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ABSTRACT

GaN power devices are typically used in the 600 V market, for high efficiency, high

power-density systems. For these devices, the lateral optimization of gate-to-drain, gate,

and gate-to-source lengths, as well as gate field-plate length are critical for optimizing

breakdown voltage and performance. This work presents a systematic study of lateral

scaling optimization for high voltage devices to minimize figure of merit and maximize

breakdown voltage. In addition, this optimization is extended for low voltage devices

(< 100 V), presenting results to optimize both lateral features and vertical features. For

low voltage design, simulation work suggests that breakdown is more reliant on punch-

through as the primary breakdown mechanism rather than on vertical leakage current as

is the case with high-voltage devices. A fabrication process flow has been developed for

fabricating Schottky-gate, and MIS-HEMT structures at UCF in the CREOL cleanroom.

The fabricated devices were designed to validate the simulation work for low voltage GaN

devices. The UCF fabrication process is done with a four layer mask, and consists of mesa

isolation, ohmic recess etch, an optional gate insulator layer, ohmic metallization, and gate

metallization. Following this work, the fabrication process was transferred to the National

Nano Device Laboratories (NDL) in Hsinchu, Taiwan, to take advantage of the more

advanced facilities there. Following fabrication, a study has been performed on defect

induced performance degradation, leading to the observation of a new phenomenon: trap

induced negative differential conductance (NDC). Typically NDC is caused by self-heating,

however by implementing a substrate bias test in conjunction with pulsed I-V testing, the

NDC seen in our fabricated devices has been confirmed to be from buffer traps that are a

result of poor channel carrier confinement during the dc operating condition.
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CHAPTER 1: INTRODUCTION

The power electronics industry is driven by device miniaturization and system power

density improvements, both of which are enabled by wide bandgap (WBG) device technol-

ogy. When evaluating WBG technology, Gallium Nitride (GaN) heterojunction devices

have superior material characteristics compared to Silicon Carbide (SiC) devices: although

both enable higher operating frequency and higher voltage operation than silicon-based

electronics [1]. According to a market report by P&S Market Research [2], GaN is expected

to be the major wide bandgap competitor for silicon for device ratings less than 600 V.

This is due in part to the miniaturization enabled by wide bandgap technology, and also

due to the higher performance and lower figure of merit (RDS(on) × QG) of GaN devices

compared to silicon. Despite these advantages, GaN devices still have extensive hurdles to

overcome before they can replace silicon: chiefly including a comparative manufacturing

cost and significant long-term reliability concerns.

This chapter presents an overview of GaN materials advantages, heterostructure design, a

synopsis of modern device structures, and introduces some prominent failure mechanisms

for GaN HEMTs. In addition, an outline of this work is presented at the end of the chapter.

1.1 GaN Overview and Materials Advantages

As mentioned, compared to silicon, GaN has superior material characteristics which allow

for higher frequency operation, and higher breakdown voltage. This is due to reduced

switching loss from the higher mobility and saturation velocity, and reduced conduction

1



losses since the device length can be reduced for the same given breakdown voltage due to

a higher critical electric field. Figure 1.1 presents an overview of the merits of using GaN

compared to silicon with the graph normalized to the properties of GaN to show scale.

Figure 1.1: Merits of using GaN compared to silicon from a materials perspective.

The channel in AlGaN/GaN devices is composed of a two dimensional electron gas (2DEG)

which is created by spontaneous and piezoelectric polarization due to lattice mismatch

between the two respective layers. This 2DEG has a higher mobility than that of bulk GaN.

Compared to silicon devices in which the channel is formed by doping a region, in GaN

the channel is naturally formed and requires no doping. This means there is no impact on

carrier mobility and velocity due to impurity scattering resulting from doping: leading to

a very high channel electron mobility.
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Figure 1.2: GaN heterostructure types showing (a) the single heterostructure (Al-
GaN/GaN), (b) the double heterostructure (AlGaN/GaN/AlGaN), and (c) an advanced
double heterostructure design.

1.2 Heterostructure Design

Lateral GaN transistors require a multi-layer heterostructure design which is highly depen-

dent on the starting wafer used for growth. GaN is most commonly grown on silicon but

also can be grown on silicon carbide or sapphire. Due to the lack of availability, the high

cost, and small wafer size, GaN wafers are very rarely used in GaN processing, especially

for lateral transistors. GaN is most commonly grown by metal organic chemical vapor

deposition (MOCVD). Concerning heterostructure design, a standard baseline structure is

shown in Figure 1.2(a); this structure is typical for GaN-on-Si wafers. Silicon substrates

give cost and availability advantages compared to SiC or sapphire substrates, although

GaN-on-silicon has a larger lattice mismatch compared to SiC or sapphire. The large lattice

mismatch will cause poor quality GaN growth on Si, so to facilitate better bonding, a

nucleation (seed) layer is needed. For GaN-on-Si wafers, AlN is typically used as the
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nucleation layer. On top of the nucleation layer, the channel/buffer region is grown, with

a typical defect density of 109 cm−3. The interface between the channel and barrier layer is

where the 2DEG forms, which lies on the channel side of the interface.

Concerning heterostructure design, Figure 1.2(b) depicts a double heterostructure (Al-

GaN/GaN/AlGaN). The double heterostructure results in better breakdown voltage and

on-state resistance performance compared to the single heterostructure. This is due to

improved channel carrier confinement, decreasing buffer leakage, and a higher critical

electric field of the buffer layer which improves breakdown voltage.

Finally, there are some advanced structure design considerations which can result in

improved reliability and performance (Figure 1.2(c)). Typically a carbon doped GaN layer

is used below the channel region. Carbon doping makes the region more semi-insulating,

which prevents current punch-through at high electric fields, and also helps to confine the

2DEG. A carbon doped ”back barrier” will improve breakdown voltage at the expense

of increased dynamic on-state resistance. Doping with carbon creates trap sites in GaN,

which can act as acceptor- or donor-like traps depending on whether carbon serves as

an interstitial for gallium or nitrogen in the GaN lattice. These traps can lead to current

collapse and will adversely impact reliability and breakdown performance. Carbon doping

can be done by modifying the temperature of the growth process, where a low temperature

process results in more carbon in the GaN lattice, and a high temperature process results

in better quality GaN with less carbon.

In addition to carbon doping, another way to improve electrical characteristics is to add

an AlN spacer between the AlGaN barrier and GaN channel. The AlN interlayer will

increase electron density in the channel, and can improve interface roughness, leading to

an increase in mobility. The thickness of the AlN interlayer is critical however, as a thick

layer can cause structural degradation due to partial strain relaxation.
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Lastly, a superlattice buffer can be used to reduce defect and mismatch compared to a

typical graded AlGaN buffer structure. These layers are intended for stress relief, which

also can improve passivation adhesion, resulting in fewer surface states. The trade-off

for a superlattice buffer is a reduced thermal performance compared to a graded buffer

structure.

1.3 Device Structures

Figure 1.3: Energy band diagram for an enhancement-mode AlGaN/GaN HEMT.

AlGaN/GaN devices are naturally depletion-mode, meaning they are normally on devices.

These devices require structure changes to make them enhancement-mode, or normally

off devices. For power electronics, it is necessary to use enhancement-mode devices so

that if there is a circuit failure the system will fail in the off-state rather than in the on-state

which can be dangerous and destructive when under load. An enhancement-mode device

has a band diagram like the one seen in Figure 1.3, where the 2DEG quantum-well formed
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at the barrier/channel interface is above the Fermi level, and thus depleted. In this section

we will discuss enhancement-mode structures, and present some more modern device

structures used in GaN power device design.

1.3.1 Enhancement-Mode Structures

Figure 1.4: Enhancement-mode structures for AlGaN/GaN devices showing (a) recessed
gate, (b) implanted gate, and (c) pGaN gate technologies.

There are three common techniques for create an enhancement-mode device: recessed

gate, implanted gate, and pGaN gate. These structures are shown in Figure 1.4. The

pGaN gate enhancement-mode structure is by far the most common of the three. From a

fabrication perspective it is the most reliable, as recess gate has threshold voltage instability
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issues and implanted gate can contribute to trapping issues leading to reliability concerns.

