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A B S T R A C T
The afterglow of a gamma-ray burst (GRB) is commonly thought to be the result of continuous
deceleration of a relativistically expanding fireball in the surrounding medium. Assuming that
the expansion of the fireball is adiabatic and that the density of the medium is a power-law
function of shock radius, i.e. next ~ R¹k, we study the effects of the first-order radiative
correction and the non-uniformity of the medium on a GRB afterglow analytically. We first
derive a new relation among the observed time, the shock radius and the Lorentz factor of the
fireball: t⊕ ¼ R=4ð4 ¹ kÞg2c, and also derive a new relation among the comoving time, the
shock radius and the Lorentz factor of the fireball: tco ¼ 2R=ð5 ¹ kÞgc. We next study the
evolution of the fireball by using the analytic solution of Blandford & McKee. The radiation
losses may not significantly influence this evolution. We further derive new scaling laws both
between the X-ray flux and observed time and between the optical flux and observed time. We
use these scaling laws to discuss the afterglows of GRB 970228 and GRB 970616, and find that
if the spectral index of the electron distribution is p ¼ 2:5, implied from the spectra of GRBs,
the X-ray afterglow of GRB 970616 is well fitted by assuming k ¼ 2.
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1 I N T RO D U C T I O N

The popular theoretical explanation for cosmological gamma-ray
bursts (GRBs) is based on the fireball model. In this model, a GRB
is thought to result from the dissipation of the kinetic energy of a
relativistically expanding fireball. This dissipation can be the result
either of internal shocks formed during the collision between the
shells with different Lorentz factors in the fireball (Rees & Més-
záros 1994; Paczyński & Xu 1994; Sari & Piran 1997), or of
external shocks formed by the fireball colliding with the surround-
ing medium (Rees & Mészáros 1992; Mészáros & Rees 1993; Katz
1994; Sari, Narayan & Piran 1996). After the main GRB event, the
expanding fireball is predicted to produce delayed emission at
longer wavelengths (Paczyński & Rhoads 1993; Katz 1994; Més-
záros & Rees 1997; Wijers, Rees & Mészáros 1997; Reichart 1997;
Waxman 1997a,b; Vietri 1997a,b; Tavani 1997; Sari 1997). It is
easily understood that such an X-ray, optical and/or radio afterglow
is in fact a result of continuous deceleration of the expanding
fireball.

Fortunately, the afterglows of GRBs have been detected recently
in the error boxes at the sites of seven GRBs, e.g. GRB 970228,
970402, 970508, 970616, 970815, 970828 and 971214. The current
fireball model used to explain these afterglows has in fact been
divided into two sub-models. In the first sub-model, the fireball

expansion following a GRB is thought to be adiabatic (Wijers et al.
1997; Reichart 1997; Waxman 1997a,b). This is a reasonable
assumption if the time-scale for the cooling of the accelerated
electrons behind the shocks rapidly becomes longer than the
expansion time-scale of the fireball. The adiabatic expansion
model has given a scaling relation between the expansion Lorentz
factor and observed time: g ~ t¹3=8

⊕ , provided that the surrounding
medium is uniform and the expansion is ultra-relativistic. The
studies of Wijers et al. (1997), Reichart (1997) and Waxman
(1997a,b) showed that the adiabatic expansion model may satisfac-
torily explain the long-term behaviour of the afterglows of GRB
970228 and GRB 970508. The more detailed numerical calcu-
lations by Huang et al. (1998) are consistent with these studies. An
alternative sub-model that may account for several properties of the
afterglows of these two bursts has been presented by Vietri (1997b),
who postulated that the expansion is highly radiative. This requires
that the accelerated electrons always cool more rapidly than the
fireball expands.

