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Abstract

Derivatives in trigonometry have always been defined in orthogonal contexts (i.e., where the y-axis is set perpendicular
to the x-axis). Within the context of trigonometric, the present work expands the concept of derivative (operating by the
principle of 90 degrees phase shift when applicable to sine and cosine functions) to the realm where the y-axis is at a
variable angle γ to the x-axis (i.e., non-orthogonal systems). This gives rise to the concept of the gamma derivative —
which expands the classical derivative to impart phase shifts of γ degrees. Hence, the ordinary derivative (with respect to
α) or d/dα is a particular case of the more general gamma derivative or dγ/dγα. Formula for the nth gamma derivative of
the extended sine and cosine functions are defined. For applied mathematics, the gamma derivatives of the extended sine
function sin∗(α, γ) and cosine function cos∗(α, γ) determine the extended governing equation of the energy-coupled mass-
spring oscillatory system, and by extended analogy that of the energy-coupled electrical LC (Inductance-Capacitance)
circuit.
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1. Introduction

One way to explore the properties of a function is by studying its derivatives. Derivatives are as important as the functions
themselves. The particularity of derivatives of trigonometric functions, like sine and cosine, is that they are recurrent.
Governing equations involve not only the algebraic combination of such functions, but also often integrate their deriva-
tives. When looking at potential mathematical applications, it is critical when finding solution that these derivatives are
known and understood. Both the mass-spring-damper system (Tipler 1998, Rayleigh 1945, Timoshenko 1974), RLC cir-
cuit (Rawlins 2000, Hughes 1995), as well as, trigonometry (Euclids et al 1908, Pickover 2012) are taught in universities
worldwide (in particular in engineering), and are widely used in the professional world, making the gamma derivative
extension to trigonometric functions a subject of general interested (Canadian Ministry of Education 2020).

2. Hypothesis

It is the hypothesis of this article that just as the Pythagoras theorem is a particular case of the more general Law of Cosines
(as seen from a trigonometry perspective), an oscillatory system (seen from a physical perspective) that is governed by
the Pythagoras theorem should also have an equaly more general representation (that would naturally encompass that
aforementioned particular physical system).

3. Theory

The derivatives of sines and cosines are important cornerstones in trigonometry. Hence, the derivatives of their extended
counterparts — extended sine function sin∗(α, γ) and extended cosine function cos∗(α, γ) (Teia, 2022c) — will be equally
important (if not more), since not only do they encompass the former, but they also open doors to uncharted interpreta-
tion of the mathematical dynamics inherent to non-orthogonal systems. One example of an opened door is the recently
published generalization of the angle sum and difference identity rules, that now with new upgraded equations encompass
also scalene triangles (Teia, 2022d). Before proceeding, we must first examine the definition of derivative used currently
in the context of the Pythagoras theorem, and then use that as a template to understand the gamma derivatives within the
context of the Law of Cosines. One may be surprised to find that the former (the particular case that is the Pythagoras
theorem) is found encompassed in the definition of the later (the general case that is the Law of Cosines). The derivative
of sine and cosine functions within the particular context of the Pythagoras theorem translates into a phase shift of 90
degrees (i.e., π/2 radians) and thus α → α + π/2, with the appropriate sign change resulting from the quadrant swap in
the system of orthogonal axes (shown in the example in Figure 1a).
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The derivative of sine is known to be
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)
= cos(α) (1)

Extrapolating, the nth derivative of the sine function becomes
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dαn sin(α) = sin
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)
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+ cos(α) sin

(
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π
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)
(2)

Figure 1. Sine and cosine projections and their classical derivatives for: (a) an orthogonal axes-system and (b) a
120-degree axes-system.

Note that all drawings were created using the open source software Geogebra (Feng, 2013). Continuing, in Eq.(2), the
terms with argument n switches between 1, 0, -1 (and then back to 1) serving to iteratively swap the solution between
sin(α) and cos(α) [almost in a digital fashion, as the radius rotates around the quadrants in 90 degrees intervals]. An
expansion of varying n on the classical orthogonal derivative [given by Eq.(2)] is as follows

dn

dαn sin(α) = sin
(
α + n

π

2

)
=


d

dα sin(α) = + cos(α) : n = 1
d2

dα2 sin(α) = − sin(α) : n = 2
d3

dα3 sin(α) = − cos(α) : n = 3
. . .

(3)

Imagine now that the y-axis is inclined to the x-axis (with respect to the x-axis) in Figure 1a to a non-orthogonal position
(where the larger angle between them in Quadrant 4 has been defined in the past by angle γ) in Figure 1b [studies involving
non-orthogonal axes have already been published in this journal (Teia 2022c, Teia 2022d)]. In such a case, the (orthogonal)
derivative of cosine is no longer sine, and similarly that of sine is no longer the negative of cosine. The recurrence of the
functions with their derivatives has been broken, and the reason is simple. The dynamics of the projections of a radius that
rotates around in an orthogonal system are governed by the Pythagoras Theorem (i.e., x2 + y2 = z2 in Figure 2a), where
there is no coupling between the terms x2 and y2 (for example in right triangle 4OAB in Figure 1a). This coupling term
appears mathematically as −2xycos(γ) [in particular, as xy for the triangle-driven extended Pythagoras system γ = 120
deg in Figure 2b (Teia, 2021a), and −xy for the hexagon-driven extended Pythagoras system γ = 60 deg in Figure 2c
(Teia, 2021b)], represented geometrically as the area in yellow (which is added in Figure 2b, and subtracted in Figure 2c).

In a non-orthogonal system of axes, the dynamics are different, and thus the classical sine and cosine no longer operate
(and neither do their traditional derivatives). In practice, non-orthogonal system of axes are found in physical systems that
employ trigonometric relations based on the scalene triangle that is governed by the Law of Cosines as x2−2xycos(γ)+y2 =

z2, of which one example is the laser displacement sensor that measures microscopic displacement/oscillations of surfaces
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by means of laser light triangulation (MTI Instruments Inc., 2001). Note that the reason why the angle γ — formed
between the y-axis and x-axis — is measured in the fourth (and not first) quadrant comes from the (internal) obtuse angle
of the scalene triangle formed by the inherent projected extended sine and cosine sides (note that in the example of Figure
1b, the obtuse angle of the scalene triangle 4O′A′B′ is γ = 120 degrees). This is consistent with the results presented in
previous publications (Teia 2021a, Teia 2021b). As shown in Figure 1b, within a system of axes with γ = 120 degrees,
at no point does one of the nth classical (orthogonal) derivative of the extended cosine function cos∗(α, γ) becomes equal
to the one of the nth classical (orthogonal) derivative of the extended sine function sin∗(α, γ). This happens because a
classical (orthogonal) derivative is not concordant to a system of axes with γ = 120 degrees — for matching to occur, one
must use a gamma derivative concordant with the angle gamma of the system (such connection is important when solving
differential equations of oscillatory physical systems, as will be shown in Chapter 5). Such non-orthogonal systems have
shown to represent geometrical extensions to the Pythagoras Theorem, where the inclination introduces a coupling effect
(for example, in scalene triangle 4O′A′B′ in Figure 1b).