However, pGaN gate devices suffer from more gate leakage than recessed or implanted

gate structures.

(a)

(b)

Figure 1.5: (a) Device structure for a pGaN gate HEMT and (b) equivalent circuit model of
series diodes for off-state operation.

In the pGaN gate structure (shown in Figure 1.5(a)), a p-doped GaN layer is grown on top

of the AlGaN barrier which serves to deplete the channel under the gate. This p-doped

GaN layer along with the AlGaN barrier and GaN channel together forms a pin-diode,

which can add about 10 µA/mm of gate current. Replacing the ohmic gate contact with a

Schottky contact will significantly reduce the on-state gate current as the Schottky-diode
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is now in series with the pin-diode (Figure 1.5(b)), thereby increasing the diode forward

voltage and reducing the gate current. The Schottky-gate pGaN HEMT is a popular method

for achieving low off-state leakage currents and normally-off operation. A combination

of gate recess and pGaN (or pAlGaN) doping can be used to further improve threshold

voltage.

1.3.2 Modern Device Structures

Figure 1.6: Gate injection transistor (GIT) operating with (a) zero gate voltage, (b) in the
on-state but below the forward voltage, and (c) in the on-state in injection condition.
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Two spin-offs of the pGaN gate structure are the gate injection transistor (GIT) and the

hybrid-drain gate injection transistor (HD-GIT). Both build on the principles of pGaN

gate operation, but provide unique advantages to aid in device operation and reliability.

The gate injection transistor (Figure 1.6) provides the benefit of conductivity modulation

(higher IDS), but comes at the cost of a larger gate current compared to the conventional

pGaN gate device. The GIT has three modes of operation: the off-state at VG = 0V, the

on-state at Vth < VG < Vf , and the injection state at VG > Vf . In the off-state and on-state,

the device operates just as a conventional pGaN gated device. However, if the gate voltage

exceeds the series diodes forward voltage the gate will inject holes into the device. Due

to charge neutrality, the injected holes accumulate an equal number of electrons in the

channel, which increases IDS. The accumulated electrons increase current density, but the

injected holes mostly stay around the gate area and do not significantly contribute to the

drain current. This is due to a large mobility imbalance between holes and electrons: hole

mobility is at least two orders of magnitude lower than electron mobility.

The HD-GIT is designed to eliminate current collapse by adding an additional pGaN

region near the drain. This hybrid drain serves to inject holes under the drain in the

off-state condition with a high drain bias, effectively releasing trapped electrons during

the process of switching. This solves the current collapse issue and can be used for high

voltage ( 600V) devices. One drawback of this approach is that it uses both pGaN gate and

gate recess technology to make the device enhancement-mode. For the HD-GIT structure,

the AlGaN barrier layer needs to be roughly twice as thick compared to a normal pGaN

gate structure. This is so that the pGaN hybrid drain does not deplete the channel and

act as a second gate. From a fabrication perspective this complicates things, as it requires

etching and regrowth of a pGaN layer, and it also introduces possible threshold voltage

variation issues as are seen with gate recess devices. The HD-GIT structure can be seen in

Figure 1.7.
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Figure 1.7: HD-GIT device operating in the off-state.

1.4 Failure Mechanisms

As a significant portion of this work covers device optimization in regards to performance

and breakdown, it is prudent to cover some prominent failure mechanisms in the intro-

duction. GaN devices primarily suffer from a few dominant failure mechanisms, although

each of these mechanisms may contribute to other failure modes. Failure mechanisms

can be isolated by the dominant leakage current path: whether gate-leakage, drain- or

source-leakage, or substrate-leakage. This leakage can be due to punch-through, impact

ionization, gate leakage, or vertical leakage paths within the device. These failure mech-

anisms are depicted in Figure 1.8(a). To evaluate the source of the failure mechanisms

the leakage current can be examined, and the dominate leakage path can point towards

impact ionization, punch-though, or vertical leakage current depending on the source. An

example of this is given in Figure 1.8(b).

Vertical leakage current is due to breakdown at the silicon substrate, as silicon has a much

lower critical electric field than GaN. This can be avoided by proper buffer thickness

optimization. This tends to be a dominant breakdown factor for high voltage devices, thus

buffer thickness is a critical factor to high voltage design.
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(a)

(b)

Figure 1.8: (a) Failure mechanisms in GaN HEMTs and (b) leakage current evaluation of
breakdown mechanisms.

Punch-through occurs in off-state at a high drain bias, where electrons travel through

the bulk underneath the turned-off gate and ”punch-though” what should be a depleted

region below the gate. This buffer leakage current can be a large contributor to off-state

IDS. Solutions to reduce punch-through include increasing the gate length, making the

buffer more semi-insulating (e.g. carbon doping), or reducing the trap density in the buffer.

This issue will be discussed in more detail in Chapter 3.

Impact ionization occurs at the drain-side gate edge, or at the edge of the gate-field-

plate. A high electric field causes high-energy electrons to knock other electrons out of

the valence band into the conduction band: creating electron-hole pairs and raising the
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current (depicted in Figure 1.9(a)). This may continue to avalanche condition, resulting

in unrecoverable breakdown. To reduce impaction ionization, electric-field peaks and

hotspots must be reduced. This can be done by multiple field-plate structures. An example

of impact ionization occurring in a high-voltage device is shown in Figure 1.9(b).

(a) (b)

Figure 1.9: (a) Simplified impact ionization model and (b) impact ionization occurring in a
high voltage device.

1.5 Dissertation Organization

The outline of this work is as follows:

Chapter 2 covers lateral optimization trends for high voltage (> 600V) GaN HEMTs. Drift

length and length of the gate field plate are scaled to exhibit the influence of

these terms on the on-state resistance, gate charge, and breakdown voltage.

Novelty of this study comes from a comprehensive look at drift length and

field plate optimization for high voltage and low figure of merit designs. This

optimization maps out RDS(on) and QG to suggest designs which optimize
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conduction losses versus switching losses for specificity in power electronics

system design.

Chapter 3 presents a fabless design approach for lateral optimization of low voltage GaN

power HEMTs. This optimization covers lateral scaling terms including gate-to-

drain, gate, and gate-to-source lengths to minimize figure of merit for a target

breakdown voltage. Low voltage design optimization showed heavy influence

of buffer trap density and thickness on breakdown performance.

Chapter 4 gives insight into heterostructure design and the impact on performance for

low voltage GaN power HEMTs. Low voltage simulations reveal less depen-

dence on vertical leakage current and substrate breakdown compared to high

voltage designs, and more reliance on buffer leakage and punch-through as the

dominant factors leading to breakdown. Optimization curves are presented for

breakdown voltage, on-state resistance, and gate charge. Trends are presented

for the optimization of the channel layer thickness, barrier layer thickness and

molar fraction, impact of an AlN interlayer, and optimization of buffer layer

thickness.

Chapter 5 covers the fabrication strategy for Schottky-gate and MIS-HEMT device fab-

rication in the UCF CREOL cleanroom. This chapter also covers the fabrica-

tion effort through collaboration at the National Nano Device Laboratories in

Hsinchu, Taiwan.

Chapter 6 introduces a new phenomenon discovered during testing of our fabricated

devices: trap induced negative differential conductance. Negative differential

conductance (NDC) seen in the drain current saturation region is typically

attributed to selfheating effects in GaN HEMTs. In this chapter, it is demon-

strated that NDC is due to trap states in the buffer resulting from poor carrier

confinement in the channel during saturation which leads to stray electrons
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exiting the channel and becoming trapped. Lastly, this chapter presents an

overview of defect induced performance degradation.

Chapter 7 concludes the results obtained in this work, and presents an outlook for future

work on GaN power HEMTs.

14



CHAPTER 2: LATERAL SCALING AND OPTIMIZATION FOR

HIGH-VOLTAGE GAN HEMTS

GaN power devices are typically used in the 600 V market, for high efficiency, high

power-density systems. For these devices, the lateral optimization of gate-to-drain, gate,

and gate-to-source lengths, as well as gate field-plate length are critical for optimizing

breakdown voltage and performance. This work presents a systematic study of lateral

scaling optimization for high voltage devices to minimize figure of merit (RDS(on) × QG)

and maximize breakdown voltage.

