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Gamow solutions are used to transform self-adjoint energy operators by means of factorization (supersymmetric) techniques. The ti
formed non—hermitian operators admit a discrete real spectrum which is occasionally extended by a single complex eigenvalue assoc
to normalized eigensolutions. These new Hamiltonians are not pseudo—hermitian operators and also differ from those obtained by mea
complex—scaling transformations. As an example, Coulomb-like potentials are studied.
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El método de factorizadn es extendido al caso complejo para construir Hamiltonianos no Hermitianos con espectro real. Algunos de |
nuevos Hamiltonianos admiten adasun eigenvalor complejo con eigenfulmtinormalizada. Las funciones de transforrbaaisadas son
funciones de Gamow. Los nuevos Hamiltonianos no son pseudo-hermitianos y son diferentes teagjuellos obtenidos con eétado

de dilatacbn compleja. Se presenta el caso de potenciales Coulombianos como ejemplo.

Descriptores:Método de factorizadn, vectores de Gamow, Hamiltonianos no Hermitianos

PACS: 03.65.Ca; 03.65.Ge; 03.65.Fd

1. Introduction tion of slow neutrons and found that the related energy dis-
tribution reaches its maximum @tz with a half-maximum

Complex energies were studied for the first time in a paper ofVidth I'z. A resonance is supposed to take plac&atand
Gamow concerning the alpha decay (1928) [1]. In a simpld0 have “half-value breathl; [3]. The resonances can be
picture, a given nucleus is composed in part by alpha partidefined as eigensolutionsy of the Hamiltonian with com-
cles ¢ He nuclei) which interact with the rest of the nucleus Plex eigenvalue:, = Er — il'z/2. This complex number
via an attractive well (obeying the presence of nuclear forces3!So corresponds to a first-order pole of thmatrix [4] (for
plus a potential barrier (due, in part, to repulsive electrostati¢hore details see.g.[5]). However, as the Hamiltonian is a
forces). The former interaction constrains the particles to b&lermitian operator, then (in the Hilbert spaikigthere can be
bounded while the second holds them inside the nucleus. THeO eigenstate having a strict complex exponential dependence
alpha particles have a small (non—zero) probability of tunnel©n time. In other words, decaying states are an approxima-
ing to the other side of the barrier instead of remaining contion within the conventional quantum mechanics framework.
fined to the interior of the well. Outside the potential region, This fact is usually taken to motivate the study of the rigged
they have a finite lifetime. Thus, alpha particles in a nucleudeduipped) Hilbert spac# [6]. The mathematical structure
should be represented lyiasi—stationanstates. For such of H lies on the nuclear spectral theorem introduced by Dirac
states, if at time = 0 the probability of finding the particle in @ heuristic form [7] and studied in formal rigor by Mau-
inside the well is unity, in subsequent moments the probabiltin [8] and Gelfand and Vilenkin [9].
ity will be a slowly decreasing function of time (seg. Secs. Some other approaches extend the framework of quan-
7 and 8 of Ref. 2). tum theory so that quasi-stationary states can be defined
In his paper of 1928, Gamow studied the escape of alin a precise form. For example, the complex—scaling
pha particles from the nucleus via the tunnel effect. In ordemethod [10-12] (see also [13]) embraces the transformation
to describe eigenfunctions with exponentially decaying timeH — SHS™' = Hy, whereS is the complex-scaling op-
evolution, Gamow introduced energy eigenfunctignsbe-  eratorS = e=%?, [r,p] = i, such thatSf(r) = f(re®).
longing to complex eigenvalugg; = Eg —il'g, I'¢ > 0.  Thistransformation converts the description of resonances by
The real part of the eigenvalue was identified with the energyron—integrable Gamow states into one by square integrable
of the system and the imaginary part was associated with thetates (A relevant aspect of the method is that it is possi-
inverse of the lifetime. Such ‘decaying states’ were the firstle to construct a resolution to the identity [14]). Thus, the
application of quantum theory to nuclear physics. complex—scaled resonance eigenfunctions 6agependent
Three years later, in 1931, Fock showed that the law of® they can be normalized. Moreover, as the complex
decay of a quasi-stationary state depends only on the eﬁ_lgenvalugs aré—lr_ldepend.ent, the resonance phenomenon is
ergy distribution functions(E) which, in turn, is meromor- just qssoplated with the discrete part of the complex—scaled
phic [2]. According to Fock, the analytical expression of Hamiltonian [15] (but see [13]).
w(FE) is rather simple and has only two polEs= FEy + T, In this paper we show that Gamow (decaying) eigensolu-
I' > 0 (see Eq. (8.13) of Ref. 2). A close result was derivedtions can be used to transform Hermitian Hamiltonians into
by Breit and Wigner in 1936. They studied the cross sechon—self adjoint energy operators with purely real spectrum
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or admitting a single extra complex eigenvalue with square— We look for a complex—type factorization [17] of the
integrable wavefunction. The new Hamiltonians could beHamiltonian (2):
profitable as testing operators in diverse approaches includ-
ing complex—scaling and pseudo—hermitian [16] transforma- Hy=AB +e¢ )
tions. As we shall see, it is not necessary to work in a o )
equipped Hilbert space framework because the Gamow sdVith factorization constant > ¢ = ¢ +ie; e1,¢0 # 0 € R
lutions will be used merely as mathematical tools. Moreover2nd @ couple of not mutually adjoint first order operators
the exponential growing of the Gamow solutions for large d d
distances will be primordial in order to get well-behaved A= —a + 0, B := ot B (4)
complex potentials. The mechanism we are going to use is
the factorization method in a ‘complex’ version [17]. As Whereg is a complex—valued function fulfilling the Riccati
usual, the procedure and results can be interpreted in tern@guation
of supersymmetric quantum mechanics. , )