Figure 2. Pythagoras theorem: (a) original, (b) extended with γ = 120 deg [Teia, 2021a] and (c) extended with γ = 60
deg [Teia, 2021b].

The perfectly synchronous chain of sine and cosine derivatives in Figure 1a is disturbed in Figure 1b, and their magnitude
becomes non-trivial to determine. The derivative of the extended sine and cosine functions – henceforth called the gamma
derivative — translates into a phase shift of γ degrees (a shift that changes α → α + γ) within the general context of the
Law of Cosines. Is is important to remember that the general case of the Law of Cosines (axes at any angle) encompasses
that of the particular case of the Pythagoras theorem (orthogonal axes), hence it is only logical that the derivative of
sines and cosines — expressible as d/dα — is also found in the gamma derivative of extended sines and cosines —
expressible as dγ/dγα. Before proceeding, it is important to remember that it was previously shown (Teia, 2022c) that the
projected sides of a scalene triangle (possessing a normalized extended hypotenuse z = 1) are interrelated by extended
expressions (distinguishable from the classical functions by the symbol *) for the sine and cosine — or y = sin∗(α, γ) and
x = cos∗(α, γ) — were already proven to be
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sin∗(α, γ) =
sin(α)
sin(γ)

; cos∗(α, γ) = cos(α) +
cos(γ)
sin(γ)

sin(α) =
sin(α + γ)

sin(γ)
(4)

which inherently satisfy the more general governing equation that is the Law of Cosines. For example, in the case of
γ = 120 degrees (Figure 2), the expressions to determine the normalized (i.e., z = 1) sides of the scalene triangle 4O′A′B′

are for the longer side O′A′ = cos∗(α, 120) and for the shorter side A′B′ = sin∗(α, 120) (which matches Figure 1b). In
classical trigonometry, often the sides of a scalene triangle are found by geometrically subdividing each into two right
triangles — an approach that requires multiple steps to reach an answer (Tanton, 2015). With gamma trigonometry, only
one extended sine and cosine function is required to determine each one of the side of the scalene triangle, for any given
normalized shape [given by Eq.(4)] (no need for orthogonal partitioning — i.e. referencing a non-orthogonal axes system
to an orthogonal one — as the gamma effect is already accounted for in the expression). More specifically, these extended
functions determine the normalized lengths of the sides x and y of any scalene triangle, when the two internal angles —
reference α and obtuse γ — are known. Hence, the particular case of the derivative for γ = 90 degrees in Eq.(1) transforms
into the general case of the gamma derivative (valid for any γ) as

dγ
dγα

sin∗(α, γ) = sin∗(α + γ, γ) =
sin(α + γ)

sin(γ)
= cos(α) +

cos(γ)
sin(γ)

sin(α) = cos∗(α, γ) (5)

Note that the classical orthogonal derivative is a particular case of Eq.(5) [the general case with the derivative restricted to
γ = 90 degrees], and being applied to the extended sine function gives

d
dα

sin∗(α, γ) = sin∗(α + 90, γ) =
sin(α + 90)

sin(γ)
=

cos(α)
sin(γ)

(6)

Extrapolating as before [from Eq.(2)], the nth derivative of the extended sine function becomes

dn
γ

dγαn sin∗(α, γ) =
sin(α + nγ)

sin(γ)
= sin(α)

[cos(nγ)
sin(γ)

]
+ cos(α)

[ sin(nγ)
sin(γ)

]
(7)

The terms with argument n also switch in sign (due to the quadrant change as the radius rotates) but are different from 1,
0 and -1, thus they neither cancel nor provide the recurrent identity of sin(α) or cos(α). These coefficients cos(nγ)/ sin(γ)
and sin(nγ)/ sin(γ) alter both the magnitude and sign of sin(α) and cos(α), depending on the value of γ. In expanded form,
the gamma derivative for varying n of the extended sine becomes

dn
γ

dγαn sin∗(α, γ) =
sin(α + nγ)

sin(γ)
=



dγ
dγα

sin∗(α, γ) = sin(α)
[

cos(γ)
sin(γ)

]
+ cos(α)

[
sin(γ)
sin(γ)

]
= cos∗(α, γ) : n = 1

d2
γ

dγα2 sin∗(α, γ) = sin(α)
[

cos(2γ)
sin(γ)

]
+ cos(α)

[
sin(2γ)
sin(γ)

]
: n = 2

d3
γ

dγα3 sin∗(α, γ) = sin(α)
[

cos(3γ)
sin(γ)

]
+ cos(α)

[
sin(3γ)
sin(γ)

]
: n = 3

. . .

(8)

Note that the gamma derivative employs a phase shift that can be any angle γ, including 90 degrees [in which case Eq.(5)
returns back to Eq.(1)]. Hence, for the case when the relation between the extended sine and cosine is different from
90 degrees, we can no longer use the traditional derivatives given by Eqs.(3), and in the context of the Law of Cosines
(governing the side length relation within a scalene triangle), Eqs.(4) are used instead. There are two types of particular
cases of gamma derivatives, (1) angularly repetitive and (2) angularly non-repetitive. It all depends if the angle γ between
the axes has as a multiple 360 degrees. For example, this happens with the orthogonal case γ = 90 deg resulting in
4 × 90 = 360 (as shown previously in Figure 1a). Another example is when γ = 120 deg, resulting in 3 × 120 = 360 deg
(as shown below in Figure 3).

Recurrent derivatives of trigonometric functions can be seen as a tool that allows information from different differentiation
levels in an equation to interconnect (for example, the first derivative of displacement from the kinetic energy that connects
to the zero derivative of displacement in the potential energy, together forming part of one single energy equation),
enabling them to interconnect and form a particular solution. This fact makes recurrent derivatives very handy, when
determining solutions to differential equations. Bearing this in mind, it becomes clear that recurrent derivatives are more
useful (than non-recurrent derivatives) when addressing problems of differential equations. Focusing on angular repetitive
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Figure 3. Example of extended sine and cosine functions (α = 20 deg), and their derivatives for a 120-degree axes
system.