The purpose of the present work is to study analytically the
effects of radiative corrections and non-uniformity of the surround-
ing matter on a GRB afterglow based on the adiabatic expansion
model. Our study is stimulated by two motivations. First, Sari
(1997) recently found that radiation losses may significantly influ-
ence the hydrodynamical evolution of the fireball in the uniform
medium. Secondly, it is possible that the sources of GRBs are
merging neutron star binaries (Narayan et al. 1992; Vietri 1996),

Mon. Not. R. Astron. Soc. 298, 87–92 (1998)

q 1998 RAS

*E-mail: daizigao@public1.ptt.js.cn (ZGD)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/298/1/87/976447 by guest on 21 August 2022



failed supernovae (Woosley 1993), accretion-induced phase transi-
tions of neutron stars (Cheng & Dai 1996), or hypernovae (Pac-
zyński 1998). If so, one may not assume that the surrounding matter
is uniform. A massive star as a progenitor of a GRB may have
produced a stellar wind, or a supernova remnant may exist around a
neutron star which is a source of the GRB. The stellar wind and/or
the supernova remnant constitute the non-uniform surrounding
medium of the GRB. It can be expected that the non-uniformity
of the medium can shorten or prolong the relativistic expansion of
the fireball. Such a behaviour should be compared with observa-
tions of afterglows of GRBs.

In order to achieve the purpose of the present work, in the next
section we first derive a new relation among the observed time, the
shock radius and the Lorentz factor of the fireball, assuming that the
density of the surrounding medium is a power-law function of shock
radius. We also obtain a new relation among the comoving time, the
shock radius and the Lorentz factor of the fireball. We show that, in
the case of a uniform medium, the former relation turns out to be
consistent with the expression derived by Sari (1997), but the latter
relation is different from the usual expression by a factor of 5/2. We
next study the evolution of the relativistic fireball in the non-
uniform medium by using the analytic solution found by Blandford
& McKee (1976), and investigate the effect of the first-order
radiative correction on the evolution. We find this effect may be
insignificant. In Section 3, we derive the X-ray flux from the fireball
as a function of observed time, and give a scaling relation between
the optical flux and observed time. In Section 4, we use our model to
discuss the afterglows of GRB970228 and GRB970616. In the final
section, we summarize our work.

2 T H R E E M E A S U R E S O F T I M E A N D
F I R S T- O R D E R R A D I AT I V E C O R R E C T I O N

Even though the source of GRBs is unknown, one assumes the
following scenario for GRBs: a compact source (,107 cm) releases
an energy E comparable to that observed in gamma rays,
E , 1051 erg, over a time less than 100 s. The huge optical depth
in the source results in an initial fireball that expands and accel-
erates to relativistic velocity. During the acceleration, the fireball
energy is converted to bulk kinetic energy with a Lorentz factor
h , 300. Of course, internal shocks may be formed in this period.
Subsequently, the expansion of the fireball starts to be significantly
influenced by the swept-up medium and two external shocks are
formed: a forward blast wave and a reverse shock (Rees & Mészáros
1992). A GRB may be produced by non-thermal processes in
shocks. After the GRB, the relativistic blast wave continues to
sweep up the medium. The fireball may go into an adiabatic
expansion phase. For simplicity, we assume that the medium
density varies with shock radius based on the expression

next ¼ n0
R
R0

� �¹k

for R $ R0 ; ð1Þ

where n0 is the medium density at the radius R0 at which the fireball
starts to be significantly influenced by the medium. As usual, R0 is
defined as

R0 ¼
3E

4pn0mpc2h2

 !1=3

¼ 1016E1=3
51 n¹1=3

0 h¹2=3
300 cm ; ð2Þ

where E51 ¼ E=1051 erg, h300 ¼ h=300, and n0 is in units of 1 cm¹3.
The use of a power-law dependence of the density surrounding a

GRB source is motivated by the following points. First, some

theoretical studies of supervova remnants (for a review see Ostriker
& McKee 1988) suggest a power-law dependence of the remnant
density at a radius larger than some fixed value. Secondly, the actual
dependence might be more complicated than a power-law form.
However, only in the case with a power-law form can we analyti-
cally study the evolution of a relativistic fireball. A study of the
relativistic-fireball expansion in the non-uniform medium without a
power-law dependence of the matter density on radius, needs
numerical simulations and thus is beyond the scope of this paper.

