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Abstract. Using Stein’s method and the Malliavin calculus of variations, we de-
rive explicit estimates for the Gamma approximation of functionals of a Poisson
measure. In particular, conditions are presented under which the distribution of
a sequence of multiple Wiener-Itô stochastic integrals with respect to a compen-
sated Poisson measure converges to a Gamma distribution. As an illustration, we
present a quantitative version and a non-central extension of a classical theorem
by de Jong in the case of degenerate U -statistics of order two. Several multidimen-
sional extensions, in particular allowing for mixed or hybrid limit theorems, are
also provided.

1. Introduction

The use of the Malliavin calculus of variations in order to deduce limit theorems
for non-linear functionals of random measures has recently become a relevant di-
rection of research, one reason for that being the many successful applications in
geometric probability or stochastic geometry. Apart from a few exceptions, most
contributions to this topic fall into the two categories of normal and Poisson approx-
imations; see Decreusefond et al. (2011); Lachièze-Rey and Peccati (2013a,b); Last
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et al. (2012); Peccati et al. (2010); Peccati and Zheng (2010); Reitzner and Schulte
(2012+); Viquez (2011) for distinguished examples of the former class, mostly based
on the use of the Stein’s method (cf. Nourdin and Peccati (2012)); see Bourguin
and Peccati (2012); Peccati (2011); Schulte and Thäle (2012) for references based
on the combination of Malliavin calculus and of the Chen-Stein method for Poisson
approximations. We also refer to Eden and Viquez (2012) for recent extensions to
general absolutely continuous distributions having support equal to the real line.

The aim of the present paper is to provide the first array of results concerning
limit theorems on the Poisson space, where the limit distribution is absolutely
continuous and has support contained in a proper subset of R. More precisely, we
are interested in probabilistic approximations where the limiting random variable
has a centred Gamma distribution Γν with parameter ν > 0. We say that a

random variable G(ν) has distribution Γν if G(ν)
d
= 2F (ν/2) − ν, where F (ν/2)

has a usual Gamma distribution with mean and variance both equal to ν/2 (here

and throughout
d
= stands for equality in distribution). If ν ≥ 1 is an integer, then

Γν reduces to the centred χ2-distribution with ν degrees of freedom. We remark
that the support of Γν is given by the half-line [−ν,+∞), and that the first four
moments of Γν are 0, 2ν, 8ν and 12ν2+48ν, respectively. We will often meet these
expressions in the discussion to follow.

Our main contribution is the general estimate stated in Theorem 2.1, which in-
volves Malliavin operators and is obtained by means of Stein’s method, allowing
one to measure the distance between the law of a given Poisson functional and Γν .
This estimate is applied to deduce explicit sufficient conditions for Gamma limit
theorems involving sequences of multiple Wiener-Itô stochastic integrals. Our anal-
ysis is significantly inspired by Nourdin and Peccati (2009a,b), where the problem
addressed in the present paper was first studied in the framework of non-linear
functionals of general Gaussian fields. However, due to the combinatorial compli-
cations one has to face when dealing with point measures, our paper contains a
number of new subtle computations related to the explicit estimation of Malliavin
operators on configuration spaces. One specific problem we will have to deal with
is that the solution of the Stein’s equation associated with the law of G(ν) is not
differentiable at x = −ν. Thus, in order to obtain bounds that are well-suited
for our applications (which may involve random variables possibly taking values
in (−∞,−ν)), we will have to combine techniques recently introduced by Schulte
(2012) with classical isometric formulae borrowed from the standard reference Pri-
vault (2009); see Proposition 2.3 below. One should note that, in view of the exact
chain rules that are available on a Gaussian space, the non-differentiability of the
Stein solution in one point is immaterial when studying the Gamma approximation
of smooth functionals of a Gaussian field; see again Nourdin and Peccati (2009a,b).

As an illustration, we will include some applications to non-central limit theorems
for sequences of degenerate (in the sense of Hoeffding) U -statistics. Our findings
generalize several classic result in the field; cf. Bhattacharya and Ghosh (1992);
Jammalamadaka and Janson (1986). In particular, we derive a quantitative and
a non-central version of a famous theorem by de Jong (1987, 1990). Our analysis
also contains a quantitative version of a non-central result recently discussed by
Reitzner and Schulte (2012+, Section 5.1).

Finally, to demonstrate the flexibility and scope of our approach, we will show
that our analysis can naturally be extended to a multidimensional framework. We
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will not only obtain multidimensional Gamma limit theorems, but also mixed or
hybrid results, where the multidimensional limit distribution is composed both of
Gamma and of normal or Poisson components. This kind of limit theorems heavily
relies on our use of Malliavin operators. We are not aware of any other available
technique allowing one to deduce general mixed limit results, such as the ones
deduced in the present paper. We shall see that our findings are a refinement of the
‘Portmanteau inequalities’ recently obtained by Bourguin and Peccati in Bourguin
and Peccati (2012). In this respect, we stress that our results will implicitly yield
a collection of sufficient conditions in order to have that two sequences of Poisson
functionals are asymptotically independent. This provides a new contribution to
the difficult and mostly open problem of characterizing the asymptotic and non-
asymptotic independence of functionals of a Poisson measure; see e.g. Privault
(2012); Rosiński and Samorodnitsky (1999).

The remainder of the paper is organized as follows. In Section 2 we present
our results in full generality. Some background material is collected in Section
3, whereas the final Section 4 contains detailed proofs, as well as some ancillary
technical results.

2. Presentation of the results

We will now present an overview of the main findings of the paper. To enhance
the readability of our text, we have gathered together in Section 3 definitions,
notation and relevant results from the literature.

2.1. General limit theorems. Every random object considered below is defined on
a suitable probability space (Ω,F ,P). The approximation results obtained in the
present paper deal with (real-valued) functionals of a Poisson measure η on some
Polish space (Z,Z ) having non-atomic and σ-finite control µ; see Section 3-(I).
We will assume that these functionals are square-integrable random variables. To
measure the distance between the distribution of a functional F of η and that of a
centred Gamma random variable G(ν), we shall use the (pseudo-) metric d3, which
is defined as follows: for every pair of square-integrable random variables X,Y , we
put

d3(X,Y ) = sup
h∈H3

∣∣E[h(X)]− E[h(Y )]
∣∣,

where H3 := {h ∈ C3 : ‖h(j)‖∞ ≤ 1, j ∈ {1, 2, 3}} (with h(j) the derivative of
order j of h), and where C3 is the space of thrice differentiable functions on R

having bounded derivatives. We notice that the topology induced by d3 is stronger
than the topology induced by convergence in distribution, which implies that if
d3
(
Fn, G(ν)

)
→ 0, as n → ∞, for some sequence of functionals Fn, then the

distribution of Fn converges to Γν . By a slight abuse of notation, and to stress the
role of the underlying Gamma distribution, we shall often write d3(F,Γν) instead
of d3

(
F,G(ν)

)
.

For q ≥ 1, we write L2(µq) to indicate the Hilbert space of Borel-measurable
functionals on Zq that are square-integrable with respect to µq. We also use the
following special notation: L2(µ1) = L2(µ), and L2

sym(µ
q) is the subspace of L2(µq)

composed of those functions that are µq-a.e. symmetric; see Section 3-(II). More-
over, in order to simplify the notation, we use the convention that ‖ · ‖ and 〈 · , · 〉
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stand for the norm and the scalar product in some space L2(µq) whose order q will
always be clear from the context.

Our first result is a quantitative estimate for d3
(
F,Γν

)
in terms of the Malliavin

operators D and L−1, that is, the derivative operator and the pseudo-inverse of the
Ornstein-Uhlenbeck generator. We recall that the derivatives DF and DL−1F are
random elements with values in the Hilbert space L2(µ); see Section 3-(V).

Theorem 2.1 (General Gamma bounds). Let F be a centred and square-
integrable functional of the Poisson measure η, and assume that F is in the domain
of the derivative operator D. Then,

d3(F,Γν) ≤ c1A1(F ) + c2A2 + 2c1A3(F ) (2.1)

:= c1E
∣∣2(F + ν)+ − 〈DF,−DL−1F 〉

∣∣

+c2

∫

Z

E[|DzF |2|DzL
−1F |]µ(dz)

+ 2c1

∫

Z

E
[
(Dz1{F>−ν})(DzF )|DzL

−1F |
]
µ(dz),

with constants c1 and c2 given by

c1 = max(1, 1/ν + 2/ν2) and c2 = max(2/3, 2/(3ν)− 3/ν2 + 4/ν3).

If in addition E
[
〈DF,−DL−1F 〉|F

]
≥ 0 (a.s.-P), then

A1(F ) ≤ A′
1(F ) :=

√
E
[
(2(F + ν)− 〈DF,−DL−1F 〉)2

]
,

and consequently

d3(F,Γν) ≤ c1A
′
1(F ) + c2A2 + 2c1A3(F ) (2.2)

Remark 2.2. (i) In (2.1), we implicitly used a ‘trajectorial’ definition of the ran-
dom function z 7→ Dz1{F>−ν}, that is, we putDz1{F>−ν}=1{F+DzF>−ν}−
1{F>−ν}, without necessarily assuming that

E

∫

Z

(Dz1{F>−ν})
2 µ(dz) < ∞

(note that this last relation is equivalent to the fact that 1{F>−ν} belongs
to the set domD, as defined in Section 3-(V); see Lemma 3.1). It is easily
checked that

(Dz1{F>−ν})(DzF ) = (1{F≤−ν<F+DzF} + 1{F+DzF≤−ν<F})|DzF |,
in such a way that A3(F ) ≥ 0. An effective bound on A3(F ), in the case
where µ is a finite measure and F is a multiple Wiener-Itô integral, is
presented in Proposition 2.3.

(ii) As first done in Peccati et al. (2010), we shall often control the quantity
A2(F ) appearing in (2.1) by using the relation

A2(F ) ≤ A4(F )× A5(F )

:=

(∫

Z

E[|DzF |4]µ(dz)
)1/2

×
(∫

Z

E[|DzL
−1F |2]µ(dz)

)1/2

.
(2.3)

We also note that, if {Fn : n ≥ 1} is a sequence of random variables
with bounded variances living in a fixed sum of Wiener chaoses, then the
numerical sequence n 7→ A5(Fn) is necessarily bounded.
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(iii) Theorem 2.1 should be compared with the following bound from Nourdin
and Peccati (2009b, Theorem 3.11). Let F be a centered functional of a
Gaussian measure on Z with control µ, and assume that F is in the domain
of the Malliavin derivative D (see Nourdin and Peccati (2012, Chapter 2)
for relevant definitions), then there exists a constant K such that, for some
adequate distance d,

d(F,Γν) ≤ K × E
∣∣2(F + ν)+ − 〈DF,−DL−1F 〉

∣∣ .

The presence of the additional term

c2

∫

Z

E[|DzF |2|DzL
−1F |]µ(dz)

+ 2c1

∫

Z

E
[
(Dz1{F>−ν})(DzF )|DzL

−1F |
]
µ(dz)

in (2.1) or (2.2) is due to the characterization of the Malliavin deriva-
tive on the Poisson space as a difference operator as well as to the non-
differentiability at −ν of the solution of the Stein-equation characterizing
Γν ; see Section 3-(V). As proved in Nourdin and Peccati (2009b, Proposition
3.9), on the Gaussian-Wiener space the condition E

[
〈DF,−DL−1F 〉|F

]
≥ 0

(a.s.-P) is satisfied for every F in the domain of D.
(iv) Other relevant one-dimensional bounds for probabilistic approximations in-

volving Malliavin operators on the Poisson space are proved in Peccati et al.
(2010), dealing with normal approximations, Peccati (2011), dealing with
the Poisson approximation of integer-valued random variables and Eden
and Viquez (2012), focusing on absolutely continuous distributions whose
support is given by the real line. See Bourguin and Peccati (2012); Peccati
and Zheng (2010) for several multidimensional extensions.

As announced, we conclude the present section with a useful bound on the quan-
tity A3(F ), in the case where F = Iq(f) equals a multiple Wiener-Itô integral and
the control measure µ is finite. At the cost of a heavier notation, our techniques
could suitably be modified in order to deal with the case of a random variable F
having a finite chaotic expansion.

Proposition 2.3. Let the control measure µ be finite, and consider F = Iq(f),
where q ≥ 2 and f ∈ L2

sym(µ
q). We assume that (i) E

∫
Z
(DzF )4 µ(dz) < ∞, that

(ii) the random function

Z ∋ z 7→ DzF |DzF | := v(z)

is such that v(z) ∈ domD for µ(dz)-almost every z, and satisfies

E

∫

Z

∫

Z

(Dz2v(z1))
2 µ(dz1)µ(dz2) < ∞.
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Then, defining A3(F ) as in (2.1), one has the bound

q

2
√
2
A3(F ) ≤

√
E

∫

Z

(DzF )4 µ(dz)

+

√
E

∫

Z

∫

Z

(Dz2Dz1F )2(Dz1F )2 µ(dz1)µ(dz2)

+

√
E

∫

Z

∫

Z

(Dz2Dz1F )4 µ(dz1)µ(dz2).