gamma derivatives, the next aspect that is important to understand is how this recurrence behaves. There are two options,
the number of times p that γ adds to form 360 deg can be odd (e.g., γ = 120 deg gives odd p = 3 resulting in 3×120 = 360
deg) or even (e.g., γ = 90 deg gives even p = 4 resulting in 4 × 90 = 360 deg). For example, when the angle between
the axes is γ = 120 deg, the extended sine returns to itself in the third derivative or p = 3. In turn, the extended cosine
— being always the first derivative of the extended sine, regardless of α or γ — returns to itself in the fourth derivative
or p + 1 = 4. As the example in Figure 3 shows, for such a system and a radius angle α = 20 degrees, the value of the
extended sine (and its first two derivatives) are

dn
120

d120α
n sin∗(20, 120) =


sin∗(20, 120) =

sin(20)
sin(120) = 0.395 : n = 0

d120
d120α

sin∗(20, 120) = sin(20)
[

cos(120)
sin(120)

]
+ cos(20)

[
sin(120)
sin(120)

]
= 0.742 : n = 1

d2
120

d120α
2 sin∗(20, 120) = sin(20)

[
cos(240)
sin(120)

]
+ cos(20)

[
sin(240)
sin(120)

]
= −1.137 : n = 2

(9)

which confirm the values measured using the Geogebra software (Feng, 2013) in Figure 4. Generalizing the derivatives
of the extended sine to any value of α gives

dn
120

d120α
n sin∗(α, 120) =

sin(α + n × 120)
sin(120)

=



d120
d120α

sin∗(α, γ) = sin(α)
[
−
√

3
3

]
+ cos(α)

[
1
]

= cos∗(α, 120) : n = 1
d2

120

d120α
2 sin∗(α, γ) = sin(α)

[
−
√

3
3

]
+ cos(α)

[
− 1

]
: n = 2

d3
120

d120α
3 sin∗(α, γ) = sin(α)

[
2
√

3
3

]
+ cos(α)

[
0
]

= sin∗(α, 120) : n = 3
d4

120

d120α
4 sin∗(α, γ) = sin(α)

[
−
√

3
3

]
+ cos(α)

[
1
]

= cos∗(α, 120) : n = 4

. . .
(10)

In turn, the derivative of the cosine function cos(α) is

d
dα

cos(α) = cos
(
α + (1)

π

2

)
= − sin(α) = sin

(
α + (2)

π

2

)
=

d2

dα2 sin(α) (11)

Hence, the chain of derivatives pertaining to cosine are the same as sine, except for a phase shift of π/2. While all of this
may sound trivial, it lays the foundation for the more general gamma derivative of the extended sine and cosine functions.
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Figure 4. Polar to temporal conversion of extended sine projection and derivatives for a γ = 120-degree axes system.

Extrapolating from above, the nth derivatives of the cosine function are then expressed as

dn

dαn cos(α) = sin
(
α + (n + 1)

π

2

)
= sin(α) cos

(
(n + 1)

π

2

)
+ cos(α) sin

(
(n + 1)

π

2

)
(12)

The gamma derivative of the extended cosine function cos∗(α, γ) is

dγ
dγα

cos∗(α, γ) =
sin(α + 2γ)

sin(γ)
= sin(α)

[cos(2γ)
sin(γ)

]
+ cos(α)

[ sin(2γ)
sin(γ)

]
(13)

Note that the classical orthogonal derivative is a particular case of Eq.(13) [the general case with the derivative restricted
to γ = 90 degrees], and being applied to the extended cosine function gives

d
dα

cos∗(α, γ) =
d

dα

{
cos(α) +

cos(γ)
sin(γ)

sin(α)
}

= − sin(α) +
cos(γ)
sin(γ)

cos(α) (14)

Similarly as before, the nth gamma derivative of the extended cosine function is expressed as

dn
γ

dγαn cos∗(α, γ) =
sin[α + (n + 1)γ]

sin(γ)
= sin(α)

[cos[(n + 1)γ]
sin(γ)

]
+ cos(α)

[ sin[(n + 1)γ]
sin(γ)

]
(15)

In expanded form, the gamma derivative for varying n of the extended cosine becomes

dn
γ

dγαn cos∗(α, γ) =
sin[α + (n + 1)γ]

sin(γ)
=



dγ
dγα

cos∗(α, γ) = sin(α)
[

cos(2γ)
sin(γ)

]
+ cos(α)

[
sin(2γ)
sin(γ)

]
: n = 1

d2
γ

dγα2 cos∗(α, γ) = sin(α)
[

cos(3γ)
sin(γ)

]
+ cos(α)

[
sin(3γ)
sin(γ)

]
: n = 2

d3
γ

dγα3 cos∗(α, γ) = sin(α)
[

cos(4γ)
sin(γ)

]
+ cos(α)

[
sin(4γ)
sin(γ)

]
: n = 3

. . .

(16)

Returning to the example in Figure 3, for such a system with an angle of γ = 120 degrees between axes and a radius at an
angle of α = 20 degrees, the value of the extended cosine and its first two derivatives are

dn
120

d120α
n cos∗(20, 120) =


cos∗(20, 120) =

sin(20+120)
sin(120) = 0.742 : n = 0

d120
d120α

cos∗(20, 120) = sin(20)
[

cos(240)
sin(120)

]
+ cos(20)

[
sin(240)
sin(120)

]
= −1.137 : n = 1

d2
120

d120α
2 cos∗(20, 120) = sin(20)

[
cos(360)
sin(120)

]
+ cos(20)

[
sin(360)
sin(120)

]
= 0.395 : n = 2

(17)

which confirm the values measured using the Geogebra software in Figure 5, (shown in green in Figure 5 left — the result
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Figure 5. Polar to temporal conversion of extended cosine projection and derivatives for a γ = 120-degree axes system.

of Figure 4 left being rotated by 90 degrees). Generalizing the derivatives of the extended cosine to any value of α gives

dn
γ

dγαn cos∗(α, γ) =
sin[α + (n + 1)γ]

sin(γ)
=



dγ
dγα

sin∗(α, γ) = sin(α)
[

cos(2γ)
sin(γ)

]
+ cos(α)

[
sin(2γ)
sin(γ)

]
: n = 1

d2
γ

dγα2 sin∗(α, γ) = sin(α)
[

cos(3γ)
sin(γ)

]
+ cos(α)

[
sin(3γ)
sin(γ)

]
: n = 2

d3
γ

dγα3 sin∗(α, γ) = sin(α)
[

cos(4γ)
sin(γ)

]
+ cos(α)

[
sin(4γ)
sin(γ)

]
: n = 3

. . .

(18)

It is important to note that by subtracting the angle γ from α (instead of adding) provides the primitive P of cos∗(α, γ),
resulting in the extended sine function sin∗(α, γ).