The next section introduces general expressions for trans- —B'(r) + B7(r) + € = Vi(r). ®)
forming spherically symmetric potentials in terms of appro-_, . L .
priate %afnow vec):or)s/. It is shc?wn that new complex p?c?ten-rhls .Iast equation S easily solved by means .Of the loga-
tials are derived so that their discrete spectrum is real. Thmhm.IC transfo_rmatlor)@(r) — —(d/dr)Inur), W't.h u(r)
Coulomb potential is managed as example. The Sec. 3 show E e|ge2;nsolut|on off, bfelo.ngmg to the complex eigenvalue
how the approach can be generalized to include an extra siff-— —kCok :Tkl + Z]?’Tkl’ ]f2 € R.
gle complex eigenvalue into the initial discrete spectrum. The Remark thatt, = B'A' + & = H, (the bar stands for
related eigensolution is then shown to be of finite norm. Fi_complex conjugation) because the Hamiltonian is assumed to

nally, Sec. 4 is devoted to the concluding remarks. be self-adjoint in the Hilbert spack. A relevant aspect of

the complex factorization (3)-(5) is that the reverse ordering
] ) of the factors gives rise to non-hermitian second order differ-
2. Supersymmetric Gamow transformations ential operators:

2.1. The complex factorization BA+e=Hy+28(r) := hy. (6)

Let us consider the time—independent Schinger equation  conyentional factorizations assumeriori A = Bt and real
for a spherically symmetric potenti&l(r). After separation . (seee g.[19]). In counterdistinction, complex factorization
of angular variables, the equation reduces to a differentigl more in the spirit of the ‘refined factorizations’ reported

equation involving only the radial variable: recently [20] (see also [21]). The following intertwining re-
Hop(r, £) = E(r, 0), ) lationships hold
which can always be integrated numerically. The reduced heB=BHy,  HeA= Ahy )

Hamiltonian reads . . . .
which permit to determine the solution8 ~ By of

H, = _iz L V(r) = _ﬁ + w V), () he¥U = A¥, X € C, by giving the_solution& of Hyp = M.
dr? dr? 2 The operatorA reverses the action d. In the supersym-

where the effective potentialV;(r) has the domain Mmetric languageli, andh, are understood as supersymmet-
Dy = [0, +00) and the units of energy and coordinates haveic partners whiles(r) is the superpotential (seeg.[22] and
been properly chosen. references quoted therein).