(2.4)

Remark 2.4. (i) Another way of controlling the term A3(F ), whenever F has
a finite chaotic expansion, is discussed in Schulte (2012). One should note
that, albeit our proof of Proposition 2.3 also starts with an integration by
parts formula, our strategy for controlling the term A3(F ) is significantly
different. Indeed, our approach is based on isometric formulae for divergence
operators, whereas Schulte (2012) uses a direct estimation consisting in
controlling |DF | by a random function having a finite chaotic expansion.
When applied to our framework in the case q > 2, the technique used in
Schulte (2012) leads to expressions involving contractions of the absolute
value of the kernel f , therefore producing bounds that are systematically
larger than ours. When applied to the case q = 2, the strategy adopted in
Schulte (2012) leads to slower rates of convergence, but allows in principle
to dispense with the assumption that the underlying control measure has
finite mass. Since all our applications concern sequences of control measures
having a finite mass, and for the sake of conciseness, we will omit a formal
discussion of this fact.

(ii) From the standpoint of geometric applications, focusing on Poisson mea-
sures having a finite control is barely a restriction. Indeed, the kind of geo-
metric limit theorems we are interested in typically involve either functionals
of a Poisson measure having a finite control, whose total mass asymptoti-
cally explodes (like the ones we consider in the applications developed later
in the paper), or functionals of the restriction of a Poisson measure to a
finite window with growing volume; see e.g. Bourguin and Peccati (2012);
Decreusefond et al. (2011); Lachièze-Rey and Peccati (2013a,b); Last et al.
(2012); Peccati (2011); Reitzner and Schulte (2012+); Schulte and Thäle
(2012) for a recent collection of distinguished examples.

2.2. Simplified estimates for supports contained in a half-line. The applications we
are interested in require that we consider random variables possibly taking values in
the half-line (−∞,−ν), in such a way that the rather unusual term A3(F ) cannot
be dispensed with. However, if one is only interested in measuring the distance
between Γν and the law of a random variable with support in [−ν,+∞), then the
statement of Theorem 2.1 can be significantly simplified, since in this case the term
A3(F ) disappears. In particular, whenever the law of F satisfies these requirements,
the finiteness of the measure µ does not play any role. This point is made clear in
the next statement whose easy proof is left to the reader.

Proposition 2.5. Let F be a centered square-integrable functional of the random
measure η. Assume that the law of F has support in [−ν,+∞) and that F is in the
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domain of the derivative operator D. Then, the bound (2.1) holds with A3(F ) = 0.
If moreover E

[
〈DF,−DL−1F 〉|F

]
≥ 0 (a.s.-P), then the estimate (2.2) holds with

A3(F ) = 0.

2.3. General results for sequences of multiple integrals. We now focus on the fol-
lowing setup. Let (Z,Z ) be a fixed Polish space as above, and {ηn : n ≥ 1} be a
sequence of Poisson random measures on (Z,Z ), such that, for each n, the non-
atomic control measure µn of ηn is finite. In view of applications, we allow that
µn(Z) → ∞, as n → ∞. For a given even integer q ≥ 2, we consider a sequence
{Iq(fn) : n ≥ 1} of multiple Wiener-Itô stochastic integrals with the following
characteristics: (a) {fn : n ≥ 1} ⊂ L2

sym(µ
q
n) is composed of kernels satisfying the

technical assumptions stated in Section 3-(VIII) below, and (b) for every n ≥ 1,
the integral Iq(fn) is realized with respect to the compensated Poisson measure
η̂n = ηn − µn. The next theorem characterizes the convergence of the distribution
of Iq(fn), as n → ∞, to the limit law Γν . The set of analytic conditions appearing
below is expressed in terms of (possibly symmetrized) contraction kernels, whose
definition is provided in Section 3-(VI). Observe in particular that fn ⋆0q fn = f2

n.

Theorem 2.6 (Gamma limits in the Poisson-Wiener chaos). Let the above
assumptions and notation prevail (in particular, µn is a finite measure for every
n), let q ≥ 2 be an even integer and let {fn : n ≥ 1} ⊂ L2

sym(µ
q
n) be such that

lim
n→∞

q!‖fn‖2 = 2ν, and suppose that the technical conditions of Section 3-(VIII)

are satisfied. Assume in addition that

lim
n→∞

‖fn ⋆ℓr fn‖ = 0

and lim
n→∞

‖fn ⋆̃q/2q/2fn − cqfn‖ = 0 with cq =
4

(
q
2

)
!
(

q
q/2

)2
(2.5)

for all pairs (r, ℓ) such that either r = q and ℓ = 0, or r ∈ {1, . . . , q}, ℓ ∈
{1, . . . ,min(r, q − 1)} and r and ℓ are not equal to q/2 at the same time. Then,
the distribution of Iq(fn) converges to Γν as n → ∞. Moreover, for some positive
finite constant K independent of n,

d3(Iq(fn),Γν) ≤ c1A1(Iq(fn)) + c2A4(Iq(fn))×A5(Iq(fn)) + 2c1A3(Iq(fn))

≤ K ×max
{∣∣q!‖fn‖2 − 2ν

∣∣; ‖fn ⋆pp fn‖;
‖fn ⋆ℓr fn‖1/2; ‖fn ⋆̃

q/2
q/2fn − cqfn‖

}
→ 0, (2.6)

where we have used the notation introduced in (2.1)–(2.3), and the maximum is
taken over all p = 1, . . . , q − 1 such that p 6= q/2 and all (r, ℓ) such that r 6= ℓ and
either r = q and ℓ = 0, or r ∈ {1, . . . , q} and ℓ ∈ {1, . . . ,min(r, q − 1)}.
Example 2.7. (i) Assume q = 2. Then, c2 = 1 and the maximum in (2.6) is

taken over the following four quantities:
∣∣2‖fn‖2 − 2ν

∣∣, ‖fn ⋆02 fn‖1/2, ‖fn ⋆12 fn‖1/2, ‖fn ⋆̃11fn − fn‖.
(ii) Assume q = 4. Then, c4 = 1/18 and the maximum in (2.6) is taken over

the following ten quantities:
∣∣2‖fn‖2 − 2ν

∣∣, ‖fn ⋆11 fn‖, ‖fn ⋆04 fn‖1/2, ‖fn ⋆14 fn‖1/2, ‖fn ⋆24 fn‖1/2,
‖fn ⋆34 fn‖1/2, ‖fn ⋆13 fn‖1/2, ‖fn ⋆23 fn‖1/2, ‖fn ⋆12 fn‖1/2,
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and ‖fn ⋆̃11fn − 18−1fn‖, where we have used the fact that ‖fn ⋆11 fn‖ =
‖fn ⋆33 fn‖.

Remark 2.8. (i) Under the assumptions in the statement, one has that the
sequence

A5(Iq(fn)) :=

(∫

Z

E[|DzL
−1Iq(fn)|2]µn(dz)

)1/2

is such that

A5(Iq(fn))
2 = (q − 1)!‖fn‖2 → 2ν

q
> 0 as n → ∞.

It follows that our inequality (2.6) not only provides an analytic bound
in the distance d3, but also ensures that the three numerical sequences
{A1(Iq(fn)) : n ≥ 1}, {A3(Iq(fn)) : n ≥ 1} and {A4(Iq(fn)) : n ≥ 1}
(all related to Malliavin operators) converge to zero. This fact is crucial
when dealing with the multidimensional results discussed in Section 2.6.
An analogous remark applies to Proposition 2.9 and Theorem 2.13 below.

(ii) Similar conditions (only involving contractions of the type ⋆rr, with r =
1, . . . , q − 1) in the case of multiple integrals with respect to a Gaussian
measure can be found in Nourdin and Peccati (2009a, Theorem 1.2). Non-
central results of a similar flavor, in the context of free probability and
multiple integrals with respect to a free Brownian motion, are proved in
Nourdin and Peccati (2013+).

(iii) We were able to deduce meaningful conditions for Gamma approximations
only in the case of an even integer q ≥ 2. However, unlike in the Gaussian
case (see Nourdin and Peccati (2009a, Remark 1.3)), in a Poisson framework
one cannot exclude a priori the existence of a sequence of multiple integrals
of odd order converging to a limiting Gamma distribution. We prefer to
consider this issue as a separate problem, and keep it as an open direction
for future research.

(iv) In the estimate (2.6), and in contrast to the main bounds on normal approx-
imations proved in Peccati et al. (2010), norms of the type ‖fn⋆ℓr fn‖, r 6= ℓ,
appear under a square root. This phenomenon seems unavoidable, and it is
directly related to the presence of cross terms arising from the specific form
of the Stein equation associated with the Gamma distribution.

The following statement shows that condition (2.5) might take a particularly
attractive form in the case of double Poisson integrals. This will be used in order to
prove the results presented in Section 2.4, dealing with the Gamma approximation
of degenerate U -statistics.

Proposition 2.9 (Three moments suffice for Gamma approximations).
Let the control measures {µn : n ≥ 1} be finite, let q = 2 and let {fn : n ≥
1} ⊂ L2

sym(µ
2
n) be such that lim

n→∞
E[I22 (fn)] = lim

n→∞
2‖fn‖2 = 2ν, and such that

the technical conditions of Section 3-(VIII) are satisfied. Assume in addition that∫
Z f4

n dµ2
n → 0 and that E[I42 (fn)] < ∞ for every n. Then, condition (2.5) is

verified if and only if

E[I42 (fn)]− 12E[I32 (fn)] −→ 12ν2 − 48ν as n → ∞. (2.7)
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In particular, if the sequence F 4
n is uniformly integrable, then (2.5) and (2.7) are

both necessary and sufficient in order to have that the distribution of Fn converges
to Γν in the sense of the distance d3.

2.4. An extension of de Jong’s theorem for degenerate U-statistics. In the present
and the subsequent section, we shall work within the following framework. We fix
an integer d ≥ 1, and let Y = {Yi : i ≥ 1} be a sequence composed of i.i.d. random
variables with values in R

d, whose common distribution has a density p(x) with
respect to the Lebesgue measure on R

d (written dx). The sequence {N(n) : n ≥ 1}
of integer-valued random variables is independent of Y and such that, for every n,
N(n) has a Poisson distribution with parameter n. It is well-known that, in this
setting, the random point measure

ηn :=

N(n)∑

i=1

δYi
(2.8)

(where δy represents the Dirac mass at y) is a Poisson measure on Z = R
d (equipped

with the standard Borel σ-field B(R)⊗d) with control measure µn(dx) = np(x)dx.
We shall also use the shorthand notation µ(dx) := µ1(dx) = p(x)dx.

Our aim below is to provide a Gamma-type counterpart to a famous theorem
by P. de Jong, proved in de Jong (1987), involving sequences of degenerate U -
statistics of order 2. We stress that the results contained in de Jong (1987) have
later been extended to degenerate U -statistics of a general order; see Bhattacharya
and Ghosh (1992); de Jong (1990). Albeit our method clearly applies to these
general objects, we prefer here to focus on U -statistics of order 2, in order to obtain
neater statements and to emphasize the method over technical details. We start
with some useful definitions.

Definition 2.10 (U-statistics). (i) Let k ≥ 2, and let h : R
q → R be a

symmetric kernel such that h ∈ L1
sym(µ

k). The (symmetric) U -statistic of
order k based on h and on the sample {Y1, . . . , Ym} (where m ≥ k is some
integer) is the random variable

Um(h,Y) =

m∑

i1,...,ik=1

6= h(Yi1 , . . . , Yik), (2.9)

where the symbol
∑ 6=

indicates that the sum is taken over all vectors
(i1, . . . , ik) such that ij 6= iℓ for every j 6= ℓ.

(ii) Fix k ≥ 2 and let Um(h,Y) be a symmetric U -statistic as in (2.9). The
Hoeffding rank of Um(h,Y) is the smallest integer 1 ≤ q ≤ k such that
E[h(Y1, . . . , Yk)|Y1, . . . , Yq−1] = 0 (a.s.-P) and E[h(Y1, . . . , Yk)|Y1, . . . , Yq] 6=
0, where E[h(Y1, . . . , Yk)|Y1, . . . , Y0] := E[h(Y1, . . . , Yk)]. A U -statistic of
order k with Hoeffding rank equal to k is said to be completely degenerate.
In other words, a U -statistic such as (2.9) is completely degenerate if h is a
non-zero kernel verifying

∫

R

h(x, y1, . . . , yk−1)p(x) dx = 0 (µk−1 − a.e.).

(iii) A collection of random variables {Fn : n ≥ 1} is said to be a sequence of
geometric U -statistics of order k, if there exists a kernel h ∈ L1

sym(µ
k) such
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that
Fn = UN(n)(h,Y), n ≥ 1,

where {N(n) : n ≥ 1} is the independent Poisson sequence introduced
above.

Before presenting the main result of this section, and in order to make the con-
nection with our general framework more transparent, we shall recall an important
finding from Reitzner and Schulte (2012+, Lemma 3.5 and Theorem 3.6), stating
that Poissonized U -statistics of order k live inside the sum of the first k+1 Wiener
chaoses associated with the Poisson measure ηn. The proof heavily relies on results
by Last and Penrose (2011).

Lemma 2.11 (Reitzner and Schulte). Consider a kernel h ∈ L1
sym(µ

k) such that
the corresponding Poissonized U -statistic UN(n)(h,Y) is square-integrable. Then,

h is necessarily in L2
sym(µ

k), and UN(n)(h,Y) admits a chaotic representation of
the type

UN(n)(h,Y) = E[UN(n)(h,Y)] +

k∑

i=1

nk−iIi(hi)

where Ii indicates a multiple Wiener-Itô integral of order i with respect to the com-
pensated Poisson measure η̂n = ηn − µn, defined according to (2.8), and

hi(z1, . . . , zi) =

(
k

i

)∫

Zk−i

h(z1, . . . , zi, •)µk−i(d •), (z1, . . . , zi) ∈ Zi, (2.10)

where the bullet “ •” stands for a packet of k − i variables that are integrated with
respect to µk−i. In particular, h = hk and the projection hi is in L2

sym(µ
i) for each

1 ≤ i ≤ k.

