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The charge-exchange excitations in nuclei are studied within the fully self-consistent proton-neutron

quasiparticle random-phase approximation using the finite-range Gogny interaction. No additional parameters

beyond those included in the effective nuclear force are included. Axially symmetric deformations are consistently

taken into account, both in the description of the ground-states and spin-isospin excitations. We focus on the

isobaric analog and Gamow-Teller resonances. A comparison of the predicted strength distributions to the existing

experimental data is presented and the role of nuclear deformation analyzed. The Gamow-Teller strength is used

to estimate the β−-decay half-life of nuclei for which experimental data exist. A satisfactory agreement with

experimental half-lives is found and justifies the additional study of the exotic neutron-rich N = 82, 126, and

184 isotonic chains of relevance for the r-process nucleosynthesis.

DOI: 10.1103/PhysRevC.89.044306 PACS number(s): 21.30.Fe, 21.60.Jz, 23.40.Hc, 26.30.−k

I. INTRODUCTION

Spin-isospin nuclear excitations [1], in particular the
Gamow-Teller (GT) resonances, nowadays play a crucial role
in several fields of physics. First, in fundamental nuclear
physics by providing information on the nuclear interaction,
the equation of state of asymmetric nuclear matter, as well as
the nuclear skin thickness [2]. Second, in astrophysics where
they govern β decay, electron and neutrino capture processes,
hence stellar evolution and nucleosynthesis [3,4]. Finally, in
particle physics in connection with the evaluation of the Vud

element and the unitarity of the Cabibbo-Kobayashi-Maskawa
quark-mixing matrix [5], on the one hand, and with neutrino
physics beyond the standard model (neutrinoless double beta
decay [6–8] and neutrino oscillation [9,10]), on the other hand.

Experimentally, the spin-isospin nuclear excitations are

studied via charge-exchange reactions, such as (p,n), (n,p),

(d,2He), (3He,t) or (t ,3He) and β-decay measurements. In spite

of the great efforts and interest, the whole nuclear chart is still

not experimentally accessible, so that for the exotic nuclei,

one can rely on theoretical models only. In this context one

of the most popular models is the so-called proton-neutron

quasiparticle random-phase approximation (pnQRPA), first

introduced in Ref. [11]. For a reliable prediction of the

spin-isospin nuclear excitations, especially for experimentally

unknown nuclei, two main features of the theoretical model

are in order: the possibility to deal with deformed nuclei and

the use of a unique effective nuclear force. The term unique

has two different meanings here. First of all, it implies that

the interaction is the same for all nuclei, second, that the

nuclear interaction used to describe the ground and excited

states is the same; this latter property is usually referred as the

self-consistency of the calculation. Despite the relatively large

number of pnQRPA calculations (see, e.g., Refs. [12–25] and

references therein), the number of models, nowadays including

both features, remains small. Furthermore, even in the limited

number of self-consistent calculations performed either with

the zero-range Skyrme-type forces or in the relativistic

mean-field framework, there often remains a coupling con-

stant, typically in the particle-particle channel, which is treated

as a free parameter usually adjusted to β-decay half-lives or to

the position of GT excitation energies. The possibility to take

into account the nuclear deformation is also very important.

The β-decay properties of exotic neutron-rich nuclei (in

particular those of interest to the r-process nucleosynthesis [3])

as well as the nuclear matrix elements for the double β decay

have been shown to depend significantly on the deformation

parameter [24–27]. Furthermore, deformed nuclei present a

strong fragmentation in the response functions and different

nuclear shapes can be experimentally distinguished.

Here, we present a fully self-consistent axially symmetric-

deformed pnQRPA calculation without any additional pa-

rameters beyond those characterizing the effective nuclear

force, namely the finite-range Gogny force within its two

parametrizations, D1M [28] and D1S [29]. This work repre-

sents a transposition to the charge-exchange sector of the fully

consistent axially symmetric-deformed QRPA calculations

with the Gogny force, first presented in Ref. [30] and devoted

to the study of electromagnetic excitations in deformed

nuclei [31,32]. In Sec. II, the pnQRPA formalism is detailed.

In Sec. III, the resulting GT and isobaric analog resonance

(IAR) strength are analyzed and compared to the experimental

data. Based on the GT strength, the β−-decay half-lives are

predicted and compared to the experimental data and other

models in Sec. IV. Finally, conclusions and perspectives are

given in Sec. V.

