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More coherent excitatory stimuli are known to have a competitive ad-
vantage over less coherent ones. We show here that this advantage is
amplified greatly when the target includes inhibitory interneurons act-
ing via GABAAA-receptor-mediated synapses and the coherent input os-
cillates at gamma frequency. We hypothesize that therein lies, at least in
part, the functional significance of the experimentally observed link be-
tween attentional biasing of stimulus competition and gamma frequency
rhythmicity.

1 Introduction

Biasing of competition in favor of an attended stimulus is known to be
correlated with enhanced gamma band (30–80 Hz) synchronization (Fries,
Schröder, Roelfsema, Singer, & Engel, 2002; Gruber, Müller, Keil, & Elbert,
1999; Taylor, Mandon, Freiwald, & Kreiter, 2005). We propose here a possible
link between gamma rhythmicity and selectivity: a coherent input oscillat-
ing at gamma frequency can be highly effective at preventing less coherent
competing inputs from being noticed when the target network includes in-
hibitory interneurons acting via GABAA-receptor mediated synapses. Two
factors contribute to this effect. First, inhibition in effect raises the leakiness
of the target neurons, thereby greatly amplifying the known (Murthy &
Fetz, 1994; Singer, 1999) advantage of a more coherent excitatory input A
over a less coherent competitor B. A highly coherent stimulus can break
through the inhibition generated in the target network, while less coherent
competitors cannot. Second, when a gamma frequency train Aof excitatory
input pulses entrains a target network of excitatory and inhibitory model
neurons, the timing of the inhibitory spike volleys in the target favors A
over any competing pulse train B that has a different frequency or phase.

Our work on this subject was inspired by a recent paper by Fries (2005),
who suggested that phase locking with the target should lend a competitive
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advantage to a stimulus. This idea is related to our second point above; we
will show it to be valid (at least in our model) in the presence of inhibition
in the target but not in its absence.

In section 2, we describe our models. In section 3.1, we present results
of numerical simulations demonstrating the large competitive advantage
of more coherent excitatory inputs to networks of excitatory and inhibitory
model neurons over less coherent ones. In section 3.2, we analyze how
synaptic inhibition within the target favors coherent inputs by effectively
raising the leakiness of the target neurons—our first point above. In section
3.3, we discuss how the timing of inhibitory population spikes within the
target neuron favors an entraining input over others—our second point. In
section 3.4, we explain why suppression of a less coherent input train B by
a more coherent input train A requires that A oscillate at least at gamma
frequency. We conclude section 3 with a brief discussion in section 3.5 of the
robustness of our results with respect to parameter changes, heterogeneity
in neuronal and network properties, and noise. Although incoherent input
is less effective at eliciting responses, it can be effective at raising the ex-
citability of target cells. In particular, an incoherent distractor may enable
the inhibitory cells in the target network to fire. It is therefore possible for
the incoherent distractor itself to enable the mechanism that prevents it
from entraining the target network. This is illustrated by a computational
example in section 4. We summarize and discuss our results in section 5.

2 Models

The mechanisms studied here require no currents other than those in the
classical Hodgkin-Huxley model (Hodgkin & Huxley, 1952). In general, cor-
tical neurons are capable of producing many other ionic currents. Some—
for instance, hyperpolarization-activated inward currents such as Ih (Lüthi
& McCormick, 1998)—are probably negligible during the sort of driven
gamma activity considered here, since membrane potentials do not be-
come sufficiently low. Others, for instance depolarization-activated slow
outward currents such as IM, may well be present and are in fact thought to
be modulated by attention (Hasselmo & McGaughy, 2003; Sarter, Givens,
& Bruno, 2001). However, we do not expect the presence of such currents
to alter our main points fundamentally as long as the target neurons fire
in response to input pulses, but not—or much less frequently—otherwise.
Those aspects of the physiology that are important to our study should be
well described by standard Hodgkin-Huxley equations, which in turn can
often be well approximated by reduced equations such as integrate-and-fire
models (Abbott, 1999; Latham, Richmond, Nelson, & Nirenberg, 2000) or
the theta model (Ermentrout & Kopell, 1986; Gutkin & Ermentrout, 1998;
Hoppensteadt & Izhikevich, 1997). In this letter, we primarily use theta
neurons, since they have more realistic input response characteristics than
integrate-and-fire neurons. However, for simplicity and transparency, some
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of our analysis will also be presented for linear integrate-and-fire neurons.
For both theta and integrate-and-fire neurons, we model synapses in the
standard conductance-based way.

2.1 Theta Neurons. In the theta model (Ermentrout & Kopell, 1986;
Gutkin & Ermentrout, 1998; Hoppensteadt & Izhikevich, 1997), a neuron is
represented by a point P = (cos θ, sin θ ) moving on the unit circle. This is
analogous to the Hodgkin-Huxley model, which represents a periodically
spiking space-clamped neuron by a point moving on a limit cycle in a
four-dimensional phase space. In the absence of synaptic coupling, the
differential equation describing the motion of the point P is

dθ

dt
= 1 − cos θ + I (1 + cos θ ). (2.1)

Here t should be thought of as time measured in milliseconds (Börgers &
Kopell, 2005, sec. 2.1) and I as the analog of an external input current.

For a negative constant I , equation 2.1 has the two fixed points:

θ±
0 = ±2 arccos (1/

√
1 − I ). (2.2)

The fixed point θ−
0 ∈ (−π, 0) is stable, and θ+

0 ∈ (0, π) is unstable. As I
increases, the fixed points approach each other. As I crosses 0 from below, a
saddle-node bifurcation occurs: the fixed points collide at θ−

0 = θ+
0 = 0, and

there are no fixed points for I > 0. For a theta neuron, to “spike” means, by
definition, to reach θ = π (modulo 2π ). The transition from I < 0 to I > 0
is the analog of the transition from excitability to spiking in a neuron. In
this letter, we study effects of input coherence and therefore allow I to be a
function of time (see section 2.3).

The theta neuron is equivalent, up to a change of variable, to a quadratic
integrate-and-fire neuron with threshold potential VT = +∞ and reset po-
tential Vreset = −∞. (For a more detailed discussion of this connection, see
section 2.1 of Börgers & Kopell, 2005.)