This chapter demonstrates the effects of lateral scaling on the figure of merit for a high-

voltage pGaN, enhancement-mode HEMT. To this end, the drift length (Ldri f t) and the

length of the gate field plate (LGFP) have been scaled to exhibit the influence of these

terms on the on-state resistance (RDS(on)), gate charge (QG), and breakdown voltage

(VBR). Results conclude that for a given field plate length, the increase in breakdown

voltage as LGD increases, saturates when LGD is greater than LGD(sat). For this design,

with LGFP at 5 µm, the saturation length LGD(sat) was 6 µm. Novelty of this study comes

from a comprehensive look at drift length and field plate optimization for high voltage

and low figure of merit designs, specifically for the enhancement-mode pGaN structure.

Taking this optimization one step further, we have mapped out RDS(on) and QG to suggest

designs which optimize conduction losses versus switching losses for specificity in power

electronics system design.

A. Binder and J. S. Yuan, “Optimization of an enhancement-mode AlGaN/GaN/AlGaN DHFET towards a high
breakdown voltage and low figure of merit,” in 2017 IEEE 5th Workshop on Wide Bandgap Power Devices and
Applications (WiPDA), 2017, pp. 122–126.
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2.1 Introduction

Fueled by the desire for higher performance devices, designers have investigated various

GaN device structures and methods to improve breakdown voltage, FOM, and reliabil-

ity. Power electronics systems almost exclusively employ enhancement-mode (e-mode)

devices; however, most studies have been conducted on the effects of employing a gate

field plate on GaN depletion-mode (d-mode) devices. This is due to the relative ease of

fabrication in comparison to E-mode devices. For this study we present a comprehensive

look at FOM optimization and it is imperative not to limit these device studies to D-mode

devices. Towards this end, we investigate the effect of drift length and field plate scaling

on breakdown voltage and FOM for a pGaN, E-mode, double heterostructure field effect

transistor (DHFET). The purpose of this work is to demonstrate how to optimize the lateral

design of a pGaN HEMT towards a high breakdown voltage and low figure of merit.

This is accomplished by showing how the drift length (Ldri f t) and length of the gate field

plate (LGFP) effect on-state resistance (RDS(on)), gate charge (QG), and breakdown voltage

(VBR). The results of this work are an aid to device designers for the purpose of enabling

application specific power electronics design.

2.2 Device Design and Simulation Model

2.2.1 Theoretical Analysis

For device modeling, it is well understood that increasing the drift length or length of

the gate field plate results in an increase in breakdown voltage (eq. 2.1). The relationship

between breakdown voltage and drift length holds true when LGD < LGD(sat), a point

at which increasing LGD further no longer increases the breakdown voltage (as is well
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detailed in [3]).

BV ∝ Ldri f t, LGFP (2.1)

Since the focus of this paper is, in part, on examining device FOM variation as lateral

dimensions scale, it is necessary to first understand the general relationship between

RDS(on), QG, and the lateral dimensions at the center of this study, Ldri f t and LGFP. The

relationship between drift resistance and drift length is given by eq. 2.2 where the drift

resistance is directly proportional to drift length, while Rdri f t remains independent from

LGFP (eq. 2.3). Finally, concerning gate charge, it should be noted that gate charge is

directly proportional to the length of the gate field plate, but is independent from the drift

length (eq. 2.4).

Rdri f t =
Ldri f t

q · µdri f t · Ndri f t
(2.2)

Rdri f t ∝ Ldri f t (2.3)

QG ∝ LGFP (2.4)

2.2.2 Device Description

The cross section of the device as simulated, shown in Fig. 2.1, displays the vertical device

dimensions. As mentioned, this study focuses on the lateral dimensions to optimize

breakdown voltage and FOM. The simulated structure is an AlGaN/GaN/AlGaN double
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heterostructure field effect transistor (DHFET) which results in better breakdown voltage

and on-state resistance performance compared to the single heterostructure device [3].

This device is made enhancement-mode by the incorporation of the pGaN region above

the AlGaN barrier and under the gate. Doping the GaN layer above the channel prevents

the polarization of the AlGaN/GaN interface, which stops the channel from forming under

the gate resulting in shifting the threshold voltage positive [4].

Figure 2.1: Cross-section representation of proposed AlGaN/GaN/AlGaN enhancement-
mode DHFET with gate field plate.

For simulation purposes, the device cross-section excludes the silicon substrate as this layer

does not affect the on-state resistance, gate charge, or electric field distribution near the

surface. The effects of the inclusion or exclusion of the substrate on simulation results can

be seen elsewhere in [5]. Simulations of the GaN HEMT were performed using Sentaurus

TCAD (Synopsys) [6].

The basic lateral device dimensions for the following simulation trials are shown in Table

2.1 where LGFP and LGD are varied while all other parameters are held constant.
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Table 2.1: Design Parameters for Lateral Layer Stack-Up.

Region LS LGS LG LGFP LGD LD

Thickness 0.5 µm 1 µm 1.4 µm 1-5 µm 1-20 µm 0.5 µm

2.3 Results and Discussion

It is generally understood that the breakdown voltage of a lateral FET is proportional to

the drift length, however, as mentioned previously, it is also known that this relationship

tends to saturate once the drift length is increased beyond a certain threshold [3]. For this

simulated structure, when LGFP is 5 µm, the correlation between breakdown voltage and

Ldri f t disappears after LGD increases beyond 6 µm as seen in Fig. 2.2. This phenomenon

can be explained intuitively by looking at the electric field distribution within the device.

Figure 2.2: Breakdown voltage and FOM analysis for DHFET-based device at LGFP = 5 µm.

This saturation of the breakdown voltage is in part due to the thickness of the buffer
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region. Notice in Fig. 2.3 that the electric field distribution extends uniformly through the

buffer region in a vertical fashion, rather than staying contained near the channel. When

investigating breakdown at the substrate interface, considering the lower critical electric

field of Si compared to GaN, increasing the buffer region thickness would also increase the

breakdown limit, however there are ultimately limitations to how thick the buffer region

can be grown [7]. Alternatively, considering breakdown to be due to leakage current

in the buffer, using the space-charge-limited current (SCLC) conduction mechanism, a

thinner buffer layer results in a higher breakdown voltage [8]. Both methods show a strong

dependence of breakdown voltage on buffer layer thickness.

Figure 2.3: Electric field profiles of proposed DHFET with gate field plate for LGFP = 5 µm.

From the electric field distribution plot, an intuitive understanding of how scaling LGD

affects VBR can be obtained. For a given field plate length, the impact of scaling LGD is

broken down by dividing the device into two regions that are separated by the edge of

the electric field as shown in Fig. 2.3. Scaling up to the edge of the E-field will have very

little effect on VBR; scaling beyond this will result in a significant reduction in breakdown

voltage.

Looking at the cross-sectional plots for LGD = 6, 4, and 2 µm we see the trend demonstrated

(Fig. 2.4). At LGD = 6 µm (the length corresponding to the edge of the E-field shown in
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Fig. 2.3), the breakdown voltage is at a comparable level to before any scaling. As LGD is

reduced beyond the edge of the E-field, the breakdown voltage drops off sharply.

Figure 2.4: Electric field profiles as LGD is reduced.

(a) (b)

Figure 2.5: Breakdown voltage and FOM as a function of LGD and LGFP.

To understand the effect of varying LGD and LGFP on breakdown voltage and FOM, a

series of simulations were run, the results of which can be seen in Fig. 2.5. A contour

plot was generated for both breakdown voltage and FOM optimization to better aid in

the interpretation of these results. The top subplot in Fig. 2.6 represents a breakdown

voltage optimization for any given combination of LGFP and LGD, where blue represents

low voltage and red areas designate high voltage. The bottom subplot displays a FOM
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optimization which follows a very basic principle: smaller devices with a shorter field

plate will have a lower figure of merit.