II. FORMALISM

Our approach is based on the pnQRPA on top of axially

symmetric-deformed Hartree-Fock-Bogoliubov (HFB) calcu-

lations. The HFB equations are solved in a finite harmonic

oscillator basis. As a consequence, the positive energy contin-

uum is discretized. All HFB quasiparticle states are used to

generate the two-quasiparticle (2-qp) excitations. This means
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that, in principle, our calculation can be performed without

a cut in energy or in occupation probabilities. According to

the symmetries imposed in the present axially symmetric-

deformed HFB calculations in even-even nuclei, the projection

K of the angular momentum J on the symmetry axis and the

parity � are good quantum numbers. Consequently, pnQRPA

calculations can be performed separately in each K� block.

In this context, phonons are characterized by the excitation

operator

θ+
α,K =

∑

pn

X
pn

α,Kη+
p η+

n − (−)KY
pn

α,Kηnηp, (1)

where η+ and η are the quasiparticle operators, related to the

particle creation (c+) and annihilation (c) operators through

the u and v Bogoliubov transformation matrices; for example,

η+
p = upπc+

π − vpπcπ . (2)

Here and in the following, repeated indices are implicitly

summed over; p, n and π , ν denote proton and neutron

quasiparticle and harmonic oscillator states, respectively. In

the well-known QRPA matrix equation

(

A B

B A

) (

Xα,K

Yα,K

)

= ωα,K

(

Xα,K

−Yα,K

)

, (3)

where ωα,K are the energies of the pnQRPA excited states of

the parent nucleus, the matrices A and B take, in the case of

charge-exchange excitations, the following form:

Apn,p′n′

= (ǫp + ǫn)δpp′δnn′

+upπvnνup′π ′vn′ν ′(〈πν ′|V |νπ ′〉 − 〈πν ′|V |π ′ν〉)

+ vpπunνvp′π ′un′ν ′(〈νπ ′|V |πν ′〉 − 〈νπ ′|V |ν ′π〉)

+upπunνup′π ′un′ν ′(〈πν|V |π ′ν ′〉 − 〈πν|V |ν ′π ′〉)

+ vpπvnνvp′π ′vn′ν ′ (〈π ′ν ′|V |πν〉 − 〈π ′ν ′|V |νπ〉) (4)

and

Bpn,p′n′

= upπvnνvp′π ′un′ν ′(〈πν ′|V |νπ ′〉 − 〈πν ′|V |π ′ν〉)

+ vpπunνup′π ′vn′ν ′ (〈νπ ′|V |πν ′〉 − 〈νπ ′|V |ν ′π〉)

+upπunνvp′π ′vn′ν ′ (〈πν|V |ν ′π ′〉 − 〈πν|V |π ′ν ′〉)

+ vpπvnνup′π ′un′ν ′ (〈π ′ν ′|V |νπ〉 − 〈π ′ν ′|V |πν〉). (5)

As already emphasized, we use the same nucleon-nucleon

effective Gogny force (more exactly the D1M or D1S

parametrizations), both for the HFB and QRPA calculations in

all particle-hole (ph), particle-particle (pp), and hole-hole (hh)

channels. This procedure is important to avoid numerical and

physical inconsistencies. To solve the QRPA matrix equation

we use the same numerical procedure recently applied to study

the giant resonances of the heavy deformed 238U [31]. It is

based on a massive parallel master-slave algorithm. For a single

solution of Eq. (3) the QRPA provides the set of amplitudes

Xα,K and Yα,K describing the wave function of the excited

state |α,K〉 = θ+
α,K |0〉 in terms of the 2-qp excitations.

Once the pnQRPA matrix equation is solved we can

calculate the response to the Fermi, or isospin lowering,

operator

ÔIAR =

A
∑

i=1

τ−(i) (6)

obtaining the IAR, the simplest charge-exchange transition in

which a neutron is changed into a proton without any other

variation of the quantum numbers. In an axially symmetric-

deformed nuclear system, the response function of a given J�

contains different K� = 0�,±1�, . . . ,±J� components. In

spherical nuclei, all these components are degenerate in energy,

so that the response functions associated with any multipolarity

can be directly deduced from the K� = 0± result. In the case

of the IAR the J� = 0+ distribution is obtained performing

the pnQRPA calculation for K� = 0+. For the GT excitations,

the external operator reads

ÔGT =

A
∑

i=1

�σ (i)τ−(i) (7)

generating a spin-flip (�S = �J = 1) response. In this case,

the GT J� = 1+ distributions are obtained by adding twice

the K� = 1+ component to the K� = 0+ result. Details to go

from intrinsic to laboratory frame can be found in Ref. [30].

III. RESULTS

As test case, we first consider the closed neutron-shell

nuclei 90Zr and 208Pb, as well as neutron open-shell nucleus
114Sn. In the upper and middle panels of Fig. 1, their Fermi

and GT strength distributions calculated with D1M and D1S

interactions are compared to the experimental data [33–35].

