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Recibido el 18 de julio de 2005; aceptado el 14 de marzo de 2005

Gamow solutions are used to transform self–adjoint energy operators by means of factorization (supersymmetric) techniques. The trans-
formed non–hermitian operators admit a discrete real spectrum which is occasionally extended by a single complex eigenvalue associated
to normalized eigensolutions. These new Hamiltonians are not pseudo–hermitian operators and also differ from those obtained by means of
complex–scaling transformations. As an example, Coulomb–like potentials are studied.
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El método de factorización es extendido al caso complejo para construir Hamiltonianos no Hermitianos con espectro real. Algunos de los
nuevos Hamiltonianos admiten además un eigenvalor complejo con eigenfunción normalizada. Las funciones de transformación usadas son
funciones de Gamow. Los nuevos Hamiltonianos no son pseudo-hermitianos y son diferentes también de aquellos obtenidos con el método
de dilatacíon compleja. Se presenta el caso de potenciales Coulombianos como ejemplo.

Descriptores:Método de factorización, vectores de Gamow, Hamiltonianos no Hermitianos
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1. Introduction

Complex energies were studied for the first time in a paper of
Gamow concerning the alpha decay (1928) [1]. In a simple
picture, a given nucleus is composed in part by alpha parti-
cles (42He nuclei) which interact with the rest of the nucleus
via an attractive well (obeying the presence of nuclear forces)
plus a potential barrier (due, in part, to repulsive electrostatic
forces). The former interaction constrains the particles to be
bounded while the second holds them inside the nucleus. The
alpha particles have a small (non–zero) probability of tunnel-
ing to the other side of the barrier instead of remaining con-
fined to the interior of the well. Outside the potential region,
they have a finite lifetime. Thus, alpha particles in a nucleus
should be represented byquasi–stationarystates. For such
states, if at timet = 0 the probability of finding the particle
inside the well is unity, in subsequent moments the probabil-
ity will be a slowly decreasing function of time (seee.g.Secs.
7 and 8 of Ref. 2).

In his paper of 1928, Gamow studied the escape of al-
pha particles from the nucleus via the tunnel effect. In order
to describe eigenfunctions with exponentially decaying time
evolution, Gamow introduced energy eigenfunctionsψG be-
longing to complex eigenvaluesZG = EG − iΓG, ΓG > 0.
The real part of the eigenvalue was identified with the energy
of the system and the imaginary part was associated with the
inverse of the lifetime. Such ‘decaying states’ were the first
application of quantum theory to nuclear physics.

Three years later, in 1931, Fock showed that the law of
decay of a quasi–stationary state depends only on the en-
ergy distribution functionω(E) which, in turn, is meromor-
phic [2]. According to Fock, the analytical expression of
ω(E) is rather simple and has only two polesE = E0 ± iΓ,
Γ > 0 (see Eq. (8.13) of Ref. 2). A close result was derived
by Breit and Wigner in 1936. They studied the cross sec-

tion of slow neutrons and found that the related energy dis-
tribution reaches its maximum atER with a half–maximum
width ΓR. A resonance is supposed to take place atER and
to have “half–value breath”ΓR [3]. The resonances can be
defined as eigensolutionsψR of the Hamiltonian with com-
plex eigenvaluezR = ER − iΓR/2. This complex number
also corresponds to a first–order pole of theS matrix [4] (for
more details seee.g.[5]). However, as the Hamiltonian is a
Hermitian operator, then (in the Hilbert spaceH) there can be
no eigenstate having a strict complex exponential dependence
on time. In other words, decaying states are an approxima-
tion within the conventional quantum mechanics framework.
This fact is usually taken to motivate the study of the rigged
(equipped) Hilbert spacēH [6]. The mathematical structure
of H̄ lies on the nuclear spectral theorem introduced by Dirac
in a heuristic form [7] and studied in formal rigor by Mau-
rin [8] and Gelfand and Vilenkin [9].

Some other approaches extend the framework of quan-
tum theory so that quasi–stationary states can be defined
in a precise form. For example, the complex–scaling
method [10–12] (see also [13]) embraces the transformation
H → SHS−1 = Hθ, whereS is the complex–scaling op-
eratorS = e−θrp, [r, p] = i, such thatSf(r) = f(reiθ).
This transformation converts the description of resonances by
non–integrable Gamow states into one by square integrable
states (A relevant aspect of the method is that it is possi-
ble to construct a resolution to the identity [14]). Thus, the
complex–scaled resonance eigenfunctions areθ–dependent
so they can be normalized. Moreover, as the complex
eigenvalues areθ–independent, the resonance phenomenon is
just associated with the discrete part of the complex–scaled
Hamiltonian [15] (but see [13]).