P
[

cos∗(α, γ)
]

= cos∗(α − γ, γ) = sin∗(α, γ) (19)

This can be proven by expanding cos∗(α − γ, γ) as

cos∗(α − γ, γ) = cos(α − γ) +
cos(γ)
sin(γ)

sin(α − γ) (20)

That becomes

cos(α) cos(γ) + sin(α) sin(γ) +
cos(γ)
sin(γ)

[
sin(α) cos(γ) − cos(α) sin(γ)

]
(21)

And simplifies to

cos(α) cos(γ) + sin(α) sin(γ) + sin(α)
cos2(γ)
sin(γ)

− cos(α) cos(γ) (22)

Which ends up to be

sin(α) sin(γ) + sin(α)
1 − sin2(γ)

sin(γ)
=

sin(α)
sin(γ)

= sin∗(α, γ) (23)

The above reasoning shows that the derivatives of the extended sine function sin∗(α, γ) and cosine function cos∗(α, γ) are
not trivially connected to each other for non-orthogonal cases (i.e., when γ , 90 deg).
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4. Differentiating the Governing Equation

The Pythagoras theorem x2 + y2 = z2 governs the dynamics of the sine y = sin(α) and cosine x = cos(α) functions via the
sides of a normalized (i.e., z = 1) right-angled triangle, resulting in the normalized relation cos2(α) + sin2(α) = 1. In turn,
the Law of Cosines given as

x2 − 2xy cos(γ) + y2 = z2 (24)

is the generalized version that governs the dynamics of the extended sine y = sin∗(α, γ) and cosine x = cos∗(α, γ) functions
via the sides of a normalized (i.e., z = 1) scalene triangle, possessing a reference angle α and obtuse angle γ, resulting in
the normalized relation

cos∗(α, γ)2 − 2 cos∗(α, γ) sin∗(α, γ) cos(γ) + sin∗(α, γ)2 = 1 (25)

Differentiating these equation is an important part of the process of determining the equations governing some of the
most important (if not the most important) systems in vibration theory, i.e. the mass-spring (and damper) system and
the pendulum. These physical systems, and their governing equations with solutions, are a foundation for all studies in
science involving oscillations, e.g. theory of sound, mechanical engineering, electrical engineering, planetary physics,
to name a few. This will be further explained in Chapter 3. For now, to better understand the differentiation process of
the Law of Cosines, let us start by differentiating the Pythagoras Theorem. The derivative of the Pythagoras theorem
(assuming z constant) is

2xx′ + 2yy′ = 0 (26)

which means that only x and y vary (that is, it is assumed that the hypotenuse of the right- triangle remains fixed, and of
equal length, for any change of the internal reference angle α). The above Eq.(26) can be further expanded by replacing
the derivatives of sine and cosine resulting in

− cos(α) sin(α) + sin(α) cos(α) = 0 (27)

which trivialy simplifies as a valid equality of zeros. While this seems trivial for the particular case of the Pythagoras
theorem, it becomes more complex for the general case of the Law of Cosines. In the past, trigonometric functions were
successfully employed to determine solutions for Ordinary Differential Equations (ODEs) — a topic already studied in
previous publications (Bromwich, 1908). The differentiation of Eq.(24) results in

2xx′ − 2[xy′ + x′y] cos(γ) + 2yy′ = 0 (28)

Theorem 1 (Validation of the Differentiated Version of the Law of Cosines). If the extended functions x = cos∗(α, γ),
y = sin(α, γ) (the two shorter sides) and z = 1 (the longer side, herein expressed as extended hypotenuse) are the lengths
of the sides of a scalene triangle of reference angle α and obtuse angle γ, and satisfy the governing equation Law of
Cosines, gives as x2 − 2xy cos(γ) + y2 = z2 then these same functions, and their derivatives, must satisfy the differentiated
version (with respect to α) of the same governing equation, given as

xx′ − [xy′ + x′y] cos(γ) + yy′ = 0 (29)

Proof. The extended functions x = cos∗(α, γ) and y = sin∗(α, γ) have proven to satisfy the normalized (i.e., .z = 1) Law
of Cosines [given by Eq.(24)] [Teia, 2022]. For the differentiated version [given by Eq.(29)], let us start by separating the
governing equation into three parts, one for each term, making xx′ − [xy′ + x′y] cos(γ) + yy′ = Part I + II + III. Replacing
the extended sine and cosine functions in Eq.(4) and their derivatives [given by Eq.(6) and Eq.(14)], into Part I gives

xx′ = sin∗(α, γ)
d

dα
[sin∗(α, γ)] =

sin(α)
sin(γ)

[cos(α)
sin(γ)

]
=

1
sin2(γ)

sin(α) cos(α) (30)

Expanding explicitly Part II results in
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xy′ + x′y = sin∗(α, γ)
d

dα
[cos∗(α, γ)] +

d
dα

[sin∗(α, γ)] cos∗(α, γ) (31)

Replacing the definitions from Eq.(4), Eq.(6) and Eq.(14) expands the above as

sin(α)
sin(γ)

{
− sin(α) +

cos(γ)
sin(γ)

cos(α)
}

+

[cos(α)
sin(γ)

]{
cos(α) +

cos(γ)
sin(γ)

sin(α)
}

(32)

Which expanded gives

xy′ + x′y = −
sin2(α)
sin(γ)

+
cos(γ)
sin2(γ)

cos(α) sin(α) +
cos2(α)
sin(γ)

+
cos(γ)
sin2(γ)

sin(α) cos(α) (33)

Finaly, Part III yields

yy′ = cos∗(α, γ)
d

dα
[cos∗(α, γ)] =

{
cos(α) +

cos(γ)
sin(γ)

sin(α)
}[
− sin(α) +

cos(γ)
sin(γ)

cos(α)
]

(34)

Which expands to

yy′ = − cos(α) sin(α) +
cos(γ)
sin(γ)

{
cos2(α) − sin2(α)

}
+

cos2(γ)
sin2(γ)

sin(α) cos(α) (35)

Replacing Eq.(30), Eq.(33) and Eq.(35) back into the differentiated governing equation [in Eq.(29)] gives

1
sin2(γ)

sin(α) cos(α) −
[
−

sin2(α)
sin(γ)

+
cos(γ)
sin2(γ)

cos(α) sin(α) +
cos2(α)
sin(γ)

+
cos(γ)
sin2(γ)

sin(α) cos(α)
]

cos(γ) −

− cos(α) sin(α) +
cos(γ)
sin(γ)

{
cos2(α) − sin2(α)

}
+

cos2(γ)
sin2(γ)

sin(α) cos(α) (36)

which expands to

1
sin2(γ)

sin(α) cos(α) +
cos(γ)
sin(γ)

sin2(α) −
cos2(γ)
sin2(γ)

cos(α) sin(α) −
cos(γ)
sin(γ)

cos2(α) −
cos2(γ)
sin2(γ)

sin(α) cos(α) −

− cos(α) sin(α) +
cos(γ)
sin(γ)

{
cos2(α) − sin2(α)

}
+

cos2(γ)
sin2(γ)

sin(α) cos(α) (37)

cancelling the terms with cos2(γ)/ sin2(γ) and cos(γ)/ sin(γ) substantially simplifies the expression to