The nature of the energy spectrumidf may be deduced In general, we want to keep the physical interpretation of
from the asymptotic behaviour of the solutiong-, /) which ¥ as connected with the probability densityr) = |¥(r)[*
are regular at the origin. [¥/(r) approaches zero asymp- in H (The dependence of on ¢ will be always implicitly
totically faster thanl /r: lim,_.. 7V (r) = 0, then the en- considered). Hence, we look for functions
ergy spectrum contains two parts: (a) Negative discrete val- W (u, )
uesE;(¢), E5(¢),... To each of them corresponds a radial U x By = :
wavefunction of finite norm. (b) Unbound continuous posi-
tive spectrum, with solutions regular at the origin but indefi-which are square—integrable 1 (the symbol/ (-, -) stands
nitely oscillating in the asymptotic region. On the other handfor the wronskian of the involved functions). Of course,
if V(r) approaches zero dgr whenr — oo, the essential this last condition is not imperative in Eq. (8). For in-
result concerning the nature of the spectrum persists [18]. Wetance, one could extend the initial boundedness condition
shall concentrate on the discrete spectrum by assuming that(r, £)|? < oo to better admit another kind of normalization
a complete set of normalized wavefunctians(r,¢) € H  in order to generalize selfadjointnessd, in the picture of a
has been given for eadh(r), otherwiseH, would not be an  equipped Hilbert spack). But, in this way, the physical in-
observable. terpretation of eithet(r, ¢) or ¥(r) as wavefunctions is less

®)

u

Rev. Mex. 5. S53 (2) (2007) 103-109



GAMOW VECTORS AND SUPERSYMMETRIC QUANTUM MECHANICS 105

clear (one dimension plane waves, for example, are known Now, let us analyze in detail the Eq. (8). Our goal is to
to be not inL?(R) but having a probability density which characterize the spectrum bf as well as its eigenfunctions
is everywhere finite in the Dirac sense. In other words, thén terms of the analytical behaviour ofr, £) and the bound-
plane waves could be understood as energy Dirac vectors gry conditions ofu(r).
H. However, if we apply realistic vanishing boundary con- A direct calculation shows that(r) o ! satisfies
ditions atz = 0 andx = L, or L—periodic boundary condi- u(r = 0) = 0. Thereby, Eq. (8) reads
tions, the plane waves can be normalized in the conventional
form. Thus, ‘free particles’ are but an abstraction from the U(r<l)~vg(r<l)— Hilgo(r <1). (9)
actual quantum world). r

As it could be expected, the set of eigenvectors (8) is unt is clear thatW(r) will be regular at the origin ifo is such

common in}{: though they can be normalized, their elementsinat ,(r « 1) ~ 7%, s > 1. In other words, ifp is regular at
are not mutually orthogonal [17] (An optional bi-orthogonal the origin theny (r = 03 —0.

basis has been recently discussed in [23]). These vectors are The purely outgoing boundary condition, in turn, is

natural in the spaces with an indefinite metric as studied iréquivalent to the following expression (see [26] p 630):
the Pontrjagin—Krein formalism [24] (see also [25]).

. d .
2.2.  Gamow transformations Jim 7 oulr) = = lim B(r) = —k. (10)
Let us show how the Gamow solutions can be used as tranlence, Eq. (8) reduces to
formation functions:(r) in Eq. (8). First, following Gadella— ) ) , ]
de la Madrid, we define a Gamow function as a solution of the Thjf}o W o TIHEO ¢ +k Thjf}o #-
time—independent Sabdinger equation with complex eigen-
value and purely outgoing boundary conditions [26]. Thus, ifAS the solutiony grows indefinitely as one of either"",
u(r) is such thatu(r = 0) = 0, u(r — +oo) ~ e b7 K= v/—A, we can identify the following cases:
(k1 < 0), and solves (1), (2) witlE = ¢ € C, thenu(r)
is a Gamow solution (Observe thatdoes not necessarily
correspond to the poles of the matrix!). In the context
of the alpha decay, the conditiar{r = 0) = 0 describes
the ‘creation’ of alpha particles inside the nucleus and obeys |1y If X\ > 0, theny ~ sin(kr — /2 + §,), with &, the
the fact that there cannot be any transmission into the region phase shift. Thusy is an acceptable eigensolution of

(11)

[) For a (denumerably infinite) set of negative discrete
valuesh € {E,(¢)}, the solutiony in (11) behaves
asp ~e " k> 0. ThusU ~ (k — k)e ", k > 0.

r < 0 because the effective potential is infinite there.( H, forany\ > 0 and represents an unbound state [18].
this condition avoids the incoming probabilities and is related Hence, ifA > 0 then®(r) indefinitely oscillates when
with the adjointness of the Hamiltonian [26]). On the other r — 00.