In this paper we show that Gamow (decaying) eigensolu-
tions can be used to transform Hermitian Hamiltonians into
non–self adjoint energy operators with purely real spectrum
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or admitting a single extra complex eigenvalue with square–
integrable wavefunction. The new Hamiltonians could be
profitable as testing operators in diverse approaches includ-
ing complex–scaling and pseudo–hermitian [16] transforma-
tions. As we shall see, it is not necessary to work in a
equipped Hilbert space framework because the Gamow so-
lutions will be used merely as mathematical tools. Moreover,
the exponential growing of the Gamow solutions for large
distances will be primordial in order to get well-behaved
complex potentials. The mechanism we are going to use is
the factorization method in a ‘complex’ version [17]. As
usual, the procedure and results can be interpreted in terms
of supersymmetric quantum mechanics.

The next section introduces general expressions for trans-
forming spherically symmetric potentials in terms of appro-
priate Gamow vectors. It is shown that new complex poten-
tials are derived so that their discrete spectrum is real. The
Coulomb potential is managed as example. The Sec. 3 shows
how the approach can be generalized to include an extra sin-
gle complex eigenvalue into the initial discrete spectrum. The
related eigensolution is then shown to be of finite norm. Fi-
nally, Sec. 4 is devoted to the concluding remarks.

2. Supersymmetric Gamow transformations

2.1. The complex factorization

Let us consider the time–independent Schrödinger equation
for a spherically symmetric potentialV (r). After separation
of angular variables, the equation reduces to a differential
equation involving only the radial variable:

H`ψ(r, `) = Eψ(r, `), (1)

which can always be integrated numerically. The reduced
Hamiltonian reads

H` ≡ − d2

dr2
+ V`(r) = − d2

dr2
+

`(` + 1)
r2

+ V (r), (2)

where the effective potentialV`(r) has the domain
DV = [0,+∞) and the units of energy and coordinates have
been properly chosen.

The nature of the energy spectrum ofH` may be deduced
from the asymptotic behaviour of the solutionsψ(r, `) which
are regular at the origin. IfV (r) approaches zero asymp-
totically faster than1/r: limr→∞ rV (r) = 0, then the en-
ergy spectrum contains two parts: (a) Negative discrete val-
uesE1(`), E2(`), . . . To each of them corresponds a radial
wavefunction of finite norm. (b) Unbound continuous posi-
tive spectrum, with solutions regular at the origin but indefi-
nitely oscillating in the asymptotic region. On the other hand,
if V (r) approaches zero as1/r whenr → ∞, the essential
result concerning the nature of the spectrum persists [18]. We
shall concentrate on the discrete spectrum by assuming that
a complete set of normalized wavefunctionsψn(r, `) ∈ H
has been given for eachV (r), otherwiseH` would not be an
observable.

We look for a complex–type factorization [17] of the
Hamiltonian (2):

H` = AB + ε (3)

with factorization constantC 3 ε = ε1 + iε2; ε1, ε2 6= 0 ∈ R
and a couple of not mutually adjoint first order operators

A := − d

dr
+ β, B :=

d

dr
+ β (4)

whereβ is a complex–valued function fulfilling the Riccati
equation

−β′(r) + β2(r) + ε = V`(r). (5)

This last equation is easily solved by means of the loga-
rithmic transformationβ(r) = −(d/dr) ln u(r), with u(r)
the eigensolution ofH` belonging to the complex eigenvalue
ε ≡ −k2, C 3 k = k1 + ik2; k1, k2 ∈ R.

Remark thatH†
` = B†A† + ε̄ = H` (the bar stands for

complex conjugation) because the Hamiltonian is assumed to
be self-adjoint in the Hilbert spaceH. A relevant aspect of
the complex factorization (3)-(5) is that the reverse ordering
of the factors gives rise to non–hermitian second order differ-
ential operators:

BA + ε = H` + 2β′(r) := h`. (6)

Conventional factorizations assumea priori A = B† and real
ε (seee.g.[19]). In counterdistinction, complex factorization
is more in the spirit of the ‘refined factorizations’ reported
recently [20] (see also [21]). The following intertwining re-
lationships hold

h`B = BH`, H`A = Ah` (7)

which permit to determine the solutionsΨ ∝ Bϕ of
h`Ψ = λΨ, λ ∈ C, by giving the solutionsϕ of H`ϕ = λϕ.
The operatorA reverses the action ofB. In the supersym-
metric language,H` andh` are understood as supersymmet-
ric partners whileβ(r) is the superpotential (seee.g.[22] and
references quoted therein).