1
sin2(γ)

sin(α) cos(α) −
cos2(γ)
sin2(γ)

sin(α) cos(α) − cos(α) sin(α) (38)

which re-writes and concludes as

{ 1
sin2(γ)

−
cos2(γ)
sin2(γ)

− 1
}

sin(α) cos(α) =

{ sin2(γ)
sin2(γ)

− 1
}

sin(α) cos(α) = 0 (39)

As expected from Eq.(29), the end result is zero. This completes the proof.
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5. Applied Mathematics

5.1 Classical Mass-Spring Oscillatory System

In a physical system that is oscillating, a particular derivative corresponds to a given level of information. For example,
in the case of a mass-spring oscillatory system (Figure 6a), the governing equation can be defined as the sum of energies
(i.e., kinetic K = 1/2mṡ2 and potential energy U = 1/2ks2 being equal to a total T ) [Rayleigh 1945, Timoshenko et al
1974] — it is the zero derivative level of information, as it were — or this can be differentiated to give a sum of forces
— subsequentially, the first derivative level of information. Moreover, within each level there can be terms governed by
different derivatives — for instance, in an energy balance there is a displacement s and velocity term ṡ (dersivative of
displacement). Likewise, at a sum of force level, these terms transform into a relation between acceleration s̈ and velocity
ṡ. This is to be distinguished from x, y and z, which are the sides of the right triangle governing the displacement of the
mass-spring system, which (as we will see below) are a function of s and ṡ. Overall, it is well highlighted then the need for
trigonometric functions that are recurrent with differentiation, as they establish links between those different derivatives
within, and in between different levels of a governing equation. The equation that governs the oscillation of a mass-spring
system, in an energy balance perspective, is

K + U =
1
2

mṡ2 +
1
2

ks2 = T ⇐⇒ x2 + y2 = z2 (40)

The mass-spring oscillatory system has various embodiments in engineering [as for example the suspension of a car or
train (Sully, 1988)], and can appear in various physcial shapes (see for example the often studied problem of a clamped
vibrating membrane or diaphragm (Teia 2009, Leissa 1969), which is vitaly used in the operation of microphones (Eargle,
2005) and loud speakers (Merhaut, 1981)]. Here, the new coupled version (Figure 6b) will be compared against the
classical mass-spring (Figure 6a) in the following section 5.2. Usually there is also a resistive element (in Figure 6a),
such as a damper, that accounts for the energy extraction from the system — converting it into a mass-spring-damper
system. For simplicity, this is not considered for now, and can always be added as part of a future follow-on research
effort. The unusual situation here is that kinetic energy has the same cycle as the potential energy, except that it is offset
by 90 degrees, i.e., having a derivative term. This offset is often regarded to as a time delay as the displacement derivative
is in time. However, from a Pythagoras theorem perspective, this offset is not really in time, as as the relation between the
sides of a triangle occur for a specific triangle, i.e, a fixed geometrical domains at a certain point in time. In this optics,
at any given time, the two energies are related by an angular shift in their cycle. This is not the same as saying that one
energy will match the other after a certain period or phase in time. This is the same as relating the side of one triangle
with that of another triangle at a different point in time.

Figure 6. Oscillatory system of mass (inertia) and spring [stiffness]: (a) classical and (b) coupled.

This distinction is important, for while in the traditional case (Pythagoras theorem) the relation between energy states for
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a particular time (i.e., d/dα of 90 degrees) can be regarded as the same relation between any one of the energies between
a position of time and one later that corresponds to the same cycle shift (i.e., d/dt), in the general case (Law of Cosines)
this is not true. That is, the phase relation between the potential and kinetic energy is not 90 degrees (it is γ) due to the
coupling effect, while the relation between the energy state from a point in time to that later as determined by the time
derivative is 90 degrees.

K + U =
1
2

mṡ2 +
1
2

ks2 = T ≡
1
2

m
ds
dα

2

+
1
2

ks2 = T (41)

Which is equivalent to say

x2 + y2 = z2 (42)

where y =
√

m/2ṡ, x =
√

k/2s and z =
√

T (is considered constant). This equivalency generates the bridge between the
mathematics (and geometry) of the Pythagoras theorem with that of the physical behaviour of a mass-spring system. This
then is used as a template to obtain the same equivalence between the more general Law of Cosine and the new coupled
mass-spring system. Start by differentiating Eq.(42), which gives

xx′ + yy′ = 0 ≡ x
dx
dα

+ y
dy
dα

= 0 (43)

Figure 7 shows the the three-dimensional trajectory of a radius, as it revolves around a temporal domain/axis (linearly
interconnected to the its own angular position α). The same angles [as in Figure 3] are presented, but in a geometrical
domain of the Pythagoras theorem (i.e., for a system axes with an angle γ = 90 deg). It is a fortunate fact that both
the time domain is perpendicular or orthogonal (uncoupled) to the Pythagorean domain, and the side (or axis) y is also
perpendicular or orthogonal to the side (or axis) x within the Pythagorean domain (governing the shape of the right
triangles within). This means that in both cases orthogonal derivatives d/dt and d/dα are employed (where sine and
cosine functions relate to their derivatives by 90 degree rotation) [Figure 7b]. Fortunate because, if the y-axis was not
perpendicular to the x-axis, the classical orthogonal derivative could not be employed, and the solution would require the
application of the gamma derivative.

Figure 7. Extended cosine projections cos∗(α, γ) and their derivatives for a γ = 120-degree axes system.

Substituting explicitly x′ = dx/dt (temporal domain) and implicitly y = dx/dα (Pythagorean domain), gives Eq.(43) in
the form

xẋ + ẋẍ = 0 ≡ x
dx
dα

+
dx
dα

d2x
dα2 = 0 (44)

However, from a perspective of the mass-spring system, this is not enough, as we need to account for the physical
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properties. Hence, as defined previously with Eq.(42) and Eq.(42), replacing the previous terms y =
√

m/2ṡ and x =
√

k/2s in Eq.(43) gives

√
k
2

s

√
k
2

ṡ +

√
m
2

ṡ
√

m
2

s̈ = 0 → ksṡ + mṡs̈ = 0 (45)

Both Eq.(26) and Eq.(45) are the same, since x =
√

mṡ and y =
√

ks. Cancelling the mutually common coefficient ṡ
reduces the equation to its more familiar format as

ms̈ + ks = 0 (46)

which states that during an oscillation the inertia force from the mass ms̈ is always balanced by the opposing force
generated by the spring ks, where the later increases linearly with displacement from the point of equilibrium of the
spring (Hooke’s Law) [Tipler 1998].