hand, the outgoing boundary condition ensures the decay rate _
obeyed by the particles after tunneling the electrostatic bar-Ill) If X € C then Eq. (11) giveshs ~ (+x + k)e™"".

rier. Moreover, if A = € (equivalentlyx = k) then®_ =0
Let us takeRe(e) = Er = k3 — k¥ > 0 in andW, ~ 2ke*". The former solution is rather trivial

€ = (k3 — k?) — 2ikyko. Thus|ks| > |ki1|. We can distin- asW(u,u) = 0in Eq. (8). Now, asi; < 0, it seems

guish two general cases: that U, could satisfylim, 1 |¥4+| = 0. However,

in such a casep, should also satisfy both conditions
L , , / _ ¢+ (0) =0andy, o e*", k; < 0, which is not possi-
I'™ = dkikz > 0, 1s assouate_(ngnh ttrh_e gecaymg part ble since) is complex andH, is a selfadjoint operator
of the solutionl/ (¢)|¢.- ) = e~**Fre=" /2[g,). in Hyp, = Ap,. A similar situation arises for any
2)ky < 0 and k; > 0. The complex energy complex numben different frome.
et = Ep + i0t/2, with T+ = 4)k|ky > 0,

1) k1 < 0,ke < 0. Heree- = Er — i['" /2, with

is associated with the growing part of the solution. In summary, for Gamow transformation functions in (8),
U(t)| s ) = e~ itBnetl /2|5, ) if ¢ € L?>(RT) then¥ € L?(R*). Furthermore, Eq. (8)
e e does not produce eigenfunctions of the non—hermitian Hamil-
In both cases the roles are interchanged under complebonian h, belonging to complex eigenvalues. Thereby, the
conjugation. Now, ife* correspond to the poIa% ofthe S  complete discrete spectrum(Hy) of the initial Hamiltonian
matrix, then the lifetime- = 1/I"; decreases as the energy H, is inherited to the Gamow transformed Hamiltonian
increases. Thus, for small widths (large lifetime) the energyin order to exhaust our analysis, let us consider the complex
resonances are close to the real axis and the Gamow vectdectorization (6). It is easy to verify that the kernel é4fpro-
could be considered as bounded states for certain physicaides an eigenfunctio&. (r) of h, belonging toe € C. Thus,
phenomena. On the other hand,Igs increases, the reso- ¢ o 1/u fulfills 7 & = €£.. However, as: is a Gamow vec-
nances move away from the real axis and the Gamow vectotsr, &, diverges at the origin as~“~!. In other wordsg, is
are far to be considered as representative of bound states. out of H and it is deprived of a physical meaning. The same
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situation arises by considering the two—dimensional kernel of 1.5
the productB A. Hence, there are no more square—integrable
solutions ofh, and the discrete spectrumy(h,) is just the
same a4 (Hy).

We have then constructed a non—hermitian Hamiltonian
he which is strictly isospectral to the initial spherically _q.
symmetric Hermitian Hamiltoniari,. A simple calcula-
tion shows that the global behaviour of the new potential

1
0.5
0
5

ve(r) = Vi(r) — 20/ (r) Ju(r) is as follows -1.5
-2
Viei(r) r~0
v () :{ Oe+1( ) T (12) e —— ; 5 S

Thus, for small distances, a particle with ene@y(ﬁ) inter- FIGURE 1. The Argand-Wessel diagram f)f the hydrogen’s Gamow
vector u(r), from zero to 20 Bohr radiirz, with £ = 1 and

acts with _the f"?'d as havmg a guantum numberl._ln the . e = —0.2604 + 40.104(x13.5ev). Horizontal scale stands for

asymptotic region the particle behaves as free of interactiony . o part. The disk is at= 175 and the circle at — 19r5.