In general, we want to keep the physical interpretation of
Ψ as connected with the probability densityρ(r) = |Ψ(r)|2
in H (The dependence ofΨ on ` will be always implicitly
considered). Hence, we look for functions

Ψ ∝ Bϕ =
W (u, ϕ)

u
(8)

which are square–integrable inH (the symbolW (·, ·) stands
for the wronskian of the involved functions). Of course,
this last condition is not imperative in Eq. (8). For in-
stance, one could extend the initial boundedness condition
|ψ(r, `)|2 < ∞ to better admit another kind of normalization
in order to generalize selfadjointness (e.g., in the picture of a
equipped Hilbert spacēH). But, in this way, the physical in-
terpretation of eitherψ(r, `) or Ψ(r) as wavefunctions is less
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clear (one dimension plane waves, for example, are known
to be not inL2(R) but having a probability density which
is everywhere finite in the Dirac sense. In other words, the
plane waves could be understood as energy Dirac vectors in
H̄. However, if we apply realistic vanishing boundary con-
ditions atx = 0 andx = L, or L–periodic boundary condi-
tions, the plane waves can be normalized in the conventional
form. Thus, ‘free particles’ are but an abstraction from the
actual quantum world).

As it could be expected, the set of eigenvectors (8) is un-
common inH: though they can be normalized, their elements
are not mutually orthogonal [17] (An optional bi–orthogonal
basis has been recently discussed in [23]). These vectors are
natural in the spaces with an indefinite metric as studied in
the Pontrjagin–Krein formalism [24] (see also [25]).

2.2. Gamow transformations

Let us show how the Gamow solutions can be used as trans-
formation functionsu(r) in Eq. (8). First, following Gadella–
de la Madrid, we define a Gamow function as a solution of the
time–independent Schrödinger equation with complex eigen-
value and purely outgoing boundary conditions [26]. Thus, if
u(r) is such thatu(r = 0) = 0, u(r → +∞) ∼ e−kr

(k1 < 0), and solves (1), (2) withE = ε ∈ C, thenu(r)
is a Gamow solution (Observe thatε does not necessarily
correspond to the poles of theS matrix!). In the context
of the alpha decay, the conditionu(r = 0) = 0 describes
the ‘creation’ of alpha particles inside the nucleus and obeys
the fact that there cannot be any transmission into the region
r < 0 because the effective potential is infinite there (i.e.,
this condition avoids the incoming probabilities and is related
with the adjointness of the Hamiltonian [26]). On the other
hand, the outgoing boundary condition ensures the decay rate
obeyed by the particles after tunneling the electrostatic bar-
rier.

Let us takeRe(ε) ≡ ER = k2
2 − k2

1 > 0 in
ε = (k2

2 − k2
1)− 2ik1k2. Thus |k2| > |k1|. We can distin-

guish two general cases:

1) k1 < 0, k2 < 0. Here ε− = ER − iΓ−/2, with
Γ− = 4k1k2 > 0, is associated with the decaying part
of the solutionU(t)|φε−〉 = e−itERe−tΓ−/2|φε−〉.

2) k1 < 0 and k2 > 0. The complex energy
ε+ = ER + iΓ+/2, with Γ+ = 4|k1|k2 > 0,
is associated with the growing part of the solution
U(t)|φε+〉 = e−itERetΓ+/2|φε+〉.

In both cases the roles are interchanged under complex
conjugation. Now, ifε± correspond to the polesz±R of the S
matrix, then the lifetimeτ = 1/Γ−R decreases as the energy
increases. Thus, for small widths (large lifetime) the energy
resonances are close to the real axis and the Gamow vectors
could be considered as bounded states for certain physical
phenomena. On the other hand, asΓ−R increases, the reso-
nances move away from the real axis and the Gamow vectors
are far to be considered as representative of bound states.

Now, let us analyze in detail the Eq. (8). Our goal is to
characterize the spectrum ofh` as well as its eigenfunctions
in terms of the analytical behaviour ofϕ(r, `) and the bound-
ary conditions ofu(r).

