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Experimental and modeling efforts suggest that rhythms in the CA1
region of the hippocampus that are in the beta range (12–29 Hz) have
a different dynamical structure than that of gamma (30–70 Hz). We
use a simplified model to show that the different rhythms employ
different dynamical mechanisms to synchronize, based on different
ionic currents. The beta frequency is able to synchronize over long
conduction delays (corresponding to signals traveling a significant
distance in the brain) that apparently cannot be tolerated by gamma
rhythms. The synchronization properties are consistent with data
suggesting that gamma rhythms are used for relatively local compu-
tations whereas beta rhythms are used for higher level interactions
involving more distant structures.

Rhythms in the gamma range (30–80 Hz) and the beta range
(12–30 Hz) are found in many parts of the nervous system and

are associated with attention, perception, and cognition (1–3). It
has been noted in electroencephalogram (EEG) signals that
rhythms of different frequencies are found simultaneously (4). Beta
oscillations are readily observable immediately after evoked gamma
oscillations in sensory evoked potential recordings (5). This beta
activity has been correlated with the long-range synchronous ac-
tivity of neocortical regions during visuomotor reflex activation (6).

This paper concerns the correlation between the frequency band
of coherent oscillations and conduction delays between the sites
participating in the coherent rhythm. It has been noted (7) in
human EEG subjects that gamma rhythms are prevalent in local
visual response synchronization, but more distant coherence oc-
curring during multimodal integration between parietal and tem-
poral cortices uses rhythms at frequencies of 12–20Hz (the so-called
beta 1 range).

We shall use data from the CA1 region of the hippocampus
(8–10) as a paradigm to address the questions of how long-distance
synchrony is achieved and why there is a correlation between
oscillation frequency and the temporal distances between partici-
pating sites. The data available from the rat hippocampus slice
preparation give clues about details of dynamics that are important
to the synchronization process.

The work builds on earlier work (11–12) describing and analyzing
the role of doublet spikes in interneurons in producing synchrony
when there are significant conduction delays. Earlier work (13)
using rate models showed, via simulations, that longer conduction
delays could be tolerated and still produce synchrony if the carrier
rhythm had lower frequencies. However, a rate model is not
consistent with the situation in which excitatory cells fire at most
one spike per cycle, and with high precision in phase. An alternative
solution was suggested by data and large-scale models of the gamma
rhythm in the hippocampus (8, 9). In both data and models, the
ability to synchronize happened in those parameter regimes in
which interneurons produced a spike doublet in many of the cycles.
This mechanism was analyzed by Ermentrout and Kopell (11),
where it was shown how the doublet provides a feedback mecha-
nism for the timing. The analysis given there predicted that, for long
conduction delays (above 8–10 ms, depending on network param-
eters), synchronization in the gamma frequency band is not robust.
Although conduction delays in the neocortex are variable, there is

evidence that the delays between association areas could be sig-
nificantly larger than 10 ms (see Discussion).

In this paper, we show that the beta rhythm observed in the
hippocampal slices is not merely a slower version of gamma, but has
a distinct dynamical structure and makes use of intrinsic membrane
currents not expressed during gamma. Furthermore, the beta
rhythm is much better adapted to synchronization in the presence
of long conduction delays. Via a very reduced model, we analyze
why this is so. Predictions from the analysis are shown to hold in the
large-scale models.

Background on production of beta and gamma rhythms in the
hippocampal slice can be found in ref. 3. In the tetanic stimulation
paradigm (9, 10), with sufficiently strong stimuli, the hippocampal
slice produces both gamma and beta, with a transition between
them. In intracellular recordings of beta in pyramidal cells, gamma-
frequency oscillations continue between beta-frequency population
spikes, suggesting that the interneuron network continues to oscil-
late at gamma frequency, which the pyramidal cells cannot follow
(Fig. 1A). Two system parameters alter in time before and during
the transition to beta: the strength of recurrent excitatory synapses
and the amplitude of one or more slow K conductances. Both of
these parameters increase and then level off, and experimental data
and large-scale simulations suggest that evolution of both param-
eters is necessary for the switch to beta to occur (10, 14). Beta
oscillations are synchronized between the two sites when both sites
are stimulated together intensely (10, 14).

In human EEG, occurring spontaneously or evoked by auditory
stimulation by novel sounds, power in the gamma range coexists
with beta, consistent with the beat-skipping structure [C. Haenschel
and J. Gruzelier, personal communication; also see the work by
Tallon-Baudry et al. (15)].