The following statement corresponds to the main result proved by de Jong (1987),
in the special case of symmetric U -statistics of order 2 (note that the assumption
that the underlying kernels have finite moments of order four is only implicit in de
Jong’s work). Given positive sequences an, bn, n ≥ 1, we write an ≈ bn whenever
lim
n→∞

an/bn = 1.

Theorem 2.12 (de Jong). Let {hn : n ≥ 1} be a sequence of non-zero elements
of L4

sym(µ
2). Define Fn = Un(hn,Y) and assume that Fn is completely degenerate.

Then, one has that σ2(n) := Var(Fn) ≈ 2n2
E[hn(Y1, Y2)

2], and the fourth moment
condition

lim
n→∞

E[F 4
n ]

σ(n)4
= 0,

implies that, as n → ∞, the sequence F̃n := Fn/σ(n) converges in distribution to a
standard Gaussian random variable.

The following statement consists of two parts. Part (A) is a quantitative ex-
tension of Theorem 2.12 based on a direct study of the fourth moments of the
Poissonized U -statistic, whereas part (B) is a Gamma-type extension of de Jong’s
theorem which is directly based on the results discussed in Section 2.1. Apart from
de Jong (1987), our findings should be compared with the seminal work by Jam-
malamadaka and Janson (1986), about the normal and Poisson approximation of
U -statistics of order two. To our knowledge, the forthcoming Theorem 2.13 is the
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first quantitative extensions of the de Jong theorem, also dealing with the non-
normal approximation of general degenerate U -statistics. Moreover, we would like
to emphasize that our proof of Part (A) is shorter and more transparent than the
one presented in the original work de Jong (1987) (one should note that, however,
our methods only allow us to deal with symmetric U -statistics). Recall that the
Wasserstein distance between the laws of two integrable random variables X,Y is
given by

dW (X,Y ) := sup
h∈Lip(1)

|E[h(X)]− E[h(Y )]| ,

where Lip(1) is the set of Lipschitz functions h : R → R with a Lipschitz constant
≤ 1. Recall that, in the framework of this section, Z = R

d.

Theorem 2.13 (Extended de Jong theorem). Let {hn : n ≥ 1} be a sequence
of non-zero elements of L4

sym(µ
2) such that

sup
n

∫
Z h4

n dµ
2
n(∫

Z
h2
n dµ

2
n

)2 < ∞.

Put Fn = Un(hn,Y) and F ′
n = UN(n)(hn,Y), and assume that these U -statistics are

completely degenerate. Then, σ(n)2 := Var(Fn) ≈ Var(F ′
n) = 2n2

E[hn(Y1, Y2)
2],

and the following two points (A) and (B) hold.

(A) If

E[(F ′
n)

4]

σ(n)4
→ 0 as n → ∞, (2.11)

then both F̃n := Fn/σ(n) and F̃ ′
n := F ′

n/σ(n) converge in distribution to a
standard Gaussian random variable N . Moreover, there exists a universal
finite constant K, independent of n, such that, as n → ∞,

dW (F̃ ′
n, N) ≤ K ×Bn −→ 0 , (2.12)

dW (F̃n, N) ≤ K ×
(
Bn + n−1/4

)
−→ 0, (2.13)

with Bn := σ(n)−2 max
{( ∫

Z h4
n dµ

2
n

)1/2
; ‖hn ⋆11 hn‖; ‖hn ⋆12 hn‖

}
.

(B) If
∫
Z h4

n dµ
2
n → 0 and there exists ν > 0 such that σ(n)2 → 2ν, and

E[(F ′
n)

4]− 12E[(F ′
n)

3] −→ 12ν2 − 48ν as n → ∞, (2.14)

then both Fn and F ′
n converge in distribution to a random variable G(ν),

which has distribution Γν . Moreover, there exists a universal constant K >
0 such that, as n → ∞,

d3(F
′
n,Γν) ≤ c1A1(F

′
n) + c2A4(F

′
n)×A5(F

′
n) ≤ K × Cn −→ 0 , (2.15)

d3(Fn,Γν) ≤ K ×
(
Cn + n−1/4

)
−→ 0, (2.16)

with

Cn :=max

{
|2‖hn‖2 − 2ν|;

( ∫

Z

h4
n dµ

2
n

)1/4
;

‖hn ⋆12 hn‖1/2; ‖hn ⋆̃
1
1hn − hn‖

}
,

and we have used the notation introduced in (2.1)–(2.3).



536 Giovanni Peccati and Christoph Thäle

Remark 2.14. Our proof of Theorem 2.13 shows indeed that the quantity Bn (reps.
Cn) in the statement converges to zero if and only if the asymptotic condition (2.11)
(resp. (2.14)) is verified.

2.5. Gamma convergence of geometric U -statistics: characterization and bounds.
As anticipated, the aim of this section is to apply the main estimates of the present
paper in order to characterize the class of geometric U -statistics based on Y con-
verging in distribution towards a Gamma random variable. Since our analysis is
based on Theorem 2.13, our results will provide explicit estimates on the speed of
convergence. We refer the reader to Dynkin and Mandelbaum (1983); Rubin and
Vitale (1980) for some classic references on the subject and to Lachièze-Rey and
Peccati (2013b); Reitzner and Schulte (2012+) for a discussion of several recent de-
velopments. We let the notation and assumptions of the previous section prevail and
recall that a Gaussian measure G on

(
R

d,B(R)⊗d
)
, with control µ(dx) = p(x)dx,

is a centred Gaussian family of the type

G = {G(B) : B ∈ B(R)⊗d, µ(B) < ∞}
such that, for every m ≥ 1 and every B1, . . . , Bm ∈ B(R)⊗d with µ(Bi) < ∞ (i =
1, . . . ,m), the vector

(
G(B1), . . . , G(Bm)

)
has an m-dimensional joint Gaussian

distribution with covariance matrix E[G(Bi)G(Bj)] = µ(Bi ∩Bj).
The next statement combines findings from Lachièze-Rey and Peccati (2013b,

Section 7) (point (i)) with a classic characterization of elements in the second
Wiener chaos of a Gaussian measure (point (ii); see Nourdin and Peccati (2012,
Section 2.7.4) for more details.

Proposition 2.15. Let k ≥ 2 and let h ∈ L1
sym(µ

k) be a non-zero kernel such
that the U -statistic F ′

n := UN(n)(h,Y) is square-integrable for every n, and has
Hoeffding rank equal to 2. For n ≥ 1, define also the standardized U -statistic

F̃ ′
n = n1−kF ′

n.

(i) For every n, there exists a sequence of double integrals I2(fn) (each realized
with respect to the compensated Poisson measure ηn − µn) such that, as

n → ∞, E[(F̃ ′
n − I2(fn))

2] → 0. Moreover, F̃ ′
n converge in distribution

to IG2 (h2), where IG2 indicates a double Wiener-Itô integral with respect to
the Gaussian measure G, and h2 is defined according to (2.10). The same

convergence takes place for the de-Poissonized U -statistics F̃n = n1−kFn,
where Fn := Un(h,Y).

(ii) The random variable IG2 (h2) cannot be Gaussian. Moreover, assume that
IG2 (h2) follows a Γν-distribution. Then, necessarily, ν ∈ {1, 2, . . .} and there

exists an orthonormal system {e1, . . . , eν} ⊂ L2(µ) such that h2 =

ν∑

i=1

ei⊗ei

and E[ei(Y1)] = 0 for i = 1, . . . , ν.

Remark 2.16. Let k = 2, and consider h2 =
ν∑

i=1

ei ⊗ ei, as in the statement of

Proposition 2.15-(ii). Then, it is easily seen (by a direct computation) that

Un(h2,Y) =

ν∑

i=1




(

n∑

k=1

ei(Yk)

)2

−
n∑

k=1

ei(Yk)
2



 .
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The fact that the distributions of F̃ ′
n and F̃n converge to Γν is therefore a direct

consequence of the usual multidimensional central limit theorem and of the law of
large numbers.

The next statement is a quantitative counterpart to Proposition 2.15-(ii), con-
taining in particular estimates involving Malliavin operators. Such estimates will
be put into use in the Examples 2.22–2.26 below, where the asymptotic behavior
of a U -statistic such as UN(n)(h2,Y) is studied within the framework of hybrid
convergence in random graphs, random flat and random simplex models.

Theorem 2.17 (Bounds on Gamma convergence). Let the assumptions and
notation of Proposition 2.15 prevail. Assume moreover that IG2 (h2) has distribution
Γν for some ν = 1, 2, . . ., and also that {e1, . . . , eν} ⊂ L4(µ), where the orthonormal
system {e1, . . . , eν} is defined in Proposition 2.15-(ii). Then, there exists a finite
constant K, independent of n, such that

d3(F̃
′
n,Γν) ≤ c1A1(F̃

′
n) + c2A4(F̃

′
n)×A5(F̃

′
n) ≤ K × n−1/4,

d3(F̃n,Γν) ≤ K × n−1/4,

where in the first inequality we used the notation defined in (2.1)–(2.3)

Example 2.18. (i) Let g1, g2 be two orthonormal elements of L2(µ) such that
g1, g2 ∈ L4(µ) and

∫
Z g1(z)µ(dz) =

∫
Z g2(z)µ(dz). We stress that we do

not require that g1, g2 have disjoint supports. Then, the kernel

h2(z1, z2) =
1

2
(g1 − g2)⊗ (g1 − g2) (z1, z2)

=
g1(z1)− g2(z1)√

2
× g1(z2)− g2(z2)√

2

is such that the corresponding U -statistics of order two Fn := Un(h2,Y)
and F ′

n := UN(n)(h2,Y) are completely degenerate, and both converge in

distribution to Γ1, with an upper bound of order n−1/4 on the rate of
convergence.

(ii) As an example of a pair (g1, g2) verifying the requirements at Point (i),

one can take g1 =
√
2 1A and g2 =

√
2 1B, where {A,B} is a measurable

partition of Z such that µ(A) = µ(B) = 1/2. Considering the case d =

1, p( · ) = 1
2 1(−1,1)( · ), g1(z) =

√
2 1(0,1)(z) and g2(z) =

√
21(−1,0)(z),

one obtains a kernel h2 with support in (−1, 1)2\{(0, 0)} and such that
h2(z1, z2) = 1 if z1z2 > 0, and h2(z1, z2) = −1 if z1z2 < 0. In this way,
one recovers the non-central result discussed by Reitzner and Schulte in
Reitzner and Schulte (2012+, end of Section 5.1).

2.6. Multivariate extensions and hybrid convergence. We describe here three multi-
variate extensions of the results in Section 2.1. The first two results can be seen as
partial analogues on the Poisson space of Nourdin and Rosinski (2012+, Theorem
4.4) – for the multivariate Gamma convergence – and Nourdin and Rosinski (2012+,
Theorem 4.5) – for the hybrid convergence – both concerning sequences of multiple
integrals with respect to a Gaussian measure. Observe that the method used in
Nourdin and Rosinski (2012+) is based on new criteria for asymptotic indepen-
dence of multiple integrals. These criteria are not available on the Poisson space.
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For this reason, our approach is different and will be in the spirit of the “interpola-
tion method” used in Bourguin and Peccati (2012). Such an interpolation method
will be also used to deduce our third result, concerning hybrid Poisson/Gamma
convergence. As already pointed out, the general problem of characterizing inde-
pendence is rather well-understood in a Gaussian framework (cf. Kallenberg (1991);

Üstünel and Zakai (1989, 1990)), while the topic is still largely open in the context
Poisson measures; see Privault (2012); Rosiński and Samorodnitsky (1999).

Remark 2.19. As before, we consider the framework of a sequence of Poisson mea-
sures {ηn : n ≥ 1} (on some Polish space (Z,Z )), each having a finite with
non-atomic control measure µn. For the entire section, Iq denotes the multiple
Wiener-Itô integral, of order q, with respect to one of the compensated measures
η̂n = ηn − µn (the concerned index n will always coincide with the index of the
integrated function, for instance: Iq(fn) indicates the multiple integral of order q
of fn with respect to η̂n).

Let d ≥ 1 be a fixed integer, let ν1, . . . , νd > 0 and let (G1, . . . , Gd) be a vector
consisting of independent random variables such that Gi has the centred Gamma
distribution Γνi . Further let 2 ≤ q1 < q2 < . . . < qd be even integers satisfying

2qi 6= qj for any i 6= j and let for i ∈ {1, . . . , d}, {f (i)
n : n ≥ 1} be a sequence of

kernels such that f
(i)
n ∈ L2

sym(µ
qi
n ), satisfying in addition the technical conditions

of Section 3-(VIII). The next result deals with the announced multivariate Gamma
convergence. We emphasize that we do not need further conditions on asymptotic
covariances due to our assumption that all multiple integrals have different orders.