A direct calculation shows thatu(r) ∝ r`+1 satisfies
u(r = 0) = 0. Thereby, Eq. (8) reads

Ψ(r ¿ 1) ∼ ϕ′(r ¿ 1)− ` + 1
r

ϕ(r ¿ 1). (9)

It is clear thatΨ(r) will be regular at the origin ifϕ is such
thatϕ(r ¿ 1) ∼ rs, s ≥ 1. In other words, ifϕ is regular at
the origin thenΨ(r = 0) = 0.

The purely outgoing boundary condition, in turn, is
equivalent to the following expression (see [26] p 630):

lim
r→∞

d

dr
ln u(r) = − lim

r→∞
β(r) = −k. (10)

Hence, Eq. (8) reduces to

lim
r→∞

Ψ ∝ lim
r→∞

ϕ′ + k lim
r→∞

ϕ. (11)

As the solutionϕ grows indefinitely as one of eithere±κr,
κ =

√−λ, we can identify the following cases:

I) For a (denumerably infinite) set of negative discrete
valuesλ ∈ {En(`)}, the solutionϕ in (11) behaves
asϕ ∼ e−κr, κ > 0. ThusΨ ∼ (k − κ)e−κr, κ > 0.

II) If λ > 0, thenϕ ∼ sin(κr − `π/2 + δ`), with δ` the
phase shift. Thus,ϕ is an acceptable eigensolution of
H` for anyλ > 0 and represents an unbound state [18].
Hence, ifλ > 0 thenΨ(r) indefinitely oscillates when
r →∞.

III) If λ ∈ C then Eq. (11) givesΨ± ∼ (±κ + k)e±κr.
Moreover, ifλ = ε (equivalentlyκ = k) thenΨ− = 0
andΨ+ ∼ 2kekr. The former solution is rather trivial
asW (u, u) = 0 in Eq. (8). Now, ask1 < 0, it seems
thatΨ+ could satisfylimr→+∞ |Ψ+| = 0. However,
in such a case,ϕ+ should also satisfy both conditions
ϕ+(0) = 0 andϕ+ ∝ ekr, k1 < 0, which is not possi-
ble sinceλ is complex andH` is a selfadjoint operator
in H`ϕ+ = λϕ+. A similar situation arises for any
complex numberλ different fromε.

In summary, for Gamow transformation functions in (8),
if ϕ ∈ L2(R+) thenΨ ∈ L2(R+). Furthermore, Eq. (8)
does not produce eigenfunctions of the non–hermitian Hamil-
tonian h` belonging to complex eigenvalues. Thereby, the
complete discrete spectrumσd(H`) of the initial Hamiltonian
H` is inherited to the Gamow transformed Hamiltonianh`.
In order to exhaust our analysis, let us consider the complex
factorization (6). It is easy to verify that the kernel ofA pro-
vides an eigenfunctionξε(r) of h` belonging toε ∈ C. Thus,
ξε ∝ 1/u fulfills h`ξε = εξε. However, asu is a Gamow vec-
tor, ξε diverges at the origin asr−`−1. In other words,ξε is
out ofH and it is deprived of a physical meaning. The same
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situation arises by considering the two–dimensional kernel of
the productBA. Hence, there are no more square–integrable
solutions ofh` and the discrete spectrumσd(h`) is just the
same asσd(H`).

We have then constructed a non–hermitian Hamiltonian
h` which is strictly isospectral to the initial spherically
symmetric Hermitian HamiltonianH`. A simple calcula-
tion shows that the global behaviour of the new potential
v`(r) = V`(r)− 2u′(r)/u(r) is as follows

v`(r) =

{
V`+1(r) r ∼ 0

0 r →∞.
(12)

Thus, for small distances, a particle with energyEn(`) inter-
acts with the field as having a quantum number` + 1. In the
asymptotic region the particle behaves as free of interaction.
On the other hand, the intermediate region could be inter-
preted as ‘opaque’ in the sense that the particle interacts with
a series of wells and barriers which alternate their positions
in the real and imaginary parts ofv`(r) (see the discussion on
the optical bench given in [27]). The next section elucidates
the applications of the method by transforming the Coulomb
potential.