On the other hand, the intermediate region could be inter-

preted as ‘opaque’ in the sense that the particle interacts withig 2. Notice thaw, (r) becomes almost real for small dis-

a series of wells and barriers which alternate their positiongances and goes toco on the real branch for = 0. On

in the real and imaginary parts of(r) (see the discussion on the other hand, this potential goes to zero whems +oc.

the optical bench given in [27]). The next section elucidatesrg imaginary part of,(r) becomes relevant for interme-

the applications of the method by transforming the Coulombyjiate distancesi.e. at distances which are between 2 and 6

potential. Bohr radii, for the parameters considered in the figure).
Finally, Fig. 3 depicts the potenti&l. (r) as well as the

real part ofvy(r). Observe the presence of barriers and wells

in the intermediate distances. A similar situation occurs for

If the radial potential in (2) is the Coulomb of&r)=—2/r, the imaginary part of,(r). These ‘partial potentials’ induce

the convenient Gamow vectors are given by the expressiolfcal Tésonance’ effects which are not present in the Hermi-
(see Fig. 1): tian potentialV,(r). Thus, the spatial distribution of the

wave-packets corresponding t@(r) differ from that of the
u(r) = r e P B (041 —1/k,20+2,2kr)  (13)  wave-packets of;,(r) at the same energy.

2.3. Non-hermitian Hamiltonians with hydrogen-like
spectrum

with 1 F (a, ¢, z) the Kummer's function. The units of en-

ergy and coordinates are respectively takefi as Ze? /2rp 3. Generalized Gamow transformations

(=Z 13.5eV) andg = h?/Ze?*m (= 0.529 x 1078/Z cm).

The solutions (13) have been explicitly derived in [17]. As it has been shown in the precedent section, though the
Once these Gamow vectors have been used as transfdBamow vectors:(r) could have a definite physical meaning

mation functions in (6), the non—hermitian potentiglr) re-  as resonant states éf,, we consider them merely as trans-

sembles a cardiod curve as depicted in the complex plane (séermation functions to construct the non—hermitian Hamilto-

a) b)

25 20 -15 -10 -5 0 -2 0 2 4

FIGURE 2. The Argand-Wessel diagram of the non—hermitian potential (12) for the same parameters as in Fig. 1. This potential has a discrete
spectrum identical with that of the hydrogen atom. The right—hand side figure is a detail of the cardiod—-type one. Therdiskisaand
the circle atr = 6 rp.
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10 modified:
5 14
N U(r<l)~¢'(r<l)+-pr<1). (14)
0 \/ T
-5 Hence, the same conclusion is obtainedp i€ L?(R) then
-10 U € L?(R). However, for complex eigenvalues kf(r), the
kernel of A provides the eigensolutioi. « 1/w, which can
-15 be normalized ir{ and satisfieg,¥. = ¢¥.. Itis easy to
-20 check that the corresponding complex conjugatés neither
e in the kernel ofA nor that of BA (see Eq. (6)). In counterdis-
tinction, if ©(r) is eigensolution of, belonging toe, then

2.5 5 7.5 10 12.5 15 17.5 20 @(r) belongs tce as H, is selfadjoint.
Therefore, the discrete spectrum bf is now given
FIGURE 3. The real part (continuous curve) of the cardiod-type py o4(Hy) U {e}. On the other hand, the new potential
potential in Fig. 2 contrasted with the effective Coulomb potential () = V,(r) — 2w/(r) /w(r) behaves in this case as

W:Q(T).
{ Veer(r) r~0

(15)

nians hy. In general, all the unphysical (not square— ve(r)
integrable) solutions of the Saidinger equation are use-

ful to construct new Hamiltonians admitting real spectra andwith a similar interpretation as for (12) but changifyg 1 by
square—integrable eigenfunctions [28,29]. In particular, if they — 1.

factorization constartis a real number, the conventional fac- Figures 4 and 5 show respectively the behaviour of the
torization operatorsl = B are automatically recovered. generalized Gamow vector(r), the wavefunction, () and

Now, we extend the previous results by opening thethe new non—hermitian potential(r) for the Coulomb case
chance to incorporate complex eigenvalues with squarel (r) = —2/r. The related transformation function is [17]:
integrable solutions in the spectra of the transformed Hamil- 041 —kr
tonians. First, notice that the general solution of (1) is, for w(r) =r"e LR (E 41— 1/k, 20+ 2, 2kr)
small distances, a linear combination of two particular so- FEU(L+1—1/k,20+2,2kr)]  (16)
lutions: 1 andr—¢. The second one is usually rejected
because it is singular. Moreover, in the context of alpha dewhere¢ is a complex constant arid(a, c, ) is the logarith-
cay, a vector(r = 0) # 0 does not describe the ‘creation’ mic hypergeometric function.
of alpha particles. We shall relax the Gamow condition at the
origin to include the solutiom=* but preserving the purely .
outgoing conditiore=*". Let us remark that a ‘generalized’ 4. Concluding remarks

