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Abstract. Developing models to discover, analyze, and predict clus-
ters within networked entities is an area of active and diverse research.
However, many of the existing approaches do not take into considera-
tion pertinent auxiliary information. This paper introduces Joint Gamma
Process Poisson Factorization (J-GPPF) to jointly model network and
side-information. J-GPPF naturally fits sparse networks, accommodates
separately-clustered side information in a principled way, and effectively
addresses the computational challenges of analyzing large networks. Eval-
uated with hold-out link prediction performance on sparse networks
(both synthetic and real-world) with side information, J-GPPF is shown
to clearly outperform algorithms that only model the network adjacency
matrix.
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1 Introduction

Social networks and other relational datasets often involve a large number of
nodes N with sparse connections between them. If the relationship is symmetric,
it can be represented compactly using a binary symmetric adjacency matrix
B ∈ {0, 1}N×N , where bij = bji = 1 if and only if nodes i and j are linked.
Often, the nodes in such datasets are also associated with “side information,”
such as documents read or written, movies rated, or messages sent by these nodes.
Integer-valued side information are commonly observed and can be naturally
represented by a count matrix Y ∈ Z

D×V , where Z = {0, 1, . . .}. For example, B
may represent a coauthor network andY may correspond to a document-by-word
count matrix representing the documents written by all these authors. In another
example, B may represent a user-by-user social network and Y may represent a
user-by-item rating matrix that adds nuance and support to the network data.
Incorporating such side information can result in better community identification



and superior link prediction performance as compared to modeling only the
network adjacency matrix B, especially for sparse networks.

Many of the popular network models [18, 2, 28, 25, 13] are demonstrated to
work well for small size networks. However, small networks are often dense, while
larger real-world networks tend to be much sparser and hence challenge existing
modeling approaches. Incorporating auxiliary information associated with the
nodes has the potential to address such challenges, as it may help better identify
latent communities and predict missing links. A model that takes advantage
of such side information has the potential to outperform network-only models.
However, the side information may not necessarily suggest the same community
structure as the existing links. Thus a network latent factor model that allows
separate factors for side information and network interactions, but at the same
time is equipped with a mechanism to capture dependencies between the two
types of factors, is desirable.

This paper proposes Joint Gamma Process Poisson Factorization (J-GPPF)
to jointly factorize B and Y in a nonparametric Bayesian manner. The paper
makes the following contributions: 1) we present a fast and effective model that
uses side information to help discover latent network structures, 2) we perform
nonparametric Bayesian modeling for discovering latent structures in bothB and
Y, and 3) our model scales with the number of non-zero entries in the network
SB as O (SBKB), where KB is the number of network groups inferred from the
data.

The remainder of the paper is organized as follows. We present background
material and related work in Section 2. J-GPPF and its inference algorithm are
explained in Section 3. Experimental results are reported in Section 4, followed
by conclusions in Section 5.

2 Background and Related Work

This section presents the related literature and the background materials that
are useful for understanding the framework described in Section 3.

2.1 Negative Binomial Distribution

The negative binomial (NB) distribution m ∼ NB(r, p), with probability mass

function (PMF) Pr(M = m) = Γ (m+r)
m!Γ (r) p

m(1− p)r for m ∈ Z, can be augmented

into a gamma-Poisson construction as m ∼ Pois(λ), λ ∼ Gamma(r, p/(1 − p)),
where the gamma distribution is parameterized by its shape r and scale p/(1−p).
It can also be augmented under a compound Poisson representation as m =
∑l
t=1 ut, ut

iid
∼ Log(p), l ∼ Pois(−rln(1−p)), where u ∼ Log(p) is the logarithmic

distribution [17]. Consequently, we have the following Lemma.

Lemma 1 ([41]). If m ∼ NB(r, p) is represented under its compound Poisson
representation, then the conditional posterior of l given m and r has PMF:

Pr(l = j|m, r) =
Γ (r)

Γ (m+ r)
|s(m, j)|rj , j = 0, 1, · · · ,m, (1)



where |s(m, j)| are unsigned Stirling numbers of the first kind. We denote this
conditional posterior as (l|m, r) ∼ CRT(m, r), a Chinese restaurant table (CRT)
count random variable, which can be generated via l =

∑m
n=1 zn, zn ∼ Bernoulli(r/(n−

1 + r)).