2.3. Non-hermitian Hamiltonians with hydrogen–like
spectrum

If the radial potential in (2) is the Coulomb oneV (r)=−2/r,
the convenient Gamow vectors are given by the expression
(see Fig. 1):

u(r) = r`+1e−kr
1F1(` + 1− 1/k, 2` + 2, 2kr) (13)

with 1F1(a, c, z) the Kummer’s function. The units of en-
ergy and coordinates are respectively taken asE = Ze2/2rB

(= Z 13.5 eV) andrB = ~2/Ze2m (= 0.529× 10−8/Z cm).
The solutions (13) have been explicitly derived in [17].

Once these Gamow vectors have been used as transfor-
mation functions in (6), the non–hermitian potentialv`(r) re-
sembles a cardiod curve as depicted in the complex plane (see

FIGURE 1. The Argand-Wessel diagram of the hydrogen’s Gamow
vector u(r), from zero to 20 Bohr radiirB , with ` = 1 and
ε = −0.2604 + i0.104(×13.5ev). Horizontal scale stands for
the real part. The disk is atr = 1rB and the circle atr = 19rB .

Fig. 2). Notice thatv`(r) becomes almost real for small dis-
tances and goes to+∞ on the real branch forr = 0. On
the other hand, this potential goes to zero whenr → +∞.
The imaginary part ofv`(r) becomes relevant for interme-
diate distances (i.e. at distances which are between 2 and 6
Bohr radii, for the parameters considered in the figure).

Finally, Fig. 3 depicts the potentialV`+1(r) as well as the
real part ofv`(r). Observe the presence of barriers and wells
in the intermediate distances. A similar situation occurs for
the imaginary part ofv`(r). These ‘partial potentials’ induce
local ‘resonance’ effects which are not present in the Hermi-
tian potentialV`+1(r). Thus, the spatial distribution of the
wave-packets corresponding tov`(r) differ from that of the
wave-packets ofV`+1(r) at the same energy.

3. Generalized Gamow transformations

As it has been shown in the precedent section, though the
Gamow vectorsu(r) could have a definite physical meaning
as resonant states ofH`, we consider them merely as trans-
formation functions to construct the non–hermitian Hamilto-

FIGURE 2. The Argand-Wessel diagram of the non–hermitian potential (12) for the same parameters as in Fig. 1. This potential has a discrete
spectrum identical with that of the hydrogen atom. The right–hand side figure is a detail of the cardiod–type one. The disk is atr = 2rB and
the circle atr = 6 rB .
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FIGURE 3. The real part (continuous curve) of the cardiod–type
potential in Fig. 2 contrasted with the effective Coulomb potential
V`=2(r).

nians h`. In general, all the unphysical (not square–
integrable) solutions of the Schrödinger equation are use-
ful to construct new Hamiltonians admitting real spectra and
square–integrable eigenfunctions [28,29]. In particular, if the
factorization constantε is a real number, the conventional fac-
torization operatorsA = B† are automatically recovered.

Now, we extend the previous results by opening the
chance to incorporate complex eigenvalues with square–
integrable solutions in the spectra of the transformed Hamil-
tonians. First, notice that the general solution of (1) is, for
small distances, a linear combination of two particular so-
lutions: r`+1 and r−`. The second one is usually rejected
because it is singular. Moreover, in the context of alpha de-
cay, a vectoru(r = 0) 6= 0 does not describe the ‘creation’
of alpha particles. We shall relax the Gamow condition at the
origin to include the solutionr−` but preserving the purely
outgoing conditione−kr. Let us remark that a ‘generalized’
Gamow vectorω(r), satisfying these new conditions, still is
unphysical in the sense that it is not square–integrable inH.

The relevance of our generalization lies on the fact that
expressions (1)–(8) still hold ifω(r) is taken as the transfor-
mation function. Equation (9), on the other hand, is slightly

modified:

Ψ(r ¿ 1) ∼ ϕ′(r ¿ 1) +
`

r
ϕ(r ¿ 1). (14)

Hence, the same conclusion is obtained: ifϕ ∈ L2(R) then
Ψ ∈ L2(R). However, for complex eigenvalues ofh`(r), the
kernel ofA provides the eigensolutionΨε ∝ 1/ω, which can
be normalized inH and satisfiesh`Ψε = εΨε. It is easy to
check that the corresponding complex conjugateΨ̄ε is neither
in the kernel ofA nor that ofBA (see Eq. (6)). In counterdis-
tinction, if ϕ(r) is eigensolution ofH` belonging toε, then
ϕ̄(r) belongs tōε asH` is selfadjoint.