Figure 2.6: Optimization plots for breakdown voltage and figure of merit.

To help designers better understand how to design for high breakdown voltage and low

figure of merit, another visual aid has been created. Combinating the previous two sub-

plots (Fig. 2.6) results in the 3D plot shown in Fig. 2.7, which shows the breakdown

voltage as a function of LGD and LGFP where the color bar represents various levels of

FOM optimization. In this case, red regions are optimized well towards FOM (low FOM)

while blue regions have high FOM for any given breakdown voltage level. Simply put,

high peaks that are red in color are optimum designs for high voltage devices.

The specific trade-off between RDS(on) and QG, when targeting a certain breakdown voltage

threshold, allows for the optimization of a device towards higher current operation or

higher switching frequency operation (lower conduction loss or lower switching loss). To

understand how the individual components of FOM are affected, namely RDS(on) and QG,

they must be individually examined.
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Figure 2.7: 3D optimization of breakdown voltage as a function of FOM, LGFP, and LGD

for proposed DHFET.

Looking at the RDS(on) optimization plot in Fig. 2.8, it shows an expected trend where

the smallest size device produces the lowest resistance. One thing to note is that RDS(on)

increases with LGFP because the drift length here is defined as LGD + LGFP. So when

LGFP increases, LGD is held constant and the entire device length increases. Drift length

increases proportionally with LGFP. Examining the QG optimization plot shows that the

smallest field plate length results in the lowest QG, however, it also shows that as LGD

increases, QG decreases. This is because both QG and RDS(on) have been normalized to

the device size. So, as LGD increases, QG stays the same, but normalized QG will decrease.

Ultimately, this analysis represents a comprehensive look at the optimization of an E-mode

pGaN HEMT from the perspective of a power electronics designer.
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Figure 2.8: Optimization of on-state resistance and gate charge as a function of LGD and
LGFP.

2.4 Conclusion

This chapter demonstrates a full optimization process to target optimum gate-to-drain

length and gate field plate length for a normally on, high voltage, pGaN HEMT. To

optimize field plate geometry and drift length scaling, device simulations were performed

using Sentaurus TCAD. Based on this optimization, a device can be designed for a specific

breakdown voltage, targeting the minimum figure of merit. For this simulated structure,

when LGFP is 5 µm, the correlation between breakdown voltage and Ldri f t disappears after

LGD increases beyond 6 µm. This phenomenon was explained intuitively by looking at

the electric field distribution within the device where it was shown that scaling up to

the edge of the E-field has very little effect on VBR where-as scaling beyond this results

in a significant reduction in breakdown voltage. From these simulation results, a 3D

optimization plot was generated to show the breakdown voltage and FOM optimization as
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a function of LGD and LGFP. Additionally, the specific trade-off between RDS(on) and QG is

presented when targeting a certain breakdown voltage threshold. This trade-off allows

for the optimization of a device towards higher current operation or higher switching

frequency operation (lower conduction loss versus lower switching loss).

Finally, this work demonstrated the semi-independence of breakdown voltage from drift

length given that the drift length is scaled past LGD(sat) at the edge of the E-field. Observing

the electric field for the cross-sectional plot of the device validates this finding. In total,

these results represent a comprehensive look at the optimization of LGFP and LGD for

a high-voltage, e-mode, pGaN DHFET as an aid to device designers for the purpose of

enabling application specific power electronics design.
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CHAPTER 3: FABLESS DESIGN APPROACH FOR LATERAL

OPTIMIZATION OF LOW VOLTAGE GAN POWER HEMTS

As mentioned previously, GaN power devices are typically used in the 600 V market, and

the adoption of GaN in the low voltage sector has had limited success. This is in part due to

the GaN FOM not being competitive yet compared to Si for these low voltage devices. To

address why, we present a simulation work to demonstrate a fabless design approach for

the lateral optimization of a low voltage GaN power HEMT. Optimization of lateral scaling

terms such as gate-to-drain, gate, and gate-to-source lengths allows for minimization of

the figure-of-merit (RDS(on) × QG) for a targeted breakdown voltage. Results show a FOM

of 11 mΩ-nC for a device with a breakdown voltage > 50 V. These results are for a given

heterostructure design and estimated trap densities, and the effects of changing these

estimated trap densities have been demonstrated to heavily influence breakdown behavior.

As such, the focus of this study is on the relative difference between results rather than

the absolute numbers. For this given design, results suggest that by shrinking LGD further

the FOM can be reduced to 6.68 mΩ-nC with a breakdown of 71 V: representing a 74%

decrease in FOM compared to the EPC 2023 device (30 V device) [9].

3.1 Introduction

High electron mobility transistors (HEMTs) designed from wide bandgap materials have

advantages over silicon transistors for both high switching frequency and low loss opera-

A. Binder, J.-S. Yuan, B. Krishnan, and P. M. Shea, “Fabless design approach for lateral optimization of low
voltage GaN power HEMTs,” Superlattices and Microstructures, vol. 121, pp. 92–106, Sep. 2018.
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tion [10], giving GaN a materials based advantage over Si. However, this advantage in

materials so far has not translated well to better device performance for low voltage power

devices. GaN benefits from a higher critical electric field than Si, that combined with

the large bandgap means that for any given breakdown voltage the total device length

can be reduced compared with Si devices. Reducing the device length results in lower

on-state resistance, and a higher power density, both critical elements to power electronics

design [1]. Additionally, the high electron mobility of the two-dimensional-electron-gas

(2DEG) that constitutes the device channel, a unique feature of GaN HEMTs, allows high

switching frequency operation at low losses. However, if the device is not optimized well,

then it will perform poorly.

As technology advances, simulation tools for semiconductor device modeling have become

more numerous and have increased in popularity. With the availability of these simulation

and modeling programs, such as Silvaco or Sentarus TCAD, comes the option for more

robust fabless design of high performance semiconductors. Earlier fabless designs relied

on analytical equations for predicting breakdown voltage and performance metrics before

fabrication, then required iterations after fabrication to improve on these designs. A fabless

design approach based on simulation modeling has the potential to reduce the required

iterations after initial fabrication, especially if the simulation model is well calibrated

to previous fabricated device results [11]. Reducing the required fabrication iterations

drastically lessens the cost of getting a product from concept to market.

The drawback of a fabless design approach is that in order to generate true predictions,

each structure simulated will need a fabricated benchmark device to calibrate the simula-

tion to experimental results. However, even without a benchmark, while there is some

questionable accuracy in exact numbers reported, it can be verified that trends seen in

simulation are correct. Based on this knowledge, a comparative study can be done, looking

for relative difference and not exact accuracy. From this study, accurate predictions can be
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made to suggest design improvements that will improve breakdown voltage, performance,

and perhaps reliability of devices. This paper aims to demonstrate a design optimization

and simulation approach for low voltage GaN power HEMTs. The simulation results

shown focus on the comparative difference between results, rather than exact numbers

reported, to generate trends that will optimize the device performance.

3.2 Device Structure and Simulation Methodology

3.2.1 GaN HEMT Device Structures

For GaN HEMTs, fabless design has three critical components: device structure, vertical

layer thickness optimization, and lateral feature length optimization. Examination of

the downselect process for device structures is as follows. Device structure covers two

principal areas: device types and heterostructure layer selection. For power devices,

the HEMT must be enhancement-mode rather than depletion-mode; this ensures that

failure of the device results in an open circuit rather than a short circuit. Following this

thought, enhancement-mode HEMTs employ the following methods to provide normally-

off operation: recessing of AlGaN barrier layer (known as gate recess technique) [12–14],

and adding a p-GaN material under the gate (known as p-GaN gate) [15–17]. Additionally,

there is a method whereby fluorine implantation under the gate results in negative trap

sites in the barrier layer that deplete the 2DEG channel under zero bias [17]. Of these

methods, the p-GaN gate is the most popular and is used by several institutions leading to

commercial devices available on the market [18] (pp. 24). The p-GaN gate, enhancement

mode device is the chosen device for the focus of this paper.
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Figure 3.1: (a) Single heterostructure: the most basic design; (b) double heterostructure:
has improved breakdown voltage and on-state resistance performance compared to single
heterostructure design; (c) advanced heterostructure design builds off the double het-
erostrucuture and includes a carbon doped semi-insulating layer and thicker channel
region to reduce defect density near channel.