Lemma 2. Let X =
∑K
k=1 xk, xk ∼ Pois(ζk) ∀k, and ζ =

∑K
k=1 ζk. If (y1, · · · , yK |X) ∼

Mult(X, ζ1/ζ, · · · , ζK/ζ) and X ∼ Pois(ζ), then the following holds:

P (X,x1, · · · , xK) = P (X, y1, · · · , yK). (2)

Lemma 3. If xi ∼ Pois(miλ), λ ∼ Gamma(r, 1/c), then x =
∑

i xi ∼ NB(r, p),
where p = (

∑

imi)/(c+
∑

imi).

Lemma 4. If xi ∼ Pois(miλ), λ ∼ Gamma(r, 1/c), then

(λ|{xi}, r, c) ∼ Gamma

(

r +
∑

i

xi, 1/(c+
∑

i

mi)

)

. (3)

Lemma 5. If ri ∼ Gamma(ai, 1/b) ∀i, b ∼ Gamma(c, 1/d), then we have:

(b|{ri, ai}, c, d) ∼ Gamma

(

∑

i

ai + c, 1/(
∑

i

ri + d)

)

. (4)

The proofs of Lemmas 3, 4 and 5 follow from the definitions of Gamma,
Poisson and Negative Binomial distributions.

Lemma 6. If xi ∼ Pois(mir2), r2 ∼ Gamma(r1, 1/d), r1 ∼ Gamma(a, 1/b),
then (r1|−) ∼ Gamma(a+ ℓ, 1/(b− log(1−p))) where (ℓ|x, r1) ∼ CRT(

∑

i xi, r1)
and p =

∑

imi/(d+
∑

imi). The proof and illustration can be found in Section
3.3 of [1].

2.2 Gamma Process

The Gamma Process [12, 36] G ∼ ΓP(c,H) is a completely random measure
defined on the product space R+ × Ω, with concentration parameter c and a
finite and continuous base measure H over a complete separable metric space
Ω, such that G(Ai) ∼ Gamma(H(Ai), 1/c) are independent gamma random
variables for disjoint partition {Ai}i of Ω. The Lévy measure of the Gamma
Process can be expressed as ν(drdω) = r−1e−crdrH(dω). Since the Poisson
intensity ν+ = ν(R+ × Ω) = ∞ and the value of

∫

R+×Ω
rν(drdω) is finite, a

draw from the Gamma Process consists of countably infinite atoms, which can
be expressed as follows:

G =

∞
∑

k=1

rkδωk
, (rk, ωk)

iid
∼ π(drdω), π(drdω)ν+ ≡ ν(drdω). (5)

A gamma process based model has an inherent shrinkage mechanism, as in the
prior the number of atoms with weights greater than τ ∈ R+ follows a Pois-
son distribution with parameter H(Ω)

∫∞

τ
r−1exp(−cr)dr, the value of which

decreases as τ increases.



2.3 Network Modeling, Topic Modeling and Count Matrix
Factorization

The Infinite Relational Model (IRM [18]) allows for multiple types of relations
between entities in a network and an infinite number of clusters, but restricts
these entities to belong to only one cluster. The Mixed Membership Stochastic
Blockmodel (MMSB [2]) assumes that each node in the network can exhibit a
mixture of communities. Though the MMSB has been applied successfully to dis-
cover complex network structure in a variety of applications, the computational
complexity of the underlying inference mechanism is in the order of N2, which
limits its use to small networks. Computation complexity is also a problem with
many other existing latent variable network models, such as the latent feature
relational model [25] and its max margin version [44], and the infinite latent at-
tribute model [28]. The Assortative Mixed-Membership Stochastic Blockmodel
(a-MMSB [13]) bypasses the quadratic complexity of the MMSB by making cer-
tain assumptions about the network structure that might not be true in general.
The hierarchical Dirichlet process relational model [19] allows mixed member-
ship with an unbounded number of latent communities; however, it is built on
the a-MMSB whose assumptions could be restrictive.

Some of the existing approaches handle sparsity in real-world networks by
using some auxiliary information [21, 39, 24]. For example, in a protein-protein
interaction network, the features describing the biological properties of each pro-
tein can be used [24]. In an extremely sparse social network, information about
each user’s profile can be used to better recommend friends [21]. Recommender
system and text mining researchers, in contrast, tend to take an orthogonal ap-
proach. In recommender systems [22, 10], Y may represent a user-by-item rating
matrix and the objective in this setting is to predict the missing entries in Y, and
the social network matrix B plays a secondary role in providing auxiliary infor-
mation to facilitate this task [22]. Similarly, in the text mining community, many
existing models [23, 26, 35, 3] use the network information or other forms of side
information to improve the discovery of “topics” from the document-by-word
matrix Y. The matrix B can represent, for example, the interaction network of
authors participating in writing the documents. The Relational Topic Model [11]
discovers links between documents based on their topic distributions, obtained
through unsupervised exploration. The Author-Topic framework (AT [30]) and
the Author-Recipient-Topic model (ART [23]) jointly model documents along
with the authors of the documents. Block-LDA [3], on the other hand, provides
a generative model for the links between authors and recipients in addition to
documents. The Group-Topic model [34] addresses the task of modeling events
pertaining to pairs of entities with textual attributes that annotate the event.
J-GPPF differs from these existing approaches in mathematical formulation, in-
cluding more effective modeling of both sparsity and the dependence between
network interactions and side information.

