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Abstract.
This paper presents a novel solution to the illuminant estimation problem: the

problem of how, given an image of a scene taken under an unknown illuminant,
we can recover an estimate of that light. The work is founded on previous gamut
mapping solutions to the problem which solve for a scene illuminant by determining
the set of diagonal mappings which take image data captured under an unknown
light to a gamut of reference colours taken under a known light. Unfortunately, a
diagonal model is not always a valid model of illumination change and so previous
approaches sometimes return a null solution. In addition, previous methods are
difficult to implement. We address these problems by recasting the problem as one of
illuminant classification: we define a priori a set of plausible lights thus ensuring that
a scene illuminant estimate will always be found. A plausible light is represented by
the gamut of colours observable under it and the illuminant in an image is classified
by determining the plausible light whose gamut is most consistent with the image
data. We show that this step (the main computational burden of the algorithm)
can be performed simply and efficiently by means of a non-negative least-squares
optimisation. We report results on a large set of real images which show that it
provides excellent illuminant estimation, outperforming previous algorithms.
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1. Introduction

It is well established that colour is a useful cue which helps to solve
a number of classical computer vision problems such as object recog-
nition [29], object tracking [27] and image segmentation [8]. However,
implicit in this use of colour is the assumption that colour is an inherent
property of an object. In reality an object’s colour depends in equal
measure on the object’s physical properties and the characteristics of
the light by which it is illuminated. That is, the image colours recorded
by a camera change when the colour of the light illuminating the scene
is changed. One way to deal with this problem is to derive so called
colour invariant features from the image data which are invariant to
the prevailing illumination (for some examples of such an approach
see [16, 15, 17]). An alternative approach, which is the focus of this
paper, is to correct images to account for the effect of the scene il-
luminant on recorded colours. This correction procedure is typically
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achieved in a two-stage process. In the first stage the colour of the scene
illumination is estimated from the image data. Then, the estimate of
the scene illuminant is used to correct the recorded image such that the
corrected image is independent of the scene illuminant. The first stage
of the process – estimating the scene illuminant – is the more difficult
of the two and it is this problem which is the subject of this paper.

Despite much research [22, 6, 24, 14, 9, 7, 10, 2, 3] there does
not exist a satisfactory solution to the illuminant estimation problem.
Early attempts at a solution sought to simplify the problem by making
certain assumptions about the composition of a scene. For example it
was assumed that a scene will contain a “white” (maximally reflective)
surface [22] or that the average of all surfaces in the scene is neutral [6].
Other authors modelled lights and surfaces by low-dimensional linear
models and derived algebraic solutions to the problem [24]. It is easy
to understand why such approaches do not work in practice: the con-
straints they place on scenes are too strong. More recently a number
of more sophisticated algorithms have been developed [14, 7, 10, 5, 28]
and these approaches can often give reasonable illuminant estimation.

These methods work not by placing constraints on scenes but by
exploiting prior knowledge about the nature of objects and surfaces. For
example, the Neural Network (NN) approach of Funt et al [7] attempts
to learn the relationship between image data and scene illuminant on
the basis of a large number of example images. While it performs
reasonably well this approach is unsatisfactory because it provides a
black box solution to the problem which gives little insight into the
problem itself. In addition neural networks are non-trivial to implement
and they rely for their success on training data which properly reflects
the statistics of the world. In practice neural networks often do not
generalise well and this has been found to be the case for illuminant
estimation [3].

Perhaps, a more promising approach is the Correlation Matrix (CM)
algorithm of Finlayson et al [10] which has the advantage of being
simple both in its implementation and in terms of the computations
which must be carried out to estimate the illuminant. This method
gains part of its simplicity from the observation that the set of possible
scene lights is quite restricted and can be adequately represented by
considering just a small discrete set of plausible lights. The method
works by exploiting the fact that the statistical distribution of possible
image colours varies as the scene illuminant changes. Using this fact,
and given a set of image data, it is possible to obtain a measure of the
probability that each of the set of plausible illuminants was the scene
light. Clearly, the approach relies on having a reasonable statistical
model of lights and surfaces: (i.e. it requires accurate training data to
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work in practice) but unfortunately such data is difficult to obtain. A
second disadvantage of the method is that it works not with 3-d RGB
camera data but with 2-d chromaticity data: i.e. brightness information
is discarded. There is evidence to suggest however [4, 30] that brightness
information is important in estimating the scene illuminant and while
brightness information can be incorporated into the correlation matrix
algorithm [4], doing so destroys the simplicity of the approach.

A third approach which has also shown promise is the Gamut Map-
ping (GM) method first proposed by Forsyth [14]. Gamut Mapping
also exploits knowledge about the properties of surfaces and lights to
estimate the scene illuminant. However, it is not based on a statistical
analysis of the frequency with which surfaces occur in the world but
on the simple observation that the set of camera RGBs observable
under a given illuminant is a bounded convex set. This observation
follows directly from physical constraints on the nature of a surface (all
surfaces reflect between 0 and 100% of light incident upon them) and
the linear nature of image formation. It therefore exploits the minimal
assumptions that can be made about the world.

Forsyth exploited this observation by characterising the gamut of
possible image colours which can be observed under a reference light.
He called this set the canonical gamut. The colours in an image whose
scene illuminant it is wished to estimate can also be characterised as a
set: the image gamut. Estimating the scene illuminant can then be cast
as the problem of finding the mapping which takes the image gamut
into the canonical gamut. To properly define the algorithm requires that
the form of the mapping between the two sets be specified. That is, the
relationship between sensor responses under two different illuminants
must be defined. Forsyth modelled illumination change using a diagonal
model [14] under which sensor responses for a surface viewed under two
different lights are related by simple scale factors which depend on the
sensors and the pair of lights but which are independent of the surface.

Using this diagonal model of illumination change Forsyth derived the
CRULE algorithm which estimates the scene illuminant in two stages.
First the set of all mappings (the feasible set) which take the image
gamut to the canonical gamut are determined: usually many mappings
are consistent with the image data. In the second stage a single mapping
is selected from this feasible set according to some pre-defined selection
criterion. The algorithm has been found to perform quite well [3] but
it suffers from a number of limitations. It is these limitations which we
aim to address in this paper. We do this by proposing a new algorithm
which shares some of the fundamental ideas of the original work but
which is implemented in such a way as to avoid its weaknesses.
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The first weakness of CRULE is the fact that the algorithm is foun-
ded on the assumption that illumination change can be well modelled
by a diagonal transform. This leads to an algorithm which is concep-
tually simple but which can nevertheless fail. One reason for this is
that real images can contain an illuminant or (more realistically) one
or more image colours which do not conform to the diagonal model of
illumination change and unfortunately in such situations the theoretical
foundation of the algorithm implies that there is no illuminant estimate
which satisfies all the image data. That is, there does not exist a diag-
onal transform that maps the image gamut inside the canonical gamut.
While this problem might be ameliorated by carrying out a change of
sensor basis (and using a generalised diagonal transform [11]) it does
not completely disappear: a linear model of illumination change is only
approximate.