Local Inhibition-Based Rhythms. The data and large scale simulations
cited above all concern the behavior of the network when two sites
are intensely stimulated together. To better understand the mech-
anism behind the network behavior, we first consider the behavior
at one site. We show, via very reduced models, that the transition
from gamma to beta can be understood as a consequence of the
changes in recurrent excitatory synapses and expressions of K-
conductances. Although this had previously been documented in
large-scale simulations (14), the ability of the small network to
reproduce this creates an excellent model within which to under-
stand more deeply the long-distance synchronization properties of
beta and gamma.

We use models that are much reduced from the large scale
simulations in two ways. The network is pared down to a minimal
number of cells and connections. We work with a local network of
two pyramidal cells (excitatory, or E-cells) and two interneurons
(inhibitory, or I-cells). All cells are coupled to one another, except
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possibly for coupling between the excitatory cell (dotted lines in Fig.
2A). E-E coupling, although sparse in the CA1 (16), turns out to be
important for the beta rhythm (10, 14); gamma rhythms, however,
can be simulated without E-E coupling (11, 17). The gamma rhythm
corresponds to one in which all of the cells fire synchronously at
30–70 Hz whereas in the beta rhythm, the I-cells synchronize at a
gamma frequency and the E-cells synchronize at a frequency half

as fast. Compared with the detailed biophysical models (14), the
cells are also simple: they are modeled as single compartment cells
with fast spiking currents for the gamma rhythm; for the beta
rhythm, an extra after-hyperpolarization (AHP) current (slow K
conductance) is added to the E-cells (see Appendix). Although we
use a specific current (M-current) in the simulations, the analysis in
the mathematics given below will work for any AHP current with
the appropriate decay time.

Increases in K-conductances, plus increases in the strength of
synapses between excitatory cells, can transform the output of the
network of E and I cells from gamma to beta. This transformation
was documented in the detailed biophysical model (14) with two
connected sites. In Fig. 2B, we show that the transition is repro-
duced in the reduced model, even without the synaptic connections
between the sites. The first part of Fig. 2B displays the voltage traces
of the two E-cells and one of the I-cells (they are synchronous) with
parameters that elicit a gamma rhythm. In the middle section, a
slower K-conductance has been added to the model E-cells; now the
E-cells, slowed down by the K-conductance, each fire on half of the
gamma cycles. Note that they fire on opposite cycles. For the third
part of Fig. 2B, the parameters were further changed by adding
synaptic (AMPA-mediated) connections between the E-cells; the
network is now as in Fig. 2A with the dotted lines. Now the E-cells
still fire every other cycle, but this time on the same cycle; that is,
they produce beta.

To understand why the E-cells miss opposite cycles in the absence
of the E-E coupling, we note that the firing of one E-cell effectively
silences the other in a given cycle through feedback inhibition,
unless the lagging cell is so close that it fires before the onset of the
feedback inhibition. A major effect of the mutual excitatory con-
nections is to increase the range of initial conditions under which
the second cell can fire before receiving inhibition; in a manner
graded with the size of the excitatory conductance, the excitation
advances the firing of the second E-cell, preventing suppression in
that cycle.

With some E-E coupling, there can be other initial conditions for
the same parameters for which the E-cells do fire on opposite cycles
throughout the trajectory. However, if the E-E coupling is suffi-
ciently large, that solution does not stably exist. With enough
excitation from the cell that fires in a given cycle, the other cell is
forced to fire in the same cycle, ruling out the solution in which cells
fire on opposite cycles.

We also note that there are many different ways to change
parameters to produce the gamma-to-beta transition. In addition to
the new excitatory connections, the essential change is to lower the
excitability of the E-cells relative to the I-cells, by changing relative
drives or intrinsic conductances. As we will see in the next section,
synaptic input from distant sources can also change the balance of
excitability.

Long-Distance Synchronization in Inhibition-Based Rhythms. Strategy
and basic dynamical properties. The different dynamical structures
and currents associated with gamma and beta lead to different
results when these rhythms are used to coordinate dynamical
activity of loci at a distance from one another. To show this, our
strategy is to look at the dynamics near the gamma or beta rhythm
and create a map (a function relating the timing of one cycle to that
of the next) containing information about whether, and in what
parameter ranges, that rhythm is dynamically stable.

There are two principles that govern the behavior of the maps.
The first is that E-cells are able to fire when inhibition, either
synaptic or intrinsic (from AHP currents), has worn off sufficiently.
This situation obtains when the effective membrane time constant
of the excitatory cells is small compared with the decay time of the
synaptic current andyor the AHP current; the voltage then tracks
the time course of the synapses or AHP currents.