Concerning heterostructure design given p-GaN gate type device, there are several con-

siderations for improving device performance further beyond the single heterostructure

layer stack-up. The single heterostructure design, shown in Figure 3.1 (a), makes use of an

AlGaN/GaN barrier/channel interface to form the 2DEG. This is the most basic design

type. Following the single heterostructure is the double heterostructure field effect transis-

tor (DHFET) shown in Figure 3.1 (b). This design makes use of an AlGaN/GaN/AlGaN

barrier/channel/buffer region which results in better RDS(on) performance and higher

breakdown voltage than the single heterostructure design due to improved carrier confine-

ment in the channel and higher critical electric field of the AlGaN buffer layer [3]. Finally,

improvements can be made on DHFET structure such as adding a semi-insulating carbon

doped c-GaN region between the buffer and channel to reduce buffer leakage current [19],

or increasing the channel thickness to reduce the defect density near the the channel as
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shown in Figure 3.1 (c). In addition, other improvements can be made such as adding an

AlN spacer to block leakage current through the cap layer or gate and enhance transport

properties [20], or using a super-lattice buffer to further reduce defects and mismatch

compared to a typical graded AlGaN buffer [21].

3.2.2 Simulation Methodology and Simulation Parameters

For this paper, simulation results will focus on the p-GaN gate, DHFET structure shown

in Figure 3.2. From the previous downselect, it is clear that the p-GaN gate double

heterostructure provides a good baseline for optimization upon which further experiment-

enhanced simulation work can be later compared to.

Figure 3.2: Enhancement mode, p-GaN gate, DHFET structure used in simulations.

Concerning device design, the gate electrode is Schottky type (barrier height = 0.6 eV). For

this device design (pGaN, Schottky gate), gate current will not significantly contribute to

device breakdown. Gate current is negligible for these off-state breakdown simulations as

the device is normally off and thus the gate voltage is held at 0 V. With a high drain voltage

30



and zero gate voltage, the Schottky gate diode remains reverse biased and turned off. The

intrinsic pin diode and the added Schottky diode due to the gate metal are in series, thus

raising the forward voltage and significantly reducing on-state gate leakage (Figure 3.3).

In addition, the Schottky type gate also serves to extend the reverse breakdown voltage of

the gate due to high drain bias in the off-state condition.

Figure 3.3: Equivalent circuit model of series diodes for off-state operation.

Details on the specified doping levels within the device are given in Table 3.1. For sim-

ulation purposes the impurity species are specified as boron for p-type and arsenic for

n-type as that is how Sentaurus requires them to be defined (due to limited doping species

availability). The dopants specified in the channel and buffer are intended to reflect N-

doping as is natural for an unintentionally doped GaN material due to nitrogen vacancies,

gallium interstitials, or oxygen incorporation [22].

Trap formation within GaN devices has a significant impact on device performance. As

such, accurate specification of trap location, concentration, and energy level within GaN
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HEMTs is critical to robust simulation design. Details on trap concentration specified for

the following simulation work are given in Table 3.2. The surface traps are specified as

donor traps and are set conservatively a small margin higher than our experimental results.

Additionally, surface traps are reported for a similar concentration and energy level in

several sources [23, 24]. Bulk GaN traps have been reported for a similar concentration

in [8] and since the AlGaN buffer is very low molar fraction, the trap density set for the

simulation has been estimated to be similar to bulk GaN trap levels. A brief review on

reported trap energy levels in GaN devices is given in [22]. Additionally, other simulation

reports have assumed similar values for trap concentrations and energy levels [22, 25–27].

Table 3.1: Doping Concentration and Specified Impurity Species.

Layer pGaN gate Barrier Channel Buffer

Doping Concentration 3 × 1017cm−3 1 × 1018cm−3 1 × 1015cm−3 1 × 1014cm−3

Impurity Species Boron Arsenic Arsenic Arsenic

Physics based simulators such as Sentaurus use mathematical models to describe the sim-

ulated device. These models consist of a set of fundamental equations which are derived

from Maxwells laws and consist of Poissons Equation, the continuity equations, and the

transport equations. Of these equations, Poissons equation and the carrier continuity

equations provide the baseline, or general framework for device simulation, however,

further secondary equations are needed to show certain unique device characteristics [28].

Table 3.2: Properties of Specified Traps in Simulated Structure.

Interface/Region Type Concentration Energy Level

SiN/AlGaN (cap/barrier) Donor 5 × 1013cm−2 0.6 eV above midband
GaN/AlGaN (channel/buffer) Acceptor 6 × 1012cm−2 0.23 eV below cond. band

AlGaN (buffer) Acceptor 1 × 1015cm−3 0.45 eV below cond. band
AlGaN/AlN (buffer/nucl.) Acceptor 5 × 1013cm−2 0.6 eV above midband
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The models used for the simulation results shown in this work, are presented in Table 3.3

and detailed below.

Table 3.3: Physics Models for Sentaurus Simulation.

Model Type Model Used

Transport model for heterostructure devices Thermionic emission model
Carrier transport Drift-diffusion model
Mobility models Doping dependence & High field saturation
Charge distribution model Fermi-Dirac statistics
Band structure No bandgap narrowing
Generation-Recombination Shockley-Read-Hall (SRH)
Piezoelectric polarization Strain model
Traps and fixed charges eBarrierTunneling

The thermionic emission model is required for heterojunctions as the conventional trans-

port equations are not valid at heterojunction interfaces. An interface-specific model must

be used for carrier transport, of these models, the thermionic current model is set for

both electron and hole current at a material-interface heterojunction. For modeling carrier

transport, the drift-diffusion model is used which is also the default model for Sentaurus

simulations. Carrier transport models are usually established as some form of simplifica-

tion to the Boltzmann Transport Equations. Different assumptions result in models such

as the drift-diffusion model or the hydrodynamic model. In most cases, the drift-diffusion

model is the simplest and is quite adequate for most devices. This model falls short for

nano-scale devices, however, since GaN power devices are on a much larger scale, the

drift-diffusion model is sufficiently accurate for simulation purposes [7]. For mobility

models, doping dependence incorporates degredation due to impurity scattering. Also,

adding high field saturation includes the effect of velocity saturation for high electric fields.

Sentaurus allows for different models to be used in calculating band structure and bandgap

narrowing. The main difference between models available is how they handle bandgap

narrowing. For these results, no bandgap narrowing is chosen so as not to unnecessarily
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complicate the simulation. In terms of charge distribution models, Fermi-Dirac statistics

are used instead of Boltzmann statistics as it is a more accurate model especially for high

values of carrier densities [6]. Generation and recombination processes are modeled by

the Shockley-Read-Hall (SRH) recombination model, which is recombination through

deep defect levels in the gap. For computing polarization effects, Sentaurus provides

two models (strain and stress). The strain model in this case uses a simplified model by

Ambacher. Using this, the piezoelectric polarization vector P can be expressed as a function

of the local strain tensor. The statement eBarrierTunneling allows traps to be coupled to

nearby interfaces by tunneling. eBarrierTunneling allows coupling to the conduction band.

For clarity, a band diagram of the DHFET structure has been included (Figure 3.4) with the

band energy calculated through a vertical cut in the center of the device (under the gate),

in the off-state, at VDS = 50 V.

Figure 3.4: Energy band diagram of DHFET structure in the off-state with 50 V applied
bias.
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3.2.3 Definitions for Parameter Extraction

As the results presented in this work center around breakdown voltage, on-state resistance,

and gate charge, the definitions for those parameters must be explicitly stated. Breakdown

voltage is often defined in industry as the off-state voltage at which the drain leakage

current exceeds 250 A [29,30], however, this definition does not account for scale of design:

specifically the device width. Another definition that is commonly used which incorporates

device width is to define breakdown at 1 mA/mm of leakage current [28, 31, 32]. This

definition is much improved compared to the other, however, in our simulations, even with

this definition, depending on the device size and the shape of the breakdown curve, this

definition did not produce comparable breakdown results across all simulations. Therefore,

the breakdown definition was expanded to include an area factor normalization parameter,

and the definition for breakdown used in our simulation results has been modified to 10

mA/mm2. Breakdown voltage plots are given in Figure 3.5 showing both linear and log

scales.