2.1 Three measures of time

We assume that the expansion is ultra-relativistic, and that radiation
losses are small. This implies that when most of the energy has been
given to the medium, the energy in the shocked medium is constant
and approximately equal to E. The rest mass of the shocked medium
M ~ R3¹k. Since the medium was thermalized by the relativistic
blast wave, its energy in the observer’s frame is ,Mg2 , E, where
g is the Lorentz factor of the shocked medium just behind the shock.
Thus, we have the scaling law

g ~ R¹ð3¹kÞ=2
: ð3Þ

It should be emphasized that, for a relativistic strong blast wave, the
Lorentz factor of the shock G ¼

���
2

p
g (Blandford & McKee 1976).

According to the scaling law (3), we next investigate relations
among three different measures of time denoted as t, tco and t⊕ ,
which are measured in the rest frame of the burster, in the frame
comoving with the fireball, and in the observer’s frame, respec-
tively. When the shock propagates a small distance dR < cdt,
photons that are emitted from the shock will be observed on the
observed time-scale of dt⊕ ¼ dR=ð2G2cÞ ¼ dR=ð4g2cÞ, while the
change in time in the frame comoving with the fireball is
dtco ¼ dR=ðgcÞ. Integrating these equations over time and using
the scaling law (3), we obtain

t⊕ ¼
R

4ð4 ¹ kÞg2c
¼

t

4ð4 ¹ kÞg2 ; ð4Þ

and

tco ¼
2R

ð5 ¹ kÞgc
¼

2t
ð5 ¹ kÞg

: ð5Þ

In the case of a uniform medium, e.g. k ¼ 0, equation (4) turns out
to be consistent with the expression derived by Sari (1997). In this
case, comparing equation (5) with the commonly used expression
R=ðgcÞ (Waxman 1997a,b; Vietri 1997b), we see the present
expression is a factor of 5/2 smaller.

2.2 First-order radiative correction

After establishing equations (4) and (5), we can study the adiabatic
evolution of the fireball in the non-uniform medium, and investigate
the effect of the first-order radiative correction on the evolution.

The starting point of our study is equation (69) of Blandford &
McKee (1976), concerning the total energy of the fireball,

E ¼
16pnextmpc2g2R3

17 ¹ 4k
; ð6Þ

which is constant (to lowest order). Here next is to be interpreted as
the external density at the position of the shock. Combining
equation (6) with equations (1) and (4), we get

g ¼ g0
t⊕
t0

� �¹ð3¹kÞ=ð8¹2kÞ

; ð7Þ
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where g0 and t0 are defined as

g0 ¼
ð17 ¹ 4kÞE

16pn0mpc2R3
0

" #1=ð8¹2kÞ

ð8Þ

and

t0 ¼
R0

4ð4 ¹ kÞc
: ð9Þ

Accordingly, the shock radius can be written as

R ¼ R0g
2
0

t⊕
t0

� �1=ð4¹kÞ

: ð10Þ

It is easily seen that in the case of k ¼ 0, equations (7) and (10) are
in agreement with those derived by Sari (1997).

In the following we consider only synchrotron emission from the
accelerated electrons. We neglect the contribution of inverse-
Compton (IC) emission from these electrons. This is because IC
emission is not of importance, particularly at late times of the
fireball expansion (for a discussion, see the final paragraph of this
subsection). In order to calculate the effect of synchrotron emission,
we need to determine the magnetic field strength and electron
energy. As usual, we assume that the magnetic energy density in
the comoving frame is a fraction yB of the total thermal energy
density e0 ¼ 4g2nextmpc2, i.e., B0 ¼ ð8pyBe0Þ1=2, and that the
electrons carry a fraction ye of the energy. This implies that the
Lorentz factor of the random motion of a typical electron in the
comoving frame is gem ¼ yegmp=me. The ratio of the comoving-
frame expansion time, tco ¼ 2R=ð5 ¹ kÞgc, to the synchrotron
cooling time, tsyn ¼ 6pmec=jTgemB02, is