Even if, in principle, our calculation can be performed without

a cut in energy, in practice we consider here 2-qp states up to

an energy of 70 MeV, which turns out to be large enough to

totally exhaust the Fermi and Ikeda sum rules. The results are

expressed as a function of the excitation energy Eex referred

to the ground state of the daughter nucleus. In our model,

it is obtained by subtracting a reference energy E0 from the

excitation energy ωα,K of the parent nucleus calculated in

the pnQRPA, i.e., Eex = ωα,K − E0. The reference energy

corresponds to the lowest 2-qp excitation associated with

the ground state of the odd-odd daughter nucleus in which

the quantum numbers of the single quasiproton and neutron

states are obtained from the self-consistent HFB calculation

of the odd-odd system. We remind that for even-even nuclei,

the HFB ground state |0̃〉 is assumed to be an independent

quasiparticle state |0̃〉 =
∏

i=1ηi |−〉 (quasiparticle vacuum).

However, for an odd-odd system, the HFB equations involve

a ground state |πν〉 described as a 2-qp (proton neutron)

excitation on top of a qp vacuum |0̃πν〉: |πν〉 = η′+
π η′+

ν |0̃πν〉
with |0̃πν〉 =

∏

i=1η
′
i |−〉; π (ν) running over proton (neutron)

qp states. In practice, we perform several “blocked” HFB

calculations (obtained through the minimization of the total

binding energy with respect to the ground state |πν〉), each

of them corresponding to a specific choice of the proton

and neutron qp quantum numbers. The couple (η′
π , η′

ν)

044306-2
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FIG. 1. (Color online) pnQRPA Fermi (upper panels) and GT

(middel panels) strength distributions in 90Zr, 114Sn, and 208Pb

calculated with the D1M and D1S forces. The experimental energy

peaks obtained from scattering data [33–35] are shown as diamonds

on the x axis. The lower panels show the folded GT strengths and the

comparison with experimental data available for 90Zr [33].

that gives the lowest binding energy among the different

HFB calculations is selected, and the corresponding quantum

numbers of the odd-odd HFB ground state (spin and parity)

deduced. Such a procedure allows us to determine consistently

the quantum characteristics of the reference 2-qp excitation in

the parent nucleus. In most cases, the reference energy E0 is

equal to the lowest energy of the 2-qp excitation of ph type.

Both interactions give quite similar results for the position

of the main peak. A one-to-one correspondence between

the predicted main peaks is found. The energy position of

the experimental IAR is quite well reproduced. The IAR

is experimentally known to be characterized by a single

narrow state. This is the case not only of the 208Pb but also

for the open shell 114Sn. The result for 114Sn reflects the

right contribution of the pp channel to the proton-neutron

residual interaction, without which the response function will

be fragmented [20]. The situation is slightly different for
90Zr where two states very close to each other, probably

experimentally undistinguishable, appear. Note that our HFB

calculations only includes the direct contribution of the

Coulomb interaction, while the Coulomb exchange part is

not taken into account. This approximation overestimates the

proton pairing in general [36], and in 90Zr in particular. For this

nucleus we repeated the calculation of the IAR starting from

HFB calculations including direct and exchange Coulomb

fields and obtained a disappearance of the fragmentation.

However, since no Gogny interaction has yet been derived

including the Coulomb contribution to the pairing field, we

will restrict ourselves here to the standard HFB calculations

FIG. 2. (Color online) The experimental GT widths of Sn iso-

topes [35] and the adopted parametrization (solid line).

as a starting point for our pnQRPA calculation. We have also

checked that switching-off the Coulomb interactions in HFB

calculations brings the IAR down to zero energy.

Turning to the GT (middle panel of Fig. 1), the D1M

interaction is seen to give rise to a strength located at lower

energies with respect to the one found with D1S. For the

nuclei analyzed here, this energy shift rarely exceeds 0.5 MeV.

In this context, it should be recalled that the D1M and D1S

interactions are characterized by rather different parameters,

leading to different nuclear matter properties and Landau

parameters. The GT energy is known to be sensitive to the

single-particle spectrum as well as to the Landau parameter, in

particular g′
0 [18,37,38]. More specifically, there is a general

tendency for the GT energy to increase with increasing spin-

orbit strength parameters WLS and with increasing values of
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FIG. 3. (Color online) pnQRPA GT strength distributions in 76Ge

obtained with the D1M force for several values of the deformation

parameter β2, including the HFB ground-state minimum at β2 = 0.15.