Gamut mapping is also a complex algorithm which is difficult to
implement. Estimating the feasible set involves the intersection of many
convex sets and numerical inaccuracies in this procedure can lead to
a situation in which the result is a null intersection even if all the
image colours satisfy the diagonal model. Finally, even when a feasible
set of mappings is successfully determined, the mappings in that set
may not correspond to realistic illuminants. This is because the range of
illuminants under which images are captured is quite restricted whereas
the set of mappings taking image colours into the canonical gamut can
be relatively large.

The new algorithm we propose in this paper avoids the problem of
unrealistic solutions by defining a priori a set of plausible illuminants.
In this sense our algorithm is similar to the CM approach of Finlayson
et al [10] who also restrict the set of plausible illuminants. Like Forsyth’s
original algorithm our algorithm works by exploiting the fact that under
a given illuminant the set of observable image colours is a bounded set
but we determine the gamut of possible image colours for each of the
plausible illuminants rather than for just a single canonical light. Then,
given an image whose illuminant we wish to estimate, we simply check
whether the image data lies within the gamut of each plausible light.
If the image data lies completely within the gamut for a given light,
that light is a plausible estimate of the scene illuminant. More often
the image data will fall only partially within the gamut for a light and
so we propose a method to determine how consistent a given set of
image data is with the gamut of each plausible illuminant. We show
that a measure of consistency can be obtained by solving a simple non-
negative least squares problem and we propose a number of different
strategies for determining an estimate of the scene illuminant based on
these consistency measures.
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The method has a number of advantages over the original gamut
mapping approach. First, it is guaranteed to provide a realistic illu-
minant estimate since we constrain the set of plausible illuminants in
advance. Second, we are guaranteed to obtain an illuminant estimate
regardless of the image data. In particular, consider the situation in
which the image data is only partially consistent with all of the plausible
lights. In CRULE this could result in an empty set of feasible map-
pings and no illuminant estimate. However, in the new algorithm we
determine the illuminant estimate based on the consistency measures
and therefore do not require complete consistency to obtain a solution.
In addition, we are no longer required to adopt the assumption of a
diagonal model of illumination change: indeed no explicit model of
illumination change is required.

The proposed algorithm also has a number of other advantages
over other illuminant estimation algorithms. First, unlike the Neural
Network or Correlation Matrix based approaches, the method is not
so dependent on accurate knowledge of the statistics of surfaces and
illuminants so that “training” the algorithm for practical use is easier
than in those methods. A second advantage is that the new algorithm
can be applied in essentially the same form whether image data is
represented in 3-d sensor space or a 2-d chromaticity space. Thus unlike
other methods which are forced into making a decision on colour rep-
resentation based on implementation issues, the algorithm we develop
in this paper makes it easy to choose a colour representation simply
on the basis of what gives the best illuminant estimation. Finally, our
non-negative least-squares solution is significantly simpler to implement
than the original gamut mapping algorithm.

The rest of the paper begins (Section 2) with a formal definition
of the illuminant estimation problem and a brief summary of Forsyth’s
Gamut Mapping solution. Then, in Section 3 we address the weaknesses
of this approach by presenting a modified algorithm which we call
Gamut Constrained Illuminant Estimation (GCIE). In Section 4 we
evaluate the performance of the new algorithm on a large set of real
images and we also discuss how best to set some of the free parameters
in the algorithm’s implementation. We conclude the paper in Section 5
with a brief summary.

2. Background

To better understand the illuminant estimation problem we first con-
sider how an image is formed. We adopt a Lambertian model [20]
of the image formation process and assume that our imaging device
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samples the light incident on its image plane with three types of sensor.
We represent the sensitivities of the device by Rk(λ) (k = 1, 2, 3)
– functions of wavelength (λ) which characterise what proportion of
energy at each wavelength a given sensor type absorbs. Light from
an object is characterised by the colour signal C(λ) which, under the
assumptions of the Lambertian reflectance model, can be written as:
C(λ) = E(λ)S(λ) where E(λ) is the spectral power distribution (SPD)
of the ambient illumination, assumed constant across the scene, and
S(λ) is the surface reflectance function of the object. The colour signal
is incident at a point on the image plane and the response of the kth

sensor, pk is given by:

pk =
∫

ω
E(λ)S(λ)Rk(λ)dλ (1)

where the integral is taken over ω the part of the electromagnetic spec-
trum over which the sensors have non-zero response. The response of a
colour camera at a point on its image plane is thus: p = (p1, p2, p3)t: a
triplet of sensor responses. Throughout this paper we will refer to this
triplet either as p, or as RGB.

Equation (1) makes it clear that a camera’s sensor responses strongly
depend on E(λ), the ambient illumination. We can pose the illuminant
estimation problem as that of inverting Equation (1) to recover E(λ).
However, light is a continuous function of wavelength but is sampled
by the imaging device at only three (broad) bands of the spectrum.
So solving Equation (1) is impossible without additional constraints.
Fortunately, in most applications we are interested not in the spectrum
of the illumination per se, but in determining what the scene would
look like when rendered under a reference light.

Let us represent an image taken under an unknown light o, by a
set Io, of n sensor responses Io =

{
po
1
, po

2
, . . . , po

n

}
. For this image

we would like to determine the corresponding set of data Ic which
would be observed under a reference, or canonical light c. Defining the
problem in this way has the advantage that explicit knowledge of E(λ)
is not required. Rather, solving this problem amounts to determining
a mapping F( · ) such that:

pc
i
= F(po

i
), i = 1 . . . n (2)

Forsyth [14] formulated the illuminant estimation problem in this way,
and developed an algorithm to solve it. His solution is founded on the
observation that due to physical constraints on the nature of lights (a
light can emit no less than no energy at each wavelength) and sur-
faces (a surface can reflect no less than no light incident upon it, and
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no more than all incident light), the set of image colours observable
under a given light is restricted. That is, for a reference light c, we
can define a canonical gamut representing all the image colours that
can be observed under that light. Forsyth showed that this canonical
gamut forms a bounded convex set; for a three sensor device this set is
a convex polyhedron in RGB space. A change of illumination implies
a different gamut of observable image colours and this new gamut is
related to the first by a mapping F . That is, if C denotes the gamut of
possible image colours under the canonical light c, and O, the gamut
under the second light o then:

po ∈ O ⇐⇒ Fo,c(po) ∈ C (3)

where Fo,c is the mapping taking colours under light o, to their corres-
ponding colours under light c.