tco

tsyn
¼

t1
t⊕

� �2=ð4¹kÞ

; ð11Þ

where t1 has been defined based on

t2=ð4¹kÞ
1 ¼

128ð4 ¹ kÞ
3ð5 ¹ kÞ

mp

me

� �2

yeyBðjT n0ct0Þg
3¹2k
0 t2=ð4¹kÞ

0 : ð12Þ

Thus, we can define the radiative efficiency as

y ¼
t¹1
syn

t¹1
co þ t¹1

syn
¼

ðt1=t⊕ Þ2=ð4¹kÞ

ðt1=t⊕ Þ2=ð4¹kÞ þ 1
: ð13Þ

This parameter accounts for a fraction of the energy of the
accelerated electrons which is radiated away by the synchrotron
emission. For t⊕ p t1, y < 1; but for t⊕ q t1, y < ðt1=t⊕ Þ2=ð4¹kÞ.
Following equation (84) of Blandford & McKee (1976), we derive
the energy loss rate during the deceleration, which is given by
44ð4 ¹ kÞ2pg8c3t2

⊕ nextmpc2 multiplied by yey, where equation (4)
has been used. Using equations (7)–(9), we get the total power
radiated per unit time,

dE
dt⊕

¼ ¹yey
17 ¹ 4k
4ð4 ¹ kÞ

E
t⊕

: ð14Þ

Integrating this equation over time, we further obtain

Eðt⊕ Þ ¼ E0
ðt1=t⊕ Þ2=ð4¹kÞ þ 1

ðt1=tinÞ
2=ð4¹kÞ þ 1

" #17¹4k
8 ye

; ð15Þ

where tin is the observed initial time of the afterglow which is of the
order of magnitude ,10 s. We now define the parameter f as

f ¼
t1
tin

� �2=ð4¹kÞ

þ1

� �¹17¹4k
8 ye

: ð16Þ

This parameter is in fact the ratio of the fireball energy at t⊕ q t1 to the
initial total energy, and thus accounts for the effect of the first-order
radiative correction. To estimate f , we adopt the following values:
E51 ¼ 4, h300 ¼ 1, n0 ¼ 1 cm¹3, yB ¼ 0:1, and ye , 0:1–0:3. Table
1 gives the values of g0, t0, t1 and f for different k. It can be seen from
this table that for ye , 0:1 the effect of the radiative corrections may
be insignificant, and for ye , 0:3 this effect may not be of importance
in the case of k > 0. This conclusion disagrees with that of Sari (1997),
who did not consider the factor y in our equation (14). For this reason,
we will not take into account this effect in the following.

In the remainder of this subsection, we want to discuss the
validity of two of our assumptions.

First, the fireball expansion has been assumed to be adiabatic. As
described in the introduction, this assumption in fact requires that
the time-scale for the cooling of the accelerated electrons behind the
shocks rapidly becomes longer than the fireball expansion time-
scale. Now we assume that the initial expansion of the fireball is
radiative. In this case (see, e.g., Vietri 1997b), the relations among
the shock radius, comoving-frame time and observed time are
R ¼ 4ð7 ¹ 2kÞg2ct⊕ and R ¼ ð4 ¹ kÞgctco, and the Lorentz factor
of the fireball decreases as

g ¼ h
t⊕
t0r

� �¹ 3¹k
7¹2k

; ð17Þ

where

t0r ¼
R0

ð7 ¹ 2kÞ4h2c
¼

1
7 ¹ 2k

E1=3
51 n¹1=3

0 h¹8=3
300 s: ð18Þ

Thus, the ratio of the comoving-frame expansion time-scale to the
synchrotron cooling time-scale is given by

tco

tsyn
¼

t1r

t⊕

� � 5¹k
7¹2k

; ð19Þ

where t1r is defined through the expression

tð5¹kÞ=ð7¹2kÞ
1r ¼

64ð7 ¹ 2kÞ
3ð4 ¹ kÞ

mp

me

� �2

yeyBðjT n0ct0rÞh
4tð5¹kÞ=ð7¹2kÞ

0r :