A large number of discrete latent variable models for count matrix factor-
ization can be united under Poisson factor analysis (PFA) [43], which factorizes
a count matrix Y ∈ Z

D×V under the Poisson likelihood as Y ∼ Pois(ΦΘ),



where Φ ∈ R
D×K
+ is the factor loading matrix or dictionary, Θ ∈ R

K×V
+ is the

factor score matrix. A wide variety of algorithms, although constructed with
different motivations and for distinct problems, can all be viewed as PFA with
different prior distributions imposed on Φ and Θ. For example, non-negative
matrix factorization [20, 9], with the objective to minimize the Kullback-Leibler
divergence between N and its factorization ΦΘ, is essentially PFA solved with
maximum likelihood estimation. LDA [6] is equivalent to PFA, in terms of both
block Gibbs sampling and variational inference, if Dirichlet distribution priors
are imposed on both φk ∈ R

D
+ , the columns of Φ, and θk ∈ R

V
+, the columns

of Θ. The gamma-Poisson model [8, 32] is PFA with gamma priors on Φ and
Θ. A family of negative binomial (NB) processes, such as the beta-NB [43, 7]
and gamma-NB processes [41, 42], impose different gamma priors on {θvk}, the
marginalization of which leads to differently parameterized NB distributions to
explain the latent counts. Both the beta-NB and gamma-NB process PFAs are
nonparametric Bayesian models that allow K to grow without limits [16].

J-GPPF models both Y and B using Poisson factorization. As discussed in
[1], Poisson factorization has several practical advantages over other factoriza-
tion methods that use Gaussian assumptions (e.g. in [22]). First, zero-valued
observations could be efficiently processed during inference, so the model can
readily accommodate large, sparse datasets. Second, Poisson factorization is a
natural representation of count data. Additionally, the model allows mixed mem-
bership across an unbounded number of latent communities using the gamma
Process as a prior. The authors in [4] also use Poisson factorization to model
a binary interaction matrix. However, this is a parametric model and a KL-
divergence based objective is optimized w.r.t. the latent factors without using
any prior information. To model the binary observations of the network matrix
B, J-GPPF additionally uses a novel Poisson-Bernoulli (PoBe) link, discussed in
detail in Section 3, that transforms the count values from the Poisson factoriza-
tion to binary values. Similar transformation has also been used in the BigCLAM
model [37] which builds on the works of [4]. This model was later extended to
include non-network information in the form of binary attributes [38]. Neither
BigCLAM nor its extension allows non-parametric modeling or imposing prior
structure on the latent factors, thereby limiting the flexibility of the models and
making the obtained solutions more sensitive to initialization. The collaborative
topic Poisson factorization (CTPF) framework proposed in [15] solves a different
problem where the objective is to recommend articles to users of similar interest.
CTPF is a parametric model and variational approximation is adopted to solve
the inference.

3 Joint Gamma Process Poisson Factorization (J-GPPF)

Let there be a network of N users encoded in an N × N binary matrix B.
The users in the network participate in writing D documents summarized in a
D × V count matrix Y , where V is the size of the vocabulary. Additionally, a
binary matrix Z of dimension D × N can also be maintained, where the unity



entries in each column indicate the set of documents in which the correspond-
ing user contributes. In applications where B represents a user-by-user social
network and Y represents a user-by-item rating matrix, Z turns out to be an
N -dimensional identity matrix. However, in the following model description we
consider the more general document-author framework. Also, to make the nota-
tions more explicit, the variables associated with the side information have Y
as a subscript (e.g., GY ) and those associated with the network make similar
use of the subscript B (e.g., GB). Also, if Y represents a matrix of dimension
D × V , then y.w represents the sum over all the rows for the entries in the wth

column, and yd. represents the sum over all the columns for the entries in the
dth row.