The experimental low-energy data [45] as well as the energy position

of the main GT peak are also shown.
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FIG. 4. (Color online) pnQRPA GT strength distributions in 76Ge

with the D1M force for β2 = 0 and β2 = 0.15 folded as described in

the text. For comparison, the experimental strength [46] folded in a

similar way is also given.

g′
0, though this latter tendency may be less clear (see Ref. [38]

for more details). For the interactions considered here, WLS =
115.4 MeV fm5 for D1M and 130.0 MeV fm5 for D1S while

g′
0 = 0.71 for D1M and 0.61 for D1S. Even if the total effect

on the energy position of the GT peak is a delicate balance

between the effects related to the single-particle spectrum

(particularly sensitive to the spin-orbit strength), the residual

interaction (strictly related to the Landau parameter g′
0) as well

as the E0 shift, the systematic (small) D1S overestimate of the

GT energy with respect to D1M seems to suggest that the WLS

parameter plays the major role.

As far as the comparison with experimental data is

concerned, the agreement is seen to be rather satisfactory

(Fig. 1). A small but systematic overestimate of the GT peak

is found. Particle-vibration coupling [38,39] as well as tensor

interaction contribution [40], both absent in our approach, have

been shown to lead to a small shift of the giant GT resonance

towards lower energies.

Our pnQRPA calculation provide a discrete strength dis-

tribution. To derive a smooth continuous strength function,

the pnQRPA GT strength can be folded with a Lorentz

function, as classically done. To do so, the spreading width

Ŵ is parametrized to reproduce the experimental GT widths

found experimentally in Sn isotopes with A = 112–124 [35],

as shown in Fig. 2. The spreading width can be parametrized

as Ŵ[MeV] = 1 + 0.055E2
ex (where the excitation energy Eex

is expressed in MeV) with an upper value limited to 6 MeV.

The folded GT strength for 90Zr, 114Sn, and 208Pb are shown

in the lower panel of Fig. 1 and compared to the experimental

data in the case of 90Zr [33]. The agreement of our calculation

with the experiment is reasonable. The double peaks structure,

the position of the low-energy peak, as well as the width

of the higher resonance are rather well reproduced while,

as already discussed, the centroid energy peak of the higher

resonance is overestimated. In the case of the 114Sn and 208Pb

only experimental counts of the (3He,t) reaction are available,

hence a quantitative comparison of the GT strengths is not

straightforward.

The above results refer to three spherical nuclei. As

already emphasized, our approach describes axially symmetric

deformed nuclei. As an example for a deformed nucleus,

we consider 76Ge, a nucleus of particular interest in the

neutrinoless double β-decay experiments in the past [41,42],

present [43], and future [44].

We show in Fig. 3 the 76Ge GT excitations obtained

with the D1M interaction for four different values of the

quadrupole deformation parameter β2, including the HFB

minimum at β2 = 0.15. As expected, the deformation tends

to increase the fragmentation of the response. Calculations

with different deformations produce peaks that are displaced.

This is true not only for the giant resonance region but also

for the low-energy states. Recently the low-energy part of

the GT excitations of the 76Ge has been studied with high

FIG. 5. (Color online) Ratio between the pnQRPA (obtained with the D1M interaction) and experimental [49] β-decay half-lives as a

function of A, β2, and Qβ for 145 even-even nuclei with an experimental half-life T1/2 � 1000 s. Error bars only include experimental

uncertainties.
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FIG. 6. (Color online) Comparison between experimental [49]

and D1M + QRPA β-decay half-life predictions for the known

isotopic chains of Kr, Sr, Zr, and Mo.

precision [45] due to its importance for the neutrinoless double

β-decay physics. We show this experimental results in Fig. 3

to compare to our results at different β2. It appears that

deformation effects influence the low-energy strength and that

the spreading of the low-energy GT strength can be rather

well reproduced for deformations around β2 = 0.10–0.15, in

contrast to what is found in the spherical approximation or at

larger deformations. For completeness, we also show in Fig. 4

our folded calculations at β2 = 0 and β2 = 0.15 as well as the

experimental results of Ref. [46] folded in the same way. Also

in this case the agreement between the experimental data and

the β2 = 0.15 case can be considered as satisfactory, at least

better than with the spherical case.

IV. APPLICATION TO HALF-LIFE CALCULATIONS

As a first application of our calculation, we now focus

on the low-energy GT strength and more specifically on the

β−-decay half-lives. In the allowed GT decay approximation

the β−-decay half-life T1/2 can be expressed in terms of the

GT strength function SGT according to

ln 2

T1/2

=
(gA/gV )2

eff

D

∫ Qβ

0

f0(Z,A,Qβ − Eex)SGT(Eex)dEex.