Theorem 2.20 (Multivariate Gamma convergence). Let the above notation

and conditions prevail. For any i ∈ {1, . . . , d} assume that lim
n→∞

qi!‖f (i)
n ‖2 = 2νi

and that

lim
n→∞

‖f (i)
n ⋆ℓiri f

(i)
n ‖ = 0

and lim
n→∞

‖f (i)
n ⋆̃

qi/2
qi/2

f (i)
n − cqif

(i)
n ‖ = 0 with cqi =

4
(
qi
2

)
!
(

qi
qi/2

)2

for all pairs (ri, ℓi) such that either ri = qi and ℓi = 0, or ri ∈ {1, . . . , qi}, ℓi ∈
{1, . . . ,min(ri, qi − 1)} and ri and ℓi not equal to qi/2 at the same time. Then,(
Iq1(f

(1)
n ), . . . , Iqd(f

(d)
n )
)
converges in distribution to

(
G1, . . . , Gd

)
as n → ∞.

We go one step further and turn to an extension of Theorem 2.20 where we
consider convergence of a random vector of multiple integrals to a hybrid random
vector whose components are independent and in part centered Gamma and in
part standard Gaussian random variables. A similar setting with Poisson random
variables instead

of centred Gamma ones has recently been studied in Bourguin and Peccati
(2012). However, we would like to emphasize that, in contrast to Bourguin and
Peccati (2012), here both distributions considered in the target vector are abso-
lutely continuous with respect to the Lebesgue measure on the real line.

To formulate our result on the Gamma/Gaussian hybrid convergence, let d1, d2 ≥
1 be fixed integers, let ν1, . . . , νd1 > 0 and let (G1, . . . , Gd1 , Nd1+1, . . . , Nd1+d2) be
a vector consisting of independent random variables such that Gi has distribution
Γνi for i ∈ {1, . . . , d1} and Ni has a standard Gaussian distribution for i ∈ {d1 +
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1, . . . , d1+d2}. Further let 2 ≤ q1, q2, . . . , qd1+d2 be integers such that the following
constraints are verified: (a) q1 < · · · < qd1 and, in general, qi 6= qj for every
1 ≤ i 6= j ≤ d1+d2, (b) q1, . . . , qd1 are even integers, and (c) there is no pair (i, j) ∈
{1, . . . , d1 + d2}2 such that i ∈ {1, . . . , d1} and 2qi = qj . For i ∈ {1, . . . , d1 + d2},
we let {f (i)

n : n ≥ 1} be a sequence of symmetric and square-integrable kernels such

that f
(i)
n ∈ L2

sym(µ
qi
n ), satisfying moreover the technical conditions stated in Section

3-(VIII).

Theorem 2.21 (Gamma/Normal hybrid convergence). Let the above no-

tation and conditions prevail. Assume that lim
n→∞

q!‖f (i)
n ‖2 = 2νi whenever i ∈

{1, . . . , d1} and that lim
n→∞

qi!‖f (i)
n ‖2 = 1 whenever i ∈ {d1 + 1, . . . , d2}. Further-

more, for any i ∈ {1, . . . , d1} suppose that

lim
n→∞

‖f (i)
n ⋆ℓiri f

(i)
n ‖ = 0

and lim
n→∞

‖f (i)
n ⋆̃

qi/2
qi/2

f (i)
n − cqif

(i)
n ‖ = 0 with cqi =

4
(
qi
2

)
!
(

qi
qi/2

)2
(2.17)

for all pairs (ri, ℓi) such that either ri = qi and ℓi = 0, or ri ∈ {1, . . . , qi}, ℓi ∈
{1, . . . ,min(ri, qi − 1)} and ri and ℓi not equal to qi/2 at the same time. For
i ∈ {d1 + 1, . . . , d1 + d2} suppose that

lim
n→∞

‖f (i)
n ⋆ℓiri f

(i)
n ‖ = 0 (2.18)

for all ri ∈ {1, . . . , qi} and ℓi ∈ {1, . . . ,min(ri, qi − 1)}. Then
(
Iq1(f

(1)
n ), . . . , Iqd1+d2

(f (d1+d2)
n )

)

converges in distribution to
(
G1, . . . , Gd1 , Nd1+1, . . . , Nd1+d2

)
as n → ∞.

Example 2.22. We illustrate Theorem 2.21 with an example related to the theory
of random graphs; the reader is referred to Penrose (2003) for an introduction to
this topic. Note that we will allow the underlying Poisson measure to depend on
n; see Remark 2.19. Let d ≥ 1, and define Y and ηn as in Section 2.4. Let
{rn : n ≥ 1} be a sequence of strictly positive numbers decreasing to zero. For
every n, we define Dn := (Vn, En) to be the random ‘disk graph’ obtained as
follows: Vn = {Yi : i = 1, . . . , N(n)} and two vertices Yi, Yj ∈ Vn are connected
by an edge if and only if their Euclidean distance is strictly positive and less than
rn (in particular, Dn has no loops). Now let Λ be a feasible connected graph
(in the sense of Bourguin and Peccati (2012); Lachièze-Rey and Peccati (2013b);
Penrose (2003)) with q vertices, where q 6= 2, 4. For every n, we define Ln to
be the random variable equal to the number of induced subgraphs of Dn that
are isomorphic to Λ, that is, Ln is equal to the number of subsets of the type
Y(q) = {Yi1 , . . . , Yiq} ⊂ Vn such that the restriction of Dn to Y(q) is isomorphic

to Λ. We also set L̃n = (Ln − E[Ln])/Var(Ln)
1/2. Now assume that nrdn →

0 and nq(rdn)
q−1 → ∞. According to the discussion contained e.g. in Penrose

(2003, Chapter 3) or Lachièze-Rey and Peccati (2013b, Section 3), one has that the
following four facts are in order: (i) E[Ln] ≈ K0n

q(rdn)
q−1 (for some finite constant

K0 > 0), (ii) Var(Ln) ≈ K1n
q(rdn)

q−1 (for some finite constant K1 > 0), (iii) there
exists a sequence of multiple integrals of order q with respect to η̂n = ηn − µn,

say Iq(fn), such that, as n → ∞, E[(L̃n − Iq(fn))
2] → 0, and (iv) the kernels
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{fn} verify the asymptotic relation (2.18) (where, for every n, the contractions and

norms have to be considered with respect to the measure µn), so that L̃n converges
in distribution to a standard Gaussian random variable as n → ∞. Now consider a
sequence {F ′

n} of degenerate U -statistics of order 2 as in Theorem 2.17 (for instance,
those appearing in Example 2.18). Since each F ′

n is a double Wiener-Itô integral
(with respect to ηn) verifying condition (2.17) and q 6= 4, we can directly apply
Theorem 2.21 in the case d1 = d2 = 1, q1 = 2 and q2 = q, and conclude that, as
n → ∞, the pair (F ′

n, L̃n) converges in distribution to a vector (G,N) composed
of independent random variables such that G has distribution Γν and N follows a
standard Gaussian random variable.

We finally show how one can use the results of the present paper to deal with a
hybrid Poisson/Gamma convergence (we just consider two-dimensional vectors in
order to simplify the discussion, but there is no additional difficulty in considering
vectors of higher dimensions). Let ν, λ > 0 and let (G,P ) be a vector consisting
of independent random variables such that G has distribution Γν and P has a
Poisson distribution with mean λ. We fix an even integer q ≥ 2, and consider a
sequence {fn : n ≥ 1} of kernels with fn ∈ L2

sym(µ
q
n) and such that the technical

conditions stated in Section 3-(VIII) are satisfied. We also consider a sequence
{Hn : n ≥ 1} of random variables such that: (a) each Hn is a functional of the
Poisson measure η, which is in the domain of the Malliavin derivative D and takes
values in Z+ = {0, 1, 2, . . .}, (b) the numerical sequence

n 7→ E

∫

Z

(DzHn)
2 µn(dz), n ≥ 1, (2.19)

is bounded.

Theorem 2.23 (Gamma/Poisson hybrid convergence). Assume that

lim
n→∞

q!‖fn‖2 = 2ν

and that

lim
n→∞

‖fn ⋆ℓr fn‖ = 0

and lim
n→∞

‖fn ⋆̃q/2q/2fn − cqfn‖ = 0 with cq =
4

(
q
2

)
!
(

q
q/2

)2
(2.20)

for all pairs (r, ℓ) such that either r = q and ℓ = 0, or r ∈ {1, . . . , q}, ℓ ∈
{1, . . . ,min(r, q − 1)} and r and ℓ not equal to q/2 at the same time. We also
assume that, as n → ∞,

E[Hn] → λ, E
∣∣λ− 〈DHn,−DL−1Hn〉

∣∣→ 0,

and E

∫

Z

∣∣DzHn(DzHn − 1)DzL
−1Hn

∣∣ µn(dz) → 0.
(2.21)

Then
(
Iq(fn), Hn

)
converges in distribution to

(
G,P

)
as n → ∞.

Example 2.24. We consider the same framework and notation as in Example 2.22.
Here, we take q ≥ 2 to be a general integer (which can be possibly equal to 2
or 4), whereas Λ is a feasible connected graph of order q. We stress that, for
every n, the random variable Ln is a functional of the Poisson measure ηn on R

d,
whose control measure is given by µn(dx) = np(x)dx. We put rn = n−dq/(q−1),
in such a way that nq(rdn)

q−1 = 1. According e.g. to the analysis contained in
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Penrose (2003, Chapter 3) or Bourguin and Peccati (2012, Section 2.4), one has
that the following two facts are in order: (i) there exists a constant λ > 0 such that
E[Ln] ≈ Var(Ln) ≈ λnq(rdn)

q−1 = λ, and (ii) the sequence Hn = Ln satisfies (2.19),
as well as the asymptotic relations (2.21) (here, for every n, the Malliavin operators
are defined with respect to the random measure ηn and the inner products and
integrals are obtained by integrating with respect to µ = µn), so that Ln converges
in distribution to a Poisson random variable with mean λ. Considering a sequence
{F ′

n} of degenerate U -statistics of order 2 as in Theorem 2.17 (see e.g. Example
2.18), one has that each F ′

n is a double integral verifying condition (2.20). We can
therefore apply Theorem 2.23 and infer that, as n → ∞, the pair (F ′

n, Ln) converges
in distribution to a vector (G,P ) composed of independent random variables such
that G is distributed according to Γν and P has a Poisson distribution with mean
λ.

Example 2.25. Let us consider a Poisson measure ηn of k-dimensional flats in R
d

with 2k < d (where the flats are suitably parameterized to fit into our framework).
We assume that the distribution of ηn is invariant under rigid motions for each
n, and that ηn has intensity n ≥ 1. Let us fix a closed convex set W ⊂ R

d with
volume one and define the distance distW (E,F ) of two k-flat E,F as the minimum
over the Euclidean distances of xE ∈ E ∩W and xF ∈ F ∩W . By Mn we denote
the number of pairs (E,F ) of distinct flats of ηn such that distW (E,F ) ≤ rn,
where rn = n−2/(d−2k). According to Theorem 2.1 in Schulte and Thäle (2012) we
know that (i) there exists a constant 0 < λ < ∞ (depending on d, k and W ) such
that E[Mn] ≈ VMn ≈ λ, (ii) the asymptotic relations (2.21) are satisfied, and (iii)
Mn fulfills the technical condition (2.19). Thus, Mn converges in distribution to a
Poisson random variable with mean λ. Let now {F ′

n} be a sequence of degenerate U -
statistics of order 2 as in Theorem 2.17; see Example 2.18. Then, as in the previous
example, each F ′

n is a double integral such that condition (2.20) is verified. Thus,
Theorem 2.23 can be applied to show that the random vector (F ′

n,Mn) converges
in distribution to a random vector (G,P ) with independent components such that
G has distribution Γν and P has a Poisson distribution with mean λ.

Example 2.26. Let W ⊂ R
d be a closed convex set with volume one and let Y

be a sequence of i.i.d. points in W , which are uniformly distributed and whose
random number N(n) follows a Poisson distribution with parameter n ∈ N. Any
d + 1 distinct points of Y form a non-degenerate random simplex in W . Define
rn := n−(d+1) and let Vn be the total number of such simplices whose volume
does not exceed rn. Then (i) there exists 0 < λ < ∞ (depending on d and W )
such that E[Vn] ≈ VVn ≈ λ, (ii) the asymptotic relations (2.21) are satisfied, and
(iii) Vn fulfills the technical condition (2.19) so that the law of Vn converges, as
n → ∞ to a Poisson distribution with mean λ. This can be seen from Theorem 2.5
in Schulte and Thäle (2012). Define the sequence {F ′

n} of degenerate U -statistics
as in Example 2.18 or, more generally, as in Theorem 2.17. Then, following the
same line of reasoning as as above, Theorem 2.23 can be applied to show that
the random vector (F ′

n, Vn) converges in distribution to a random vector (G,P )
with independent components such that G has distribution Γ1 and P has a Poisson
distribution with mean λ.
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3. Background material

In this section we collect definitions and results that are needed in the statements
and proofs of our results. For more details, we refer to the monographs Peccati and
Taqqu (2011); Privault (2009) or to the papers Last and Penrose (2011); Nualart
and Vives (1990).

(I) Poisson measures. We shall denote by η a Poisson measure with non-
atomic and σ-finite control measure µ on some Polish space Z (which is endowed
with the Borel σ-field Z ). Recall that η is a collection {η(B) : B ∈ Z0} of random
variables indexed by the members of Z0 = {B ∈ Z : µ(B) < ∞} such that:
(a) η(B) follows a Poisson distribution with mean µ(B) for all B ∈ Z0, and (b)
whenever A,B ∈ Z0 are disjoint, η(A) and η(B) are independent random variables.
By Pη we will denote the distribution of η (on the space of σ-finite counting measures
on Z).