Second, the I-cells have an extra property, associated with
relative refractory period. Suppose a cell fires at t 5 0 and receives

Fig. 1. Gamma and beta oscillations in vitro. Intracellular recordings of gamma
and beta oscillations in a CA1 hippocampal pyramidal neuron. Oscillations were
induced by brief tetanic stimulation [see Whittington et al. (9) for methods]. The
initial posttetanic response is a gamma oscillation with action potentials (fre-
quency 38 Hz) separated by a period of hyperpolarization made up of both AHP
and inhibitory synaptic activity. After the transition to beta activity, the under-
lying gamma membrane potential oscillation is still apparent (frequency 42 Hz),
but spiking occurs on every second or third period (frequency 18 Hz). Action
potentialsareseparatedbythe initialAHPyIPSPhyperpolarizationandadditional
IPSPs. (Bar 5 1 mV, 100 ms.)

Fig. 2. (A) Minimal network for investigating local synchronization of gamma
and beta rhythms. For the gamma rhythms, the E-E connections are absent; for
the beta rhythms, they are a necessary part of the circuit. (B) Gamma-to-beta
transition of local rhythms occurs as the AHP is turned on and the local E-E
connections are strengthened. Parameters are as in the appendix. For the gamma
rhythm, gee 5 0 and gm 5 0. At the first arrow, gm is set to 1, switching the rhythm
from gamma to a rhythm in which the E-cells miss beats and fires nonsynchro-
nously. At t 5 400, gee 5 0.15, and the network quickly suppresses the nonsyn-
chronous solution, leaving only the synchronous local state. Throughout the
transitions, the I cells shown below exhibit only minor changes, slowing down
slightly because of the decreased excitation (excitation every other cycle).
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sufficiently large excitation again at t 5 c . 0. The cell fires again
at t 5 TI(c), where TI decays with c. That is, the more recovered
the cell, the shorter the time to fire after a given fixed excitation. For
c very short, the cell may not fire at all. TI is related to the intrinsic
refractory period of the I-cells but is influenced by the rest of the
network. For example, increasing the self-inhibition in the local
network increases the values of TI. Standard integrate and fire
neurons do not have this property, but it can be shown from
simulations that this property does hold for biophysical models of
the interneurons (11, 18). It also holds for more elaborate versions
of integrate and fire equations (12).

An architecturally minimal model combines all local cells of a
given type if they are synchronous in that rhythm. Thus, in both
gamma and beta, a minimal model of the local circuit uses only one
E cell and one I cell. In each of these, the model for long-distance
interaction consists of two local circuits, with connections from E
cells to the distant I cells (Fig. 3A, without the dotted lines). We also
explore the effects of adding long connections between the E cells
(Fig. 3A, dotted lines).

Gamma rhythms, beta rhythm, and feedback loops for two-site
synchronization. In previous papers (8, 11, 12), we introduced a
mechanism for long distance synchronization in gamma. In its
simplest form, a network embodying this mechanism has two
minimal local circuits, as in Fig. 3A without the dotted lines. The
synchronization depends on operating in a parameter range in
which the I-cells produce double spikes per cycle (‘‘doublets’’). The
first spike of the doublet is temporally tied to excitation from the
local E-cell; the second is caused by excitation from the distant
E-cell. The timing between the doublets in a given cycle includes not
only the difference in firing time between the two E-cells and the
conduction delay, but a nonlinear property of the I-cells associated
with relative refractory period. It is this nonlinearity that provides
the feedback responsible for the synchronizing properties of the
doublet configuration in the gamma rhythm. For the beta rhythm,
there is an additional nonlinearity attributable to the AHP current.
We show below how the extra current and the beat-skipping
structure change the maps, and why this leads to tolerance of longer
conduction delays for the beta rhythm.

Let t1 and t2 be the times of firing of cells E1 and E2 on some cycle,
with D 5 t1 2 t2. Starting with the gamma rhythm, if the initial
conditions are close enough to synchrony (D 5 0), we can construct
a map that gives the times t#1 and t#2 of firing in the next cycle. The

time at which the inhibition for an E-cell wears off enough for it to
fire is approximated by the time at which the inhibitory conduc-
tance had decayed enough. [That this is an excellent approximation
is easily checked by comparing simulations from the biophysical
models with predictions using that approximation (11).] The latter
threshold depends on the drive to the E-cells. We assume that there
is saturation of the synapse from the I to the E cell, so that it is only
the timing of the second spike of the doublet that determines when
the postsynaptic E-cell will fire.