We turn now to a description of how we model synapses among theta
neurons. To derive the terms in the differential equations that model synap-
tic interactions, we use the connection between the theta neuron and the
quadratic integrate-and-fire neuron mentioned in the previous paragraph.
For the quadratic integrate-and-fire neuron, synapses are modeled in the
standard way: by adding terms of the form

gss(t)(Vrev − V) (2.3)

to the right-hand side of the equation governing V. The gating variable s(t)
rises rapidly when the presynaptic neuron spikes and decays exponentially
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thereafter; our specific choice of s(t) will be stated at the end of this section.
Using the change of variable that leads from the quadratic integrate-and-
fire neuron to the theta neuron, one obtains a model of synapses among
theta neurons (for details, we refer again to Börgers & Kopell, 2005). The
equation of a theta neuron subject to an excitatory synaptic input becomes

dθ

dt
= 1 − cos θ + (I + 12gss(t)) (1 + cos θ ) − gss(t) sin θ, (2.4)

where s(t) is the gating variable associated with the synapse. Similarly, the
equation of a theta neuron subject to an inhibitory synaptic input is

dθ

dt
= 1 − cos θ +

(
I − 3

2
gss(t)

)
(1 + cos θ ) − gss(t) sin θ. (2.5)

The constants 12 and 3/2 in equations 2.4 and 2.5 depend on the synaptic
reversal potentials Vrev (see equation 2.3) assumed in the derivation, but
their precise values do not appear to affect the results of this study in a
qualitative way. When a theta neuron is subject to multiple synaptic inputs
at the same time, the resulting terms are summed:

dθ

dt
= 1 − cos θ +

(
I + 12

∑
i

gs,E,i sE,i (t) − 3
2

∑
j

gs,I, j sI, j (t)
)

(1 + cos θ )

−
( ∑

i

gs,E,i sE,i (t) +
∑

j

gs,I, j sI, j (t)
)

sin θ.

Here the subscripts E and I indicate conductances and gating variables
associated with E-cells (labeled by i) and I-cells (labeled by j), respectively.

In our computational simulations, s(t) is a smooth function governed by

ds
dt

= − s
τD

+ e−η(1+cos θ ) 1 − s
τR

,

where θ is associated with the presynaptic neuron. We always use η =
5 and τR = 0.1. Thus, s rises rapidly (but not instantaneously) toward 1
when θ ≈ π modulo 2π and decays exponentially with time constant τD

otherwise. For E-cells, τD = 2, and for I-cells, τD = 10. Since we think of t
as time measured in milliseconds, these are approximately the decay time
constants associated with AMPA and GABAA receptor-mediated synapses,
respectively. For analytic purposes (in particular in appendices C and D), we
simplify by assuming s(t) to jump to 1 instantaneously when the presynaptic
neuron spikes and to decay exponentially thereafter.
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2.2 Networks. We denote by NE and NI the number of E- and I-cells
in the model network, respectively, and by IE and II the drives to the E-
and I-cells. IE and II may be different for different neurons and will be
time varying (see section 2.3). Connectivity is all-to-all, except in the simu-
lation underlying Figure 10 (see section 3.5.5 and appendix A for details).
We denote by gI E the sum of all conductances associated with inhibitory
synapses acting on a given E-cell; thus, assuming all-to-all connectivity, an
individual I→E synapse has strength gI E/NI . Parameters gI I , gE I , and gE E

are defined similarly. Throughout this letter, we assume that gI E = gI I (but
see the comment at the beginning of section 3.5.1); we denote the common
value of these two parameters by gI .

2.3 External Drives. We use oscillatory external drives of the form

I (t) = C + Q

[ ∞∑
k=−∞

T√
2πσ 2

exp
(

− (t − (ϕ + k)T)2

2σ 2

)
− 1

]
. (2.6)

Here C is the constant component (the temporal average) of I . The term
in brackets, multiplied by the constant Q > 0, is the oscillatory component.
The oscillation period is T , the width of the input pulses is σ , and ϕ is a
phase shift. The frequency of the input is

f = 1000
T

.

The factor of 1000 is needed because we think of T as measured in ms
but want to think of f as measured in Hz, not kHz. The temporal average
of the oscillatory component (the term in brackets on the right-hand side
of equation 2.6) can easily be shown to be zero. The oscillation amplitude
depends on T/σ and rapidly decreases with T/σ ; for small T/σ , one must
therefore choose a large value of Q if one wants a sizable oscillation. Figure 1
shows two examples, one with σ = 2 (sharp pulses, or high coherence) and
the other with σ = 7 (broad pulses, or low coherence).

Each neuron receives two input streams of the form 2.6—one referred to
as the primary stimulus, or input A, and the other as the distractor, or input
B. We use subscripts to indicate the input stream, the type of the neuron
receiving the input (E or I), and the index of the neuron. For instance, the
primary stimulus (stimulus A) to the ith E-cell is denoted by

IA,E,i (t) = CA,E,i

+ QA,E,i


 ∞∑

k=−∞

TA,E,i√
2πσ 2

A,E,i

exp

(
− (t − (ϕA,E,i + k)TA,E,i )2

2σ 2
A,E,i

)
− 1
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Figure 1: Examples of oscillatory inputs of the form 2.6.

and has frequency

f A,E,i = 1000
TA,E,i

.

2.4 Linear Integrate-and-Fire Neurons. For analysis purposes, we will
also use linear integrate-and-fire neurons in this letter. Nondimensionaliz-
ing the membrane potential V by appropriately shifting and scaling, we
may assume in the linear integrate-and-fire model that the resting poten-
tial, in the absence of external drive, is VR = 0 and the spiking threshold is
VT = 1. The time evolution of the membrane potential V below threshold is
then governed by an equation of the form

dV
dt

= −gm V + I. (2.7)

In this equation, V is nondimensional, but t is time, gm is the reciprocal of
the membrane time constant (or equivalently, membrane conductance di-
vided by capacitance), and I is external input current times a (dimensional)
constant.

We model synaptic input to linear integrate-and-fire neurons in the stan-
dard way:

dV
dt

= −gmV + I + gss(t)(Vrev − V). (2.8)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-000.jpg&w=221&h=187
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Figure 2: Periodic input pulses to both the E-cell and the I-cell entraining both
cells. Spikes of the E-cell are indicated by open circles and spikes of the I-cell by
filled circles.

Here Vrev is the reversal potential of the synapse, gs > 0 is the maximum
synaptic conductance divided by capacitance, and s(t) is the gating variable
associated with the synapse.

3 Stimuli Oscillating Coherently at Gamma Frequency Render
Incoherent Competitors Ineffective

3.1 Simulations. We consider a target network consisting of a single
E-cell and a single I-cell, with strong E→I, I→E, and I→I synapses but
no E→E synapses. Figure 2 shows a simulation in which there is a 40 Hz
sequence of tight input pulses A, acting on both target cells equally, without
any distractor B. (The precise parameter values used in this and other
simulations of this letter are listed in appendix A.) The target cells are
entrained by A; their spikes occur shortly after the input pulse arrivals.

We now add a distracting stimulus B, somewhat stronger than A on
average but less coherent, oscillating at 25 Hz. Figure 3A shows the result.
The distractor does not prevent the target network from following A at
40 Hz; it merely makes the rhythm of the target network slightly less regular.
In Figure 3A, the distractor B oscillates more slowly than the primary
stimulus A, and the target network has only two cells. However, very similar
results are obtained for distractors oscillating faster than A(see Figure 3B for
an example and section 3.5.4 for further numerical experiments concerning
the distractor frequency).