ð20Þ

The values of t1r for different k are calculated in Table 2. According
to this table and to equation (19), we see that tsyn > tco for t⊕ > t1r,
and therefore conclude that even if the fireball starts off with
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Table 1. The typical values of some parameters for different k in the case of adiabatic evolution.

g0 t0ðsÞ t1;aðsÞ t1;bðsÞ fa fb t2;a(s) t2;bðsÞ

k ¼ 0 ........ 4.67 3:31 × 104 200 1800 0.71 0.20 12.5 1013
k ¼ 1 ........ 7.46 4:41 × 104 30 140 0.81 0.42 3.75 90.9
k ¼ 2 ........ 18.56 6:61 × 104 5.0 15.0 0.94 0.73 1.25 11.3

Notes — g0, t0, t1, f and t2 are defined by equations (8), (9), (12), (16) and (23) in the text, respectively. The values are
computed for E51 ¼ 4, h300 ¼ 1, n0 ¼ 1 cm¹3 and yB ¼ 0:1. The subscripts ‘a’ and ‘b’ represent ye ¼ 0:1 and 0.3,
respectively.
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radiative dynamics, the transition to adiabatic evolution comes soon
after the GRB.

Secondly, we have not considered the contribution of IC emis-
sion to the cooling of the accelerated electrons. It is well known that
whether IC emission is important or not depends on the ratio of the
IC power to synchrotron power,

y ¼
e0

S

e0
B
; ð21Þ

where e0
S and e0

B are the synchrotron-photon and magnetic-field
energy densities. For tco < tsyn and when emission is dominated by
the synchrotron process, as argued by Waxman (1997a), the energy
density e0

S is a fraction tco=4tsyn of the electron energy density, and
thus the ratio y is given by

y ¼
ye

yB

tco

4tsyn
¼

t2

t⊕

� �2=ð4¹kÞ

; ð22Þ

where t2 has been defined by

t2 ¼
ye

4yB

� �ð4¹kÞ=2

t1: ð23Þ

Therefore, we can conclude from Table 1 that IC emission is not an
important process for the cooling of the accelerated electrons
behind the shocks for t⊕ > t2.

3 T H E X - R AY A N D O P T I C A L R A D I AT I O N

We first study the X-ray flux from a relativistic fireball expanding in
the non-uniform medium. The total power radiated per unit time has
been given by equation (14). In order to calculate the X-ray flux, we
need to consider radiation mechanisms of the accelerated electrons
behind the shock. As shown in the last section, the synchrotron
emission is the main mechanism for the cooling of these electrons.
We assume that the electron distribution behind the shock is a power
law,

dNe

dge
~ g¹p

e ; for gem # ge # ge;max: ð24Þ

The estimate of ge;max can be obtained by equating the electron
acceleration time-scale, ta ¼ gemec=eB0, to the synchrotron cooling
time-scale so that

ge;max ¼
6pe
jT B0

� �1=2

: ð25Þ

It should be pointed out that even though the maximum Lorentz

factor estimated by this equation is rather high, the effect of IC
emission on ge;max can be neglected, as seen in equation (22).
For the electron distribution with equation (24), the fraction of
synchrotron power radiated in the X-ray region is (Vietri
1997a,b)

fx ¼
eð3¹pÞ=2

u ¹ e
ð3¹pÞ=2
l

e
ð3¹pÞ=2
max

; ð26Þ

where eu and el are the upper and lower limits of the BeppoSAX
instruments, 2 and 10keV respectively, and emax is given by

emax ¼
"eB0

mec
g2

e;maxg ¼ 160g MeV: ð27Þ

Inserting equation (27) into equation (26), we find

fx < ½6 × 10¹5
=gÿð3¹pÞ=2

; ð28Þ

where the number in the brackets is two orders smaller than that of
Vietri (1997b). Therefore, the expected X-ray flux is