Cell I1 is essentially recovered from firing in the previous cycle
when it receives excitation from E1 at t1. (We assume no local
conduction delay.) Hence, it fires a short (history independent)
time, tei, later. (This time can be arbitrarily small, depending on the
drive to the I-cells, but the latter drive may not be so large that the
I-cells fire before the E-cells.) Cell I1 receives excitation from E2 at
time t2 1 d, where d is the delay time between the circuits. Cell I1
then fires the second spike of its doublet at t2 1 d 1 TI (t2 1 d 2
t1 2 tei) 5 T̂I. E1 fires in the next cycle when the inhibitory
conductance equals some threshold level g*, i.e., at a time t#1 defined
by

gieexp@2~t#1 2 T̂I!/t# 5 gp, [1]

where t is the time constant for decay of inhibition. g* is related to
the drive to the cell via the intrinsic period pg induced by that drive
in an uncoupled cell, namely gie exp[(2pg 1 tei)yt] 5 g*. From the
above, we can compute the time t#1 in terms of t1 and t2 and similarly
for t#2.

The map for analysis of the dynamics near the beta rhythm is a
variation of Eq. 1, with two modifications. The cell I

1
now fires three

spikes per beta cycle, two during the gamma cycle in which the
E-cells fire, and one during the cycle in which the E-cells are silent.
The excitation from the distant cell is, as before, received by an
I-cell after it has fired its first spike of the period. The map TI for
the gamma rhythm is replaced by Tb, which is defined to be the
interval between the time cell I1 receives excitation from cell 2 and
the time it fires its third (not second, as before) spike; Tb depends
on the times t1, t2, defined as above. Thus, the time at which the third
spike of the I cell fires is t2 1 d 1 Tb(t2 1 d 2 t1 2 tei)' T̂b. Fig.
3B shows TI, Tb. Note that, in this parameter range, Tb is almost TI
plus a constant. As shown in ref. 11, it is the slope of the map TI (or
Tb) that matters in determining whether synchronization will take
place; thus, this is not the key alteration that changes the synchro-
nization properties.

The second modification introduces an intrinsically based source
of inhibition, namely the slowly decaying AHP current of the
E-cells, with time constant tahp, triggered by a spike of that cell. The
time t#1 of the next E1 spike, determined by the time of the last
inhibitory pulse received from cell I1 and the previous E1 spike time,
is then defined implicitly by

gieexp@2~t#1 2 T̂b!/t# 1 gahpexp@2~t#1 2 t1!/tahp# 5 gpb. [2]

Here gahp is an ‘‘effective conductance’’ that takes into account the
actual maximal conductance g#ahp but scales it using the maximal
value of the gating variable for that current and the ratio of the
driving force of the AHP current to that of the synaptic current. To
derive the threshold value g*b, suppose an uncoupled local circuit
displays a beat-skipping beta rhythm, and let tII be the difference in
time between the first and second I-spikes in a cycle. (Recall that,
for the uncoupled beta rhythm, there are only two spikes per cycle.)
Then, g*b 5 gieexp[2(pb 2 tII)yt] 1 gahpexp[2pbytahp], where pb is
the period of the uncoupled beta rhythm.

To understand the implication of these maps for stability, we do
a stability analysis with the implicit formula Eq. 3 by linearizing
around the synchronous solution; we will show that the map of Eq.
1 can be considered a special case when there is no AHP. To do this,
we define ri' t#i 2ti 2 pb, the variation in a given cycle from the

Fig. 3. (A) Minimal network for investigating synchronization with conduction
delays. The long E-E connections are essential for coherence of the beta rhythm
across distances, but not for the gamma rhythm. (B) The maps TI and Tb as a
function of the delay d for gm 5 1 and all others parameters as in the Appendix.
All axes have units of milliseconds. (C) The linearized scaling factor D for the
gammarhythm(dashed)andfor thebeta rhythmatvarious ratiosof theeffective
AHP conductance and the effective inhibitory synaptic conductance. The closer D
is to zero, the faster the convergence to the synchronized state and the stronger
is robustness to heterogeneity.
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periodic rhythm with period pb. D is defined as before. We can
rewrite Eq. 2 as

gp 5 gieexp@2~pb 1 r1 2 D 2 d 2 Tb~D 1 d 2 tei!!/t#

1 gahpexp@2~pb 1 r1!/tahp#.
[3]