One might first think that input A dominates in Figure 3A not because it
is more coherent than input B but simply because its amplitude is greater.
Figure 3C demonstrates that this is not the correct interpretation. The figure
shows a case in which the distractor B is much stronger than A on the
temporal average and even slightly stronger in amplitude. The target is

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-001.jpg&w=275&h=131
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Figure 3: Two-cell target networks, consisting of an E-cell and an I-cell (spike
times indicated by open and filled circles, respectively), driven by a coherently
oscillating primary stimulus (solid) competing with a less coherently oscillating
distractor (dashed). The distractor often has little effect even though its temporal
average is greater than that of the primary stimulus (panel A). The distractor
frequency may be lower than that of the primary stimulus (A) or higher (B).
With strong local inhibition, this effect can even be seen when the distractor is
so strong that its amplitude exceeds that of the primary stimulus (C).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-002.jpg&w=275&h=415
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still entrained by A. The precise parameter values used in the simulation
are listed, as always, in appendix A. The inhibitory synapses are also much
stronger here than in the previous simulation; if they were not strengthened,
then the distractor would indeed be powerful enough in this example to
prevent the entrainment of the target to input A.

We note that in the experiments of Figure 3 (and in all other numerical
experiments of this letter), entrainment of the target by a stimulus means
that the target cells promptly respond with a spike to each pulse of the
stimulus, but do not spike otherwise.

3.2 Inhibition Amplifies the Advantage of Coherent Input by Raising
the Effective Leakiness of the Target Neurons. Coherent (i.e., nearly si-
multaneous) excitatory input pulses targeting a leaky neuron are more
likely to trigger a spike response than incoherent ones (Murthy & Fetz,
1994; Singer, 1999). The advantage of coherent input can be amplified by
synaptic inhibition, which can significantly raise the leakiness of the tar-
get neuron (Häusser & Clark, 1997; Funabiki, Koyano, & Ohmori, 1998;
Pouille & Scanziani, 2001; Grande, Kinney, Miracle, & Spain, 2004). Here
we present numerical and analytic results for theta and integrate-and-fire
neurons confirming that this is an important effect.

3.2.1 Numerical Results for Theta Neurons. Figure 4A demonstrates that
the well-known advantage of more coherent excitatory input pulses over
less coherent ones alone falls far short of explaining the results of section
3.1. The figure shows the result of repeating the experiment of Figure 3A
without the I-cell: the distractor now has a strong effect. Of course, if the
distractor is reduced in strength far enough, it is ignored by the target even
in the absence of inhibition. For instance, keeping CB and QB equal to each
other, one must reduce the common value of those two parameters to about
0.008 for the distractor to remain ineffective (see Figure 4B).

The timing of inhibition can play a role in suppressing the response
to the distractor B (see section 3.3), but the presence of inhibition alone
often suffices to give the more coherent A a decisive advantage over the
less coherent B. For example, in the simulation of Figure 3A, the synaptic
gating variable sI (t) associated with the I-cell oscillate, but if one replaces,
in the code, sI (t) by its temporal average, the resulting figure is nearly
indistinguishable from Figure 3A.

3.2.2 Analysis for Linear Integrate-and-Fire Neurons. We next present an
analysis of the role of synaptic inhibition in lending an advantage to the
more coherent input. To make our arguments as simple and transparent
as possible, we begin with analysis for linear integrate-and-fire neurons,
normalized as in equation 2.7. However, in section 3.2.3 and appendix B,
we also outline the analysis for theta neurons.
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Figure 4: (A) The fact that coherent stimuli are more powerful than incoherent
ones does not, by itself, explain Figure 3A. When inhibition is removed, the
distractor has a strong effect. (B) For a weakly coherent distractor to remain
ineffective in the absence of local inhibition, it must have very low strength.

Our starting point is a simple calculation demonstrating the intuitive and
well-known fact that coherence makes excitatory input to an isolated target
neuron more effective. The purpose of presenting this calculation here is to
set the stage for a similar calculation with synaptic inhibition added.

Suppose that V(0) = 0 and that during a brief time interval [0, τJ ], an
input current J > 0 is added to the right-hand side of equation 2.7:

dV
dt

= −gmV + J for 0 ≤ t ≤ τJ . (3.1)

We denote by

q = τJ J (3.2)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-003.jpg&w=275&h=273
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the total amount of charge injected and ask whether the input pulse suffices
to elicit a spike. Of course, the answer depends on τJ and J , or equivalently,
using equation 3.2, on τJ and q . The solution of equation 3.1 with V(0) = 0
is

V(t) = J
gm

(1 − e−gmt) = q
gmτJ

(
1 − e−gmt) ,

so a spike is elicited if and only if

q
gmτJ

(1 − e−gmτJ ) ≥ 1

or

q ≥ gmτJ

1 − e−gmτJ
. (3.3)

To interpret this inequality, we note that the membrane time constant of
our model neuron is τm = 1/gm. (See the discussion of physical dimensions
following equation 2.7). Therefore, the quantity gmτJ appearing in equation
3.3 equals τJ /τm, the pulse duration measured in membrane time constants.
Since x/(1 − e−x) is an increasing function of x > 0, equation 3.3 shows that
the total charge needed to elicit a spike is an increasing function of the
pulse duration, measured in membrane time constants. The advantage of
briefer, higher-amplitude input pulses over broader, lower-amplitude ones
is amplified when the neuron is made leakier, that is, when τm is lowered.

Inequality 3.3 defines the region Sgm of pairs (q , τJ ) for which a spike is
elicited. For gm = 0.2, Sgm is depicted in Figure 5A; it is the union of the
light and dark shaded regions in the figure. (The significance of the two
grades of shading will be explained shortly.) The fact that the boundary
of the shaded region (indicated in bold in Figure 5) is slanted to the right
means that more charge q is needed to elicit a spike when τJ is greater; in
other words, excitatory input is less effective when delivered in a broader
pulse.

The advantage of more coherent input pulses over less coherent ones
is raised by synaptic inhibition. To understand this, we now consider an
integrate-and-fire neuron subject to constant synaptic inhibition:

dV
dt

= −gmV + gs(Vrev − V)

(compare equation 2.8 with Vrev < 1). We neglect the temporal fluctuations
of the gating variable s(t) here. This allows us to carry out an analytic
calculation, and the result will confirm that the temporal fluctuations of
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Figure 5: Injection of a square input pulse of total charge q and duration τJ into
a neuron at rest elicits a spike if and only if (q , τJ ) lies in the shaded regions.
With constant synaptic inhibition (gs = 0.2) added, (q , τJ ) must lie in the dark
shaded region for a spike to be elicited. (A) Linear integrate-and-fire neuron
with gm = 0.2, Vrev = −0.1. (B) Theta neuron with I = −0.1. The boundaries are
slanted to the right, so it requires less charge to elicit a spike with a brief pulse
than with a broad one. This effect is greatly amplified by inhibition.

s(t), while helpful (see section 3.3), are not needed for the suppression of
the response to the less coherent distractor.