Before providing an explicit description of the model, we introduce two sep-
arate Gamma Processes. The first one models the latent factors in the net-
work and also contributes to generate the count matrix. A draw from this
Gamma Process GB ∼ ΓP(cB, HB) is expressed as: GB =

∑∞
kB=1 ρkBδφkB

,

where φkB ∈ ΩB is an atom drawn from an N -dimensional base distribution

as φkB ∼
∏N
n=1 Gamma(aB, 1/σn), ρkB = GB(φkB ) is the associated weight,

and HB is the corresponding base measure. The second Gamma Process mod-
els the latent groups of side information. A draw from this gamma process
GY ∼ ΓP(cY , HY ) is expressed as: GY =

∑∞
kY =1 rkY δβkY

, where βkY ∈ ΩY

is an atom drawn from a V -dimensional base distribution as βkY ∼ Dir(ξY ),
rkY = GY (βkY ) is the associated weight, and HY is the corresponding base
measure. Also, γB = HB(ΩB) is defined as the mass parameter corresponding
to the base measure HB and γY = HY (ΩY ) is defined as the mass parameter
corresponding to the base measure HY . In the following paragraphs, we explain
how these Gamma processes, with the atoms and their associated weights, are
used for modeling both B and Y .

The (n,m)th entry in the matrix B is assumed to be derived from a latent
count as:

bnm = I{xnm≥1}, xnm ∼ Pois (λnm) , λnm =
∑

kB

λnmkB , (6)

where λnmkB = ρkBφnkBφmkB . This is called as the Poisson-Bernoulli (PoBe)
link in [1, 40]. The distribution of bnm given λnm is named as the Poisson-
Bernoulli distribution, with the PMF: f(bnm|λnm) = e−λnm(1−bnm)(1−e−λnm)bnm .
One may consider λnmkB as the strength of mutual latent community member-
ship between nodes n and m in the network for latent community kB, and λnm
as the interaction strength aggregating all possible community membership. Us-
ing Lemma 2, one may augment the above representation as xnm =

∑

kB
xnmkB ,

xnmkB ∼ Pois (λnmkB ). Thus each interaction pattern contributes a count and
the total latent count aggregates the countably infinite interaction patters.

Unlike the usual approach that links the binary observations to latent Gaus-
sian random variables with a logistic or probit function, the above approach links
the binary observations to Poisson random variables. Thus, this approach trans-
forms the problem of modeling binary network interaction into a count modeling



problem, providing several potential advantages. First, it is more interpretable
because ρkB and φkB are non-negative and the aggregation of different interac-
tion patterns increases the probability of establishing a link between two nodes.
Second, the computational benefit is significant since the computational com-
plexity is approximately linear in the number of non-zeros SB in the observed
binary adjacency matrix B. This benefit is especially pertinent in many real-
word datasets where SB is significantly smaller than N2.

To model the matrix Y , its (d, w)th entry ydw is generated as:

ydw ∼ Pois(ζdw), ζdw =

(

∑

kY

ζY dwkY +
∑

kB

ζBdwkB

)

,

ζY dwkY = rkY θdkY βwkY , ζBdwkB = ǫρkB

(

∑

n

ZndφnkB

)

ψwkB ,

where Znd ∈ {0, 1} and Znd = 1 if and only if author n is one of the authors of
paper d. One can consider ζdw as the affinity of document d for word w, This
affinity is influenced by two different components, one of which comes from the
network modeling. Without the contribution from network modeling, the joint
model reduces to a gamma process Poisson matrix factorization model, in which

the matrix Y is factorized in such a way that ydw ∼ Pois

(

∑

kY

rkY θdkY βwkY

)

.

Here, Θ ∈ R
D×∞
+ is the factor score matrix, β ∈ R

V×∞
+ is the factor loading

matrix (or dicticonary) and rkY signifies the weight of the kthY factor. The number
of latent factors, possibly smaller than both D and V , would be inferred from
the data.

In the proposed joint model, Y is also determined by the users participating
in writing the dth document. We assume that the distribution over word counts
for a document is a function of both its topic distribution as well as the charac-
teristics of the users associated with it. In the author-document framework, the
authors employ different writing styles and have expertise in different domains.
For example, an author from machine learning and statistics would use words
like “probability”, “classifiers”, “patterns”, “prediction” more often than an au-
thor with an economics background. Frameworks such as author-topic model
[30, 23] were motivated by a related concept. In the user-rating framework, the
entries in Y are also believed to be influenced by the interaction network of the
users. Such influence of the authors is modeled by the interaction of the authors
in the latent communities via the latent factors φ ∈ R