(II) L2-spaces. For q ≥ 1 we denote by L2(µq) the L2-space L2(Zq,Z ⊗q, µq)
and by L2

sym(µ
q) the subspace of L2(µq) consisting of functions that are µq-a.e.

invariant under permutations of its arguments, so called symmetric functions. Sup-
pressing the dependency on q, the scalar product and the norm in L2(µq) (and
L2
sym(µ

q)) are denoted by 〈 · , · 〉 and ‖ · ‖, respectively. In addition, we let L2(Pη)
be the space of square-integrable functionals of η. To avoid confusion we will use
capitals to indicate elements of L2(Pη) and lower cases for elements of L2(µq) or
L2
sym(µ

q). We finally introduce the space L2(P, L2(µ)) = L2(Ω×Z,F⊗Z ,P⊗µ) as

the space of jointly measurable mappings u : Ω×Z → R such that E
∫
Z u(z)2 µ(dz) <

∞ (recall that (Ω,F ,P) is the underlying probability space).

(III) Multiple stochastic integrals. For every integer q ≥ 1 and every de-
terministic function f ∈ L2

sym(µ
q) let us indicate by Iq(f) the multiple Wiener-Itô

stochastic integral of order q of f with respect to the compensated Poisson mea-

sure η − µ. For general f ∈ L2(µq) we put Iq(f) := Iq(f̃), where f̃(x1, . . . , xq) =
(q!)−1

∑
π f(xπ(1), . . . , xπ(q)) is the canonical symmetrization of f and the sum in

its definition runs over all q! permutations π of {1, . . . , q}. The multiple stochastic
integrals satisfy the following properties:

E[Iqi(fi)] = 0 (i = 1, 2), and E
[
Iq1 (f1)Iq2(f2)

]
= q1!〈f1, f2〉1(q1 = q2)

for any q1, q2 ∈ {1, 2, . . .}, f1 ∈ L2
sym(µ

q1) and f2 ∈ L2
sym(µ

q2).

(IV) Chaotic representation property. The q-th Wiener chaos Wq associ-
ated with the Poisson measure η is the Hilbert space Wq = {Iq(f) : f ∈ L2

sym(µ
q)}.

In addition, we put W0 := R. It is a crucial property of η that L2(Pη) can be

written as a direct sum of Wiener chaoses, i.e. L2(Pη) =
∞⊕
q=0

Wq. As a consequence,

every F ∈ L2(Pη) admits a (unique) chaotic decomposition in the sense that

F = E[F ] +
∞∑

q=1

Iq(fq) (3.1)

with suitable functions fq ∈ L2
sym(µ

q) and where the series converges in L2(Pη).

(V) The Malliavin operators D, L−1 and δ. The domain domD of the
derivative operator D is the set of all F ∈ L2(Pη) admitting a chaos decomposition
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(3.1) such that
∞∑
q=1

q q!‖fq‖2 < ∞. For such F the random function Z ∋ z 7→ DzF

is defined by

DzF =
∞∑

q=1

qIq−1

(
fq(z, · )

)
, (3.2)

where fq(z, · ) is the function fq with one of its argument fixed to be z. Notice
that DF ∈ L2(P, L2(µ)). The derivative operator can be also characterized as an
“add-one cost operator”, as follows; see Last and Penrose (2011); Nualart and Vives
(1990) for proofs of this fact. For F ∈ L2(Pη) and z ∈ Z, let Fz(η) be the random
variable F (η + δz). Then, for F ∈ domD and µ-almost every z ∈ Z, we have the
identity DzF = Fz − F , a.s.-P. Throughout the text, we also implicitly use the
following converse statement (the proof is an elementary consequence of the main
findings of Last and Penrose (2011), and is included for the sake of completeness).

Lemma 3.1. Let F ∈ L2(Pη) be such that E
∫
Z
(Fz − F )2 µ(dz) < ∞. Then,

F ∈ domD.

Proof : For every z ∈ Z, define the ‘trajectorial’ difference operator D′
zF (η) =

Fz(η) − F (η). According to Last and Penrose (2011, Theorem 1.3), the square-
integrable random variable F admits a chaotic decomposition of the type (3.1),
with

fq(z1, . . . , zq) =
1

q!
E[D′

z1 . . . D
′
zqF ], q = 1, 2, . . .

(in particular, the deterministic function on the right-hand side of the previous
equation is a well-defined element of L2

sym(µ
q) for every F ∈ L2(Pη) and every

q ≥ 1). (An alternate prove of this result could be deduced from Ito (1988, Equa-
tion (7.4)) after an adequate translation of the necessary notions from the lan-
guage of white noise analysis into the formalism of the present paper.) In view
of the assumptions, there exists a measurable set Z ′ such that µ(Z\Z ′) = 0 and
E[(D′

zF )2] = E[(Fz − F )2] < ∞ for every z ∈ Z ′. It follows that the statement
is proved once we show that, for every z ∈ Z ′, the chaotic decomposition of D′

zF
coincides with the right-hand side of (3.2). Again by virtue of Last and Penrose
(2011, Theorem 1.3), one has that the qth integrand in the chaotic decomposition
of D′

zF is given by the mapping

(z1, . . . , zq) 7→
1

q!
E[D′

z1 . . . D
′
zqD

′
zF ] = (q + 1)fq+1(z, z1, . . . , zq),

which yields the desired conclusion. �

For any F ∈ L2(Pη) with chaotic decomposition (3.1) satisfying E[F ] = 0 we put

L−1F = −
∞∑

q=1

q−1Iq(fq).

The operator L−1 is the so-called pseudo-inverse of the Ornstein-Uhlenbeck genera-
tor. Finally, we observe that, due to the chaotic representation property of η̂, every
random function u ∈ L2(P, L2(µ)) admits a (unique) representation of the type

uz =

∞∑

q=0

Iq(fq(z, · )), z ∈ Z, (3.3)
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where, for every z, the kernel fq(z, · ) is an element of L2
sym(µ

q). The domain of
the divergence operator, denoted by dom δ, is defined as the collections of those
u ∈ L2(P, L2(µ)) such that the chaotic expansion (3.3) verifies the condition

∞∑

q=0

(q + 1)!‖fq‖2 < ∞.

If u ∈ dom δ, then the random variable δ(u) is defined as

δ(u) =
∞∑

q=0

Iq+1(f̃q),

where f̃q stands for the canonical symmetrization of fq (as a function in q + 1
variables). The following classic result, proved e.g. in Nualart and Vives (1990),
yields a characterization of δ as the adjoint of the derivative D.

Lemma 3.2 (Integration by parts formula). For every G ∈ domD and every
u ∈ dom δ, one has that

E[Gδ(u)] = E[〈DG, u〉], (3.4)

where, more explicitly,

〈DG, u〉 =
∫

Z

DzG× u(z)µ(dz).

(VI) Contractions. Let f ∈ L2
sym(µ

q) for some integer q ≥ 1 and r ∈ {0, . . . , p},
ℓ ∈ {1, . . . , r}. The contraction kernel f ⋆ℓr f on Z2q−r−ℓ acts on the tensor product
f ⊗ f first by identifying r variables and then integrating out ℓ among them. More
formally,

f ⋆ℓr f(γ1, . . . , γr−ℓ, t1, . . . , tq−r, s1, . . . , sq−r)

=

∫

Zℓ

f(z1, . . . , zℓ, γ1, . . . , γr−ℓ, t1, . . . , tq−r)

× f(z1, . . . , zℓ, γ1, . . . , gr−ℓ, s1, . . . , sq−r)µ
ℓ
(
d(z1, . . . , zℓ)

)
.

In addition, we put

f ⋆0r f(γ1, . . . , γr, t1, . . . , tq−r, s1, . . . , sq−r)

= f(γ1, . . . , γr, t1, . . . , tq−r)f(γ1, . . . , γr, s1, . . . , sq−r).

Besides the contraction f ⋆ℓr f , we will also deal with its canonical symmetrization

f ⋆̃
ℓ
rf , which is defined as

(f ⋆̃
ℓ
rf)(x1, . . . , x2q−r−ℓ) =

1

(2q − r − ℓ)!

∑

π

(f ⋆ℓr f)(xπ(1), . . . , xπ(2q−r−ℓ)),

where the sum runs over all (2q− r− ℓ)! permutations of the set {1, . . . , 2q− r− ℓ}.
(VII) Product formula. Let q1, q2 ≥ 1 be integers, f1 ∈ L2

sym(µ
q1) and f2 ∈

L2
sym(µ

q2) be as in the previous paragraph. In terms of the contractions of f1
and f2 one can express the product of Iq1(f1) and Iq2(f2) as follows:

Iq1(f1)Iq2 (f2) =

min(q1,q2)∑

r=0

r!

(
q1
r

)(
q2
r

) r∑

ℓ=0

(
r

ℓ

)
Iq1+q2−r−ℓ(f1 ⋆̃

ℓ
rf2) ; (3.5)
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see Peccati and Taqqu (2011, Proposition 6.5.1). In the particular case q1 = q2 =: q
and f1 = f2, we may define Gq

0f := q!‖f‖2 and

Gq
pf :=

q∑

r=0

r∑

ℓ=0

1(2q − r − ℓ = p) r!

(
q

r

)2(
r

ℓ

)
f ⋆̃

ℓ
rf

for p ∈ {1, . . . , 2q}, which allows us to re-write (3.5) in the more compact form

I2q (f) =

2q∑

p=0

Ip(G
q
pf). (3.6)

(VIII) Technical assumptions. Whenever we deal with a multiple stochastic integral
or a sequence Iq(fn) of such integrals with fn ∈ L2

sym(µ
q
n) we will (implicitly) assume

that the following technical conditions are satisfied:

i) for any r ∈ {1, . . . , q}, the contraction fn ⋆q−r
r fn is an element of L2(µr

n);
ii) for any r ∈ {1, . . . , q}, ℓ ∈ {1, . . . , r} and (z1, . . . , z2q−r−ℓ) ∈ Z2q−r−ℓ we

have that (|fn| ⋆ℓr |fn|)(z1, . . . , z2q−r−ℓ) is well defined and finite;
iii) for any k ∈ {0, . . . , 2(q− 1)} and any r and ℓ satisfying k = 2(q− 1)− r− ℓ

we have that
∫

Z

√∫

Z

(
fn(z, · ) ⋆ℓr fn(z, · )

)2
dµk

n µn(dz) < ∞.

We remark that (iii) is automatically satisfied if the control measure µ is finite
(which is the case in our Examples 2.22 and 2.24-2.26). Intuitively, conditions (i)-
(iii) ensure that every manipulation involving contraction kernels performed below
is justified and is in fact valid. For the detailed role of these conditions and their
implications we refer to Lachièze-Rey and Peccati (2013a) or Peccati et al. (2010).

4. Proofs of the results

4.1. Proof of Theorem 2.1. Before entering the details of the proof of Theorem
2.1 we recall some facts related to Stein’s method for the Gamma distribution
established by Luk (1994); see also Pickett (2004) for refinements in the case of
an integer-valued parameter ν. We start by considering the second-order Stein
equation

h(x− ν)− E[h
(
G∗(ν)

)
] = 2xg′′(x) − (x− ν)g′(x), x > 0, (4.1)

where G∗(ν) = G(ν) + ν, with G(ν) distributed according to Γν , and h ∈ H3.
It is shown in Luk (1994, Theorem 1) that (4.1) admits a solution Vh such that

‖V (j)
h ‖∞ ≤ 2

j ‖h(j)‖∞ for j = 1, 2, 3. Note that the assumption h ∈ H3 automati-

cally yields that h has sub-exponential growth, so that Luk (1994, Theorem 1) can
directly be applied.

Now, we turn to the first-order Stein operator T for Γν , which acts on differen-
tiable functions f : R → R. It is given by

Tf(x) = 2(x+ ν)+f
′(x) − xf(x), x ∈ R.

The associated first-order Stein equation is

h(x)− E[h
(
G(ν)

)
] = Tf(x), x ∈ R,
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where h ∈ H3. For such an h, a solution Uh of the Stein equation – in what follows,
sometimes called a Stein solution – is provided by

Uh(x) =

{
− 1

x

(
h(x)− E[h(G(ν))

)
] : x ≤ −ν

V ′
h(x+ ν) : x > −ν.

(4.2)

Recall that the probability density of G(ν) is given by

gν(x) =
2−ν/2

Γ(ν/2)
(x+ ν)ν/2−1e−(x+ν)/2 1{x>−ν}.

Since for our choice of the test function h the mapping x 7→ Uh(x) = V ′
h(x + ν) is

bounded on (ν,∞), we can use Stein (1986, Lemma 4) to deduce that, necessarily,

Uh(x) =
1

2(x+ ν)gν(x)

∫ x

−ν

(
h(y)− E[h(G(ν))]

)
gν(y) dy, x > −ν,

yielding that x 7→ Uh(x) is continuous on R, as deduced from a simple application
of de l’Hôpital’s rule at x = −ν. Also, Uh is twice differentiable on R \ {ν} and
satisfies the estimates ‖Uh‖∞ ≤ max(2, 2/ν) =: c0, ‖U ′

h‖∞ ≤ max(1, 1/ν+1/ν2) =
c1 and ‖U ′′

h‖∞ ≤ max(2/3, 2/(3ν) − 3/ν2 + 4/ν3) = c2 (here, c1 and c2 are the
constants from Theorem 2.1). We stress that, albeit Uh(x) is continuous on R,
such a function is in general not differentiable at x = −ν (it is however right- and
left-differentiable at such a point). We remark that the quantities 2, 1 and 2/3
appearing in the constants c0, c1 and c2 come from smoothness estimates for (4.2)
on the interval (−ν,∞), whereas the presence of the constants 2/ν, 1/ν+1/ν2 and
2/(3ν)− 3/ν2 + 4/ν3 is explained by elementary estimates of (4.2) on the interval
(−∞,−ν].