The extra term changes the resting potential from zero to gs Vrev/(gm + gs).
Thus, we assume now that V(0) = gs Vrev/(gm + gs). As before, we add an
input pulse during the time interval [0, τJ ]:

dV
dt

= −gmV + gs(Vrev − V) + q
τJ

for 0 ≤ t ≤ τJ . (3.4)

Again we ask whether the input pulse suffices to elicit a spike. The solution
of equation 3.4 with V(0) = gs Vrev/(gm + gs) is

V(t) = gs Vrev

gm + gs
e−(gm+gs )t + q/τJ + gs Vrev

gm + gs

(
1 − e−(gm+gs )t

)
,

so a spike is elicited if and only if

gs Vrev

gm + gs
e−(gm+gs )τJ + q/τJ + gs Vrev

gm + gs

(
1 − e−(gm+gs )τJ

)
≥ 1,

which is equivalent to

q ≥ τJ
gm + gs − gs Vrev

1 − e−(gm+gs )τJ
. (3.5)

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-004.jpg&w=275&h=106
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Inequality 3.5 defines the region of pairs (q , τJ ) for which a spike is
elicited by the input pulse. This region is now dependent on gm, gs , and
Vrev, and we therefore denote it by Sgm,gs ,Vrev . The dark shaded region in
Figure 5A represents Sgm,gs ,Vrev with gm = 0.2, gs = 0.2, Vrev = −0.1. Notice
that the boundary of the dark shaded region is slanted more strongly than
the boundary of the union of the two shaded regions. This means that the
amount of charge q needed to elicit a spike depends more strongly on τJ

(that is, on coherence) in the presence of inhibition than in its absence.
If the reversal potential Vrev were equal to the resting potential 0, then

inequality 3.5 would simply become

q ≥ (gm + gs)τJ

1 − e−(gm+gs )τJ
. (3.6)

Comparing inequalities 3.3 and 3.6, we see that in this case, inhibition simply
has the effect of raising the effective leak conductances of the neuron from
gm to gm + gs .

Interestingly, the advantage of briefer, stronger pulses over longer,
weaker ones is in fact independent of the reversal potential Vrev. To see
this, suppose that τ

(1)
J > τ

(2)
J > 0. The minimum charge needed to elicit a

spike is

q (1)
min = τ

(1)
J

gm + gs − gs Vrev

1 − e−(gm+gs )τ (1)
J

if τJ = τ
(1)
J and

q (2)
min = τ

(2)
J

gm + gs − gs Vrev

1 − e−(gm+gs )τ (2)
J

if τJ = τ
(2)
J . The ratio q (1)

min/q (2)
min can be thought of as the factor by which

efficiency of the input pulse increases when its duration is decreased from
τ

(1)
J to τ

(2)
J . This ratio equals

τ
(1)
J

τ
(2)
J

1 − e−(gm+gs )τ (2)
J

1 − e−(gm+gs )τ (1)
J

regardless of the value of Vrev.

3.2.3 Analysis for Theta Neurons. In this section, we sketch how the analy-
sis of section 3.2.2 can be repeated for theta neurons; some additional details
are provided in appendix B. We consider a theta neuron (see equation. 2.1)
driven below threshold, that is, with I < 0. We then add an input current
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J = q/τJ during a time interval of duration τJ , and ask whether this current
will elicit a spike. That is, we ask whether the solution θ of the initial value
problem

dθ

dt
= 1 − cos θ +

(
I + q

τJ

)
(1 + cos θ ) (3.7)

θ (0) = θ−
0 (3.8)

satisfies the inequality θ (τJ ) > θ+
0 . Here θ±

0 denote the fixed points of the
theta neuron (see equation 2.2). We recall that θ−

0 is the stable fixed point
and θ+

0 the unstable one. We denote by SI the set of pairs (q , τJ ) for which a
spike is elicited. The union of the light and dark shaded regions in Figure 5B
represents SI for I = −0.1.

As in section 3.2.2, we now add constant synaptic inhibition to the theta
neuron described by equation 2.1:

dθ

dt
= 1 − cos θ +

(
I − 3

2
gs

)
(1 + cos θ ) − gs sin θ (3.9)

(compare equation 2.5). It is not hard to show (see appendix B) that
equation 3.9 has a unique stable fixed point θ−

0,gs
∈ (−π, 0) and a unique

unstable fixed point θ+
0,gs

∈ (0, π ) for all I and gs with I − (3/2)gs < 0. We
then add again the input J = q/τJ during a time interval of duration of τJ

and ask if it suffices to solicit a spike. Specifically, we consider the initial
value problem:

dθ

dt
= 1 − cos θ +

(
I + q

τJ
− 3

2
gs

)
(1 + cos θ ) − gs sin θ,

θ (0) = θ−
0,gs

.

We denote by SI,gs the region of pairs (q , τJ ) for which θ (τJ ) > θ+
0,gs

. To com-
pute SI,gs numerically is easy. To compute it analytically is straightforward
but tedious; we omit the details. The dark shaded portion of Figure 5B
represents SI,gs for I = −0.1 and gs = 0.2. As before, inhibition causes the
boundary of S to be much more slanted to the right; this demonstrates
again that inhibition greatly amplifies the advantage of briefer, stronger
input pulses over broader, weaker ones.

3.3 The Timing of Inhibitory Pulses Lends an Advantage to the Input
That Entrains the Target. As noted earlier, entrainment of the target by a
stimulus means, in all the experiments of this letter, that the target cells
promptly respond with a spike to each pulse of the stimulus, but do not
spike otherwise. This implies that inhibition is relatively weak when the
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Figure 6: (A) A timing effect. Once input B synchronizes with the target, input
A cannot break through even though its characteristics are identical with those
of B except for phase. (B) The timing effect of panel A disappears when input
B is made significantly less coherent than input A.

pulses of A arrive and usually stronger when the pulses of B arrive. (A
raises inhibition immediately after it gives an input pulse to the target. This
inhibition then decays, reaching its lowest value just before the arrival of
the next input pulse from A.) Sometimes this effect alone determines which
stimulus controls the target. Figure 6A shows an example. The pulses of B in
this example are identical with those of A, but A is phase delayed. The first
pulse, at the beginning of the simulation, is a pulse of B, and this gives the
input sequence B the advantage over A. As a result, the target follows B and
ignores A. However, as Figure 6B illustrates, this timing effect disappears as
soon as the distractor B is somewhat less coherent than (but still as strong
as) the primary stimulus A. We have also tried the experiment of Figure 6B
with other phase shifts and have found similar results.