N×∞
+ and ψ ∈ R

V×∞
+ ,

which encodes the writing style of the authors belonging to different latent com-
munities. Since an infinite number of network communities is maintained, each
entry ydw is assumed to come from an infinite dimensional interaction. ρkB sig-
nifies the interaction strength corresponding to the kthB network community. The
contributions of the interaction from all the authors participating in a given
document are accumulated to produce the total contribution from the networks
in generating ydw. Since B and Y might have different levels of sparsity and the
range of integers in Y can be quite large, a parameter ǫ is required to balance



the contribution of the network communities in dictating the structure of Y. A
low value of ǫ forces disjoint modeling of B and Y, while a higher value implies
joint modeling of B and Y where information can flow both ways, from network
discovery to topic discovery and vice-versa. We present a thorough discussion of
the effect of ǫ in Section 4.1. To complete the generative process, we put Gamma
priors over σn, ςd, cB, cY and ǫ as:

cB ∼ Gamma(gB, 1/hB), cY ∼ Gamma(gY , 1/hY ), ǫ ∼ Gamma(g0, 1/f0). (7)

σn ∼ Gamma(αB, 1/εB), ςd ∼ Gamma(αY , 1/εY ). (8)

3.1 Inference via Gibbs Sampling

Though J-GPPF supports countably infinite number of latent communities for
network modeling and infinite number of latent factors for topic modeling, in
practice it is impossible to instantiate all of them. Instead of marginalizing out
the underlying stochastic process [5, 27] or using slice sampling [33] for non-
parametric modeling, for simplicity, we consider a finite approximation of the
infinite model by truncating the number of graph communities and the latent
topics to KB and KY respectively, by letting ρkB ∼ Gamma(γB/KB, 1/cB) and
rkY ∼ Gamma(γY /KY , 1/cY ). Such approximation approaches the original in-
finite model as both KB and KY approach infinity. With such finite approxima-
tion, the generative process of J-GPPF is summarized in Table 1. For notational
convenience, we represent the set of documents the nth author contributes to as
Zn and the set of authors contributing to the dth document as Zd.

bnm = I{xnm≥1}, xnm ∼ Pois

(

∑

kB

ρkBφnkBφmkB

)

,

ydw ∼ Pois

(

∑

kY

rkY θdkY βwkY + ǫ
∑

kB

ρkB

(

∑

n

ZndφnkB

)

ψwkB

)

,

φkB ∼
∏N
n=1 Gamma(aB, 1/σn), ψkB ∼ Dir(ξB),

θkY ∼
∏D
d=1 Gamma(aY , 1/ςd), βkY ∼ Dir(ξY ), ǫ ∼ Gamma(f0, 1/g0),

σn ∼ Gamma(αB, 1/εB), ρkB ∼ Gamma(γB/KB, 1/cB),
γB ∼ Gamma(eB, 1/fB), cB ∼ Gamma(gB, 1/hB),

ςd ∼ Gamma(αY , 1/εY ), rkY ∼ Gamma(γY /KY , 1/cY ),
γY ∼ Gamma(eY , 1/fY ), cY ∼ Gamma(gY , 1/hY ).

Table 1. Generative Process of J-GPPF

Sampling of (xnmkB )KB

kB=1 : We first sample the network links according to the
following:

(xnm|−) ∼ bnmPois+

(

KB
∑

kB=1

λnmkB

)

. (9)

Sampling from a truncated Poisson distribution is described in detail in [40].

Since, one can augment xnm ∼ Pois
(

∑KB

kB=1 λnmkB

)

as xnm =
∑KB

kB=1 xnmkB ,



where xnmkB ∼ Pois (λnmkB ), equivalently, one obtains the following:

(

(xnmkB )
KB

kB=1 |−
)

∼ Mult



xnm,

(

λnmkB/

KB
∑

kB=1

λnmkB

)KB

kB=1



 . (10)

Sampling of (ydwk)k : Since, one can augment ydw ∼ Pois(ζdw) as ydw =
KY
∑

kY =1

ydwkY +
∑

n∈Zd

KB
∑

kB=1

ydnwkB , ydwkY ∼ Pois(ζdwkY ), ydnwkB ∼ Pois(ζdnwkB ),

again following Lemma 2, we have:
(

(ydwkY )
KY

kY =1 , (ydnwkB )
KB

kB=1,n∈Zd
|−
)

∼ Mult
(

ydw,
{ζdwkY

}kY
,{ζdnwkB

}n∈Zd,kB∑
kY

ζdwkY
+
∑

n∈Zd

∑
kB

ζdnwkB

)

.(11)