To specify an algorithm to find this mapping we must first establish
what form the mapping should take. The CRULE algorithm proposed
and implemented by Forsyth is founded on the assumption that the
mapping takes the form of a diagonal matrix. That is:

po ∈ O ⇐⇒ Do,cpo ∈ C (4)

where Do is a 3 × 3 diagonal matrix. The validity of this assumption
was investigated by Finlayson et al [12] who found that the model is
well justified for a large class of devices and illuminants. Furthermore,
their work showed that for those devices which do not conform to the
model it is usually possible to determine a fixed linear transform of the
device’s sensor responses which renders the diagonal model appropriate
once more.

Under the diagonal model, estimating the scene illuminant becomes
the problem of finding the three non-zero entries of Do,c. Forsyth de-
veloped a two-stage algorithm to perform this task. The algorithm
works by considering each image colour po

i
∈ I in turn. po

i
can be

mapped to any point in the canonical gamut with a diagonal transform.
That is, there is a whole set of transforms Do,c

i which map po
i

into the
canonical gamut. A different set of diagonal transforms exists for each
different image colour. The diagonal transforms which are consistent
with all the image data are the transforms which are common to all
the sets of all the individual image colours. That is, we can define a set
of plausible transforms as:

Do,c =
n⋂

i=1

Do,c
i (5)

Thus the first step of Forsyth’s algorithm is to determine the sets
of mappings taking each image colour individually to the canonical
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gamut. Then the feasible set of mappings taking all image colours to
the canonical gamut is found by intersecting these individual sets. It
is this intersection step of the algorithm which is most problematic
when applied in practice. There are two reasons for this. First, each set
of mappings is a bounded 3-d convex set and so Equation 5 represents
many computationally expensive 3-d intersections. Computational cost
is reduced by choosing only those points on the convex hull of the set of
image colours which Forsyth showed leads to the same overall intersec-
tion set being calculated. The second problem is that the intersection
in Equation 5 might be empty.

There are two reasons why the intersection might be null. The first
case is that the diagonal model of illumination change is invalid for one
or more colours in the image. In this case it is not possible to find a di-
agonal mapping which is consistent with all image colours. The second
case is that there exists one or more diagonal mappings consistent with
all the image data but these mappings are not found. This happens in
practice because it is difficult to intersect the individual mapping sets
with complete accuracy. When the set of feasible mappings is small
numerical inaccuracies are sometimes enough to result in an erroneous
null intersection. One of the primary aims of the new algorithm we
propose in the next section is to overcome this null intersection problem.

Assuming that the null intersection problem does not arise, the first
stage of Forsyth’s algorithm results in a set of feasible mappings each
of which maps the image data to the canonical gamut. To complete the
solution a single mapping is chosen from this set as an estimate of the
actual mapping Do,c. Of course if many lights are feasible, choosing one
of them may result in a wrong illuminant estimate. Thus, when selecting
an illuminant care must be taken to choose an answer which is broadly
representative of the whole set. This problem is made more difficult by
the fact that often the feasible set will contain mappings which, while
consistent with the image data, do not correspond to realistic scene
illuminants. The algorithm we propose also addresses this problem.

Since Forsyth’s original work a number of authors [9, 13, 1] have
proposed modifications to the gamut mapping algorithm which aim to
address some of the weaknesses we have pointed out so far. However,
some or all of the weaknesses of Forsyth’s original work remain for
these modified algorithms. In particular all gamut mapping algorithms
proposed so far rely on being able to accurately intersect a number
of convex sets. Since this is difficult to achieve in practice all these
algorithms are prone to returning a null solution.
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3. Gamut Constrained Illuminant Estimation

The new algorithm which we call Gamut Constrained Illuminant Es-
timation (GCIE) is simple to describe in outline. We begin by defining
a priori a discrete set of M plausible scene illuminants and we restrict
our estimate of the scene illuminant to be a member (or combination of
members) of this set. Restricting illumination in this way allows us to
exploit the observation that the range of illuminants which occur in the
world is quite restricted [9]. The range and number of illuminants we
choose may vary depending on the application: in certain situations we
may have more prior information about possible scene illuminants and
we can exploit this information by changing the plausible set. Similarly
we can adjust the number and range of illuminants in this set according
to how precisely we wish to estimate the scene illuminant.

For each plausible illuminant we determine the gamut of colours
which are observable under it. We can define the gamut for each illu-
minant in the same way as the canonical gamut is defined in the original
gamut mapping algorithm. So, assuming an RGB representation of im-
age colours, the gamut for a given illuminant is the set of RGBs which
can be observed under that light. As Forsyth showed, such a gamut
will have the form of a closed convex set in RGB space. We explore
later in the paper how best to define the gamut for each illuminant
both in terms of how we choose the set of surfaces on which the gamut
is based and also in terms of whether we use an RGB or some other
representation of colour.

We then use these gamuts as a basis for estimating the scene il-
luminant in an arbitrary image I. We do this by hypothesising each
illuminant in turn as the scene illuminant. If we hypothesise the ith

plausible illuminant as the scene illuminant we would expect, if this
hypothesis is true, that all the image colours fall within the gamut for
that light. On the other hand, if the hypothesis is false, then some of the
image colours will fall outside the gamut. In either case we can measure
the error in our hypothesis according to how far outside the gamut the
image colours are. In this way we can determine an error measure for
each plausible illuminant which tells us something about how consistent
with the image data is each of the plausible illuminants. We can then
estimate the scene illuminant by choosing the plausible light which is
most consistent with the image data. In some cases two or more lights
might be equally consistent with the image data, that is we obtain a set
of feasible illuminants. In this case we require a strategy for choosing a
single estimate from this feasible set. We note that this case is similar
to the situation which arises in the original gamut mapping algorithm.
Let us now look at each stage of the algorithm in more detail.
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3.1. Characterising the Gamut of an illuminant

There are two important factors that must be considered when char-
acterising the gamut for each plausible illuminant: on which set of
surfaces should the gamut be based and in which colour space should
we represent those surfaces? When defining the canonical gamut in
his CRULE algorithm Forsyth started from the minimal assumptions
which can be made about surfaces. Thus, in theory an illuminant’s
gamut should be based on all physically realisable reflectance func-
tions. In practice, the canonical gamut is based on a set of real surface
reflectances which form a gamut representative of surfaces which are
encountered in the world. When the CRULE algorithm is applied in
practice large gamuts are often used since this reduces the chances of
obtaining a null intersection when computing feasible mappings. This
is not a consideration in our case and in fact, choosing a large gamut
is likely to reduce the effectiveness of the algorithm as it will increase
the number of plausible illuminants consistent with the image data and
thus reduce the algorithm’s ability to discriminate between lights. This
suggests that smaller gamuts are more appropriate and in practice the
optimum gamut size will be determined empirically. In Section 4.2.1
of this paper we propose a method for varying gamut size in a well
founded way and we investigate the effect that gamut size has on the
performance of the algorithm.