5.2 Coupled Mass-Spring Oscillatory System

As explained before in Figure 2a, the Pythagoras theorem is a particular case where there is no coupling between infor-
mation in the x-axis and y-axis. Thus, the general case of the Law of Cosines, not only encompasses this particular one,
but in its vast majority a coupling occurs the x-axis and y-axis, highlighted as the yellow area in Figure 2b (for γ = 120
deg) and Figure 2c (for γ = 60 deg). Since the classical mass-spring system is governed by the uncoupled dynamics of
the Pythagoras theorem, then it is logical to assume there ia coupled version of the mass-spring system that follows the
dynamics of the Law of Cosines. This coupling effect is modelled by replacing the infinitely stiff (rigid) mass by a finitely
stiff mass distributed in the shape of a spring, that is henceforth called the hybrid or discrete mass-spring (Figure 6b).
Hybrid because it is neither a mass (here recognized as a rectangular block with mass m) nor a spring (here recognized
as a flexible coil with a certain stiffness k, and no mass). Discrete because the coupling effect emerges from the fact that
the mass is not lumped, and is indeed distributed along the length of the spring. This hybrid mass-spring is encased in
an ideally massless casing attached to the main spring, that then links to a fixed reference plane or surface. The γ effect,
highlighted as the mains difference between the Pythagoras theorem and the Law of Cosines, is modeled by rotating the
axis of displacement of the hybrid mass-spring with respect to the axis of displacement of the main spring. Note that
when the angle γ = 90 degrees, the two axes are perpendicular, at which point the hybrid mass-spring behaves only as
a mass, and the coupled system behaves as a classical mass-spring system. Modifying the classical mass-spring system
(Figure 7a) to a coupled mass-spring counterpart (Figure 8a) changed the geometrical domain from Pythagorean to the
Law of Cosines (here examplified with the case of γ = 120 deg), while the temporal domain (α = ωt) remained the same.
The differentiated version (assuming z constant) of the Law of Cosines as x2 − 2xy cos(γ) + y2 = z2 [given previously in
Eq.(29)] is repeated below for convenience

xx′ − [xy′ + x′y] cos(γ) + yy′ = 0 ≡ x
dx
dt
−

[
x

dy
dt

+
dx
dt

y
]

cos(γ) + y
dy
dt

= 0 (47)

Considering the equality y = dγx/dγt (where dγ/dγt is the gamma derivative discussed in Chapter 2), the above differential
equation can be re-written as a function of only one undefined variable x, or

x
dx
dt
−

[
x

d
dt

(dγx
dγt

)
+

dx
dt

(dγx
dγt

)]
cos(γ) +

(dγx
dγt

)[ d
dt

(dγx
dγt

)]
= 0 (48)

Figure 8 shows the same projections [as in Figure 3] in a geometrical domain of Law of Cosines [to examplify, this system
of axes has an agle γ = 120 deg], evolving in a temporal domain. Remember that y = dx/dt is only valid for orthogonal
differentiation (hence, only adequate for governing equations of the type of the Pythagoras theorem), while y = dγx/dγt
is valid for any system of axes (orthogonal and non-orthogonal) (hence, adequate for governing equations of the type of
the Law of Cosines). If we assume temporarily that s = x and ṡγ = dγx/dγt = y, Eq.(48) would simplify to

sṡ −
[
ss̈γ + ṡṡγ

]
cos(γ) + ṡγ s̈γ = 0 (49)

But to be more complete, in the context of the coupled mass-spring system, we know from previously that x =
√

ks
and y =

√
mṡγ. Replacing these in Eq.(47) gives the same as Eq.(49), but complemented with the mass and stiffness

coefficients, resulting in

68



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 1; 2023

Figure 8. Extended cosine projections cos∗(α, γ) and their derivatives for a γ = 120-degree axes system.

ksṡ −
√

mk
[
ss̈γ + ṡṡγ

]
cos(γ) + mṡγ s̈γ = 0 (50)

Integrating Eq.(50) gives a new energy balance equation for the coupled mass-spring system as

1
2

ks2 −
1
2

√
mk

[
sṡγ

]
cos(γ) +

1
2

mṡ2
γ = T (51)

Note that for the uncoupled version when γ = 90 degrees, the general case of the above energy equation [Eq.(51)] returns
back to the well-known particular case of 1/2ks2 +1/2mṡ2 = T [given previously by Eq.(42)]. The middle term in Eq.(51)
is completely new, and is neither completely kinetic energy nor completely potential energy, but it is in fact an energy that
is in a state of coupling between the two — i.e., inertia and stiffness effects express themselves superimposed, as indicated
by the term

√
mk. Physically, this reflects on a component that is neither a mass nor a spring, but a hybrid of the two —

i.e., a spring with distributed mass along its length (as shown in Figure 6b). This discrete or hybrid mass-spring has a
content where both inertia and stiffness change with its length (i.e., a longer hybrid mass-spring results in higher stiffness
and higher mass). Let us continue with the determination of the natural frequency of the coupled mass-spring system,
here assuming implicitly an oscillation with an angular rotation of α = ωt (i.e., the derivatives introduce the coefficient ω
into the various terms, but for convenience, the nomenclature remains angle α within the sine and cosine functions). Now,
the gamma derivative of the extended sine function x = sin∗(α, γ) was shown previously [in Eq.(5), but also accounting
for α = ωt] to be

dγx
dγt

=
dγ
dγt

sin∗(α, γ) = ω cos∗(α, γ) (52)

Replacing this in Eq.(48) and expanding gives

sin∗(α, γ)
d
dt

[sin∗(α, γ)] −
{ d

dt
[sin∗(α, γ) cos∗(α, γ)] +

d
dt

[sin∗(α, γ)] cos∗(α, γ)
}

cos(γ) +

+ω cos∗(α, γ)
d
dt

[ω cos∗(α, γ)] = 0 (53)

The first term expands further including α = ωt as

sin∗(α, γ)
d
dt

[sin∗(α, γ)] =
sin(α)
sin(γ)

[
ω cos(α)

sin(γ)

]
=

ω

sin2(γ)
sin(α) cos(α) (54)
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And the last term expands similarly further as

ω cos∗(α, γ)
d
dt

[ω cos∗(α, γ)] = ω
{

cos(α) +
cos(γ)
sin(γ)

sin(α)
}
ω2

[
− sin(α) +

cos(γ)
sin(γ)

cos(α)
]

(55)

The advantage here is that the algebra that follows draws parallelism to the one executed previously during the math-
ematical proof of the differentiated Law of Cosines (Theorem 1). Hence, replacing the terms Eq.(54-55) in Eq.(53) is
an exercise already done previously, and to save time and work, we can draw a parallelism and start already at Eq.(36)
[repeated below for convenience]

1
sin2(γ)

sin(α) cos(α) −
[
−

sin2(α)
sin(γ)

+
cos(γ)
sin2(γ)

cos(α) sin(α) +
cos2(α)
sin(γ)

+
cos(γ)
sin2(γ)

sin(α) cos(α)
]

cos(γ) − (56)

− cos(α) sin(α) +
cos(γ)
sin(γ)