Let now F2 be the space of continuous functions f on R, which are twice differ-
entiable on R \ {ν} and satisfy

‖f‖∞ ≤ c0, ‖f ′‖∞ ≤ c1 and ‖f ′′‖∞ ≤ c2.

In the light of the previous discussion, we conclude that

d3(F,Γν) ≤ sup
f∈F2

∣∣E
[
2(F + ν)+f

′(F )− Ff(F )
]∣∣ , (4.3)

where F and ν are as in the statement of Theorem 2.1 and where here and below
f ′(−ν) stands for the left-sided derivative of f at −ν, i.e. f ′(−ν) = lim

xր−ν
f ′(x).

We also refer the reader to Lemma 1.3 in Nourdin and Peccati (2009b) and the
references cited therein. The estimate (4.3) is the starting point of the proof of
Theorem 2.1.

Proof of Theorem 2.1: We have to show that the right-hand side of (4.3) is bounded
from above by the right-hand side of (2.1). This is done by borrowing some ideas
from Schulte (2012). To start with, consider f ∈ F2, write F (η) instead of F
to emphasize the dependency of F on η and fix z ∈ Z. Because of the non-
differentiability of the Stein-solution at −ν, we will have to distinguish the three
cases a) F (η) ≤ −ν, F (η + δz) ≤ −ν or F (η) > −ν, F (η + δz) > −ν, b) F (η) ≤
−ν < F (η + δz) and c) F (η + δz) ≤ −ν < F (η). For a) we use a Taylor expansion
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to see that

Dzf
(
F (η)

)
= f

(
F (η + δz)

)
− f

(
F (η)

)

= f ′
(
F (η)

)(
F (η + δz)− F (η)

)
+R

(
F (η + δz)− F (η)

)

= f ′
(
F (η)

)
DzF (η) +Ra

(
DzF (η)

)
,

where the reminder Ra is such that |Ra(x)| ≤ 1
2‖f ′′‖∞ x2 = 1

2c2x
2; recall that f is

differentiable on R \ {−ν}, as well as right- and left-differentiable at x = −ν. For
case b) we also use a Taylor expansion to see that

Dzf
(
F (η)

)
= f

(
F (η + δz)

)
− f

(
F (η)

)

= f
(
F (η + δz)

)
− f(−ν) + f(−ν)− f

(
F (η)

)

= f ′(−ν+)
(
F (η + δz) + ν

)
+

1

2
f ′′
(
F̃ (η)

)(
F (η + δz) + ν

)2

+ f ′
(
F (η)

)(
− ν − F (η)

)
+

1

2
f ′′
(
F̂ (η)

)(
− ν − F (η)

)2

= f ′
(
F (η)

)
DzF (η)− f ′

(
F (η)

)(
F (η + δz) + ν

)

+ f ′(−ν+)
(
F (η + δz) + ν

)
+

1

2
f ′′
(
F̃ (η)

)(
F (η + δz) + ν

)2

+
1

2
f ′′
(
F̂ (η)

)(
F (η) + ν

)2

=: f ′
(
F (η)

)
DzF (η) +Rb

(
F (η), z, ν

)

with some F̃ ∈
(
− ν, F (η+ δz)

)
, F̂ ∈

(
F (η),−ν

)
and where f ′(−ν+) stands for the

right-sided derivative of f at −ν. Similarly, in case c) we find that

Dzf
(
F (η)

)
= f

(
F (η + δz)

)
− f

(
F (η)

)

= f
(
F (η + δz)

)
− f(−ν) + f(−ν)− f

(
F (η)

)

= f ′(−ν−)
(
F (η + δz) + ν

)
+

1

2
f ′′
(
F̃ (η)

)(
F (η + δz) + ν

)2

+ f ′
(
F (η)

)(
− ν − F (η)

)
+

1

2
f ′′
(
F̂ (η)

)(
− ν − F (η)

)2

= f ′
(
F (η)

)
DzF (η)− f ′

(
F (η)

)(
F (η + δz) + ν

)

+ f ′(−ν−)
(
F (η + δz) + ν

)
+

1

2
f ′′
(
F̃ (η)

)(
F (η + δz) + ν

)2

+
1

2
f ′′
(
F̂ (η)

)(
F (η) + ν

)2

=: f ′
(
F (η)

)
DzF (η) +Rc

(
F (η), z, ν

)

again with some F̃ ∈
(
F (η + δz),−ν

)
, F̂ ∈

(
− ν, F (η)

)
and where f ′(−ν−) stands

for the left-sided derivative of f at ν. Summarizing, we conclude that

Dzf
(
F (η)

)
= f ′

(
F (η)

)
DzF (η) +R

(
F (η), z, ν

)
(4.4)

(recall that f ′(−ν) = f ′(−ν−) by convention), where the global reminder term
R
(
F (η), z, ν

)
is given by

R
(
F (η), z, ν

)
=Ra

(
F (η)

)(
1{F (η),F (η+δz)>−ν} + 1{F (η),F (η+δz)≤−ν}

)

+ Rb

(
F (η), z, ν

)
1{F (η)≤−ν<F (η+δz)}

+ Rc

(
F (η), z, ν

)
1{F (η+δz)≤−ν<F (η)}.
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We have seen that Ra has the property that |Ra(x)| ≤ 1
2‖f ′′‖∞ x2 = 1

2c2x
2. For Rb

and Rc we notice that in these cases
∣∣F (η + δz) + ν

∣∣ ≤
∣∣DzF (η)

∣∣ and
∣∣F (η) + ν

∣∣ ≤∣∣DzF (η)
∣∣, which together with the properties of f ∈ F2 leads to the bound

∣∣R
(
F (η), z, ν

)∣∣

≤ 1

2
c2
∣∣DzF (η)

∣∣2(1{F (η),F (η+δz)>−ν} + 1{F (η),F (η+δz)≤−ν}

)

+
(
2c1
∣∣DzF (η)

∣∣ + c2
∣∣DzF (η)

∣∣2)1{F (η)≤−ν<F (η+δz)}

+
(
2c1
∣∣DzF (η)

∣∣ + c2
∣∣DzF (η)

∣∣2)1{F (η+δz)≤−ν<F (η)}

≤ c2
∣∣DzF (η)

∣∣2 + 2c1
∣∣DzF (η)

∣∣(1{F (η)≤−ν<F (η+δz)} + 1{F (η+δz)≤−ν<F (η)}

)

= c2
∣∣DzF (η)

∣∣2 + 2c1
(
Dz1{F (η)>−ν}

)(
DzF (η)

)
.

Using now the integration by parts formula from Malliavin calculus, (3.4) in Lemma
3.2, and simplifying the resulting expression we find

E
[
Ff(F )

]
= E

[
LL−1Ff(F )

]
= E

[
− δ(DL−1F )f(F )

]
= E

[
〈Df(F ),−DL−1F 〉

]
,

which in view of (4.4) leads to

E
[
〈Df(F ),−DL−1F 〉

]
= E

[
f ′(F )〈DF,−DL−1F 〉

]
+ E

[
〈R(F, z, ν),−DL−1F 〉

]
.

Consequently, because of the above estimate on
∣∣R
(
F (η), z, ν

)∣∣,
∣∣E
[
2(F + ν)+f

′(F )− Ff(F )
]∣∣

≤
∣∣E
[
f ′(F )(2(F + ν)+ − 〈DF,−DL−1F 〉)

]∣∣+
∣∣E
[
〈R(F, z, ν),−DL−1F 〉

]∣∣

≤ c1E
∣∣2(F + ν)+ − 〈DF,−DL−1F 〉

∣∣+ c2

∫

Z

E
[
|DzF |2|DL−1F |

]
µ(dz)

+ 2c1

∫

Z

E
[(
Dz1{F>−ν}

)(
DzF

)
|DzL

−1F |
]
µ(dz).

This shows the first inequality (2.1) in Theorem 2.1. The second estimate (2.2)
follows from (2.1) and the assumption that E

[
〈DF,−DL−1F 〉|F

]
≥ 0. This proves

Theorem 2.1. �

4.2. Proof of Proposition 2.3. We start by observing that the function x 7→ Φ(x) :=
x|x| = sign(x)x2, x ∈ R, is such that, for every a, b ∈ R, Φ(b) = Φ(a) + 2|a|(b −
a) +R(a, b), where |R(a, b)| ≤ (b − a)2. It follows that

(Φ(b)− Φ(a))2 ≤ 8a2(b− a)2 + 2(b− a)4. (4.5)

Since µ is finite,

E

∫

Z

(Dz1{F>−ν})
2 µ(dz) ≤ E

∫

Z

(1{F+DzF>−ν} − 1{F>−ν})
2 µ(dz) ≤ µ(Z) < ∞,

which implies that 1{F>−ν} ∈ domD; see Lemma 3.1 and compare with Remark
2.2 (i). Moreover, our assumptions imply that DF |DF | = Φ(DF ) ∈ dom δ. We
can now apply the integration by parts formula (3.4), together with the relation
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L−1F = −q−1F , to deduce that

q ×A3(F ) = E

∫

Z

(Dz1{F>−ν})Φ(DzF )µ(dz)

= E[1{F>−ν}δ(Φ(DF ))]

≤
[
E[δ(Φ(DF ))2]

]1/2
.

Again in view of our assumptions, the Skorohod isometry implied by Privault (2009,
Proposition 6.5.4) is verified, and we deduce that

E[δ(Φ(DF ))2] ≤ E

∫

Z

Φ(DzF )2 µ(dz) + E

∫

Z

∫

Z

[Dz2Φ(Dz1F )]2 µ(dz1)µ(dz2)

= E

∫

Z

(DzF )4 µ(dz) + E

∫

Z

∫

Z

[Dz2Φ(Dz1F )]2 µ(dz1)µ(dz2).

Since Dz2Φ(Dz1F ) = Φ(Dz1F+Dz2Dz1F )−Φ(Dz1F ), we can now apply (4.5) with
a = Dz1F and b = Dz1F +Dz2Dz1F to infer the upper bound

[Dz2Φ(Dz1F )]2 ≤ 8(Dz1F )2(Dz2Dz1F )2 + 2(Dz2Dz1F )4,

and the conclusion follows immediately. �

4.3. Proof of Theorem 2.6. Let Fn = Iq(fn) be as in the statement of Theorem
2.6. Then 〈DFn,−DL−1Fn〉 = 1

q ‖DIq(fn)‖2 and E
[
〈DFn,−DL−1Fn〉|Fn

]
≥ 0.

Thus, we need to prove that for such Fn the right-hand side of (2.2) converges to
zero as n → ∞. We do this by showing that the three terms A′

1(Fn), A3(Fn) and
A4(Fn) (see (2.3)) all converge to zero as n → ∞; the computations performed
below will also implicitly provide the upper bound (2.6). It is important to note
that our analysis of the terms A′

1(Fn) and A4(Fn) does not make use of the fact
that µn(Z) < ∞. It is convenient to start with the reminder term A4(Fn).

Lemma 4.1. Under the conditions of Theorem 2.6, it holds that A4(Iq(fn)) → 0,
as n → ∞.

Proof : First observe that in our case

A4(Iq(fn)) =

√√√√
∫

Z

E[|DzIq(fn)|4]µn(dz).

We can now use Peccati et al. (2010, formulae (4.17) and (4.18)) to deduce that

A4(Iq(fn)) ≤ q2
q∑

r=1

r−1∑

ℓ=0

1(1 ≤ r + ℓ ≤ 2q − 1)

×
(
(r + ℓ− 1)!

)1/2
(q − ℓ− 1)!

(
q − 1

q − 1− ℓ

)2(
q − 1− ℓ

q − r

)
‖fn ⋆ℓr fn‖.

(4.6)

Since this estimate does not involve the middle contraction fn⋆
q/2
q/2fn, the conclusion

follows immediately. �

Now we study the convergence of the sequence A′
1(Fn).

Lemma 4.2. Under the conditions of Theorem 2.6 we have A′
1(Iq(fn)) → 0, as

n → ∞.
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Proof : One must prove that E
[
‖DIq(fn)‖2−2qIq(fn)−2qν

]2 → 0. Expanding the
square and using the fact that E[Iq(fn)] = 0 we have to show that

E[‖DIq(fn)‖4]− 4qE[Iq(fn)‖DIq(fn)‖2]
+ 4q2E[I2q (fn)]− 4qνE[‖DIq(fn)‖2] + 4q2ν2 → 0

(4.7)

as n → ∞. Firstly, E[I2q (fn)] = q!‖fn‖2 → 2ν. The definition of DIq(fn) and
formula (3.6) imply that

‖DIq(fn)‖2 = q q!‖fn‖2 + q2
2(q−1)∑

p=1

∫

Z

Ip
(
Gq−1

p fn(z, · )
)
µn(dz) (4.8)

so that E[‖DIq(fn)‖2] = q q!‖fn‖2, which asymptotically behaves like 2qν. Using
integration by parts (3.4) together with the relationDF 2 = 2FDF+(DF )2 applied
to F = Iq(f), we infer that

E[Iq(fn)‖DIq(fn)‖2] =
q

2
E[I3q (fn)]−

1

2
E

∫

Z

DzI
3
q (fn)µn(dz).