The second factor we must address is the space in which we represent
the gamuts. Given a set of surface reflectances we can calculate RGB
values according to our model of image formation (Equation 1). Sup-
pose we base an illuminant gamut on N surface reflectance functions
and let G = {pi

1
, pi

2
, . . . , pi

N
} be the set of sensor responses of a device

to the N surfaces under the ith illuminant. We can represent these
responses by Γ(G), the convex hull [26] of G since each element of G
can be represented as a convex combination of Γ(G). In fact it can be
shown [14] that if the N surfaces in G are observable under the ith

illuminant then so too are all convex combinations of the elements of
Γ(G):

pi
k

=
∑

pi
j
∈Γ(G)

αjp
i
j
, ∀ αj ≥ 0,

∑
αj = 1 (6)

The gamut of the ith illuminant in RGB space is therefore the set of all
convex combinations of Γ(G) which we denote G. Figure 1a illustrates
a typical gamut in RGB space.

When constructing gamuts in RGB space we make an assumption
about the overall intensity of the illuminant. In practice however, an
illuminant E(λ) can have an arbitrary intensity. This implies that if
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the sensor response pi
j

is observable under illuminant i then so too is
any scalar multiple of this response spi

j
. We can allow for an illuminant

of arbitrary intensity in two ways. The first way is to use an intensity
independent representation of colour. For example, given a sensor re-
sponse vector pi

j
, we can factor out intensity with a chromaticity [21]

transform:

ci
j,1 =

pi
j,1∑3

k=1 pi
j,k

, ci
j,2 =

pi
j,2∑3

k=1 pi
j,k

(7)

The chromaticity co-ordinates defined in Equation (7) provide a 2-d
representation of image colours. Let G′ = {ci

1, c
i
2, . . . , c

i
N} represent the

set of N chromaticity co-ordinates corresponding to the surfaces from
which gamuts are constructed. As in the 3-d RGB case, it can be shown
that if the N chromaticities in G′ are observable under illuminant i then
so too are any convex combinations of these chromaticities. Thus, in 2-d
chromaticity space the gamut of the ith illuminant is represented by G′
the set of all convex combinations of the elements of Γ(G′), the convex
hull of G′. Figure 1b illustrates a typical gamut in a 2-d chromaticity
space.

The second way to allow for an illuminant of arbitrary intensity is to
apply a transform to factor out intensity but to continue to represent
gamuts in 3-dimensions. In this case we represent colours using the
co-ordinates:

qi
j,1 =

pi
j,1∑3

k=1 pi
j,k

, qi
j,2 =

pi
j,2∑3

k=1 pi
j,k

, qi
j,3 =

pi
j,3∑3

k=1 pi
j,k

(8)

The set of all qi
j

lie on a plane in three-dimensional sensor space. We
can thus define the response of a device to the set of surface reflectances
imaged under illuminant i as: G′′ = {qi

1
, qi

2
, . . . , qi

N
}. Now, if all of the

elements of G′′ are observable under illuminant i, then so is any linear
combination (with positive coefficients) of those elements:

qi
k

=
∑

qi
j
∈Γ(G′′)

αjq
i
j
, ∀ αj ≥ 0 (9)

The gamut of the ith illuminant, which we denote G′′, is thus an infinite
cone in sensor space whose vertex is the origin and whose extreme rays
are defined by the convex hull of G′′. Figure 1c is an illustration of
this unbounded conical gamut. This cone defines the set of observable
chromaticities, but places no restriction on how bright a colour can be.

We have proposed three possible representations of the gamut of
possible surfaces under a given illuminant. In the next section we detail
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how we use each of these representations to estimate the scene illumin-
ant for an arbitrary image. In Section 4.2.2 we investigate empirically
which of these three representations gives the best performance.

3.2. Checking Gamut Consistency

We consider first the case in which we represent the gamut for the
ith illuminant by the unbounded cone G′′i in 3-d sensor space. Let us
represent the image whose illuminant we wish to estimate by the set of
all its 3-d sensor responses:

Io = {po
1
, po

2
, . . . , po

n
} (10)

Now let us hypothesise that the ith illuminant is the scene illuminant.
If this hypothesis is true then any image colour, po

k
will fall within the

cone of observable image colours for the ith illuminant. That is, we can
find a set of αj s.t. po

k
is represented as a linear combination (with

positive coefficients) of the elements of Γ(G′′):

po
k

=
∑

qi
j
∈Γ(G′′)

αjq
i
j

αj ≥ 0, ∀ j (11)

On the other hand, if the hypothesis is not true then an image colour
might fall outside the gamut of the ith illuminant. In this case we cannot
find a set of αj to satisfy Equation (11). However, we can find the linear
combination of the elements of Γ(G′′) which is as close as possible to
po

k
by finding the αj which minimise the error term below:

ei
k =

∥∥∥∥∥∥∥po
k
−

∑
qi

j
∈Γ(G′′)

αjq
i
j

∥∥∥∥∥∥∥
2

(12)

Solving for the αj which minimise the error ei
k is a least-squares prob-

lem. However, we have the added constraint that all the αj should
be positive, so we have in fact a non-negative least squares problem
- a problem for which a known, fast and simple solution exists [23].
We point out that readers who are familiar with optimisation will
understand that minimising (12) might be carried out using a variety
of numerical algorithms. The non-negative least squares algorithm is
chosen because of its very fast operation.

In practice, an image colour might fall outside the gamut of the
ith illuminant for reasons other than the fact that it was recorded
under a light other than i. First, in real images we might encounter
surfaces which we did not consider when constructing the gamuts for
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each light. Indeed, this case will arise partly by design since, for reasons
discussed in Section 4, we construct gamuts using a subset of all pos-
sible reflectance functions. The result of this is that an image colour
captured under illuminant i might still fall outside that illuminant’s
gamut. Second, when constructing image gamuts we assume a Lamber-
tian model of image formation (Equation 1) however, in practice the
physical processes governing colour formation can be quite different to
this model and it is possible that an image colour formed by a non-
Lambertian process may fall outside the gamut of the illuminant under
which it was captured. An example of such a situation would be image
colours corresponding to specular reflections. We make no attempt to
identify such cases, but simply consider that any image colour which
falls outside the gamut of the ith illuminant is inconsistent with that
light. The performance of the algorithm (see Section 4) suggests that
neither of these situation occurs frequently enough to significantly af-
fect algorithm performance. It is also important to understand that in
the original gamut mapping algorithm either situation could lead to
algorithm failure since the presence of erroneous image colours of these
types can make it impossible to find a diagonal transform consistent
with all the image data.