(8)

For the phase-space volume f0 as well as the factor D and

the vector and axial vector coupling constants (including

the quenching factor), we refer to the work of the authors

of Ref. [47]. To estimate the Qβ mass differences, we take

experimental (and recommended) masses [48] when available

or the D1M mass predictions [28], otherwise.

To give an idea of the global predictions of our model,

we compare in Fig. 5 for even-even nuclei the pnQRPA

(obtained with the D1M interaction) β−-decay half-lives with

the experimental data [49]. The results are plotted as a function

of the mass number A, the deformation parameter β2, and the

Qβ value. They turn to be quite homogeneous with respect to

A and more particularly β2. Larger deviations are found for

nuclei close to the valley of β stability (Fig. 5, right panel),

i.e., for low-Qβ values, as found in all models. Note, however,

that in Fig. 5 where only nuclei with experimental data are

concerned, large Qβ values essentially correspond to light

nuclei for which mean-field models may be less adequate to

estimate the ground-state deformation, mixing of configuration

being found beyond the mean-field approximation. Globally,

predictions tend to overestimate the experimental half-lives,

but deviations rarely exceed one order of magnitude. Note

that the half-life overestimation found here is less important

that the effect of neglecting pn pairing in relativistic QRPA

calculation [50]. We also compare in Fig. 6 the D1M + QRPA

and experimental half-lives for the much studied isotopic

chains of Kr, Sr, Zr, and Mo, which are strongly deformed.

Here also, the D1M + QRPA model tends to give rise to

half-lives larger than experimental ones, leaving space for

possible additional contributions from forbidden transitions.

FIG. 7. (Color online) Comparison between our β-decay half-life predictions and the DF3 + QRPA calculation of the authors or

Refs. [47,51], including the GT contribution or both the GT plus FF contributions, for the neutron-rich nuclei along the N = 82,126,

and 184 isotones. For the N = 82 isotonic chain, experimental data [49], and shell model results [52] are also shown.
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Finally, our β-decay half-lives are compared to the density

function plus continuum QRPA calculation (DF3 + cQRPA) of

Refs. [47,51] in Fig. 7 for the exotic neutron-rich nuclei along

the N = 82,126, and 184 isotones. We choose to focus on this

region of the nuclear chart due to its relevance to the r-process

nucleosynthesis [3]. Nice agreement with the experimental

data is found for 130Cd and 132Sn. Both the contribution of

the GT and the GT plus first-forbidden (FF) transitions are

given in Fig. 7 for the DF3 + cQRPA calculation to illustrate

the impact of the FF contributions, as predicted by the author

of Ref. [51]. Clearly, such a contribution need to be included

for the N = 184 nuclei and some of the N = 126 nuclei. Our

results give rise to decay half-lives systematically larger than

the DF3 + cQRPA approach. These deviations can originate

from different GT strength, but also different estimates for

the Qβ values or reference energies E0. We also show in the

left panel of Fig. 7 the shell model predictions [52] for some

of the N = 82 nuclei that are in relatively close agreement

with the DF3 + cQRPA calculations and lower than ours. Such

different predictions could have an impact on the production

of the heavy nuclei by the r-process nucleosynthesis, but such

an analysis is postponed to a future study.

V. CONCLUSION

We present here for the first time a fully self-consistent

axially symmetric-deformed pnQRPA calculation based on the

finite-range Gogny force. We applied our model to the analysis

of charge-exchange modes paying a special attention to the

GT resonances. The crucial role of deformation, automatically

included in our approach, was analyzed. The agreement with

experiment is satisfactory both for the strength functions and

the β−-decay half-lives. Our extrapolation of the β-decay

half-lives to the neutron-rich N = 82, 126, and 184 isotones

of astrophysical interest are found to give rise to larger values

with respect to the continuum QRPA calculation of the author

of Ref. [51]. These encouraging results open the way to

further studies in several sectors. In particular, it will become

possible to include the study of IAR and GT resonances in the

procedure of construction and validation of new Gogny-type

forces. In connection with astrophysics the next step of our

work will include forbidden transitions and deal with large-

scale calculations of β-decay half-lives and electron neutrino

capture rates for both even and odd numbers of nucleons to

analyze their impact on the r-process nucleosynthesis. Finally,

from a particle physics point of view, the evaluation within our

model, among others, of the low-energy neutrino-nucleus cross

section and the double-β decay nuclear matrix elements could

shed light on the systematics of nuclear origin to be taken into

account in these rare processes.
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102, 242501 (2009).
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[30] S. Péru and H. Goutte, Phys. Rev. C 77, 044313 (2008).
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