Now, in view of the estimate (4.6), the second summand on the right-hand side of
the previous equation converges to zero as n → ∞, and consequently

E
[
Iq(fn)‖DIq(fn)‖2

]

behaves asymptotically as q
2E[I

3
q (fn)]. Using (3.5) and the orthogonality of chaoses

we obtain

E[I3q (fn)] =

q∑

p=0

p!

(
q

p

)2 p∑

ℓ=0

(
p

ℓ

)
E
[
I2q−p−ℓ(fn)Iq(fn)

]

=

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
q!〈fn ⋆̃q−p

p fn, fn〉,

so that E
[
Iq(fn)‖DIq(fn)‖2

]
has the same limit as

q

2

q∑

p=q/2

p!

(
q

p

)2(
p

q − p

)
q!〈fn ⋆̃q−p

p fn, fn〉.

Moreover, one can show that

E[‖DIq(fn)‖4] = q2(q!‖fn‖2)2 + q4
2(q−1)∑

p=1

p!‖Ĝq
pfn‖2, (4.9)

where Ĝq
pfn with p ∈ {1, . . . , 2(q − 1)} is defined by

Ĝq
pfn =

q∑

t=1

min(t,q−1)∑

s=1

1(2q − t− s = p) (t− 1)!

(
q − 1

t− 1

)2(
t− 1

s− 1

)
fn ⋆̃

s
tfn.

Indeed, use (4.8), the orthogonality of the random variables
∫

Z

Ip1

(
Gq−1

p1
fn(z, · )

)
µn(dz) and

∫

Z

Ip2

(
Gq−1

p2
fn(z, · )

)
µn(dz)

for 1 ≤ p1 6= p2 ≤ 2(q − 1) as well as the stochastic Fubini theorem Peccati and
Taqqu (2011, Theorem 5.13.1) (which is valid thanks to our technical assumptions
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made in Section 3) to conclude that the identity (4.9) is verified; see also the proof
of Theorem 4.2 in Peccati et al. (2010). We now exploit the assumption that
‖fn ⋆ℓr fn‖ → 0 with r and ℓ as in the statement of Theorem 2.6. It implies that

〈fn ⋆̃q−p
p fn, fn〉 → 0 and 〈fn ⋆̃stfn, fn ⋆̃

s′

t′ fn〉 → 0 (4.10)

as n → ∞ for all p ∈ {q/2+1, . . . , q} and t, t′ ∈ {1, . . . , q}, s ∈ {1, . . . ,min(t, q−1)},
s′ ∈ {1, . . . ,min(t′, q− 1)} and t, s, t′, s′ not equal to q/2 at the same time. Indeed,

|〈fn ⋆̃q−p
p fn, fn〉| ≤ ‖fn ⋆̃q−p

p fn‖ ‖fn‖ ≤ ‖fn ⋆q−p
p fn‖ ‖fn‖ → 0

for p ∈ {q/2 + 1, . . . , q} and similarly

|〈fn ⋆̃stfn, fn ⋆̃s
′

t′ fn〉| ≤ ‖fn ⋆̃stfn‖ ‖fn ⋆̃s
′

t′ fn‖ ≤ ‖fn ⋆st fn‖ ‖fn ⋆s
′

t′ fn‖ → 0,

where t, s, t′, s′ are as above. Plugging the expressions for E[‖DIq(fn)‖,
E
[
Iq(fn)‖DIq(fn)‖2

]

and E[‖DIq(fn)‖2] into (4.7) and using the first statement in (4.10) we see imme-
diately that (4.7) has the same limit as

8q2ν − 2q2
(q
2

)
!

(
q

q/2

)2

q!〈fn ⋆̃q/2q/2fn, fn〉+ q4
2(q−1)∑

p=1

p!‖Ĝq
pfn‖2. (4.11)

We notice now that the middle contraction in the sum in (4.11) can only appear in

the term p = q. Using the definition of Ĝq
qfn and the second statement in (4.10)

we see that q4 q!‖Ĝq
qfn‖2 behaves asymptotically like

q4 q!
(( q

2
− 1
)
!
)2( q − 1

q/2− 1

)4

‖fn ⋆̃q/2q/2fn‖
2.

Consequently, (4.11) has the same limit as

(
8q2ν − 4q2 q!‖fn‖2

)
+ 4q2 q!‖fn‖2 − 2q2

(q
2

)
!

(
q

q/2

)2

q!〈fn ⋆̃q/2q/2fn, fn〉

+ q4 q!
((q

2
− 1
)
!
)2 ( q − 1

q/2− 1

)4

‖fn ⋆̃q/2q/2fn‖2 → 0,

as n → ∞, where we have used the fact that

‖fn ⋆̃q/2q/2fn‖
2 → 2

q!
c2qν,

and

〈fn ⋆̃q/2q/2fn, fn〉 →
2

q!
cqν.

This proves the claim. �

We eventually deal with the convergence of the sequence

A3(Iq(fn)) =
1

q

∫

Z

E
[
(Dz1{Iq(fn)>−ν})DzIq(fn)|DzIq(fn)|

]
µn(dz), n ≥ 1.

Lemma 4.3. Under the conditions of Theorem 2.6 we have that A3(Iq(fn)) → 0,
as n → ∞.
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Proof : In view of the assumptions, we can directly apply Proposition 2.3. It follows
that our claim is proved once we show that the three terms on the right-hand side of
(2.4) (with F = Fn = Iq(fn) and µ = µn) converge to zero as n → ∞. Since the first
term equals A4(Fn), by virtue of the previous Lemma 4.1, we only have to prove the
convergence of the remaining two summands. Our starting point is the following
representation of the quantity (Dz2Dz1Fn)

2 = q2(q − 1)2I2q−2(fn(z1, z2, · )), which
is obtained by means of the product formula (3.5). Indeed,

(Dz2Dz1Fn)
2 = q2(q − 1)2

q−2∑

r=0

r∑

ℓ=0

r!

(
q − 2

r

)2(
r

ℓ

)

× I2(q−2)−r−ℓ(fn(z1, z2, · ) ⋆ℓr fn(z1, z2, · ))
= q2(q − 1)2I2q−2(fn(z1, z2, · )).

Combining this representation with an iterated application of the triangle inequal-
ity, as well as of the isometric properties of multiple integrals, one deduces that the
quantity √

E

∫

Z

∫

Z

(Dz2Dz1Fn)4 µn(dz1)µn(dz2)

is bounded by a linear combination (with coefficients not depending on n) of quan-
tities of the type
√∫

Z

∫

Z

‖fn(z1, z2, ·) ⋆ℓr fn(z1, z2, ·)‖2 µn(dz1)µn(dz2) = ‖fn ⋆q−2−r
q−ℓ fn‖ → 0,

where the equality follows from a standard application of Fubini’s theorem, and the
convergence to zero is a consequence of the fact that a := q − ℓ ∈ {2, . . . , q} and
b := q − 2 − r ∈ {0, . . . , a− 2}, as well as of the elementary identity ‖fn ⋆0a fn‖ =
‖fn ⋆q−a

q fn‖ (2 ≤ a ≤ q). To deal with the remaining middle term, we use Fubini’s
theorem and the Cauchy-Schwarz inequality to deduce the estimate

√
E

∫

Z

∫

Z

(Dz2Dz1Fn)2(Dz1Fn)2 µn(dz1)µn(dz2) ≤ A4(Fn)
1/2 × C1/4

n ,

with

Cn := E

∫

Z

(∫

Z

(Dz2Dz1Fn)
2 µn(dz2)

)2

µn(dz1).

Using again the explicit representation of (Dz2Dz1Fn)
2 and applying several times

Fubini’s theorem, one sees that Cn is indeed equal to a linear combination (with
coefficients not depending on n) of objects of the type

‖fn ⋆ba fn‖2, with a = 2, . . . , q and b = 0, . . . , a− 2.

The conclusion follows immediately since our estimates do not involve the middle
contraction. �

4.4. Proof of Proposition 2.9. The product formula (3.5) shows that

I22 (fn) = I4(fn ⋆̃
0
0fn) + 4I3(fn ⋆̃

0
1fn) + I2(4fn ⋆11 fn + 2f2

n)

+ 4I1(fn ⋆12 fn) + 2‖fn‖2.
(4.12)
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Using the relation

4!‖fn ⋆̃00fn‖2 = 2(2‖fn‖2)2 + 16‖fn ⋆11 fn‖2 (4.13)

(see e.g. Nourdin and Peccati (2012, formula (5.2.12))), exploiting the orthogonal-
ity of multiple integrals of distinct orders and using the fact that ‖f2

n‖ → 0 by
assumption, we infer that E[I42 (fn)]− 12E[I32 (fn)] has the same limit as

16× 3!‖fn ⋆̃01fn‖2 + 16‖fn ⋆12 fn‖2 + 48‖fn ⋆11 fn‖2

−96〈fn ⋆11 fn, fn〉+ 3(2‖fn‖2)2

= 16× 3!‖fn ⋆̃01fn‖2 + 16‖fn ⋆12 fn‖2

+48‖fn ⋆11 fn − fn‖2 − 48‖fn‖2 + 3(2‖fn‖2)2.
The conclusion follows by observing that ‖fn‖2 → ν by assumption, and then by
applying Theorem 2.6. �

4.5. Proof of Theorem 2.13. Proof of Part A. According to Lemma 2.11, since each

F̃ ′
n is completely degenerate, one has that F̃ ′

n = I2(fn), where fn = hn/σ(n), and
the double integral is performed with respect to the compensated Poisson measure
η̂n = ηn − µn. It follows that the estimate (2.12) is a direct consequence of Peccati
et al. (2010, Theorem 4.2). Using formulae (4.12) and (4.13), we deduce that

E[I42 (fn)] = 16× 3!‖fn ⋆̃01fn‖2 + 16‖fn ⋆12 fn‖2 + 16‖fn ⋆11 fn‖2

+2‖4fn ⋆11 fn + 2f2
n‖2 + 3(2‖fn‖2)2,

where the norms and contractions are of course taken with respect to the measure
µn. Since 3(2‖fn‖2)2 converges to 3 by assumption, we deduce that, if (2.11)

is verified, then the right-hand side of (2.12) converges to zero, and therefore F̃ ′
n

converges in distribution to N . To conclude, observe that the estimates contained in

Dynkin and Mandelbaum (1983, pp. 744-745) yield that E[(F̃ ′
n − F̃n)

2] = O(n−1/2)
as n → ∞, so that the estimate (2.13) follows from the elementary inequality

dW (F̃n, N) ≤ dW (F̃ ′
n, N) + [E(F̃ ′

n − F̃n)
2]1/2.

Proof of Part B. Again in view of Lemma 2.11 and of the complete degeneracy
of each F ′

n, we deduce that F ′
n = I2(hn), where the double integral is again with

respect to the compensated Poisson measure corresponding to ηn. The estimate
(2.15) is therefore a consequence of Theorem 2.6, and the fact that the distribution

of F̃ ′
n converges to Γν is a direct consequence of Proposition 2.9 in the case hn = fn.

The conclusion follows once again from the fact that E[(F ′
n − Fn)

2] = O(n−1/2) as
n → ∞, in such a way that (2.16) follows from the triangle inequality

d3(F̃n,Γν) ≤ d3(F̃
′
n,Γν) + [E(F̃ ′

n − F̃n)
2]1/2.

This completes the proof. �

4.6. Proof of Theorem 2.17. According to Lachièze-Rey and Peccati (2013b, The-
orem 7.3), one has that

F̃ ′
n = I2(hn) +Rn,

where hn = h2/n = n−1
∑ν

i=1 ei ⊗ ei, the double integral is realized with respect
to the compensated Poisson measure η̂n = ηn − nµ, and Rn is a residual sequence
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of random variables such that

E[R2
n] = O(1/n), as n → ∞.

It is immediate to verify that: (a)
( ∫

Z h4
n dµ

2
n

)1/4
= O(1/

√
n) as n → ∞, (b)

hn⋆
1
1hn = hn (where the contraction is realized with respect to µn), (c) ‖hn⋆

1
2hn‖ =

O(n−1/2) as n → ∞ (since hn ⋆12 hn(x) = n−1
∑ν

i=1 ei(x)
2). The estimates are

therefore a consequence of Theorem 2.13-(B), as well as of the estimates E[(F ′
n −

Fn)
2] = O(n−1/2) as n → ∞ and

d3(F̃n,Γν) ≤ d3(F̃
′
n,Γν) + [E(F̃ ′

n − F̃n)
2]1/2.

This completes the proof. �

4.7. Proof of Theorem 2.20. We start with some general preliminaries which will
be specialized below.

Let F
(1)
n , . . . , F

(d)
n be centered square-integrable functionals of the Poisson mea-

sure η in the domain of the derivative operator D. For i ∈ {1, . . . , d} let us define

α(i)
n :=E|2(F (i)

n + νi)+ − 〈DF (i)
n ,−DL−1F (i)

n 〉|

+ E

∫

Z

|DzF
(i)
n |2|DzL

−1F (i)
n |µn(dz)

+ E

∫

Z

(Dz1{F
(i)
n >−νi}

)(DzF
(i)
n )|DzL

−1F (i)
n |µn(dz),

(4.14)

and for i 6= j ∈ {1, . . . , d} put

β(i,j)
n := E|〈DF (i)

n , DL−1F (j)
n 〉|, (4.15)

γ(i,j)
n := E

∫

Z

|DzF
(i)
n |2|DzL

−1F (j)
n |µn(dz).