Fx ¼
dE
dt⊕

fx
4pd2 ¼ 1:0 × 10¹6 erg s¹1 cm¹2 d

1Gpc

� �¹2 t⊕
1 s

� �¹a
;

ð29Þ

where d is the source distance, the constant has been computed for
k ¼ 0, p ¼ 2:5, ye ¼ 0:1, and the values of the other parameters
used in Table 1. For t⊕ p t1 in the above equation,

a ¼ 1 ¹
3 ¹ k

8 ¹ 2k
3 ¹ p

2
; ð30Þ

but for t⊕ q t1,

a ¼
6 ¹ k
4 ¹ k

¹
3 ¹ k
8 ¹ 2k

3 ¹ p
2

: ð31Þ

We next discuss the optical flux from the accelerated electrons
behind the shock. For the electron distribution with equation
(24), the observed frequency of synchrotron emission at peak
flux is

nm ¼
3

4p
gg2

em
eB0

mec
¼

6������
2p

p y2
ey

1=2
B g4¹k

0
mp

me

� �2eðn0mpc2Þ1=2

mec
t⊕
t0

� �¹3=2

¼ 8:0 × 1021y2
ey

1=2
B E1=2

51
17 ¹ 4k

17

� �1=2 4
4 ¹ k

� �3=2 t⊕
1 s

� �¹3=2
Hz;

ð32Þ

where equations (8) and (9) have been used. Equation (32)
shows that nm is weakly dependent on k. The typical spectrum
of the synchrotron emission has the form Fn ~ na, where a ¼ 1=3
for n < nm, and a ¼ ¹ðp ¹ 1Þ=2 for n > nm. Since the comoving
electron density

n0
e ~ gnext ~ t¹ð3þkÞ=ð8¹2kÞ

⊕ ;

and the comoving width of the fireball

DR0 ~ R=g ~ tð5¹kÞ=ð8¹2kÞ
⊕ ;

then the comoving intensity

I0
n ~ n0

eB0DR0 ~ t¹ð1þ2kÞ=ð8¹2kÞ
⊕

(Mészáros & Rees 1997; Wijers et al. 1997). Thus, the observed
peak flux as a function of time is

Fnm
~ t2

⊕ g5I0
nm

~ t¹k=ð8¹2kÞ
⊕ :
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Table 2. The typical values of some parameters for
different k in the case of radiative evolution.

t0rðsÞ t1r;aðsÞ t1r;bðsÞ

k ¼ 0 ............... 0.227 47.3 220
k ¼ 1 ............... 0.317 53.2 210
k ¼ 2 ............... 0.529 47.9 144

Notes — t0r and t1r are defined by equations (18)
and (20) in the text, respectively. The values of the
parameters of the fireball and medium are taken as
in Table 1. The subscripts ‘a’ and ‘b’ represent
ye ¼ 0:1 and 0.3, respectively.
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Once nm has entered the optical region, the observed flux at any
frequency must vary according to

Fn ¼ Fnm
ðn=nmÞa ~ t¹b

⊕ ; ð33Þ

where for n < nm,

b ¼ ¹
2 ¹ k
4 ¹ k

; ð34Þ

for n > nm,

b ¼
k

8 ¹ 2k
þ

3ðp ¹ 1Þ

4
: ð35Þ

It can be seen from equations (33)–(35) that only for k < 2 the
observed optical flux first increases and then decreases, but for
k ¼ 2 the flux is first kept constant and subsequently declines.

4 D I S C U S S I O N

We first use our model to discuss the X-ray and optical afterglow of
GRB 970228. According to the observational results summarized
by Wijers et al. (1997), we find p < 2:4 and k < 0 by solving
equations (31) and (35), which is consistent with the results of
Waxman (1997a). The result of p < 2:4 is consistent with the mean
spectral index (p ¼ 2:5) of GRBs measured in Band et al. (1993).
This shows that the spectral index of the electron distribution due to
shock acceleration is likely to be similar for GRBs and their
afterglows.

