer 
Gaming 
Habits 

1.77 .937 1.82 1.097 1.90 1.106 

Display 
Size 1.80 .395 1.85 .354 1.84 .364 

Computer 
Pointing 
Device 

1.16 .371 1.14 .354 1.15 .364 

 
 
 
Game Element Assessment (for selection process) 
 

 = non-
existing 

 = 
poor 

 = 
medium 

 = 
rather 
strong 

 = 
very 
strong 

     
Game 
Element 

Effect 
Size 

BNT 
Theo
ry Fit 

Learni
ng 
objecti
ve Fit 

Redundant / 
Overlapping 
elements  

Counterw
orking 
elements 

Anarchy 
   

Exploration Goalsettin
g 

Anonymity  
   

 Avatar, 
Team 

Avatar 
   

 Anonymit
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Badge 
(also: 
Achieveme
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Prize  

Challenge 
(also: 
Quest) 
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Choice 
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(also: 
Virtual 
Economy) 

   
  

Competitio
n    
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e    
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Emotion 
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