Sampling of φnkB , ρkB , θdkY , rkY and ǫ : Sampling of these parameters follow
from Lemma 4 and are given as follows:

(φnkB |−) ∼ Gamma

(

aB + xn·kB + y.n.kB ,
1

σn + ρkB (φ−nkB + ǫ|Zn|)

)

, (12)

(ρkB |−) ∼ Gamma

(

γB
KB

+ x
··kB + y

···kB ,
1

cB+
∑

n
φnkB

φ
−n

kB
+ǫ

∑
n
|Zn|φnkB

)

, (13)

(θdkY |−) ∼ Gamma
(

aY + yd·kY ,
1

ςd+rkY

)

, (rkY |−) ∼ Gamma
(

γY
KY

+ y
··kY ,

1
cY +θ.kY

)

, (14)

(ǫ|−) ∼ Gamma

(

f0 +

KB
∑

k=1

y
···k,

1

g0 + q0

)

, q0 =

KB
∑

k=1

ρkB

N
∑

n=1

|Zn|φnkB . (15)

The sampling of parameters φnkB and ρkB exhibits how information from the
count matrix Y influences the discovery of the latent network structure. The la-
tent counts from Y impact the shape parameters for both the posterior gamma
distribution of φnkB and ρkB , while Z influences the corresponding scale param-
eters.
Sampling of ψkB : Since ydnwkB ∼ Pois(ǫρkBφnkBψwkB ), using Lemma 2 we
have: (y..wkB )Vw=1 ∼ Mult(y...kB ,(ψwkB

)Vw=1
). Since the Dirichlet distribution is

conjugate to the multinomial, the posterior of ψkB also becomes a Dirichlet
distribution and can be sampled as:

(ψkB |−) ∼ Dir (ξB1 + y..1kB , · · · , ξBV + y..V kB ) . (16)

Sampling of βkY : Since ydwkY ∼ Pois(rkY θdkY βwkY ), again using Lemma 2,
we have:

(y.wkY )
V

w=1 ∼ Mult
(

y..kY , (βwkY )
V

w=1

)

.

Using conjugacy, the posterior of βkY can be sampled as:

(βkY |−) ∼ Dir (ξY 1 + y.1kY , · · · , ξY V + y.V+kY ) . (17)

Sampling of σn, ςd, cB and cY : Sampling of these parameters follow from
Lemma 5 and are given as:



(σn|−) ∼ Gamma
(

αB +KBaB,
1

εB+φn.

)

, (ςd|−) ∼ Gamma
(

αY +KY aY ,
1

εY +θd.

)

, (18)

(cB|−) ∼ Gamma
(

gB + γB,
1

hB+
∑

kB
ρkB

)

, (cY |−) ∼ Gamma
(

gY + γY ,
1

hY +
∑

kY
rkY

)

. (19)

Sampling of γB : Using Lemma 2, one can show that x..kB ∼ Pois(ρkB ).
Integrating ρkB and using Lemma 4, one can have x..kB ∼ NB(γB, pB), where
pB = 1/(cB+1). Similarly, y..kB ∼ Pois(ρkB ) and after integrating ρkB and using
Lemma 4, we have y..kB ∼ NB(γB, pB). We now augment lkB ∼ CRT(x..kB +
y..kB , γB) and then following Lemma 6 sample

(γB|−) ∼ Gamma
(

eB +
∑

kB
lkB ,

1
fB−qB

)

, qB =
∑

kB

qkB

KB

, qkB = log

(

cB
cB+

∑
n
φnkB

φ
−n

kB

)

. (20)

Sampling of γY : Using Lemma 2, one can show that y..(KB+kY ) ∼ Pois(rkY )
and after integrating rkY and using Lemma 4, we have y..(KB+kY ) ∼ NB(γY , pY ),
where pY = 1/(cY +1). We now augmentmkY ∼ CRT(y..(KB+kY ), γY ) and then
following Lemma 6 sample

(γY |−) ∼ Gamma
(

eY +
∑

kY
mkY ,

1
fY −qY

)

, qY =
∑

kY

qkY

KY

, qkY = log
(

cY
cY +θ.kY

)

. (21)

bnm = I{xnm≥1}, xnm ∼ Pois

(

∞
∑

kB=1

λnmkB

)

, rkB ∼ Gamma(γB/KB, 1/cB),

φkB ∼
∏N
n=1 Gamma(aB, 1/σn), σn ∼ Gamma(αB, 1/εB),

γB ∼ Gamma(eB, 1/fB), cB ∼ Gamma(gB, 1/hB),

Table 2. Generative Process of N-GPPF

ydw ∼ Pois

(

∞
∑

kY =1

rkY θdkY βwkY

)

,

θkY ∼
∏D
d=1 Gamma(aY , 1/ςd), βkY ∼ Dir(ξY ),

ςd ∼ Gamma(ηY , 1/ξY ), rkY ∼ Gamma(γY /KY , 1/cY ),
γY Y

∼ Gamma(eY , 1/fY ), cY ∼ Gamma(gY , 1/hY ).