To lowest order in the small quantities D, r1, r2, the above can be
expressed as

Ar1 1 B~r1 2 D~1 1 T9b~d 2 tei!/t!! 5 0,

where A 5 (gahpytahp)exp(2pbytahp) and B 5 (gieyt)exp(2(pb 2d 2
Tb(d 2 tei))yt). (See Appendix for more details about A and B.) A
similar formula holds for r2, with D replaced by 2D. Subtracting
these two formulae, and noting that r2 2 r1 5 D# 2 D, we have

~A 1 B!~D# 2 D! 5 22BD~1 1 T9b~d 2 tei)/t))

D# 5
A 2 B 2 2BT9b~d 2 tei!/t

A 1 B
D ; DD [4]

Synchrony is stable if the coefficient D of D in Eq. 4 lies between
21 and 11. The closer Eq. 4 is to the stability boundary, the slower
the synchronization, so the fastest synchronization occurs when D 5
0; similarly, when the system is close to its stability boundary, small
differences in local circuits can produce significant phase lags
between the circuits. Fig. 3C shows D as a function of d for other
parameters as used in the simulations.

Eq. 4 and Fig. 3B reveal that there are two effects associated with
synchronization. For short conduction delays, T9b is significant and
affects synchronization. For larger conduction delays (e.g., d . 10
ms), T9b is essentially zero, and the synchronization comes from a
balance between the decay of the inhibition (encoded in B, and
dependent on d) and the decay of the AHP current. Fig. 3C shows
that increasing the amount of the AHP current brings D signifi-
cantly closer to zero, increasing the robustness and rate of synchro-
nization. See Appendix for information about the calculation of D
and estimation of the quantities in Eq. 4. The analysis for the gamma
rhythm gives rise to a similar relationship as Eq. 4, in which the
expression Tb is replaced by TI and the coefficient A is set to zero
because there is no AHP current. In this case, there is no balance
between the decay of inhibition and the AHP current, so all
synchronization effects come from the non-zero slope of TI; the
latter function is essentially flat by 8–10 ms, which gives the critical
constraint on long-distance synchronization in the gamma rhythm.
As shown in ref. 11, changes in parameters do not significantly affect
this conclusion.

Fig. 4 shows that the conclusions of the analysis hold for large
scale networks as well as small ones. Fig. 4A shows a large-scale
realistic model (14), showing the gamma-to-beta transition for E
and I cells. The lower panels shows that there is synchronization in
both frequency regimes. The right-hand panels of Fig. 4A show the
same quantities when an extra 10-ms decay has been added to the
conduction times between the two sites (in Fig. 4A, the cells are
distributed, with a smaller maximal conduction delay across the
total array of '4 ms). Note that the beta rhythm synchronizes
across the two sites whereas the gamma rhythms in the two sites are
in antiphase.

Effects of mutual excitation. The analysis we did above for
synchronization between two distant sites used as signals only
excitation to distant I-cells. Because there can also be mutually
excitatory connections (as in Fig. 3A with the dotted lines), it is
important to know the effects of these. We show in this section that
long-range E-E connections are not able to stabilize the synchro-
nous solution if that solution is unstable in the absence of those
connections. Nevertheless, especially in the beta rhythm, they can
be important in producing the appropriate network output by
eliminating the possibility of other unwanted solutions.

Fig. 5A illustrates the key points. In the first part of Fig. 5A, we
show the behavior of local circuits for the network in Fig. 3A (no
dotted lines), with the parameters adjusted so that the local circuits
are each oscillating in the gamma regime and the conduction delay
is 13 ms. Note the lack of synchrony. With coupling between the E
cells (add dotted lines), the circuits change behavior but do not
synchronize, as shown in the second part. Thus, E-E connections do
not overcome the inability of the gamma rhythm to synchronize in
the presence of substantial delays. (This was true for all strengths
of E-E coupling we tried.) The last portion of Fig. 5A shows that the
system synchronizes if enough AHP current is added to the E-cells
to slow down the local rhythm to beta.

To explain these results we make two points. First, we note that
the E-E coupling does not significantly change the dynamics of the
network when the cells are close to synchrony. The reason is that
the conduction delay insures that the effect is felt after the spike of
the cell postsynaptic to the excitatory postsynaptic potential, so is
not felt on the current cycle. In addition, the excitatory postsynaptic
potential (simulated as being AMPA receptor-mediated) decays
fast enough so that the effect is negligible by the next cycle. Thus,
with no AHP current, E-E coupling cannot change dynamics in
which the synchronous state is unstable to dynamics that have
synchrony as a stable state.