Returning to the details of the algorithm, we can express the total
error in hypothesising the ith illuminant as the scene light as the sum
of all the errors (regardless of their source) for each image colour:

ei
total =

n∑
k=1

ei
k (13)

If the image data falls completely within the gamut of a light then
the corresponding error for this light will be zero and we can say that
the hypothesis accounts perfectly for the data. Such a situation will
be rare in practice firstly, because we construct gamuts using only a
subset of all possible surfaces and secondly, because real images can
contain colours resulting from a non-Lambertian reflectance process.
In general, one or more of the colours in the image will fall outside the
gamut for any given light and the corresponding error for that light
will be non-zero. The greater the error, the less well the hypothesis
accounts for the data.

We can repeat this procedure for each plausible illuminant and ob-
tain an error measure for each of these lights, which we represent in
a vector e. In general, we expect that the most of the image colours
will fall within the gamut of the scene light so that this light will have
smaller error. Thus, we can use e to estimate the scene illuminant: for
example, by choosing the illuminant corresponding to the element of
e with minimum error. We discuss this step of the algorithm in more
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detail in Section 3.3. Next, we consider two different variations of the
algorithm which are derived by adopting one or other of our alternative
representations of gamuts.

3.2.1. 3-d Gamuts
Let us consider the case in which we represent gamuts in 3-d sensor
space so that the gamut for the ith illuminant is a bounded convex
set Gi. Hypothesising that the ith plausible illuminant is the scene
illuminant implies that we can represent sensor responses in the image
as a convex combination of the elements of Γ(Gi):

po
k

=
∑

pi
j
∈Γ(Gi)

αjp
i
j
, αj ≥ 0,

∑
αj = 1 (14)

As in the first case, the hypothesis might be false in which case there will
be an error associated with representing an image colour as a convex
combination of the elements of Gi. This error is given by:

ei
k =

∥∥∥∥∥∥po
k
−

N∑
j=1

αjp
i
j

∥∥∥∥∥∥
2

(15)

Once again we want to find the set of αj which minimise the error ei
k in

Equation (15). In this case though we have the constraint that the αj

should be positive but also the additional constraint that the αj sum to
one, because we are looking for a convex combination of the elements
of Γ(G′′).

Thus, the problem can no longer be solved using the method of non-
negative least-squares. However we can convert this problem to a non-
negative least-squares optimisation in the following way. Let us convert
three-dimensional sensor responses p into four-dimensional vectors r:

r = (p1, p2, p3,W )t (16)

where W is some constant. If we do this for all sensor responses in both
the illumination gamut and the image then we can define a new error
term êi

k:

êi
k =

∥∥∥∥∥∥ro
k −

N∑
j=1

αjr
i
j

∥∥∥∥∥∥
2

(17)

and with some manipulation of the terms in Equation (17) we can
write:

êi
k = ei

k + W

1−
N∑

j=1

αj

 (18)
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Now, if we choose W to be sufficiently large then the term W (1−
∑

αj)
will be the dominant one in Equation (18). This error term is minimised
when the αj sum to one. Thus if we minimise the error in Equation (18)
by the method of non-negative least squares we will obtain a set of
positive αj whose sum is approximately one. In this way we can use the
method to determine the convex combination of points in Γ(Gi) which
best represent the sensor response po

k
. In all other ways the algorithm

is the same as that presented above.

3.2.2. 2-d Gamuts
In the third variant of the algorithm we represent the gamut for each
illuminant in a 2-d chromaticity space. In this case we also represent
the image data in chromaticity space so that each image colour is
represented by a 2-d vector co

j :

co
j,1 =

po
j,1

po
j,1 + po

j,2 + po
j,3

, co
j,2 =

po
j,2

po
j,1 + po

j,2 + po
j,3

(19)

In this case the algorithm has the same form as the version based on 3-d
gamuts so that the first step in estimating the illuminant is to convert
all 2-d chromaticities to 3-d vectors. So a 2-d chromaticity c becomes
a 3-d vector s:

s = (c1, c2,W )t (20)

where, as in the 3-d case W is a constant value. We now hypothesise
each plausible illuminant in turn as the scene illuminant and calculate
an error measure for each plausible light. Calculating the error in this
case follows exactly the same procedure as the 3-d case. Hypothesising
the ith illuminant as the scene illuminant is equivalent to stating that
each image colour can be represented by a convex combination of ele-
ments in G′. The error in this hypothesis for the kth image colour is
given by:

êi
k =

∥∥∥∥∥∥so
k −

N∑
j=1

αjs
i
j

∥∥∥∥∥∥
2

(21)

As before we solve for the minimum value of êi
k using the method of

non-negative least squares, choosing a sufficiently large value of W to
ensure that the αj sum to one. In all other respects the algorithm is
identical to that presented above.

3.3. Choosing an illuminant estimate

The algorithm as we have described it so far provides a vector e whose
elements contain a measure of the error associated with representing
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the image data by each of the plausible lights. We can use this error
vector to obtain an estimate of the scene illuminant, but first we need
to specify the form that this illuminant estimate should take. Since
we define the set of plausible lights in advance, in theory we know the
actual illuminant spectrum for each light. However, our characterisation
of each light is a 3-d or 2-d gamut in RGB or chromaticity space.
This implies that in practice we can at best recover an estimate of the
RGB value of the scene illuminant. If we discard intensity informa-
tion then we can only recover 2 degrees of freedom in the form of an
estimate of the scene illuminant chromaticity. In this paper we will
restrict ourselves to the latter case and define our estimate of the scene
illuminant to be a chromaticity value ĉo: the chromaticity value that
the camera records when a uniformly reflecting surface is viewed under
the scene light. Below we propose two different methods of estimating
ĉo based on e.

3.3.1. Minimum Error Estimate
The simplest approach is to choose the plausible illuminant whose er-
ror measure is smallest. If we define a set E whose elements are the
chromaticities of the M plausible illuminants then:

ĉo = mean
j

(
cj
)

s.t. cj ∈ E ej ≡ min(e) (22)

where min(·) is a function which takes a vector argument and returns
the value of the minimum element of that vector and mean(·) is a
function which takes the mean of a number of vector arguments. If
the vector e has a unique minimum then this estimation procedure
corresponds to the chromaticity of the plausible illuminant with min-
imum error. If more than one plausible light have an error equal to
the minimum error then this method averages the chromaticities of all
these plausible lights.

3.3.2. f th Quantile Error Estimate
An alternative is to choose a feasible set of illuminants (a subset of the
plausible lights) based on some quantile value of the error values for all
lights. Estimation based on more than one illuminant makes sense if a
number of illuminants have a similarly small error. In this case we can
choose an estimate which is representative of all these illuminants: for
example the average of the illuminants’ chromaticity values:

ĉo = meanj

(
cj
)

s.t. cj ∈ E , ej ≤ quant (e, f) (23)

where quant(v, f) is a function which returns the value q such that
a fraction f of the elements of v are less than or equal to q. In the
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next section we assess the relative merits of these different estimators
as part of a thorough experimental evaluation of the new algorithm’s
performance.