Table 3. Generative Process of C-GPPF

3.2 Special cases: Network Only GPPF (N-GPPF) and Corpus
Only GPPF (C-GPPF)

A special case of J-GPPF appears when only the binary matrix B is modeled
without the auxiliary matrix Y . The generative model of N-GPPF is given in
Table 2. The update equations of variables corresponding to N-GPPF can be
obtained with Z = 0 in the corresponding equations. As mentioned in Section
2.3, N-GPPF can be considered as the gamma process infinite edge partition
model (EPM) proposed in [40], which is shown to well model assortative networks
but not necessarily disassortative ones. Using the techniques developed in [40]
to capture community-community interactions, it is relatively straightforward
to extend J-GPPF to model disassortative networks Another special case of J-
GPPF appears when only the count matrix Y is modeled without using the
contribution from the network matrix B. The generative model of C-GPPF is
given in Table 3.



(a) (b) (c)

Fig. 1. (a) Time to generate a million of samples, (b) B with held-out data, (c) Y

3.3 Computation Complexity

The Gibbs sampling updates of J-GPPF can be calculated in O(KBSB +
(KB +KY )SY +NKB +DKY + V (KB +KY )) time, where SB is the number
of non-zero entries in B and SY is the number of non-zero entries in Y . It
is obvious that for large matrices the computation is primarily of the order
of KBSB + (KB +KY )SY . Such complexity is a huge saving when compared
to other methods like MMSB [2], that only models B and incurs computation
cost of O(N2KB); and standard matrix factorization approaches [31] that work
with the matrix Y and incur O(DVKY ) computation cost. Interestingly, the
inference in [14] incurs cost O(K2

Y D + KY V + KY SY ) with KY signifying
the termination point of stick breaking construction in their model. C-GPPF
incurs computation cost O(DKY +KY SY + V KY ), an apparent improvement
over that of [14]. However, one needs to keep in mind that [14] use variational
approximation for which the updates are available in closed form solution. Our
method does not use any approximation to joint distribution but uses Gibbs
sampling, the computation cost of which should also be taken into account. In
Fig. 1(a), we show the computation time for generating one million samples
from Gamma, Dirichlet (of dimension 50), multinomial (of dimension 50) and
truncated Poisson distributions using the samplers available from GNU Scientific
Library (GSL) on an Intel 2127U machine with 2 GB of RAM and 1.90 GHz of
processor base frequency. To highlight the average complexity of sampling from
Dirichlet and multinomial distributions, we further display another plot where
the computation time is divided by 50 for these samplers only. One can see that
to draw one million samples, our implementation of the sampler for truncated
Poisson distribution takes the longest, though the difference from the Gamma
sampler in GSL is not that significant.

4 Experimental Results

4.1 Experiments with Synthetic Data

We generate a synthetic network of size 60 × 60 (B) and a count data matrix
of size 60× 45 (Y). Each user in the network writes exactly one document and
a user and the corresponding document are indexed by the same row-index in
B and Y respectively. To evaluate the quality of reconstruction in presence of
side-information and less of network structure, we hold-out 50% of links and



equal number of non-links from B. This is shown in Fig. 1(b) where the links are
presented by brown, the non-links by green and the held-out data by deep blue.
Clearly, the network consists of two groups.Y ∈ {0, 5}60×45, shown in Fig 1(c), is
also assumed to consist of the same structure as B where the zeros are presented
by deep blue and the non-zeros are represented by brown. The performance of
N-GPPF is displayed in Fig. 2(a). Evidently, there is not much structure visible
in the discovered partition of B from N-GPPF and that is reflected in the poor
value of AUC in Fig. 3(a). The parameter ǫ, when fixed at a given value, plays
an important role in determining the quality of reconstruction for J-GPPF. As
ǫ → 0, J-GPPF approaches the performance of N-GPPF on B and we observe
as poor a quality of reconstruction as in Fig. 2(a). When ǫ is increased and set
to 1.0, J-GPPF departs from N-GPPF and performs much better in terms of
both structure recovery and prediction on held-out data as shown in Fig. 2(e)
and Fig. 3(b). With ǫ = 10.0, perfect reconstruction and prediction are recorded
as shown in Fig. 2(i) and Fig. 3(c) respectively. In this synthetic example, Y is
purposefully designed to reinforce the structure of B when most of its links and
non-links are held-out. However, in real applications, Y might not contain as
much of information and the Gibbs sampler needs to find a suitable value of ǫ
that can carefully glean information from Y.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Performance of J-GPPF: ǫ = 10−3 (top row), ǫ = 1 (middle row), ǫ = 10
(bottom row)