Concerning on-state resistance, RDS(on) is extracted from an ID − VD curve when the

device is operating in the linear region. The voltage is sampled at ID = 0.1 A/mm and the

resistance is calculated as the inverse of the slope at that point. This extraction method is

one of the frequently used industry standard methods. Gate charge has been extracted at

VG = 6 V with the drain voltage at 30 V bias.

This method of extraction is in line with the industry standard. An example of the curves

used to extract RDS(on) and QG are shown in Figure 3.6.
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Figure 3.5: Breakdown voltage shown both in linear (a) and log (b) scales.

Figure 3.6: Curves used to extract RDS(on) (a) and QG (b).
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3.3 Results and Discussion

3.3.1 Sentaurus Simulation: Design of Experiment

The simulation results presented here are from Sentaurus TCAD. Sentaurus software

enables device design and simulation to extract critical semiconductor device parameters

and to study device operation. Low voltage device design has a distinct set of design

challenges compared to high voltage device design [33]. High voltage devices typically

have a long gate-to-drain region, and shorter gate and gate-to-source lengths, while low

voltage devices are much more laterally balanced. As GaN is typically used for the 100-650

V range, most publications focus on the design of high voltage GaN devices and not on

low voltage design. This provides a unique opportunity for research on the challenges of

low voltage design.

The simulation data reported is from a three terminal device (drain/gate/source) with a

floating body contact. Other simulation data (not shown in the paper) shows negligible

difference between the three terminal and four terminal results. From our simulation

results for this device (comparing three terminal results to four terminal results), there is

no known influence on breakdown characteristics resulting from the substrate electrode.

Note however that the influence of a substrate electrode will be dependent on the device

setup; and a different device design may result in different results. As vertical leakage

current is not a significant breakdown factor in our simulation results, it should be expected

that a substrate electrode would not have much impact on this device.

For these simulations, benchmark values were set for both lateral and vertical dimensions,

then results were compared against the benchmark. The test setup was organized such

that one parameter was varied at a time while the rest were held at a constant value. From

this, a series of curves can be generated to show relative difference in results when varying
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only one parameter. The baseline dimensions (both lateral and vertical) are shown in Table

3.4. These values should be used for reference throughout this document.

The simulation data presented throughout is from 2D simulations, however, in Sentaurus

an area factor is set for 2D simulations which gives devices a specified width. The width

specified for these simulations is 1 mm.

Table 3.4: Default Benchmark Values for Simulation Trials.

Lateral Dimensions LGD LGFP LG LGS LD LS

1 µm 0 µm 2 µm 1 µm 0.25 µm 0.25 µm
Vertical Dimensions tpGaN tcap tbarrier tchannel tbu f f er tnucleation

110 nm 200 nm 15 nm 10 nm 2 µm 10 nm

∗W = 1 mm.

From the benchmark values given in Table 3.4, a set of simulations can be run to optimize

gate-to-drain length (LGD), gate length (LG), gate-to-source length (LGS), and gate field

plate length (LGFP) by generating trends for breakdown voltage and FOM as length is

varied. Trends for breakdown voltage as impacted by buffer layer thickness are shown

in Figure 3.7. Upon examination of Figure 3.7, it is apparent that the design of the

heterostructure, specifically buffer layer thickness, has a heavy impact on breakdown

voltage performance. The simulation results show the conventional nature of lateral

scaling on breakdown voltage for the thinner buffer layer structure: primarily that an

increase in length will increase the breakdown voltage. However, the simulation results

also suggest that this proportionality between breakdown voltage and device length can

be saturated depending on the buffer layer thickness. This unconventional phenomenon is

well documented for high voltage GaN design [3, 33]. While the relative trends shown in

Figure 3.7 are known to be valid [8], it should be noted that the absolute numbers seen are

not necessarily good predictions for an experimental device considering the dependent

relationship between buffer layer thickness and trap density in reality [8, 34]. This will be
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discussed in more detail in section 3.3.2.

Figure 3.7: Simulation results for LGD (a), LG (b), and LGS (c) demonstrating the impact of
buffer layer thickness on breakdown voltage

Considering the nature of the buffer thickness versus breakdown voltage curves shown

previously, the trends shown in Figure 3.7 are contrary to the classical understanding of

breakdown voltage versus buffer thickness for high voltage design. Maximum breakdown

voltage in GaN HEMTs is generally limited by the silicon substrate due to parasitic

conduction at the buffer/substrate interface [31–33, 35–37]. In this case, increasing the
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buffer layer thickness is known to increase the breakdown voltage by reducing the electric

field at the substrate. However, breakdown at the substrate is known to be caused by

high electric fields due to high blocking voltages. Considering lower electric fields (<

1kV), breakdown can be due to punch-through leakage current, vertical substrate leakage

current, and buffer leakage current [28, 38, 39]. For these conditions, it is reasonable to

expect that breakdown voltage is proportional to the trap density, and that the trap density

increases as the thickness decreases. This expectation is derived from the traps-filled-limit

voltage which is proportional to trap density [8, 40]. The breakdown can be estimated

to shift linearly with the traps-filled-limit voltage which is the point at which a sharp

transition occurs in the breakdown current. As the off-state voltage increases, injected

carriers are captured by traps, developing a negative potential. When the applied potential

is greater than this negative potential due to traps, a sharp transition occurs in the current

leading to breakdown. As trap density increases, the negative potential due to traps will

increase, leading to a higher breakdown voltage.

The breakdown trends resulting from either substrate breakdown or breakdown due to

traps are opposite in nature. Generally for high voltage devices, the breakdown voltage

increases for increasing buffer thickness, but for low voltage devices, the breakdown volt-

age can decrease with increasing buffer thickness depending on the dominating influence.

This behavior is presented in Figure 3.8 showing the competing breakdown trends.

Regarding the data presented in Figure 3.7, the nominal case where the buffer layer

thickness is 2 m has been selected for further study of FOM trends. Note that for the

selected case of tBu f f er = 2 µm, the results start to fall into that more saturated regime (the

more unconventional data). This data has been selected because it corresponds with the

nominal case for both buffer layer thickness and the corresponding trap density in the

buffer. The results of these simulations for LGD, LG, and LGS are shown in Figure 3.9.
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Figure 3.8: (a) for high voltage devices: breakdown is caused by parasitic conduction at
the buffer/substrate interface; (b) for medium to low voltage devices: breakdown can be
caused by buffer leakage current or punch-through.

For the dimensions specified in Table 3.4 and a gate field plate length of zero, it is possible

to design a device with an extremely low figure of merit of 11 mΩ-nC for a breakdown

voltage > 50 V. While it is critical to point out that the number reported in simulation will

likely be different from the exact number from experimental results, the trends showing

how to obtain the lowest FOM for a given breakdown voltage are correct for how this

device was specified (for a given trap level and given structure setup). The real merit

of this study is in presenting scaling trends which result in the optimization of a low

voltage device. This is done by individually examining the contributions of each scaling

parameter towards breakdown voltage and FOM as well as the underlying physics driving

that behavior.
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Figure 3.9: Simulation results for LGD (a), LG (b), and LGS (c) presenting breakdown voltage
and FOM trends to enable optimization of device performance.