We estimate the distance between (the law of) Fn :=
(
F

(1)
n , . . . , F

(d)
n

)
and (that of)

Γ :=
(
G1, . . . , Gd

)
by d(Fn,Γ) = sup |Eφ(Fn)−Eφ(Γ)|, where the supremum runs

over all functions φ : Rd → R whose partial derivatives up to order 3 are bounded,

continuous and satisfy ‖ · ‖∞ ≤ 1. We notice that if d(Fn,Γ) → 0 then Fn
d→ Γ as

n → ∞.

Lemma 4.4. There exist constants K1 and K2 such that

d(Fn,Γ) ≤ K1

d∑

i=1

α(i)
n +K2

d∑

i,j=1

i6=j

(
β(i,j)
n + γ(i,j)

n

)
.

Proof : The technique adopted here is similar to the one used in the proof of the
main result of Bourguin and Peccati (2012). To keep the argument more transparent
and the formulas simpler we restrict ourselves to the case d = 2, the general case

can be dealt with similarly. So, Fn = (F
(1)
n , F

(2)
n ) and Γ = (G1, G2) and we have

to show that

d
(
(F (1)

n , F (2)
n ), (G1, G2)

)
≤K1

(
α(1)
n +α(2)

n

)
+K2

(
β(1,2)
n +β(2,1)

n +γ(1,2)
n +γ(2,1)

n

)
. (4.16)
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To accomplish this task, we shall provide uniform estimates on |Eφ(F (1)
n , F

(2)
n ) −

Eφ(G1, G2)|. First write

|Eφ(F (1)
n , F (2)

n )−Eφ(G1, G2)| ≤ |E[φ(F (1)
n , F (2)

n )]− E[φ(G1, F
(2)
n )]|

+ |E[φ(G1, F
(2)
n )]− E[φ(G1, G2)]| =: |T1|+ |T2|.

We first deal with T2. Conditioning on G1, we are in a one-dimensional situation
and can proceed as in the proof of Theorem 2.1. This shows that T2 contributes

the term α
(2)
n to the bound (4.16). We now consider the term T1 and write LU for

the law of a random object U . Rewriting yields

T1 =

∫ (
φ(x, y)−

∫
φ(g, y)LG1(dg)

)
L
(F

(1)
n ,F

(2)
n )

(
d(x, y)

)
.

For fixed y we consider the term in brackets as the left-hand side of a Stein-equation
for the Γν1-distribution so that

∫ (
φ(x, y) −

∫
φ(g, y)LG1(dg)

)
L
(F

(1)
n ,F

(2)
n )

(
d(x, y)

)

=

∫
2(x+ ν1)+h

′
y(x)− xhy(x)L(F

(1)
n ,F

(2)
n )

(
d(x, y)

)
,

(4.17)

where, for fixed y, hy(x) is the solution of the Stein-equation associated with the

test function x 7→ φ(x, y). We now consider the bivariate function ĥ(x, y) := hy(x).
Using the smoothness assumptions on φ together with the explicit representation

ĥ(x, y) =

{
− 1

x

(
φ(x, y)− E[φ(G(ν1), y)]

)
: x ≤ −ν1

1
2(x+ν1)+gν1(x)

∫ x

−ν1

(
φ(z, y)− E[φ(G(ν1), y)]

)
gν1(z) dz : x > −ν1,

(recall the discussion preceding the proof of Theorem 2.1 and notice that gν1( · )
stands for the density of the law Γν1) we deduce the following facts: (i) the mapping

x 7→ ĥ(x, y) (for fixed y) is twice differentiable on R\{−ν} (and it also admits right

and left first derivatives at x = −ν), and (ii) the mapping y 7→ ĥ(x, y) (for fixed
x) is twice differentiable on R. All the involved derivatives are bounded by a finite
constant only depending on ν1. Note that, in order to establish the estimates on

y 7→ ĥ(x, y), one has to take derivatives under the integral and expectation signs,
which is allowed thanks to the assumptions on φ.

After these technical considerations we observe that (4.17) may be expressed in

terms of ĥ as
∫

2(x+ ν1)+∂1ĥ(x, y)− xĥ(x, y)L
(F

(1)
n ,F

(2)
n )

(
d(x, y)

)

= E
[
2(F (1)

n + ν1)+∂1ĥ(F
(1)
n , F (2)

n )− F1ĥ(F
(1)
n , F (2)

n )
]

= E
[
2(F (1)

n + ν1)+∂1ĝ(F
(1)
n , F (2)

n )− 〈Dĥ(F (1)
n , F (2)

n ),−DL−1F (1)
n 〉

]
,

(4.18)

where ∂1 stands for the partial derivative with respect to the first coordinate and
where we have applied the integration by parts formula (3.4) of Malliavin calculus in

exactly the same way as in the proof of Theorem 2.1. Using the notation F
(i)
n,z(η) =
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F
(i)
n (η + δz)− F

(i)
n (η) for i ∈ {1, 2} and z ∈ Z, we may write

Dzĥ(F1, F2) = ĥ(F (1)
n,z , F

(2)
n,z)− ĥ(F (1)

n , F (2)
n )

=
(
ĥ(F (1)

n,z , F
(2)
n,z)− ĥ(F (1)

n,z , F
(2)
n )

)
+
(
ĥ(F (1)

n,z , F
(2)
n )− ĥ(F (1)

n , F (2)
n )

)

=: S1 + S2

Thanks to the properties of ĥ described above, we find that

S1 = ∂2ĥ(F
(1)
n,z , F

(2)
n )DzF

(2)
n +R(1)(DzF

(2)
n )

and

S2 = ∂1ĥ(F
(1)
n , F (2)

n )DzF
(1)
n +R(2)(DzF

(1)
n ),

where R(1) and R(2) are such that

|R(1)(DzF
(2)
n )| ≤ K

(1)
1 |DzF

(2)
n |2

and

|R(2)(DzF
(1)
n )| ≤ K

(2)
1 |DzF

(1)
n |2 +K

(2)
2 (Dz1{F

(1)
n >−ν1}

)(DzF
(1)
n ),

where ∂11 and ∂22, respectively, denote the second derivative with respect to the first

and second coordinate and where K
(1)
1 ,K

(2)
1 ,K

(2)
2 are finite constants. Combining

this with (4.18) and taking the supremum over all φ, we obtain the contributions

α
(1)
n , β

(2,1)
n and γ

(2,1)
n in (4.16). Inverting the role of F

(1)
n and F

(2)
n in the previous

discussion gives the bound (4.16), with constants K1 and K2 only depending on
(ν1, ν2). �

Proof of Theorem 2.20: Let us define the random vector

In :=
(
Iq1(f

(i)
n ), . . . , Iqd(f

(d)
n )

)
.

We shall prove that d(In,Γ) → 0 as n → ∞. Lemma 4.4 implies that for this

it is sufficient to check that α
(i)
n → 0, β

(i,j)
n → 0 and that γ

(i,j)
n → 0 as n → ∞

for any combination of i and j. Under the assumptions in the statement, writing

F
(i)
n = Iqi(f

(i)
n ) one has the following three facts for every i = 1, . . . , d: (a) α

(i)
n → 0,

as n → ∞, (b) as n → ∞,

E

∫

Z

(DzF
(i)
n )4 µn(dz) → 0,

and (c) the sequence

E

∫

Z

(DzF
(i)
n )2 µn(dz) = q2i E

∫

Z

(DL−1F (i)
n )2 µn(dz), n ≥ 1,

is bounded. An application of the Cauchy-Schwarz inequality yields therefore that

γ
(i,j)
n → 0 for any allowed choice of i and j. To check the fact that β

(i,j)
n → 0, we

apply once more the Cauchy-Schwarz inequality to obtain

β(i,j)
n ≤ q2i

(
E

(∫

Z

Iqi−1

(
f (i)
n (z, · )

)
Iqj−1

(
f (j)
n (z, · )

)
µn(dz)

)2
)1/2

.

We use now the general product formula (3.5) for multiple integrals to express

Iqi−1

(
f (i)
n (z, · )

)
Iqj−1

(
f (j)
n (z, · )

)

as a sum of multiple integrals and the stochastic version of Fubini’s theorem allowing
us to exchange deterministic with stochastic integration; see Peccati and Taqqu
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(2011, Theorem 5.13.1). By assumption, qi < qj . Using the triangle inequality
several times yields

(
E

(∫

Z

Iqi−1

(
f (i)
n (z, · )

)
Iqj−1

(
f (j)
n (z, · )

)
µn(dz)

)2
)1/2

≤
qi∑

r=1

r∑

ℓ=1

K(r, ℓ, qi, qj)
1/2 ‖f (i)

n ⋆̃
ℓ
rf

(j)
n ‖,

with the constant K(r, ℓ, qi, qj) given by

K(r, ℓ, qi, qj) = (r − 1)!

(
qi − 1

r − 1

)(
qj − 1

r − 1

)(
r − 1

ℓ− 1

)
(qi + qj − r − ℓ)!.

The proof is completed by observing that (see Peccati and Zheng (2010, Lemma
2.9))

‖f (i)
n ⋆̃

ℓ
rf

(j)
n ‖ ≤ ‖f (i)

n ⋆ℓr f
(i)
n ‖ ‖f (j)

n ⋆ℓr f
(j)
n ‖ → 0

for all choices of i, j, because of the assumptions in the theorem and the fact that
2qi 6= qj for i 6= j. �

4.8. Proof of Theorem 2.21. We start again with some preliminaries. Let

F (1)
n , . . . , F (d1+d2)

n

be square integrable functionals of the Poisson measure η. For i ∈ {d1+1, . . . , d1+
d2} let us define

δ(i)n := E|1 − 〈DF (i)
n ,−DL−1F (i)

n 〉|+ E

∫

Z

|DzF
(i)
n |2|DzL

−1F (i)
n |µn(dz)

and for i ∈ {1, . . . , d1} let α
(i)
n be as in (4.14) and for i, j ∈ {1, . . . , d1 + d2} let

β
(i)
n and γ

(i)
n be as in (4.15). We will estimate the distance between (the law of)

Fn :=
(
F

(1)
n , . . . , F

(d1+d2)
n

)
and (that of) the hybrid vector

H :=
(
G1, . . . , Gd1 , Nd1+1, . . . , Nd2

)

by the hybrid distance dh(Fn,H) = sup |Eφ(Fn) − Eφ(H)|, where the supremum
runs over all functions

φ : Rd1+d2 → R whose partial derivatives up to order 3 are bounded, continuous
and satisfy ‖ · ‖∞ ≤ 1.

Lemma 4.5. There exist constants K1, K2 and K3 such that

dh(Fn,H) ≤ K1

d1∑

i=1

α(i)
n +K2

d1+d2∑

i=d1+1

δ(i)n +K3

d1+d2∑

i,j=1

i6=j

(
β(i,j)
n + γ(i,j)

n

)
.

Proof : This follows along the same lines of argumentation as the proof of Lemma
4.4. For this reason the details are omitted. �

Proof of Theorem 2.21: We first use Lemma 4.2 to see that because of (2.17),

α
(i)
n → 0 for any i ∈ {1, . . . , d1}. Next, we apply Peccati et al. (2010, Theorem

5.1) to infer that under (2.18), δ
(n)
i → 0 as n → ∞ for any i ∈ {d1,+1, . . . , d1+d2}.

The remaining discussion of β
(i,j)
n and γ

(i,j)
n is very similar to the multivariate pure
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Gamma case so that β
(i,j)
n → 0 and γ

(i,j)
n → 0 for all i 6= j ∈ {1, . . . , d1 + d2}. In

view of Lemma 4.5, this completes the proof. �

4.9. Proof of Theorem 2.23. We consider a measurable bounded test function φ :
R× Z+ → R such that φ has uniformly bounded derivatives up to the order three
in the first variable. By a slight variation of the arguments leading to the proof
of Bourguin and Peccati (2012, Theorem 2.1) one has that there exists a universal
constant K > 0 (independent of n) such that

∣∣E[φ(Iq(fn), Hn)]− E[φ(G,P )]
∣∣ ≤ K (An +Bn + Cn +Dn),

where (similar to αn etc. above)

An := E
∣∣2(Fn + ν)+ − 〈DFn,−DL−1Fn〉

∣∣

+

∫

Z

E[|DzFn|2|DzL
−1Fn|]µn(dz),

Bn :=
∣∣E[Hn]− λ

∣∣ + E
∣∣λ− 〈DHn,−DL−1Hn〉

∣∣

+

∫

Z

E
∣∣DzHn(DzHn − 1)DzL

−1Hn

∣∣µn(dz),

Cn := E[〈|DHn|, |DIq(fn)|〉]
and

Dn := E

∫

Z

(Dz1{Iq(fn)>−ν})(DzIq(fn))|DzL
−1Hn|µn(dz)

In view of Theorem 2.6 (as well as of the estimates leading to its proof), the
assumptions in the statement imply that An +Bn +Dn → 0, and, moreover, that

E

∫

Z

(DzIq(fn))
4 µn(dz) → 0 as n → ∞.

The conclusion is obtained by observing that, by virtue of Hölder’s inequality, and
since DHn takes values in Z,

Cn ≤
(
E

∫

Z

(DzIq(fn))
4 µn(dz)

)1/4

×
(
E

∫

Z

(DzHn)
4/3 µn(dz)

)3/4

≤
(
E

∫

Z

(DzIq(fn))
4 µn(dz)

)1/4

×
(
E

∫

Z

(DzHn)
2 µn(dz)

)3/4

→ 0,

where we have implicitly used assumption (2.19). �
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