For the beta rhythm, E-E coupling is very important, as illus-
trated by Fig. 5B: The first portion shows the antiphase between the
two sites that occur when each uncoupled site displays a beta

Fig. 4. In network model, beta remains synchronized with longer axonal delays
than does gamma. The network consists of a 96 3 32 array of pyramidal cells (1.92
mm wide) and a superimposed 96 3 4 array of interneurons, as in ref. 14. In
control conditions, the maximum axon conduction delay was 3.84 ms across the
array. Oscillations were evoked by tonic depolarization of both pyramidal cells
(E-cells) and interneurons (I-cells), with the gamma3beta transition occurring as
pyramidal cell AHP conductances and excitatory postsynaptic potential conduc-
tances simultaneously increase (10, 18). In the case shown on the right, all axonal
signals crossing the midline of the array were subjected to an additional 10-ms
delay. (A) Gamma, followed by beta, as plotted in simultaneous traces of local
average signals (224 nearby E-cells, 28 nearby I-cells). The E-cell signals appear
similar, with and without the extra 10-ms delay. During beta, both E- and I-cell
traces reveals an underlying oscillation at gamma frequency. (Bars 5 20 mv, 200
ms.) (B)Cross-correlationsof localaverageE-cell signals fromoppositeendsof the
array, for 200 ms of gamma (thin lines) and 800 ms of beta (thick lines). In the
control case, both gamma and beta have cross-correlation peaks within 3 ms of
0. With the extra 10-ms conduction delay, the gamma signal is almost anticorre-
lated between the two sites whereas the beta signal cross-correlation peak is at
21.4 ms.
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rhythm and the only long connections are E to I. Adding long E-E
connections synchronizes the network. The last portion shows that
this synchrony is maintained when the E-E connections are then
removed, showing that network is bistable.

The role of the E-E coupling in Fig. 5A is not to stabilize
synchrony, as shown above. Instead, the E-E coupling prevents the
nonsynchronous solution that is shown in Fig. 5B. Near the solution
shown in Fig. 5B, the effect of an excitatory postsynaptic potential
on the postsynaptic E-cell can cause the latter to spike well before
it would in the absence of E-E connections, preventing bistability.

Discussion
Modeling Issues. This paper addresses questions of behavior of large
networks of neurons using small networks reduced to a minimal
number of currents. The biophysical equations associated with
those small networks still have on the order of 20 equations, far too
many for an analytical approach. Thus, the map analyses that we
presented represent a still further reduction of complexity. Never-
theless, the predictions that beta rhythms will synchronize at much
larger delays than gamma was shown to hold for the very large,
detailed, and realistic models. Indeed, the power of the mathemat-
ics we used was its ability to explain why any equations with the
essential structural features (in our case, inhibition and an intrinsic
AHP with the appropriate time constants) should lead to the
observed outcomes.

The success of this method raises the question of why the very
reduced descriptions are able to capture essential aspects of the
network behavior: in particular, how the low dimensional maps can
capture behavior of high dimensional differential equations. The
key point we emphasize here is that the voltage-gated conductance
equations have a large range of time scales associated with intrinsic
and synaptic properties. The action potentials occur at (approxi-
mately) discrete times, initializing the time course of many of the
currents; depending on the frequency of the rhythm, most of the
fastest currents have stopped changing by the next discrete event.
All of these fast events are lumped in the maps, leaving only the

ones capable of transmitting phasic signals. Which processes are
lumped together can change with alterations of parameters.

The simulations show that, for physiological parameter regimes,
gamma rhythms support robust synchronization between sites for
delays up to '8–10 ms. The beta rhythms (a subharmonic of
gamma in the beta 1 range) support synchronization in our simu-
lations for 201 ms. The maps explain how this can be so and show
that the ability to synchronize with long conduction delays depends
on more than the frequency of the network: e.g., on the time scales
of the currents participating in the rhythm. For example, simula-
tions (not given) show that the faster the two-site (beat-skipping)
beta, the more delay can be tolerated and still get synchronization;
the analysis predicts this because, at higher frequencies, there is
more of the AHP current left at the end of the cycle to provide a
synchronization. Parameter ranges can also affect the outcome by
changing the order of the spikes (excitatory and inhibitory) in the
steady state configuration.