3.3.2 Gate-to-Drain Length: Breakdown Voltage and FOM Optimization

Upon examination of the gate-to-drain length curves, notice in Figure 3.9 (a) that the

breakdown voltage decreases with increasing LGD when it is normally understood that

the breakdown voltage increases as LGD increases. Generally, the breakdown voltage

increases proportionally with an increase in LGD when breakdown is primarily due to

the high electric field at the drain side of the gate edge. Increasing LGD in this case will

reduce the electric field at the gate edge by increasing the distance between the drain
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and gate. However, this is not the only phenomena that impacts breakdown voltage

performance [38]. Punch-through leakage current, vertical substrate leakage current, and

buffer leakage current also contribute to breakdown. In this case, buffer leakage and punch-

through leakage dominate, leading to this heavy saturation and decline of breakdown

voltage as LGD increases. For reference, in this simulation, decreasing the buffer layer

thickness (for the same given trap density) or increasing the trap density both result in

making the relationship between LGD and VBR heavily dependent again on electric field

at the gate edge as the dominant influence (as shown in Figure 3.10). Hinoki et al. [8]

have demonstrated the physical behavior of the trends presented in Figure 3.10. Note that

for these simulations, as the buffer thickness is varied the trap density is held constant

and vice-versa. This is an effective way to show the isolated effects of increasing buffer

thickness or trap density, but not an accurate representation of a real scenario where buffer

layer thickness and trap density are in reality co-dependent. As buffer thickness increases,

trap density will decrease [8, 34], and that relationship is critical in processing and will

yield different results than the independent study shown here.

Figure 3.10: Influence of buffer thickness (a) and buffer trap density (b) on breakdown
voltage.
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Figure 3.11: Lowest resistance current leakage path for device in off-state.

Examination of the trend shown in Figure 3.10 (a) reveals that a thin buffer layer results

in a relationship between VBR and LGD such that VBR ∝ LGD, whereas for a thicker buffer

VBR ∝ 1/LGD. This is due to the breakdown being highly dependent on the conductivity

of the buffer layer as a result of the high density of buffer layer traps. As buffer thickness

increases the buffer resistance decreases, and as the length increases the bulk resistance

increases. However, since the lowest resistance path is from the drain contact through the

channel to the gate edge, then through the buffer to the source-side channel (path shown

in Figure 3.11), increasing LGD effectively increases the width of the current leakage path

from the drain-side channel through the buffer (as it increases the distance current can

travel through the channel). The explanation of effective current path width increase is

only valid for extremely small gate-to-drain distances and the effect is basically eliminated

at LGD > 1 µm. Increasing this width effectively lowers the resistance through that path,

which increases the overall leakage current, thereby reducing the breakdown voltage.

Were it not for the effect of the width of the current path causing a slight decrease in

breakdown voltage for very small gate-to-drain distances, the trend in Figure 3.9 (a) could

be considered to be saturated. Simply put, due to breakdown being highly dependent

on the traps in the buffer, LGD should have very little effect on breakdown voltage for
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the specified buffer thickness and trap density. Note that specifying a different buffer

thickness or trap density produces a more conventional behavior as shown in Figure

3.10. Simulation extremes such as tBu f f er < 1µm and Nt > 1 × 1017cm−3 are shown to

demonstrate saturation of the increase in breakdown voltage due to change thickness or

trap density. It is likely that in reality a saturated node exists, where the effects of the

traps-filled-limit breakdown is outweighed by other effects. Such extreme designs for

buffer thickness or trap density are unlikely to be desirable for standard GaN processing

as it will have an adverse impact on lifetime and reliability. Additionally, since other

factors can also contribute heavily to breakdown voltage performance, it is unlikely that

in the extreme cases a real device would have such a high breakdown voltage. As the

simulation results presented in this paper are for a more conventional buffer thickness and

trap density (tBu f f er = 2µm and Nt = 1 × 1015cm−3), the requirement for accuracy in the

extreme cases can be relaxed to some degree.

Given the specified trap density, buffer leakage at this point becomes the principle failure

mechanism leading to breakdown as the buffer thickness increases. As this shift occurs

(the shift in dominant failure mechanisms), the relationship between VBR and LGD shifts

from a directly proportional relationship to a saturated and independent relationship. This

same behavior can be seen in the current density plots shown in Figure 3.12. Notice how

the pathwidth of current flow is increased from LGD at 0.25 µm compared to LGD at 2 µm,

verifying the previous explanation.

3.3.3 Gate Length: Breakdown Voltage and FOM Optimization

As mentioned previously, the dominant contributor to breakdown leakage current in

these simulations is from buffer leakage current and punch-through. These high levels of

leakage current in the buffer are shown in Figure 3.13 where the partial depletion under

the gate can also be clearly seen. As a result, increasing the gate length will suppress
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punch-through [41] and improve breakdown voltage as shown in Figure 3.9 (b).

Figure 3.12: Current density plots showing breakdown voltage as buffer thickness and
gate-to-drain distance vary.

In addition to suppressing punch-through, having a longer gate length can also lower

the impact ionization at the drain-side gate edge, which significantly lowers the leakage

current seen. Figure 3.14 shows electron concentration in off state for 1 µm and 2 µm

gate lengths with no VDS bias and with high VDS bias. It can be seen that for the longer

gate length, the high electric field region at the drain-side gate edge has a lower electron

concentration compared to the smaller gate length device. This in turn reduces the impact
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ionization hot spot that forms there as impact ionization is due to a high field region with a

high electron concentration. Reducing either the electron concentration or the high e-field

will result in reducing impact ionization. Additionally, a larger gate length suppresses

drain induced barrier lowering more effectively [42].

Figure 3.13: Cross-section view of leakage current contributing to breakdown in the
off-state.

Figure 3.14: Larger gate length suppresses punch-through and lowers impact ionization.
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3.3.4 Gate-to-Source Length: Breakdown Voltage and FOM Optimization

Figure 3.15: Longer gate-to-source length increases buffer resistance and there-by increases
breakdown voltage.

Most of the focus in optimizing the lateral dimensions of high voltage power transistor

is on LGD and LG, with not a much focus on LGS. Most commonly, LG is optimized to

reduce punch-through, and to effectively deplete the region under the gate even in high

bias conditions. Likewise, following conventional understanding, LGD is optimized to

increase breakdown voltage by lowering the electric field at the drain-side gate edge, the

hot spot for impact ionization. The optimization of LGS has neither of these concerns, yet

from Figure 3.9 (c) it is obvious that for a low voltage device, LGS has a significant impact

on the breakdown voltage of the device. This is due to what is called source injection

buffer leakage (SIBL) [32] which results in that leakage path that was shown previously in
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Figure 3.13. At high levels of SIBL, the current path is from the source terminal, through

the buffer, to the drain-side channel and to the drain contact. Unlike how increasing LGD

caused the breakdown voltage to decrease by increasing the path width of current flow (by

effectively increasing the length of channel the current can conduct through), increasing

the length of LGS does not increase the leakage path width, as at high leakage the current

flows primarily through the source terminal, not the source-side channel. Due to this,

increasing LGS will result in increasing the resistance of the buffer layer, and there-by

increasing the breakdown voltage. This can be seen in figure Figure 3.15.

Figure 3.16: Lateral scaling effect for on-state resistance and gate charge for LGD (a), LG

(b), and LGS (c).
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3.3.5 Impact of On-State Resistance and Gate Charge Individually on FOM

Concerning the individual contributions of on-state resistance and gate charge to the figure

of merit, the results from scaling gate-to-drain length shown in Figure 3.16 (a) follow the

well understood convention. An increase in device length will result in increasing the

resistance, and in this case gate charge stays the same (though the normalized gate charge

decreases due to an increased area factor). For both LGD and LGS (Figure 3.16 (a) and

(c)) the gate charge stays the same as length increases, but the normalized gate charge

decreases. All three RDS(on) curves follow a well understood trend, however, the gate

charge as gate length increases would normally be expected to increase. In this case, as gate

length increases QGD decreases which results in a lower overall gate charge as shown in

Figure 3.16 (b). This phenomena has presented itself for the first time in these low voltage

simulations, as high voltage GaN devices simulated on the same platform did not present

with this trend [33]. This reverse trend is attributed to the significantly reduced lateral

dimensions. In Figure 3.16 (b), both LGD and LGS are only 1 µm, which contributes to some

current crowding and other second order effects due to the reduced size as mentioned

previously. As mentioned, there is some reduction in QGD as LG increases causing the

overall QG to decrease. One method to understand this decrease in QGD is to evaluate CGD

as LG increases. The gate-to-drain capacitance is a function of the area of the two electrodes

(LG × W and Lcontact × W), the permittivity of the medium, and inversely proportional

to the distance between the two electrodes (gate and drain). As LG increases, the area of

the gate electrode increases while the drain electrode stays the same size, which will not

result in an increase in capacitance unless both electrodes increase in size. However, the

median distance between electrodes (center to center spacing d = LGD + 1
2 LG) increases,

which would result in a reduction in capacitance: an effect that would be exaggerated for

small values of LGD. It is also possible that the permittivity of medium between electrodes

changes as a result of high levels of drain-side current crowding, but proving a change in
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permittivity would be difficult. If we consider that CGD decreases due to the increase in

median distance between electrodes, then it is valid to also consider QGD to be reduced as

Q = C × V.