Gamow vectors(r), satisfying these new conditions, still iS The Gamow (decaying) eigensolutions have been shown to
unphysical in the sense that it is not square—integrat#ié.in  pg anpropriate transformation functions in the framework of
The relevance of our generalization lies on the fact thasupersymmetric quantum mechanics. Non—hermitian Hamil-
expressions (1)—(8) still hold i(r) is taken as the transfor- tonians, which are supersymmetric partners of spherically
mation function. Equation (9), on the other hand, is slightlysymmetric self-adjoint energy operators, have been construc-

0 r— 00

a) b)
50 -
20 0.1
30 0.05
20 8
10

-0.05

0
-10 -0.1
—~2i0 -0.15

-10 0 10 20 30 -0.15 -0.1 -0.05 0 0.05 0.1

FIGURE 4. (a) The generalized hydrogen’s Gamow vectdr), plotted from zero to 20 Bohr radii and the same parameters as in Fig. 1.
The disk is at = 0.057 and the circle at = 19.575. (b) The square—integrable wavefunctidp belonging to the complex eigenvalue
e = —0.2604 + 10.104(x 13.5ev). The disk is at = 0.05r and the circle at = 19rp.
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a) b)
1
0.4 0.5
0.2} 0
Or -0.5
-0.2 4
-0.4
-1.5
-0.6
-1 -0.8 -0.6 -0.4 -0.2 0 2.5 5 7.5 10 12.5 15 17.5 20

FIGURE 5. (a) The non—hermitian potential (15) constructed via the generalized Gamow vector of Fig. 4a. Here we have plotted from zero
to 40 Bohr radii. The disk is at = 2rp and the circle at = 6rp. This potential has the same spectrum as the hydrogen atom extended
by an extra complex eigenvalueetvith the square—integrable wavefunction of Fig. 4b. (b) The corresponding real part (continuous curve)
contrasted with the Coulomb potentid_o (r).

ted so that they admit purely real spectrum with normalizedstructed as an application of the technique reported in [30].
wavefunctions. For other of these new non—hermitian opWork in this direction is in progress.
erators an extra complex eigenvalue with square—integrable On the other hand, the possible connection of our re-
eigensolution is present. sults with other approaches as tR&—symmetry [32] or the

At first sight, our results could be connected with thosepseudo—hermitian transformation [16] has been discussed in
derived in the complex—scaling method. However, thea previous work [17].

Qamow—transfgrmed potentia(r) = Vi (r) — 2w’ (r) /w(r) . Finally, we have presented the case of first order, not mu-
is not as simple as the complgx—scqled pOteDtlatually adjoint, intertwining operatorgl, B. However, the
Vo = €?Vy(re®). In general, an intertwined Hamil- method can be iterated at will by considerihgas the new

tonian hB = BH, HA = Ah (factorized in a refined initial Hamiltonian. Thenth iterated result can be also ob-
way [20]: H = AB +¢, h = BA + ¢) could correspond  tained by means of intertwining operatorssah order. In

to a complex—scaled Hamiltonian S = SH if hy = h.  particular, the second order case can be properly used to ob-
Thus, there must exist a couple of differential operatorsain self-adjoint Hamiltonians with spectrum identical to the
M = AS andN = BS~!, such tha{H, M] = [h, N] = 0. initial one [17,33]. It is also possible to show that second
A particular case has been recently reported [30] (Sse@rder transformations can produce non—hermitian operators
also [31]) by considering conventional factorization operatorsith real spectrum extended by two extra complex eigenval-
a* = F(d/dr) + a(r), a : R — R, real factorization con- yese ande. These results will be published elsewhere.
stantsg, and the squeezing operatsr= U, = e!(/2{r»r}

[r,p] = i. The so derived ‘scaled intertwined’ Hamiltonian

hy has a real potentialy () = ¢**V (e*r) — o/(r) and real  Acknowledgements

discrete spectrumy(hy) = {e?*&,e**E,, },en, Wheree?A &

is the ground state energy alty € o4(H). This procedure The author is grateful to the organizers of the V Taller de la
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