Our model can also be applied to discussing the X-ray afterglow
of GRB 970616. This burst was detected by BATSE on 16.757 June
UT. About 20 min after the initial trigger, a transient X-ray RXTE
(Rossi X-ray Timing Explorer) source was found in the error box of
this burst (Connaughton et al. 1997), and 4 h after the burst,
scanning observations with the Proportional Counter Array on the
RXTE revealed an X-ray afterglow in the band 2–10 keV with a flux
,1:1 × 10¹11 erg s¹1 cm¹2 (Marshall et al. 1997). On 20.35 June UT,
ASCA detected an X-ray flux from the XTE/IPN error box of
GRB970616, with ,3:7 × 10¹14 erg s¹1 cm¹2 in the band 0.7–
7 keV (Murakami et al. 1997). Using these values of the X-ray
flux in equation (29), we get a < 1:86. After knowing the value of a
and assuming that p is equal to the mean spectral index of GRBs
measured in Band et al. (1993), that is, p < 2:5, we solve equation
(35) and find k ¼ 2. This result implies non-uniformity of the
surrounding medium.

We have found that the afterglows of GRB 970616 and GRB
970228 are well explained by assuming two cases with k ¼ 2 and 0
respectively. We easily understand these two cases. In the first case,
a neutron star (as the GRB source) has lain in a supernova remnant
and/or a stellar wind because of the low velocity of the star, so the
postburst fireball has expanded in this non-uniform medium; but in
the second case, we conjecture that since the velocity of a neutron
star as the progenitor of the GRB was very high, the GRB source has
left a supernova remnant and/or a stellar wind, and the fireball has
met the uniform interstellar medium.

5 S U M M A RY

A GRB has been commonly believed to result from the dissipation
of the kinetic energy of a relativistically expanding fireball, and its
X-ray, optical and/or radio afterglow is a result of the continuous
deceleration of the fireball. In this paper, we have assumed that the
expansion of the fireball is adiabatic and ultra-relativistic. If
compact objects (neutron stars or black holes) are the origin of

the GRB, the surrounding medium of the fireball may be non-
uniform due to the existence of a stellar wind and/or a supernova
remnant. For simplicity, we have assumed that the density of the
medium is a power-law function of shock radius, i.e. next ~ R¹k. In
addition, radiation losses may significantly influence the hydro-
dynamical evolution of the fireball (Sari 1997). In view of these two
important arguments, we have analytically studied the effects of the
first-order radiative correction and the non-uniformity of the
medium on the GRB afterglow in this paper. The results of our
study are summarized as follows.

First, we have derived a new relation among the observed time,
the shock radius and the Lorentz factor of the fireball. We have also
obtained a new relation among the comoving time, the shock radius
and the Lorentz factor of the fireball. We have shown that, in the
case of a uniform medium, the former relation turns out to be
consistent with the expression derived by Sari (1997), but the
latter relation is smaller than the usually used expression by a
factor of 5/2.

Secondly, we have used the analytic solution of Blandford &
McKee (1976) to derive the Lorentz factor of the fireball and
the shock radius as functions of observed time, which show that
the non-uniformity of the medium must shorten (k < 0) or
prolong (k > 0) the relativistic expansion of the fireball. Using
these functions, we have further derived the radiation energy
loss rate, and found that the first-order radiative correction may
be insignificant. This conclusion disagrees with that of Sari
(1997), who neglected the radiative efficiency defined in equa-
tion (13).

Thirdly, we have derived new scaling laws both between the
X-ray flux and observed time and between the optical flux and
observed time. We have found that only for k < 2 does the observed
optical flux first increase and then decrease, but for k ¼ 2 the flux is
first kept constant and subsequently declines.

Finally, we have used our model to discuss the afterglows of
GRB 970616 and GRB 970228. We have seen that the afterglow of
GRB 970616 is well fitted by assuming k ¼ 2. This value implies of
the non-uniformity of the medium.
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