The architecture of the local and long connections also have
effects that are not intuitive. For example, the local E-E connections
are critical for producing beta at a single site (no internal delay).
However, synchrony of the excitatory cells is possible between sites
using E to I as the only long connections. The major role of the long
E-E connections is to prevent a configuration in which the E-cells
skip every other cycle, but with the two sites having E-cells in
antiphase instead of synchrony. We note that E-E connections
alone are not sufficient to produce synchrony between the E-cells
(19, 20); that they are synchronizing in this case is attributable partly
to the adaptation currents (21) and partly to the interaction with the
inhibition in the network.

The analysis shows that coupling across distances lowers the
frequency of the coupled rhythm. This was shown explicitly for the
gamma rhythm (8, 11), and similar techniques provide a formula for
the frequency of the beta rhythm. The lower frequency is attrib-
utable to two effects: First, the conduction delay itself lowers the
frequency. Second, when there is synchronization across distances,
there is an extra inhibitory spike associated with the extra excitation
onto the I-cell; this extra inhibition slows down the next firing of the
E-cells.

The addition of long-distance coupling can change the structure
of the rhythm as well as the frequency. In particular, if two local
circuits displaying the beta rhythm are coupled with a conduction
delay, the resulting rhythm can have the structure of either a slow
gamma rhythm (E cells and I cells have same frequency) or a beta
rhythm (E cells skip beats); increasing the drive to the I-cells
changes the coupled system from slow gamma to beta (simulation
not shown.) The switch is accompanied by a drop in frequency,
associated with the extra I-spike between pulses of the E-cells.

Connections to Experimental Observations. The induction of excita-
tory pyramidal cell firing as a subharmonic of a continuing gamma
frequency subthreshold oscillation is a robust phenomenon in the
hippocampus (10, 14) (Fig. 1A). Frequency analysis of oscillatory
components of cortical EEG responses to visual or auditory sensory
stimuli also reveals a similar pattern. An initial gamma response
(evoked) switches to a beta response superimposed on which is a
second gamma frequency component (C. Haenschel and J. Gru-
zelier, personal communication; ref. 15).

Further EEG studies have demonstrated that, in terms of co-
herence, the above type of beta oscillations are associated with
temporal relationships between more spatially distant regions of the
central nervous system than gamma oscillations. This suggests that
the anatomically hierarchical pattern of processing sensory infor-
mation (primary, supplementary sensory-associational areas) is
mirrored by a hierarchical use of oscillation frequency used to bring
about temporal correlations (7), at least within the gamma and beta
bands.

Physical separation of areas of the central nervous system does
not correlate well with axonal conduction delays between areas. For

Fig. 5. (A) Fast gamma will not synchronize with a delay of 13 ms. If the long
distance E-E coupling is turned on (cee 5 0.5), synchrony still does not occur.
However, if the AHP is then turned on (gm 5 1), the network shifts to a beta
rhythm and synchronizes within two cycles. Parameters are as in the Appendix.
Excitatory drive is 6 in one site and 6.5 in the other; inhibitory drive is 1.15 in both
sites. The voltages of the two E-cells are represented by black and gray lines. (B)
The main role played by the long-distance E-E connections is to prevent the
anti-phase solution. For the first 400 ms, there is no long E-E connection. At t 5
400, cee 5 0.05, which induces synchrony within a few cycles. At t 5 400, cee is reset
to zero, but synchrony remains robust. Drives and AHP are as in A.
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example, ipsilateral, intrahemispheric axon conduction velocities
have been quoted to be as low as 1 mmyms for longer collaterals
(22), whereas interhemispheric, callosal axon conduction velocities
appear to be 2–4 mmyms, with some researchers observing callosal
fiber conduction velocities of over 20 mmyms (22). These estimates
suggest that, at least for some conduction pathways, the conduction
time between associational areas in the temporal and parietal lobes
would be well over 10 ms.

However, conduction velocities for axonal projections in the
central nervous system are plastic, changing in a use-dependent
manner over time (23). Bilateral primary processing of sensory
information is common, and synchronization at gamma frequencies
across the corpus callosum has been seen for visual evoked response
(24). The brain may therefore organize axonal connections between
areas in the temporal domain (25). We suggest that the enhanced
coherence afforded by beta frequency oscillations over gamma
oscillations with long conduction delays may be used, in conjunction
with modified signal velocities, to functionally delineate different
interareal interactions involved in sensory processing.

Appendix
Simulations. Each site has two excitatory and one inhibitory neuron.
Each excitatory neuron receives input from the local inhibitory
neuron and all of the other excitatory neurons; each inhibitory
neuron receives input from all of the excitatory neurons and also
has self-inhibition. The units of conductance are mSycm2, those of
current are mAycm2, and capacitance is mFycm2. The excitatory
neurons satisfy equations of the form:

CV9 5 20.1~V 1 67! 2 100m3h~V 2 50! 2 80n4~V 1 100!