4. Experimental Evaluation

In evaluating the new algorithm we want to answer a number of ques-
tions. We have described an algorithm which can be implemented in a
variety of different ways: for example, we have proposed three different
representations of the gamuts for each plausible light and have also
suggested three different ways of estimating the scene illuminant based
on the error measures for the set of plausible lights. There are also a
number of free parameters in the algorithm’s implementation whose
settings will affect algorithm performance. For example, how many
and which plausible lights we choose as well as which set of surface
reflectances we use to define the gamuts. We investigate the effect of
all these variations and parameters in our experiments. In addition we
compare the performance of the new algorithm to existing illuminant
estimation algorithms. Of particular interest is its performance relative
to CRULE since it is as an improvement to this approach that the
algorithm was developed.

4.1. Experimental Method

All empirical investigations are based on an experiment described by
Barnard et al [3] who recently published a comparison of many differ-
ent illuminant estimation algorithms, assessing their performance on
a set of real images. This set consists of images of 32 scenes captured
under 11 different lights1 and were captured specifically for testing
the performance of illuminant estimation algorithms2. Scene content
is varied (ranging from a standard photographic test chart to just
a few green apples) and thus represents different levels of difficulty
for illuminant estimation. The 11 scene illuminants encompass a wide
range of illuminant colours that are typically encountered in the world.

This set of images allows us to obtain a robust indicator of the
relative performance of the different variations of GCIE and also en-
ables us to easily compare its performance with that of the algorithms

1 In total 321 images were used in the experiment because Barnard et al con-
sidered that a small number of the captured images were unsuitable for evaluation
purposes.

2 We thank Drs. Kobus Barnard et al for making this data publicly available from
www.cs.sfu.ca/∼colour/data.
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tested by Barnard et al in [3]. The experimental paradigm is simple:
the RGB image data for each image in turn is used as input into an
estimation algorithm which returns an estimate of the scene illuminant.
GCIE returns a 2-d chromaticity vector: the algorithm’s estimate of the
camera’s response to a perfectly reflecting surface when viewed under
the scene light. We convert this chromaticity value into an RGB triplet:
p̂o = [ĉo

1 ĉo
2 (1− ĉo

1 − ĉo
2)]

t. Some of the other algorithms to which we
compare return an estimate of the RGB value of a perfectly reflecting
surface. Algorithm estimates are compared to the RGB of a white
tile viewed under the actual scene illuminant3. We use an intensity
independent measure of algorithm accuracy by calculating the angular
distance between an algorithm’s estimate of the RGB (p̂

w
) and the

RGB of the actual illuminant (p
w
):

eang = cos−1

(
p̂

w
.p

w

‖p̂
w
‖‖p

w
‖

)
(24)

We compare the performance of different algorithms by looking at the
distribution of eang over the set of 321 images. One way to compare
these distributions is to use single summary statistics such as the aver-
age angular error. In their original experiment Barnard et al used the
Root Mean Square error statistic to summarise results. This statistic
is appropriate when the error measure (angular error in this case) is
normally distributed. However, as has been shown in [19] this is not the
case for the algorithms tested here: the distribution of angular error is
significantly skewed. In this case a more appropriate summary statistic
is median error. So, we quote both RMSE and median error statistics in
the results below. In addition we investigate the statistical significance
of any differences we find between algorithms using the Wilcoxon Sign
Test [18]. Given two samples of random variables A and B the Wilcoxon
sign test is used to test the null hypothesis: Ho : p = P (A > B) = 0.5
i.e. the probability that A has a value larger than B 50% of the time. In
our case the random variables A and B are the angular error results for
two different illuminant estimation algorithms and we use the test to
determine whether the performance of the algorithms is the same (the
null hypothesis is true) or whether one algorithm performs significantly
better than another (the null hypothesis is rejected). In this test the
decision to accept or reject the null hypothesis is made on the number
of times the random variable A are greater than the corresponding
values of B and not on the magnitude of any differences. This test is

3 This RGB was obtained from a white tile placed in each scene: images were
obtained with and without the tile in the scene and testing was done on images
without the tile.
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appropriate when the underlying distributions are unknown, or cannot
be well modelled using, for example, a Normal distribution (as is the
case here).

4.2. Experimental Results

Before considering the performance of the algorithm with respect to the
various factors discussed above we need to address the issue of what
is actually the input to GCIE. We could simply use each individual
image pixel as input to the algorithm but this is undesirable for two
reasons. First, regions in the image of large spatial extent might bias
the error measures for each plausible light and thus degrade algorithm
performance. Second, the main computational step in the algorithm
is to check the consistency of a set of image data with the gamuts
of each of the candidate illuminants. Checking the consistency, while a
simple step, would be burdensome if repeated for all pixels in an image.
Instead we segment the image and use the average RGB value of each
segment as input into the algorithm. This implies that each surface in
the scene has equal weight in the estimation process, regardless of its
spatial extent. We used the Mean Shift segmentation method of Meer
et al [8] which we found to give reasonably accurate segmentations
of all the images, producing on average approximately 15 regions per
image. There was no particular reason for choosing this segmentation
algorithm beyond the fact that the authors had made available an im-
plementation of their work. In particular, it was not chosen to optimise
the performance of the illuminant estimation algorithm. We note that,
as other authors have pointed out [3], pre-processing of image data
can have a significant effect on algorithm performance. This implies
that the results we give below are not necessarily representative of the
optimal performance that can be obtained with a given algorithm.

An important parameter in GCIE is the choice of plausible illumin-
ants. This choice will be decided by what prior knowledge we have
about the range of scene illuminants we expect to encounter and will
therefore vary with the application of the algorithm. In these experi-
ments we report results for three different sets of plausible lights. The
chromaticities of these three sets are shown in Figure 2. The first set
(red asterisks in Figure 2) is a set of 87 lights representing a large gamut
of illuminants obtained from measurements of real world illuminants.
These illuminants were measured by Barnard et al [2] and represent
the case in which we have only limited prior knowledge about the scene
illuminant. The second set of lights (blue circles in Figure 2) consists of
the 11 lights under which the test images were captured. This set rep-
resents the situation in which we have maximal prior knowledge about

FinHorTastl_IJCV05.tex; 27/02/2006; 20:35; p.19



20

the scene illuminant. Finally, the third set (green squares in Figure 2)
is intended to represent the situation in which we have some, but not
perfect, prior knowledge about the scene illuminant. This set consists
of 28 lights and includes a variety of the most commonly occurring
lights. For example, there are a range of daylight illuminants, various
fluorescent sources as well as a range of Planckian blackbody radiators.
The first and third sets contain at least one light which is similar (in
chromaticity) to each of the 11 test lights.