We note that synchronization with the target would give the stimulus A
no advantage at all if there were no inhibition in the target network. In fact,

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-005.jpg&w=275&h=273
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Figure 7: Phase response curves. A delta pulse of input of strength ε, finding
its target at phase φ, advances the phase of the target by ερ(φ). (A) Theta
neuron, no inhibition, I = 0.02; ε = 0.1 (solid), and ε → 0 (dashed). (B) Same
as panel A, but with a decaying inhibitory pulse added (g = 0.25, τI = 10).
(C) Integrate-and-fire neuron, no inhibition, gm = 0.1, I = 0.11; ε = 0.1 (solid),
and ε → 0 (dashed). (D) Same as panel C, but with a decaying inhibitory pulse
added (g = 0.25, τI = 10).

the noninfinitesimal phase response curve of a theta neuron has its peak
in the earlier half of the period, and the infinitesimal phase response curve
has its peak in the middle of the period (see appendix C and Figure 7A).
Inhibition shifts the peaks of the phase response curves to the right and
creates a time interval at the beginning of the period during which the
target is almost entirely input insensitive (see appendix C and Figure 7B).
So in the presence of local inhibition, the effectiveness of an excitatory input
pulse is indeed greatest for pulses arriving near the end of the period. We
note that the effect on the shape of the phase response curve of the theta
neuron of synaptic inhibition resembles that of spike frequency adaptation
(Gutkin, Ermentrout, & Reyes, 2005, Figure 4B).

Of course, the discussion in the preceding paragraph depends on the
neuronal model. For instance, for a linear integrate-and-fire neuron, the
phase response curve peaks near the end of the period even in the absence
of local inhibition (see appendix D and Figure 7C). As for the theta model,

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-006.jpg&w=275&h=226
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Figure 8: If A oscillates far below gamma frequency, the distractor B easily
disrupts the rhythm in the target. Notice that this figure shows a 400 ms time
window, whereas others in this letter show a 200 ms time window.

local inhibition shifts the peak of the phase response curve farther to the
right and creates a time interval of input insensitivity near the beginning of
the period (see appendix D and Figure 7D).

3.4 The Significance of the Gamma Frequency. The period of a gamma
oscillation is the time that it takes for GABAA-receptor-mediated inhibition
to decay by approximately an order of magnitude. The mechanisms de-
scribed here work only if the stimulus A oscillates at least at a frequency
in the gamma range. If the frequency is much lower, inhibition decays too
much between the arrivals of the pulses of A. This is illustrated by Figure 8,
which shows the results of a simulation in which the coherent pulses of
A arrive at 20 Hz and the less coherent and weaker distractor B oscillates
at 12 Hz. (As always, the parameter values are listed in appendix A.) The
target is significantly affected by B.

3.5 Parameter Dependence. The numerical experiments that we have
presented depend on many parameters, and it would be impossible to
study the effects of varying these parameters simply by exhaustive search.
However, we highlight the qualitative role played by the most important
parameters here and demonstrate that stimulus selection based on gamma
rhythmicity is a robust phenomenon.

3.5.1 Strength of Inhibition. Throughout this letter, we assume that the
E- and I-cells receive equally strong inhibition: gI E = gI I = gI . This as-
sumption is natural because the distractor B is assumed to target E- and
I-cells indiscriminately. If the distractor did not target the I-cells, then gI I

could in fact be taken to be zero.

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-007.jpg&w=275&h=131
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Figure 9: Parameter dependence of stimulus selection based on gamma rhyth-
micity. Frequencies of target E- and I-cells (circles and triangles) as functions
of inhibitory conductance (A–C) and distractor frequency (D). (B) An example
in which the distractor is far stronger on the average than the primary stimu-
lus. (C) A case in which the coherence contrast between primary stimulus and
distractor is weak. See the text for a more detailed discussion.

The inhibitory conductance gI has to be strong enough to protect the
target against the distractor B but not too strong to prevent its entrainment
by A. To show that there is a broad range of values gI satisfying both con-
straints, we repeat the experiment of Figure 3A varying gI , with all other
parameters fixed as in Figure 3A. Figure 9A shows the frequencies of the E-
and I-cells of the target (indicated as circles and triangles, respectively) as
functions of gI . For gI ∈ [0.2, 0.525], we see a plateau representing entrain-
ment by stimulus A: both target cells spike at 40 Hz. We now consider how
the location and width of this plateau change as the distractor strength and
coherence are varied.

3.5.2 Distractor Strength. Changes in the distractor strength tend to shift
the plateau of entrainment seen in Figure 9A without affecting its width
very much. In Figure 9B, we show the same experiment as in Figure 9A but
with the distractor strength doubled: CB = QB = 0.12. Since CA = 0.04, this
means that stimulus B is now, on the average, three times stronger than
stimulus A. Nevertheless, the more coherent gamma frequency stimulus A
still prevails over a wide range of values of gI . In the experiments of this

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-008.jpg&w=275&h=214
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letter, the temporally averaged strength of the stimulus A is not larger (and
sometimes smaller) than that of the distractor B. If A were not just more
coherent than B but also of greater average strength, the range of values of
gI for which the target is entrained by A would broaden.

3.5.3 Distractor Coherence. Even when the contrast in coherence between
A and B is relatively modest, there is a range of values of gI in which
stimulus A prevails. Figure 9C demonstrates this. Here the parameters are
again chosen as in Figure 3A, but σB has been lowered to 5 (earlier it was
9). The plateau of 40 Hz entrainment is narrower than before. There is now
also a range of values of gI for which the target is entrained to B at 25 Hz.

3.5.4 Distractor Frequency. The frequency fB of the less coherent, distract-
ing stimulus B is largely irrelevant. To demonstrate this, we begin again
with the experiment of Figure 3A but raise the value of gI from 0.2 to 0.35.
(Figure 9A indicates that 0.2 lies near the lower edge of the range of values
of gI in which A entrains the target; 0.35 is much closer to the center of
that range.) We vary the distractor frequency. Figure 9D shows the result,
confirming the irrelevance of fB over a wide range. To understand why
entrainment fails when fB is very low, note that the temporal average of
B is fixed here; thus, when the pulses of B are very infrequent, they are
also very strong—strong enough to distract the target. Not surprisingly,
this effect becomes more pronounced when gI is lowered (when gI = 0.2,
entrainment occurs only when fB ≥ 25) but disappears when the distractor
strength is lowered (data not shown).

We remark that the assumption fB < f A, although not needed in our
study, would in fact seem natural here. The abstract networks discussed
here should be thought of as models of what happens at higher levels
of processing; it seems reasonable to conjecture that at those levels, “dis-
tractor” input might arrive not only with less coherence but in fact with
less drive than attended input. Lower drive typically translates into (at least
somewhat) lower oscillation frequency (see, e.g., Figure 3C of White, Banks,
Pearce, & Kopell, 2000, or Figure 2 of Börgers & Kopell, 2005).