2 gAHPw~V 1 100! 2 Isyn
e 1 Iappl

e [5]

where the variables m, h, n, and w satisfy

m9 5
0.32~54 1 V!

1 2 exp~2~V 1 54!/4!
~1 2 m! 2

0.28~V 1 27!

exp~~v 1 27!/5! 2 1
m,

h9 5 0.128 exp~2~50 1 V!/18!~1 2 h!

2
4

1 1 exp~2~v 1 27!/5!
h,

n9 5
0.032~v 1 52!

1 2 exp~v 1 52!/5)
~1 2 n! 2 0.5 exp~2~57 1 v!/40!n,

w9 5
w`~V! 2 w

tw~V!
,

where w`~V! 5
1

1 1 exp~2~V 1 35!/10!
and

tw~V! 5
400

3.3 exp~~V 1 35!/20! 1 exp~2~V 1 35!/20!
.

The inhibitory neurons have identical equations, but there is no
AHP current. The capacitance is 1.

Synaptic currents are Isyn
e 5 giesi(t)(V 1 80) 1 gees#e(t)V 1 ceeŝe(t 2 d)

and Isyn
i 5 [gei(se

1(t) 1 se
2(t)) 1 cei(ŝe

1(t 2 d) 1 ŝe
2(t 2 d)]V 1

gii si(t)(V 1 80). In all of the simulations, gie 5 1, gei 5 0.15, gii 5 0.2,
gee 5 0.15, and cei 5 0.15. The barred variables correspond to other
excitatory cells in the same column, and the hatted correspond to
other excitatory cells from the distant column. The synapses satisfy
first order equations of the form: s9e 5 5(1 1 tanh(Vy4))(1 2 se) 2
sey2, s9i 5 2(1 1 tanh(Vy4))(1 2 si) 2 siy15. The current applied to
the excitatory cells was between 5.5 and 7 and acted as the source
for the heterogeneity between columns. The current applied to the
inhibitory cells was 1.15. The main parameters that varied in the
paper are the cross EE coupling, cee (0–0.05), the gAHP (0–1.25),
and the delay, d.

The equations are integrated by using modified Euler with a step
size of 0.025 ms because of the fact that the extrapolation used for
the delay equations is only second order. The simulations were
checked by using a smaller step size with no difference found. Code
for the computations is available from G.B.E. in the form of an XPP
file. XPP is a package for solving differential equations and is
available at http:yywww.pitt.eduy;phase.

Computation of D. The plot of D in Fig. 3C is done by using Eq. 4
and the definitions of A and B. To do this, a formula must be derived
for the maps TI and Tb. Asymptotics suggests a form for the maps,
and this formula was then hand-fitted to the numerical computa-
tions of the maps. The period of the oscillation scaled linearly with
the delay. For Fig. 3C, TI(d) 5 3.2/[1 2 1y(1 1 0.5(d 1 0.2))],
Tb(d) 5 34 1 12/(1 1 1.3d2) 2 0.13d, and pb(d) 5 60 1 0.7d. In
approximating the maps, we assume an exponential decay of the
inhibitory synapses and the adaptation; this is not strictly correct
because, in both cases, the equations are nonlinear. However,
empirically, we can fit the parameters in Eqs. 2 and 4 by looking at
the magnitudes of the variables, w (for the AHP) and si for the
inhibition. We multiply these by their respective maximal conduc-
tances and then multiply that by Vrev 2 V# . Here, V# is the mean
potential of the cell, and Vrev is the reversal potential of the current.
For the AHP it is 2100 mV, and for the synapse it is 280 mV. The
mean potential is 269 mV. Empirically, we find that tAHP 5 50, t 5
20. From Eq. 4, it is clear that, because the quantities A, B appear
via a ratio, only the ratio r 5 gAHP

eff ygie
eff matters. Our empirical

estimates of this are R ' 0.6, based on the above approximations
[the maximum that the synaptic gates get is '0.7, that of the AHP
is '0.14, the maximal conductances are both '1, and (2100 1
69)y(280 1 69) ' 3 so that the ratio is '0.6]. With these three
parameters t, tAHP, and R, as well as the empirically determined
functions Tb,I(d), we can plot the function D. Note that, to plot D
for the gamma rhythm, the period is not needed and neither is the
decay of the inhibitory synapse; only the map TI is required.
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