4.2.1. Investigation of Gamut Size
The first factor in the performance of GCIE which we investigate is
how the gamuts for each plausible light are best constructed. We re-
port results for the variation of the algorithm in which we construct
gamuts in 3-d sensor space. Similar trends in performance are observed
when gamuts are unbounded cones in 3-d space and when they are
represented in 2-d chromaticity space.

In developing the algorithm we insisted only that gamuts be con-
structed from physically realisable reflectances. This is a very weak
constraint and by itself will lead to very large gamuts. Such gamuts are
likely to be ineffectual since while the gamuts for two different lights
will differ at their extremes, these extremes are likely to correspond to
reflectances which occur only rarely in the world. For example, while a
reflectance with response at only a single wavelength of light can occur
in theory, such reflectances never occur in nature. This implies that the
discriminating power of GCIE will be limited since most images will be
similarly consistent with each plausible light. To avoid this we base our
gamuts on reflectance functions which are in a statistical sense “likely”
to occur in scenes. That is, we define gamuts which tell us something
about which RGBs often occur under a particular light, rather than
defining all the RGBs that might ever occur.

To achieve this we construct gamuts by first calculating the chro-
maticity co-ordinates of a set of measured surface reflectance functions.
We then model the distribution of these chromaticities using a bi-
variate Normal distribution and construct gamuts using only those
reflectances whose chromaticities fall within some number of standard
deviations of the mean chromaticity. Suppose we begin with a set of
N measured surface reflectances. Let P i represent the set of all sensor
responses for these N reflectances under the ith plausible light and
denote by Ci the corresponding set of chromaticity values. Suppose
further that the elements of Ci can be represented by a bi-variate normal
distribution with mean µ

i
and covariance matrix Σi. Then define Gi as
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follows:

Gi
σ =

{
pi

j
| pi

j
∈ P, (ci

j − µ
i
)tΣ−1

i (ci
j − µ

i
) ≤ σ2

}
(25)

Finally, let Gi
σ = Γ(Gi

σ), the convex hull of the elements of Gi
σ. Then

the gamut for the ith illuminant is the set of all convex combinations
of Gi

σ.
Representing gamuts in this way provides a well principled way of

constructing a gamut based on statistically likely colours (chromaticit-
ies) and allows us to vary the size of the gamut in a controlled way
simply by changing the value of σ. For example, by choosing σ = 2.5
we construct the gamut based on image colours within 2.5 standard
deviations of the mean. It is important to note that the validity of this
approach depends on whether or not the elements of Ci are properly
modelled by a Normal distribution. This depends to a degree on the
choice of chromaticity space used to calculate the elements of Ci and
also (but to a lesser degree) on the initial choice of surface reflectance
functions. We found that a Normal distribution is a good model in a
log-chromaticity space:

ci
1 = log

(
pi
1

pi
1 + pi

2 + pi
3

)
, ci

2 = log

(
pi
2

pi
1 + pi

2 + pi
3

)
(26)

In this investigation (and all subsequent experiments in this paper) we
take as our initial set of surface reflectance functions, a combination of
three different sets of published reflectance data. These are a set of 462
Munsell chips [32], a set of 219 natural reflectances measured by [25]
and a 170 different object reflectances measured by [31].

Figure 3 summarises the effect that varying gamut size in this way
has on the performance of GCIE. In these figures the median (left),
mean (middle) and RMS (right) angular error of GCIE (using the
minimum error estimator explained in Section 3.3.3) over the 321 im-
ages is plotted as a function of the standard deviation parameter σ.
Results are shown for GCIE based on 11 (solid line), 28 (dashed line),
and 87 (dotted line) plausible lights. All three graphs show the same
trend: performance varies as a function of gamut size with best results
obtained at a standard deviation of 2. This result is observed for each
of the three different plausible illuminant sets. As might be expected
using the 11 lights under which the images were taken as the plausible
set gives the best results. However, results obtained using the set of 28
lights are similar, with those for the set of 87 lights somewhat worse,
but still good.

Table 1 summarises the performance of the optimal gamut size.
The first three columns shown median, mean and RMS angular error
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over the 321 images. The last three columns summarise the statistical
significance of these results. A “+” in the ijth column implies that
constructing gamuts using the number of plausible lights and the value
of σ in the ith row gives significantly better (at a significance level
of 0.01) performance than using the values in the jth column. A “−”
implies that the values in row i gives significantly worse performance
than those in column j while an empty box implies that the two pairs
of values give the same performance. These results are based on the
Wilcoxon Sign Test (explained above) with a significance level of 0.01.
The results show that using 11 or 28 lights gives significantly better
performance than using 87 lights but there is statistically no difference
between the 11 and 28 light results. If we compare results for different
gamut sizes using the Wilcoxon Sign Test we find that gamut sizes
between 1.5 and 2.5 standard deviations are statistically equivalent
with a gamut size of 2 standard deviations being significantly better
than gamut sizes outside this range.

4.2.2. Investigation of Gamut Dimension
In the definition of the GCIE algorithm given in Section 3 above we
formulated three different versions of the algorithm. In the first version,
gamuts are represented by 3-d cones in sensor RGB space and image
data is input to the algorithm in its original 3-d RGB form. In the
second version both gamuts and image data are represented in a 2-d
chromaticity space. Versions 1 and 2 of the algorithm then, both discard
intensity information but in slightly different ways. The third version
of the algorithm retains intensity information both when constructing
gamuts and in the image data. Table 2 summarises the performance of
the three different algorithm versions. In the case of Version 3 of the
algorithm the results are obtained using gamuts constructed exactly as
described above with σ = 2. The 2-d chromaticity gamut and the 3-d
cone gamut are constructed from exactly the same set of chromaticities
as in the 3-d case by the method explained in Section 3.1.1 and 3.1.2
respectively.

Table 2 summarises the results for the three different versions of
the algorithm in terms of RMS, mean, median, and maximum angu-
lar error. These results are obtained using 11 plausible lights and the
minimum error illuminant estimator described in Section 3.3.1. Similar
relative performance is obtained in the case that 28 or 87 plausible
lights are used. The results in Table 2 show that a clear advantage is
obtained by using 3-d RGB gamuts and keeping brightness information
when processing an image. For example, the median error for Version 3
of the algorithm is 1.31 as compared to 5.02 and 5.82 for Versions 1 and
2 respectively. Table 2 also shows (last 3 columns) the results of a Wil-
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coxon Sign Test (at a significance level of 0.01) from which we conclude
that Version 3 of the algorithm is significantly better performing than
either Version 2 or 1. This test also suggests that retaining brightness
information in the image but discarding it when constructing gamuts
(Version 1) brings no advantage over discarding brightness both in the
image and the gamuts (version 2). We note however, that the error
statistics suggest a slight advantage for Version 1 over Version 2 and
we found that if the Wilcoxon test is computed at a significance level
of 0.05 (we accept a 5% chance that we draw the wrong conclusion)
then the difference between version 1 and 2 is significant.