{
cos2(α) − sin2(α)

}
+

cos2(γ)
sin2(γ)

sin(α) cos(α)

(57)

whilst remembering to multiply each term by the respective mass m and stiffness k coefficients, as done previsouly when
passing from Eq.(49) to Eq.(50), results in

ωk

sin2(γ)
sin(α) cos(α) − ω2

√
mk

[
−

sin2(α)
sin(γ)

+
cos(γ)
sin2(γ)

cos(α) sin(α) +
cos2(α)
sin(γ)

+
cos(γ)
sin2(γ)

sin(α) cos(α)
]

cos(γ) −

−ω3m cos(α) sin(α) + ω3m
cos(γ)
sin(γ)

{
cos2(α) − sin2(α)

}
+ ω3m

cos2(γ)
sin2(γ)

sin(α) cos(α) = 0 (58)

This expands further to

ωk

sin2(γ)
sin(α) cos(α) + ω2

√
mk

cos(γ)
sin(γ)

sin2(α) − 2ω2
√

mk
cos2(γ)
sin2(γ)

cos(α) sin(α) − ω2
√

mk
cos(γ)
sin(γ)

cos2(α) −

−ω3m cos(α) sin(α) + ω3m
cos(γ)
sin(γ)

{
cos2(α) − sin2(α)

}
+ ω3m

cos2(γ)
sin2(γ)

sin(α) cos(α) = 0 (59)

As before, grouping terms for sin(α) cos(α) and for cos2(α) − sin2(α) gives

(
ωk

sin2(γ)
−2ω2

√
mk

cos2(γ)
sin2(γ)

−ω3m+ω3m
cos2(γ)
sin2(γ)

)
sin(α) cos(α)+

(
−ω2

√
mk

cos(γ)
sin(γ)

+ω3m
cos(γ)
sin(γ)

){
cos2(α)−sin2(α)

}
= 0

(60)

This leads to two interconnected non-trivial possibilities that must be satisfied at the same time: firstly, the terms multi-
plying cos2(α) − sin2(α) must be zero

− ω2
√

mk
cos(γ)
sin(γ)

+ ω3m
cos(γ)
sin(γ)

= 0 ⇒ ω =

√
k
m

(61)

the end result gives the same natural frequency to the couple mass-spring system than that commonly known for the
classical uncoupled version. The reason for this is discussed at the end of this algebraic process. Secondly, the other set
of terms multiplying sin(α) cos(α) must also be zero

ωk

sin2(γ)
− 2ω2

√
mk

cos2(γ)
sin2(γ)

− ω3m + ω3m
cos2(γ)
sin2(γ)

= 0 (62)
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It simplifies to

k − 2ω
√

mk cos2(γ) − ω2m sin2(γ) + ω2m cos2(γ) = 0 (63)

And can be re-arranges as

ω2m[cos2(γ) − sin2(γ)] − 2ω
√

mk cos2(γ) + k = 0 (64)

Diving all terms by mass m gives

ω2[cos2(γ) − sin2(γ)] − 2ω

√
k
m

cos2(γ) +
k
m

= 0 (65)

This is a quadratic equation of the form Aω2 + Bω + C = 0, whose roots have the general form

ω =
−B ±

√
B2 − 4AC
2A

(66)

with

A = cos2(γ) − sin2(γ) ; B = −2

√
k
m

cos2(γ) ; C =
k
m

(67)

Replacing these above gives

ω =

2
√

k
m cos2(γ) ±

√[
− 2

√
k
m cos2(γ)]2 − 4

[
cos2(γ) − sin2(γ)

][
k
m

]
2
[

cos2(γ) − sin2(γ)
] (68)

Some algebra will be required to simplify this expression. Start by grouping the
√

k/m term, which results in

ω =

√
k
m

{2 cos2(γ) ±

√[
− 2 cos2(γ)

]2
− 4

[
cos2(γ) − sin2(γ)

]
2
[

cos2(γ) − sin2(γ)
] }

(69)

Cancelling the factor ×2 on denominator and numerator, simplify this to

ω =

√
k
m

{cos2(γ) ±
√

cos4(γ) −
[

cos2(γ) − sin2(γ)
]

cos2(γ) − sin2(γ)

}
(70)

The coefficient between braces is not trivially simplified algebraically, hence a different approach is used. Assume that
the ratio between braces actually reduces to unity. This reformulates the ratio as follows

cos2(γ) − sin2(γ) = cos2(γ) ±
√

cos4(γ) −
[

cos2(γ) − sin2(γ)
]

(71)

Cancelling the cos2(γ) on either side, while subsequentially squaring the rest (on either side)

sin4(γ) = cos4(γ) −
[

cos2(γ) − sin2(γ)
]

(72)

That re-arranges to

sin4(γ) − cos4(γ) = − cos2(γ) + sin2(γ) (73)

71



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 15, No. 1; 2023

Here, the left hand side can be expressed as a product of terms as follows

[
sin2(γ) + cos2(γ)

][
sin2(γ) − cos2(γ)

]
= − cos2(γ) + sin2(γ) (74)

Cancelling sin2(γ) − cos2(γ) on both side concludes in the true equality

sin2(γ) + cos2(γ) = 1 (75)

This confirms that, the fractional term in Eq.(70) between braces reduces to unity, and the equation itself reduces to

ω =

√
k
m

(76)

which is the same as the previous result in Eq.(61) — i.e., equal to the natural frequency of the classical orthogonal mass-
spring system. It is believed that the reason for this is that, even though the coupled mass-spring system has different
acceleration and decelleration phases in its period (due to the coupling) than the classical mass-spring system, the net
effect in terms of time ellapsed at the end of each cycle remains the same (i.e, same period of oscillation, that translates
into the same natural frequency). After all, the total energy in the system remains the same, it is only how it behaves that
changes. Whilst proof of this is beyond the scope of this publication, one argument that could justify this effect is the
fact that the total energy shifting from potential to kinetic remains the same for both coupled and uncoupled systems —
it is just the exchange from one form to the other, that occurs at a different pace. An analogy that may serve to illustrate
better how such a couter intuitive effect can take place is the period of a pendulum, and its independent relation to its
mass. In essence, the coupling effect on the upgraded mass-spring system is equivalent to the variation of the mass of the
pendulum, in that there is no impact in the natural frequency or period of the system. In essence, this is the conclusion
from the above algebraic process. Follow-on research will investigate this behaviour further (including finding solutions
for these equations, i.e. particular integrals and complementary functions), with the final results being published in a
potential future article.