There are few more interesting observations from the experiment with syn-
thetic data that characterize the behavior of the model and match our intuitions.



In our experiment with synthetic data KB = KY = 20 is used. Fig. 2(b) demon-
strates the assignment of the users in the network communities and Fig. 2(d)
illustrates the assignment of the documents to the combined space of network
communities and the topics (with the network communities appearing before the
topics in the plot). For ǫ = 0.001, we observe disjoint modeling of B and Y, with
two latent factors modeling Y and multiple latent factors modeling B without
any clear assignment. As we increase ǫ, we start observing joint modeling of B
and Y. For ǫ = 1.0, as Fig. 2(h) reveals, two of the network latent factors and
two of the factors for count data together model Y, the contribution from the
network factors being expectedly small. Fig. 2(f) shows how two of the exact
same latent factors model B as well. Fig. 2(j) and Fig. 2(l) show how two of
the latent factors corresponding to B dictate the modeling of both B and Y
when ǫ = 10.0. This implies that the discovery of latent groups in B is dictated
mostly by the information contained in Y. In all these cases, however, we observe
perfect reconstruction of Y as shown in Fig. 2(c), Fig. 2(g) and Fig. 2(k).

(a) (b) (c)

Fig. 3. (a) AUC with ǫ = 0.001, (b) AUC with ǫ = 1.0, (c) AUC with ǫ = 10.0

4.2 Experiments with Real World Data

To evaluate the performance of J-GPPF, we consider N-GPPF, the infinite rela-
tional model (IRM) of [18] and the Mixed Membership Stochastic Block Model
(MMSB) [2] as the baseline algorithms.

NIPS Authorship Network This dataset contains the papers and authors
from NIPS 1988 to 2003. We took the 234 authors who published with the most
other people and looked at their co-authors. After pre-processing and removing
words that appear less than 50 times, the number of users in the graph is 225
and the total number of unique words is 1354. The total number of documents
is 1165.

GoodReads Data Using the Goodreads API, we collected a base set of users
with recent activity on the website. The friends and friends of friends of these
users were collected. Up to 200 reviews were saved per user, each consisting of
a book ID and a rating from 0 to 5. A similar dataset was used in [10]. After
pre-processing and removing words that appear less than 10 times, the number
of users in the graph is 84 and the total number of unique words is 189.

Twitter Data The Twitter dataset is a set of geo-tagged tweets collected by the
authors in [29]. We extracted a subset of users located in San Francisco for our
analysis. We created a graph within the subset by collecting follower information



from the Twitter API. The side information consists of tweets aggregated by
user, with one document per user. After pre-processing and removing words
that appear less than 25 times, the number of users in the graph is 670 and the
total number of unique words is 538.

Experimental Setup and Results

(a) (b)

Fig. 4. (a) NIPS Data, (b) GoodReads Data

Fig. 5. Twitter Data

In all the experiments, we initialized ǫ to 2 and let the sampler decide what
value works best for joint modeling. We used KB = KY = 50 and initialized
all the hyper-parameters to 1. For each dataset, we ran 20 different experiments
and display the mean AUC and one standard error. Fig. 4 and 5 demonstrate the
performances of the models in predicting the held-out data. J-GPPF clearly has
advantage over other network-only models when the network is sparse enough
and the auxiliary information is sufficiently strong. However, all methods fail
when the sparsity increases beyond a certain point. The performance of J-GPPF
also drops below the performances of network-only models in highly sparse net-
works, as the sampler faces additional difficulty in extracting information from
both the network and the count matrix.

5 Conclusion

We propose J-GPPF that jointly factorizes the network adjacency matrix and
the associated side information that can represented as a count matrix. The
model has the advantage of representing true sparsity in adjacency matrix, in
latent group membership, and in the side information. We derived an efficient
MCMC inference method, and compared our approach to several popular net-
work algorithms that model the network adjacency matrix. Experimental results
confirm the efficiency of the proposed approach in utilizing side information to
improve the performance of network models.
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