3.5.5 Heterogeneity and Noise. Our experience suggests that hetero-
geneities in neuronal and network properties or noisy external drives do
not prevent stimulus selection based on gamma rhythmicity and in fact
may facilitate it in some cases. We have no analysis explaining the latter
observation but present a sample simulation in Figure 10. The simulation
underlying Figure 10 involves a target of 80 E-cells and 20 I-cells. Parame-
ters are essentially those of Figure 3A; however, gI has been reduced from
0.2 to 0.1 (bringing it clearly below the range of entrainment according to
Figure 9A), and heterogeneity and noise in external drives and network
connectivity have been introduced (see appendix A for details). Figure 10
shows that the target is noisily but unmistakably entrained by the 40 Hz
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Figure 10: A noisy version of Figure 3A with reduced inhibitory conductance.

stimulus A. In the simulation underlying Figure 10, the average strength
of input A varies from cell to cell; the solid curve in the bottom panel of
Figure 10 indicates the average of input A over all cells of the network.

4 An Incoherent Distractor Can Promote Its Own Suppression

Suppose that the primary stimulus A, presented alone, activates the E-cell
but is insufficient to activate the I-cells. In a real network, the I-cells might,
for instance, be of type II (Tateno, Harsch, & Robinson, 2004), and stimulus
A alone might not suffice to bring them above their spiking threshold. In
our model network of two theta neurons, we make the I-cell unresponsive
by injecting a strong, constant, hyperpolarizing current. Figure 11A shows
the result of such a simulation. Since the I-cell does not spike, the E-cell
is left vulnerable to distracting stimuli. Figure 11B shows results of a sim-
ulation illustrating this point; here, the distracting input was given to the
E-cell only. If the distractor B also drives the I-cell, it may help activate the
I-cell and thereby restore entrainment of the target network by A. This is
illustrated by the simulation result shown in Figure 11C. (Parameter values
for Figure 11 are given in appendix A.) We remark that the oscillatory nature
of the distractor is irrelevant here; the essential point is that the distractor
activates the I-cell enough to enable it to participate.
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Figure 11: When the primary stimulus A does not suffice to activate the
I-cell (A), the E-cell is left vulnerable to distractors (B). However, a distracting
stimulus B to the I-cell may activate that cell, and thereby enable entrainment
of the target to stimulus A (C).

http://www.mitpressjournals.org/action/showImage?doi=10.1162/neco.2007.07-06-289&iName=master.img-010.jpg&w=275&h=424
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We note that an alternative way of overcoming hyperpolarization of the
I-cells, enabling them to fire and thereby invoking the mechanism that shuts
out distractors, would be the selective enhancement of the coherence of the
primary input stream A to the I-cells of the target network.

5 Discussion

Several possible functional roles of neuronal coherence in the brain have
been suggested in the literature. Coherence strengthens the effectiveness of
excitatory signals (Murthy & Fetz, 1994; Singer, 1999), weakens the effec-
tiveness of inhibitory signals by leaving windows of opportunity (Börgers,
Epstein, & Kopell, 2005; Börgers & Kopell, 2005; Lumer, 2000; Tiesinga, 2002;
Tiesinga, Fellous, Salinas, José, & Sejnowski, 2004), may play an important
role in the creation of cell assemblies (Olufsen, Whittington, Camperi, &
Kopell, 2003), and may be the key to solving the “binding problem” Engel,
Fries, & Singer, 2001; Singer & Gray, 1995; von der Malsburg & Schneider,
1986). In this letter, we have demonstrated that gamma rhythms may also
facilitate stimulus selection. When excitatory input to an E/I network (not
just to a single target cell) comes in the form of a sequence of coherent pulses
in the gamma frequency range, downstream response to less coherent com-
petitors is suppressed.

Fries (2005) suggested that timing is crucial: the phase dependence of
the input sensitivity of the target lends an advantage to well-timed inputs
over ill-timed ones. In our model, timing does play a role when there is
strong inhibition in the target, as shown, for instance, in Figure 6A, but not
otherwise (see Figure 4 and our discussion of phase response curves). In our
numerical experiments, timing effects can tip the balance when the stimuli
are close to each other—or identical, as in Figure 6A. There is, however,
a second important effect: inhibition in the target network, by itself and
independent of timing, greatly amplifies the advantage of coherent inputs
over incoherent ones (see e.g., Figure 6B). Once an oscillatory input entrains
the target, the phase difference between it and the target is dictated by
the dynamics; indeed this phase difference is favorable to the entraining
input.

In Börgers et al. (2005), we proposed a different way in which gamma
rhythmicity may play a role in stimulus selection; there we showed that
gamma rhythmicity helps a strongly driven assembly suppress activity in
a less strongly driven one if the two assemblies share a single interneuron
network. Thus, the competition was between two assemblies in Börgers
et al. (2005), whereas here it is between two stimuli competing for control
over a single assembly. Combinations of the two scenarios are possible and
plausible; for instance, two different stimuli might drive two different but
overlapping assemblies within a larger network.

We have assumed purely excitatory input to a target network that in-
cludes local recurrent inhibition. This is in contrast with other recent models
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(Tiesinga, 2005; Mishra, Fellous, & Sejnowski, 2006) in which excitatory and
inhibitory input streams drive a single neuron, with possible attentional
modulation of coherence and phase of the two streams independently.

In our model, the entire target network is entrained by the primary in-
put A, and therefore frequency and phase of the response are the only
degrees of freedom available to encode stimulus identity and intensity. In a
larger, more realistic version of our model, inputs A and B would naturally
stimulate different ensembles of neurons; the overlap of the two ensembles
would then be the analog of the target network in this study. Furthermore,
the spiking frequency of individual cells would not necessarily have to be
identical with the population frequency in such a model. Thus, additional
degrees of freedom—the set of neurons responding and the mean frequency
of individual cells—become available to encode stimulus identity and in-
tensity when the model is made larger and more realistic. How the results
of this study extend to such more complex situations will be a subject of
future work.

We did not allow feedback from target to upstream sources in this study.
It remains to be investigated how such feedback, which, of course, is typi-
cally present in the brain, affects the mechanisms discussed here.

Codes used to produce the numerical results of this letter can be obtained
by sending an e-mail request to christoph.borgers@tufts.edu.

Appendix A: Parameter Values Used in Simulations

For Figure 2:

gE E = 0 gE I = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 f A = 40 σA = 2 ϕA = 0

CB = 0 QB = 0 ϕB = 0

We have omitted the indices i labeling neurons because there is only one
cell of each kind, E and I . We have also omitted the indices E and I because
the two cells receive the same input stream here.