5.3 Main Advantage

Vibration theory teaches us that energy tends to migrate and occupy (in different proportions) the various degrees of
freedom or modes of oscillation of a system, wether it be discrete or continuous. Here, a new degree of freedom concerning
the coupling of two energy states has been found in classical oscillatory models, leading to a step towards a more realistic
modelling and understanding of how vibrational systems behave in reality. Even a real mass-spring oscilatory device
cannot achieve an ideal separation between stiffness effects (spring) and inertial effects (mass), as for instance any spring
has mass. Moving from the particular case of a system governed by the Pythagoras theorem, to a general case of a
system governed by the Law of Cosines, adds another layer of realism into what an actual oscillatory system looks like.
This new degree of freedom opens doors into how we design classical mass-spring devices, such as for instance those
found in automobiles to smooth our ride and provide better vehicle controlability, or those found in washing machines to
control the relative displacement of the rotating drum assembly from the static surrounding casing. Other examples are
in better control and attenuation of the vibrational deployment of solar arrays in satellites. Quantum mechanic oscillators
are extended versions of the classical vibrational systems, and could benefit from a better understanding on how different
states of energy in an electron cloud couple with each other via the present coupled spring-mass system. Overall, with
time, it is expected that the present upgrade will invariably replace the classical approach, as a new baseline against which
to study more complex vibrational systems.

5.4 Analogy to the LC Electrical Circuit

A system equivalent to the couple mass-spring system in electrical engineering is the LC (inductance-capacitance) circuit,
which is used as a foundation (more in particular its resistance including variant, the RLC circuit) to build larger and more
complex circuits (like those employed in telecommunications).

L
d2i
dt2 +

1
C

i = 0 ⇐⇒ ms̈ + ks = 0 (77)

where i is the electrical current, L is the inductance (equivalent to mass m in a mass-spring system, i.e. L ≡ m) and C
the capacitance (equivalent to the inverse of stiffness k in a mass-spring system, i.e. 1/C ≡ k). Differentiation occurs
with respect to time, and for the sake of convenience appears explicitly. The circuit is composed of a capacitor and an
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inductor connected in series as a closed-loop circuit, and it is the electrical analogous to the mass and spring mechanical
oscillator. Just as an oscillation expresses the shift of energy from inertia (kinetic) to stiffness (potential) [and vice versa]
in a mass-spring system, in an LC circuit the shift of energy occurs between induction (equivalent kinetic) to capacitance
(equivalent potential). The electrical version of the governing equation [adapted from Eq.(50), but with the terms on either
side of the middle one swapped, to match Eq.(77) above] is accordingly as

L
(dγi
dγt

)[ d
dt

(dγi
dγt

)]
−

√
L
C

[
i

d
dt

(dγi
dγt

)
+

di
dt

(dγi
dγt

)]
cos(γ) +

1
C

i
di
dt

= 0 (78)

The aforementioned discrete or hybrid mass-spring for the upgraded mass-spring oscillatory sytem has an electrical
equivalent, or a discrete or hybrid capacitor-inductor, that is part of the upgraded LC circuit. As the physical system,
this hybrid capacitor-inductor component needs — from a mathematical perspective — to exhibit a content where both
capacitance and induction change with its length. While this is beyond the scope of this article, it is worth mentioning
that one way to achieve this gradual change in properties is to add small micro incremental capacitors and inductors in
both parallel and series to result in a macro hybrid component, exhibiting both characteristics simultaneously. This will
be explained in a following article.

5.5 Adding Resistance

Mechanical resistance from a damper can be added to the mass-spring system, and electrical resistance can be added to the
LC circuit. The above part of applied mathematics is important to hold into perspective, as the extended sine and cosine
with the Law of Cosines will replace and upgrade these physical and electrical equations, opening room for a broader
scope of application of this fundamental theory of oscillation, including further practical technological advantages. This
is to be added later, mechanically to form the upgraded mass-spring-damper system, and electrically to form the upgraded
RLC (Resistance-Inductance-Capacitance) circuit, both being topics for future research and follow-on publications.

4. Conclusion

Gamma derivatives are the generalization to non-orthogonal cases of classical derivatives applied within trigonometry.
Classical orthogonal derivatives d/dα of fundamental functions such as sin(α) and cos(α) follow exclusively (in polar
coordinates) the dynamics of right-angled triangles. In this article, the expression of such derivatives is expanded to
encompass non-orthogonal cases (where the axes between systems are not 90 degrees), that inherently govern (in polar
coordinates) the dynamics of scalene triangles. Just as classical derivatives represent 90 degree phase shifts in sine and
cosine functions, the gamma derivative represents γ degree phase shifts in the already published extended sine and cosine
functions (that measure the non-orthogonal normalized projected sides of a scalene triangle). Just as normal derivatives
are employed mathematically to govern equations of physical systems (such as the mass-spring system and electrical
LC circuit, when converting a balance of energy to a balance of forces), and thus following the relation defined by the
Pythagoras theorem, so will the gamma derivative become a more generic tool to derive governing equations for more
generalized versions of the same systems following the relation of the Law of Cosines. In this line, it is proven that just as
extended sine and cosine functions satisfy the Law of Cosines (presented in a prior publication), so do the derivatives of
these functions also satisfy the differentiated version of this equation — it is shown that this is an important mathematical
tool, critical in deriving the upgraded versions of the aforementioned governing equations of physical systems. During this
investigation, an important point that is defined is the dissociation of the Pythagorean (geometrical or spatial) domain from
the temporal domain. Deriving the governing equation of the mass-spring system implies classical orthogonal derivatives
on both domains. When the geometric domain is generalized to be governed by the Law of Cosines, the gamma derivative
is applicable — which is (in most cases) different from the orthogonal derivative commonly applied in the temporal
domain. Hence, the derivation process of the governing equation is altered accordingly, resulting in a more generalized
expression. The classical mass-spring system — fundamental to physics and mechanical engineering — is upgraded
to encompass coupling effects, which emerge naturally when moving from the particular case of a Pythagoras theorem
driven physical system to those governed by the Law of Cosines. This upgraded mass-spring system sees a coupling
of stiffness with inertial effects, and a new hybrid spring with discretized mass along its length, replaces the traditional
infinitely stiff mass to account for the aforementioned coupling effect. The LC (Inductance-Capacitance) circuit inherents
analogous similarity to the physical (and hence mathematical) dynamics of the mass-spring system (i.e., the governing
equations are equivalent), hence the findings of this article also extend to the field of electrical engineering. Building
on this research, the following future step will be to investigate the addition of resistance to the system (an aspect that
affects both the mechanical and electrical expressions), which will upgrade the aforementioned systems into their more
commonly used variants — the mass-spring-damper system in physics and the RLC (Resitance-Inductance-Capacitance)
system in electrical engineering. Moreover, given its oscillatory nature, the findings on this article are also expected to
have repercussions in the field of acoustics. The ultimate advantage of this work emerges from the realization that in
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real applications of physics and engineering, there is no such thing as an ideal right angle. In that sense, the presented
upgraded theory in oscillations encompasses this non-orthogonality as a reality within vibration problems — a rule rather
than an exception in our technological world.
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