Therefore, the discrete spectrum ofh` is now given
by σd(H`) ∪ {ε}. On the other hand, the new potential
v`(r) = V`(r)− 2ω′(r)/ω(r) behaves in this case as

v`(r) =

{
V`−1(r) r ∼ 0

0 r →∞ (15)

with a similar interpretation as for (12) but changing`+1 by
`− 1.

Figures 4 and 5 show respectively the behaviour of the
generalized Gamow vectorω(r), the wavefunctionΨε(r) and
the new non–hermitian potentialv`(r) for the Coulomb case
V (r) = −2/r. The related transformation function is [17]:

ω(r) = r`+1e−kr[1F1(` + 1− 1/k, 2` + 2, 2kr)

+ξU(` + 1− 1/k, 2` + 2, 2kr)] (16)

whereξ is a complex constant andU(a, c, z) is the logarith-
mic hypergeometric function.

4. Concluding remarks

The Gamow (decaying) eigensolutions have been shown to
be appropriate transformation functions in the framework of
supersymmetric quantum mechanics. Non–hermitian Hamil-
tonians, which are supersymmetric partners of spherically
symmetric self–adjoint energy operators, have been construc-

FIGURE 4. (a) The generalized hydrogen’s Gamow vectorω(r), plotted from zero to 20 Bohr radii and the same parameters as in Fig. 1.
The disk is atr = 0.05rB and the circle atr = 19.5rB . (b) The square–integrable wavefunctionΨε belonging to the complex eigenvalue
ε = −0.2604 + i0.104(×13.5ev). The disk is atr = 0.05rB and the circle atr = 19rB .
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FIGURE 5. (a) The non–hermitian potential (15) constructed via the generalized Gamow vector of Fig. 4a. Here we have plotted from zero
to 40 Bohr radii. The disk is atr = 2rB and the circle atr = 6rB . This potential has the same spectrum as the hydrogen atom extended
by an extra complex eigenvalue atε with the square–integrable wavefunction of Fig. 4b. (b) The corresponding real part (continuous curve)
contrasted with the Coulomb potentialV`=0(r).

ted so that they admit purely real spectrum with normalized
wavefunctions. For other of these new non–hermitian op-
erators an extra complex eigenvalue with square–integrable
eigensolution is present.

At first sight, our results could be connected with those
derived in the complex–scaling method. However, the
Gamow–transformed potentialv`(r) = V`(r)−2ω′(r)/ω(r)
is not as simple as the complex–scaled potential
Vθ = ei2θV`(reiθ). In general, an intertwined Hamil-
tonian hB = BH, HA = Ah (factorized in a refined
way [20]: H = AB + ε, h = BA + ε) could correspond
to a complex–scaled HamiltonianhθS = SH if hθ = h.
Thus, there must exist a couple of differential operators
M = AS andN = BS−1, such that[H, M ] = [h, N ] = 0.
A particular case has been recently reported [30] (see
also [31]) by considering conventional factorization operators
a± = ∓(d/dr) + α(r), α : R 7→ R, real factorization con-
stantsE , and the squeezing operatorS = Ur = ei(λ/2){r,p},
[r, p] = i. The so derived ‘scaled intertwined’ Hamiltonian
hλ has a real potentialvλ(r) = e2λV (eλr) − α′(r) and real
discrete spectrumσd(hλ) = {e2λE , e2λEn}n∈N, wheree2λE
is the ground state energy andEn ∈ σd(H). This procedure
allows to deform the excited energy levels ofhλ but leaving
unaffected the ground stateE0: σd(hλ) 7→ {E0, (E0/E)En}.
This is a remarkable profile of the factorization which is
rarely considered in the literature. Thus, it seems that
complex–scaled Hamiltonianshθ could be successfully con-

structed as an application of the technique reported in [30].
Work in this direction is in progress.

On the other hand, the possible connection of our re-
sults with other approaches as thePT–symmetry [32] or the
pseudo–hermitian transformation [16] has been discussed in
a previous work [17].

Finally, we have presented the case of first order, not mu-
tually adjoint, intertwining operatorsA, B. However, the
method can be iterated at will by consideringh` as the new
initial Hamiltonian. Thenth iterated result can be also ob-
tained by means of intertwining operators ofnth order. In
particular, the second order case can be properly used to ob-
tain self–adjoint Hamiltonians with spectrum identical to the
initial one [17, 33]. It is also possible to show that second
order transformations can produce non–hermitian operators
with real spectrum extended by two extra complex eigenval-
uesε andε̄. These results will be published elsewhere.
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