For Figure 3A:

gE E = 0 gE I = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 f A = 40 σA = 2 ϕA = 0

CB = 0.06 QB = 0.06 fB = 25 σB = 9 ϕB = 0

For Figure 3B:

gE E = 0 gE I = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 f A = 40 σA = 2 ϕA = 0

CB = 0.06 QB = 20 fB = 65 σB = 9 ϕB = 0
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The ratio TB/σB = 1000/( fBσB) is smaller here than elsewhere in this letter.
This is the reason that QB is taken to be so large here (see the paragraph
following equation 2.6). The choice QB = 20 yields a sizable but not over-
whelming oscillatory component, as shown in Figure 3B.

For Figure 3C:

gE E = 0 gE I = 0.05 gI = 0.5

CA = 0.04 QA = 0.04 f A = 40 σA = 2 ϕA = 0

CB = 0.11 QB = 0.15 fB = 25 σB = 9 ϕB = 0

For Figure 6A:

gE E = 0 gE I = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 f A = 40 σA = 2 ϕA = 0.4

CB = 0.04 QB = 0.04 fB = 40 σB = 2 ϕB = 0

For Figure 6B, the parameters are as in Figure 6A, but with σB = 4 in place
of σB = 2.

For Figure 8:

gE E = 0 gE I = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 f A = 20 σA = 2 ϕA = 0

CB = 0.02 QB = 0.02 fB = 12 σB = 9 ϕB = 0

For Figure 10:

gE E = 0 gE I = 0.05 gI = 0.1

CA,E,i = 0.04 + 0.04 ZE,i CA,I,i = 0.04 + 0.04 ZI,i

QA = 0.04 f A = 40 σA = 2

ZE,i (1 ≤ i ≤ NE ) and ZI,i (1 ≤ i ≤ NI ) are independent standard gaussians.

CB = 0.06 QB = 0.06 fB = 25 σB = 9

In addition, every synaptic connection is removed with probability 1/2
and doubled in strength if not removed, and in every time step, the ran-
dom term 0.2

√

t Z is added to θ for each neuron, where Z is a standard

gaussian.
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For Figure 11A:

gE E = 0 gE I = 0.05 gI = 0.2

CA = 0.04 QA = 0.04 f A = 40 σA = 2

CB = QB = 0

In addition, the I-cell receives a constant hyperpolarizing current equal to
−0.3.

For Figure 11B, parameters are as in Figure 11A, but the E-cell receives an
additional distracting input:

CB,E = 0.08 QB,E = 0.04 fB = 25 σB = 9

CB,I = QB,I = 0

For Figure 11C, parameters are as in Figure 11B, but the I-cell receives the
same distracting input as the E-cell.

Appendix B: Details of the Analysis for Theta Neurons

The Region S I . The region SI is the set of pairs (q , τJ ) for which the
solution θ of equations. 3.7 and 3.8 satisfies the inequality θ (τJ ) > θ+

0 . The
fixed points θ−

0 and θ+
0 are given by equation 2.2. It is clear that θ (τJ ) cannot

be greater than θ+
0 unless I + q/τJ > 0. The time that it takes for θ to increase

from θ−
0 to θ+

0 then equals

∫ θ+
0

θ−
0

dt
dθ

dθ =
∫ θ+

0

θ−
0

1
1 − cos θ + (I + q/τJ )(1 + cos θ )

dθ

= 1√
I + q/τJ

[
arctan

tan(θ/2)√
I + q/τJ

]θ+
0

θ−
0

= 2√
I + q/τJ

arctan
tan(θ+

0 /2)√
I + q/τJ

= 2√
I + q/τJ

arctan
tan arccos

(
1/

√
1 − I

)
√

I + q/τJ
= 2√

I + q/τJ
arctan

√−I√
I + q/τJ

.

The region SI is therefore given by the inequality

2√
I + q/τJ

arctan
√−I√

I + q/τJ
< τJ ,
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and its boundary, the bold line in Figure 5B, is characterized by the equation

2√
I + q/τJ

arctan
√−I√

I + q/τJ
= τJ . (B.1)

Equation B.1 is not an explicit description of the boundary

q = q (τJ )

of the shaded reason (the bold line) in Figure 5B. However, it is clear that
for any fixed τJ > 0 and I < 0, the equation has a unique solution q with
I + q/τJ > 0, since the left-hand side, viewed as a function of q , decreases
monotonically from ∞ to 0 as q increases from −τJ I to ∞. We note that
equation B.1 implies q (τJ )/τJ → ∞ as τJ → 0, a fact that will be used shortly.

Numerically, it is easy to solve equation B.1 for q in terms of τJ . Further-
more, we can derive the behavior of the boundary for small τJ explicitly
from equation B.1. Using the Taylor expansion

arctan x = x − x3

3
+ O(x5) as x → 0,

equation B.1 can be written as follows in the limit as τJ → 0:

2√
I + q/τJ

[ √−I√
I + q/τJ

− (−I )3/2

3(I + q/τJ )3/2 + O
(
τ

5/2
J

)] = τJ , (B.2)

and therefore

2
√−I

q + τJ I
+ 2I

√−I
3(q + τJ I )2 τJ = 1 + o

(
τ

3/2
J

)
. (B.3)

(The O(·) in equation B.2 turned into o(·) in equation B.3 because q/τJ → ∞
as τJ → 0, a fact noted earlier.)

Equation B.3 is a quadratic equation for q + τJ I , with solutions

q± + τJ I = √−I ±
√

−I + 2
3

I
√−I τJ + o

(
τ

3/2
J

)
.

Expanding the right-hand side around τJ = 0, we find

q± = √−I ±
(√−I + 1

3
τJ I

)
− τJ I + o

(
τ

3/2
J

)
.
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The solution q− is spurious: it violates the condition q/τJ → ∞ as τJ → 0,
which was used in our expansion. Thus, q+ is the relevant solution, and the
boundary of SI is given by

q ∼ 2
√−I + 2

3
τJ |I | (B.4)

as τJ → 0. Equation B.4 describes the tangent line to the boundary of SI at
q = 2

√−I , τJ = 0. However, the segment of the boundary of SI shown as
a bold line in Figure 5B is nearly straight, and equation B.4 therefore in fact
describes it with good accuracy throughout.

Equation B.4 shows that the amount of charge needed to elicit a spike
rises like (2/3)τJ |I | as τJ increases. Thus, the advantage of a briefer, stronger
pulse over a broader, weaker one rises as |I | rises: the more strongly hyper-
polarized the target neuron, the greater is the advantage of coherent inputs
over incoherent ones.

Fixed Points of Equation 3.9. We will prove that for I − (3/2)gs < 0,
there are exactly two fixed points of equation 3.9 in [−π, π]: a stable one
in (−π, 0) and an unstable one in (0, π ). Fixed points of equation 3.9 are
solutions of F (θ ) = 0 with

F (θ ) = 1 − cos θ +
(

I − 3
2

gs

)
(1 + cos θ ) − gs sin θ.