4.2.3. Investigation of Estimators
In Section 3.3 we proposed two different ways of estimating the scene
illuminant based on the measures of gamut consistency which the GCIE
algorithm returns. In this section we investigate the relative perform-
ance of these different estimators. The f th-Quantile error estimate has
a single free parameter. Figure 4 shows the performance of the f th-
Quantile Estimate as its free parameter is varied. The three plots in
this figure show median angular error as a function of f for (from left
to right) 11, 28, and 87 lights. The dashed line in these plots show the
result for the minimum error estimate. For the smaller sets of plausible
lights (11 and 28 lights) there is no advantage in this estimator over
the minimum error estimate. However, when using 87 plausible lights
a slight advantage is obtained by using this estimate: optimal perform-
ance is achieved with f = 0.05. Table 3 summarises the results for the
best performance of this estimator.

4.2.4. Comparison with previous algorithms
The experimental evaluation thus far reveals that the optimal perform-
ance of the GCIE algorithm is obtained by using a full 3-d implement-
ation of the algorithm where gamuts are constructed using statistically
likely colours. Good performance can be obtained using a range of dif-
ferent plausible illuminant sets. In general the minimum error estimator
provides the best performance except for the case when we have a large
set of plausible lights in which case a slight advantage is gained by using
the fth-quantile estimator.

In the final section of this experimental evaluation we compare its
performance to a number of other illuminant estimation algorithms.
The most interesting comparison is with Forsyth’s CRULE algorithm
to which the new algorithm is most closely related and which was also
found to perform very well in the original experiments by Barnard et
al [3]. We also compare to two benchmark simple algorithms: Max-
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RGB and Grey-World which are widely used and estimate the scene
illuminant using the image maximum and image average respectively.

Table 4 summarises the comparative performance of the different
algorithms. Here we show the best performing version of GCIE for
three different sets of plausible lights. The choice of estimator varies
depending on the number of lights in the plausible set. It is clear that
the GCIE performs very well in comparison with other algorithms.
All three versions of the algorithm outperform Max-RGB and Grey-
world as is indicated by both the summary statistics and the results
of the significance testing which is shown in the last six columns of
Table 4. A plus sign (‘+’) in a column implies that the algorithm in
the corresponding row performs significantly better (at a significance
level of 0.01) than the algorithm in the corresponding column. Most
interesting is the performance of GCIE compared to the original gamut
mapping algorithm. The conclusions we draw vary depending on which
error measure we choose: looking at RMS or mean error suggests that
GCIE performs worse than gamut mapping. However, looking at the
median error statistic leads to the opposite conclusion.

5. Conclusions

In this paper we have presented a new Gamut Constrained Illuminant
Estimation algorithm (GCIE). The algorithm we have proposed has
clear similarities to Forsyth’s original gamut mapping approach how-
ever it is formulated in such a way that it avoids the limitations of that
original method. First, by hypothesising a set of plausible illuminants
we avoid the need to adopt an explicit model of illumination change
which as we have discussed, sometimes led to a failure of CRULE to
provide an estimate of the scene illuminant. Defining a priori a set
of feasible illuminants also ensures that the illuminant estimate we
recover will correspond to a real, physically plausible light: a property
also absent from Forsyth’s formulation. Furthermore and in contrast to
CRULE, GCIE is guaranteed to return an illuminant estimate regard-
less of the image data which is input to it. Finally, GCIE is much simpler
to implement than CRULE being in essence a repeated application of
the method of non-negative least squares for which there exist fast,
robust and computationally simple algorithms.

A thorough experimental evaluation of the algorithm on a set of real
images has shown how best to set some of the free parameters in the
implementation of GCIE and has demonstrated that the algorithm is
capable of very good illuminant estimation. The evaluation also showed
that gamut mapping algorithms in general, and GCIE in particular give
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significantly better (in a strict statistical sense) performance than other
benchmark algorithms. This paper has also highlighted the important
role that brightness information plays in estimating the scene illumin-
ant. Finally on the basis of the work presented here it is reasonable
to conclude that gamut mapping approaches to colour constancy are
perhaps the most promising methods currently proposed.
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Figure 1. An illustration of a closed 3-d gamut in RGB space (left), a gamut in 2-d
chromaticity space (middle) and an unbounded conical gamut in RGB space.
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Figure 2. Chromaticities of the three different plausible sets of illuminants used in
the experiments. Asterisks: 87 lights, squares: 28 lights and circles: 11 lights.
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Figure 3. Summary of performance of the Minimum Error Estimate as a function
of Gamut Size. From left to right: median, mean and RMS error as a function of
number of standard deviations. Each plot shows results for 87 lights (dotted line),
28 lights (dashed lines) and 11 lights (solid lines).
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Figure 4. Summary of performance of the fth-quantile error estimator. From left
to right: median angular error as a function of the fraction of illuminants for 11, 28
and 87 lights. Dotted lines in each plot shows performance of the minimum error
estimate.

Table I. A summary of algorithm performance for the optimal gamut size (2 standard
deviations). See main text for an interpretation.

Median AE Mean AE RMS AE 11 lights 28 lights 87 lights

11 lights 1.31 4.18 6.88 +

28 lights 2.14 4.30 6.95 +

87 lights 2.90 4.94 7.66 - -

Table II. A summary of angular error results over 321 real images for the three different versions
of the GCIE algorithm described in the text.

Median Mean RMS Max Version 1 Version 2 Version 3

Version 1, 11 lights 5.02 6.46 9.05 29.16 -

Version 2, 11 lights 5.82 7.00 9.60 29.16 -

Version 3, 11 lights 1.31 4.18 6.88 28.40 + +
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Table III. A summary of the results for the optimal parameter of
the fth-quantile estimator.

Median Mean RMS Max

11 lights, Quantile f = 0.01 2.62 4.81 7.00 21.21

28 lights, Quantile f = 0.01 2.96 4.63 6.54 19.70

87 lights, Quantile f = 0.05 2.60 4.75 7.11 19.43

Table IV. A summary of the performance of the new algorithm with respect to a number of
other algorithms.

Median Mean RMS Max (1) (2) (3) (4) (5) (6)

1. GCIE 11 lights 1.31 4.18 6.88 27.64 + + + +

2. GCIE 28 lights 2.14 4.30 6.95 27.64 + + + +

3. GCIE 87 lights 2.60 4.75 7.11 19.43 - - + +

4. Max-RGB 4.02 6.30 8.77 26.19 - - - + -

5. Grey-World 8.85 11.27 14.32 40.16 - - - - -

6. Gamut Mapping 2.92 4.17 5.6 23.19 - - + +
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