First, we note that

F (−π) = 2 > 0, F (0) = 2
(

I − 3
2

gs

)
< 0, and F (π) = 2 > 0. (B.5)

So in particular, if θ ∈ [−π, π] is a solution of F (θ ) = 0, then sin θ 
= 0. This
implies that no two solutions θ ∈ [−π, π] of F (θ ) = 0 can be negatives of
each other, since

F (θ ) = 0 ⇒ F (−θ ) = F (θ ) + 2gs sin θ = 2gs sin θ 
= 0.

The inequalities B.5 imply that there are at least one stable fixed point
in (−π, 0), and one unstable fixed point in (0, π). We now show that there
can be no more than two fixed points in [−π, π]. Suppose there were three
different fixed points θi ∈ [−π, π], i = 1, 2, 3. Since no two of these can be
negatives of each others, their cosines,

xi = cos θi , i = 1, 2, 3,
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would have to be different from each other. But

F (θi ) = 0 ⇒ 1 − cos θi +
(

I − 3
2

gs

)
(1 + cos θi ) = gs sin θi

⇒
(

1 − cos θi +
(

I − 3
2

gs

)
(1 + cos θi )

)2

= g2
s

(
1 − cos2 θi

)

⇒
(

1 − xi +
(

I − 3
2

gs

)
(1 + xi )

)2

= g2
s

(
1 − x2

i

)
. (B.6)

This is a contradiction, since x1, x2, and x3 would now be three different
solutions of the quadratic equation B.6.

Appendix C: Phase Response Curve of a Theta Neuron
with Decaying Inhibition

In this appendix, we briefly review the standard phase response function for
the theta neuron (Ermentrout, 1996). We then define and compute a phase
response function for a theta neuron under the influence of exponentially
decaying inhibition.

Consider the theta neuron given by equation 2.1 and assume I > 0. The
“phase” φ ∈ [0, 1] corresponding to θ ∈ [−π, π] is the time that it takes to
advance from −π to θ , divided by the period T = π/

√
I . If a delta pulse

of strength ε > 0 is added to I when the neuron is at phase φ, its phase
advances by an amount denoted by ερ(φ). A standard and elementary
calculation yields

ρ(φ) = 1
ε

[
1
2

+ 1
π

tan−1
[

tan
(

π

(
φ − 1

2

))
+ ε√

I

]
− φ

]
.

We refer to ρ as the phase response function of the theta neuron. Its graph is
called the phase response curve. Passing to the limit as ε → 0, one obtains
the infinitesimal phase response function

ρ0(φ) = 1

π
√

I
cos2

(
π

(
φ − 1

2

))
.

Its graph is called the infinitesimal phase response curve. Figure 7A shows
the graph of ρ for I = 0.02, ε = 0.1 (solid), and the graph of ρ0 for I = 0.02
(dashed).
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Next we consider a theta neuron subject to an exponentially decaying
pulse of synaptic inhibition arriving at time t = 0 (see equation 2.5):

dθ

dt
= 1 − cos θ +

(
I − 3

2
ge−t/τI

)
(1 + cos θ ) − ge−t/τI sin θ, (C.1)

with I > 0, g > 0, and τI = 10. The letter T now denotes the time that it
takes for a solution θ of equation C.1 to advance from −π to π . The phase
φ ∈ [0, 1] corresponding to θ ∈ [−π, π] is again the time that it takes for
a solution of equation C.1 to advance from −π to θ , divided by T . If a
delta pulse of strength ε > 0 is added to I at time φT , the time that it takes
for θ to reach π is shortened to T̂ < T . The phase response curve is the
graph of

ρ(φ) = 1
ε

T − T̂
T

.

As before, the infinitesimal phase response function ρ0 is obtained by pass-
ing to the limit ε → 0. We have no analytic expression for ρ and ρ0, but it
is straightforward to calculate these curves numerically for given parame-
ter values. Figure 7B shows the graphs of ρ for I = 0.02, g = 0.25, ε = 0.1
(solid), and ρ0 for I = 0.02, g = 0.25 (dashes).

Appendix D: Phase Response Curve of an Integrate-and-Fire Neuron
with Decaying Inhibition

Since some of the analysis of this letter is based on integrate-and-fire neu-
rons, we repeat the calculations of appendix C for this model. We consider
equation 2.7 with the threshold potential VT = 1 and the reset potential
VR = 0. We assume that the drive is above the spiking threshold, that is,
I > gm. The “phase” φ ∈ [0, 1] corresponding to V ∈ [0, 1] is the time that
it takes for the membrane potential to advance from 0 to V, divided by the
period

T = 1
gm

ln
I

I − gm
.

When an integrate-and-fire neuron receives a delta pulse of current input of
strength ε > 0, its membrane potential is assumed to rise instantaneously
from its value V just prior to the arrival of the pulse to

V+ =
{

V + ε if V + ε ≤ 1,

1 otherwise.
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This raises the phase from φ to a new value φ+. The phase response function
ρ is defined by the equation

ερ(φ) = φ+ − φ.

A straightforward calculation yields

ρ(φ) = min(z, 1) − φ

ε
with z = ln((1 − gm/I )φ − εgm/I )

ln(1 − gm/I )
.

The limit of ρ as ε → 0 is the infinitesimal phase response function, denoted
by ρ0; it is not hard to show that

ρ0(φ) = gm/I

(1 − gm/I )φ ln (1/(1 − gm/I ))
.

Figure 7C shows the graph of ρ for gm = 0.1, I = 0.11 and ε = 0.1 (solid)
and the graph of ρ0 for gm = 0.1 and I = 0.11 (dashed).

Next we consider an integrate-and-fire neuron, driven above the spiking
threshold, subject to an exponentially decaying pulse of synaptic inhibition
arriving at time t = 0:

dV
dt

= −gmV + I − ge−t/τI V, (D.1)

with I > gm, g > 0, and τI = 10. The letter T now denotes the time that it
takes for a solution V of equation D.1 to advance from 0 to 1. The phase
φ ∈ [0, 1] corresponding to V ∈ [−1, 1] is again the time that it takes for a
solution of equation D.1 to advance from 0 to V, divided by T . If a delta
pulse of strength ε > 0 is added to I at time φT , the time that it takes for V
to reach 1 is shortened to T̂ < T . The phase response curve is the graph of

ρ(φ) = 1
ε

T − T̂
T

.

As before, the infinitesimal phase response curve ρ0 is obtained by passing
to the limit ε → 0. We have no analytic expression for ρ and ρ0, but it is
straightforward to calculate these curves numerically for given parameter
values. Figure 7D shows the graphs of ρ for gm = 0.1, I = 0.11, g = 0.25,
ε = 0.1 (solid), and ρ0 for gm = 0.1, I = 0.11, g = 0.25 (dashed).
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