3.3.6 Gate Field Plate and Discussion of Results

Based on these results, the only further thing to consider is whether a gate field plate

is needed. Adding a gate field plate increases breakdown voltage but comes at the cost

of additional gate charge, and thus a higher FOM. For a low voltage device, targeting a

breakdown voltage between 30 V and 50 V, it is apparent a gate field plate is not required

for this design (Figure 3.17). In this simulation, LGD = LGFP + 1 µm, meaning that the

distance from the drain edge to the edge of the field plate is held constant at 1 µm, and

increasing the length of the field plate increases the device length as well.

To target a breakdown voltage of 50 V, for a device operating in the 12-30 V range, these

results suggest a design with no gate field plate, and lengths LGD, LG, and LGS set to 1

µm, 2 µm, and 1µm respectively. This design target is highly subjective however to the

estimated trap density in the device as well as the specifications for the vertical dimensions

and design of the heterostructure. From these results, it is suggested a FOM of < 10

mΩ-nC could be achieved for a low voltage GaN HEMT. As pointed out previously, while

the exact number may change from simulation to fabrication, the trends demonstrated

are verified, and therefore the fabless design method is valid. Further optimization of the

vertical design of the heterostructure can yield improved performance and reduced trap

density within the buffer which also has a significant impact on breakdown.

Other results suggest that by shrinking LGD further, it is possible to achieve a FOM of

6.68 mΩ-nC with a breakdown voltage of 71 V for LGD = 0.25 µm. This improvement

is heavily dependent on the estimated trap density within the buffer. It was previously

51



mentioned that as the trap density increases the relationship between LGD and VBR changes

significantly. Considering this, the prediction for this extremely low FOM is only true for

this one case, and in all other situations, a more conservative estimate would be to set LGD

≈ 1 µm and calculate FOM from that design size (≈ 11 mΩ-nC).

Figure 3.17: Simulation results for LGFP presenting breakdown voltage and FOM trends to
enable optimization of device performance (LGD = LGFP + 1 µm).

3.4 Conclusion

A fabless design approach for optimization allows for reduced design iterations and

enhanced insight into device physics: enabling the reduction of time and cost in taking a

design from concept to market. The lateral optimization approach presented here suggests

a FOM of <10 mΩ-nC and a breakdown voltage of 50 V for a DHFET design with no gate

field plate, and lengths LGD, LG, and LGS set to 1 µm, 2 µm, and 1 µm respectively. These

results were shown to be heavily influenced by trap density in the buffer layer: showing the

leading contributor to breakdown voltage to be source injection buffer leakage. According
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to the heterostructure design and the specified trap density, the results suggested that the

FOM could be further improved by reducing the gate-to-drain length further. However,

this suggested improvement is so heavily influenced by the estimated trap density that it

is recommended for a more conservative FOM estimation that the initial design be based

on a longer LGD (≥ 1 µm). With the results being dependent on estimated trap densities,

it is noted that while the absolute numbers reported have a degree of error, the trends

shown are known to be correct. For this reason the emphasis is placed on trends leading

to an improvement in FOM: specifically that increasing the gate length for a low voltage

device shows a significant improvement in breakdown voltage with less detriment to FOM

performance compared to increasing LGD or LGS.
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CHAPTER 4: EFFECTS OF HETEROSTRUCTURE DESIGN ON

PERFORMANCE FOR LOW VOLTAGE GAN POWER HEMTS

Following the lateral optimization of low-voltage power HEMTs, it is necessary to study

the impact of heterostructure design (vertical scaling) on performance. This chapter

presents a fabless design approach focusing on the impact of heterostructure design on

the performance of low voltage GaN power HEMTs. Compared to the standard high

voltage design process, low voltage design (< 100 V) comes with a unique set of challenges

especially concerning breakdown rules. Low voltage simulations reveal less dependence

on vertical leakage current and substrate breakdown compared to high voltage designs,

and more reliance on buffer leakage and punch-through as the dominant factors leading

to breakdown. To analyze the impact of heterostructure design on the device performance,

optimization curves are presented for breakdown voltage, on-state resistance, and gate

charge. Simulations are performed in Sentaurus TCAD and correlated to known existing

experimental results where possible. Trends are presented for the optimization of the

channel layer thickness, barrier layer thickness and molar fraction, impact of an AlN

interlayer, and optimization of buffer layer thickness.

4.1 Introduction

Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) have tremendous

potential in the power electronics market as inherent material advantages compared to

silicon give rise to high switching frequency and low loss operation [1, 10]. Attractive
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material properties such as a high critical electric field, higher electron mobility and sat-

uration velocity, as well as a high two-dimensional electron gas (2DEG) density at the

barrier/channel interface serve to improve power density compared to silicon based de-

vices [1]. For heterojunction devices such as GaN HEMTs, the design of the heterostructure

has an enormous impact on performance and reliability which adds another layer of

complexity to the design process.

Typically the research and design of GaN HEMTs is split into two areas: heterostructure

design, generally done with a focus on material science, and post-heterostructure design –

which generally starts with the purchase of a heterostructure from a vendor and includes

all the fabrication work after the design of the heterostructure. Due to this split in design,

these separate areas of work often do not have crossover. Heterostructure designers are

typically designing to improve material properties: i.e. designing for low defect density,

suppression of propagating defects from the nucleation layer, balancing the semi-insulating

effect of carbon doped layers with the added defects due to carbon, reducing film stress,

and improving 2DEG density among others. The impact of changing layer thicknesses

can be directly measured through changes in material properties as measured through

various test structures and equipment. With this data, heterostructure designers can predict

improvements in device performance and that is typically the extent of the overlap between

heterostructure designers and post-heterostructure (device) designers for GaN HEMTs.

While the effects of carrier confinement, 2DEG density, trap density and location as well

as other material properties can be measured, their direct impact on device performance

can only be inferred, and it falls to device designers to evaluate these structures for their

performance impact on devices. This creates a need for data on heterostructure design

from a device performance perspective. To fill this need, devices could be fabricated on

an array of different heterostructures, however this process is very expensive and time

consuming. TCAD simulations can aid in this process, where device simulations on an

array of varying heterostructures can predict performance trends. From these trends, a
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few prominent designs can be selected to then be fabricated to verify simulation results.

This fabless design process is the focus of this paper: to examine the performance impact

of scaling heterostructure layer thicknesses. To this end, the vertical layer optimization

approach investigates the impact of scaling the channel thickness (tchannel), barrier layer

thickness (tbarrier) and molar fraction (xbarrier), buffer thickness (tbu f f er), and the thickness

of an AlN interlayer between the barrier and channel (tAlN). The advantage of a fabless

design is that in addition to demonstrating a vertical layer optimization by presenting

results over a range of thicknesses, a deeper dive into the fundamental explanation of why

these changes occur can be studied. This is possible by presenting results showing band

diagrams, lateral electric field distribution, drain induced barrier lowering (DIBL), carrier

confinement and concentration among others for further insight into optimization. A sig-

nificant portion of this work is dedicated to presenting trends for breakdown voltage (VBR),

on-state resistance (RDS(on)), gate charge (QG), and figure of merit (FOM = RDS(on) × QG),

which will aid in the optimization and design of a heterostructure for low voltage (< 100

V) power devices. This figure of merit (RDS(on) × QG) is selected as the primary evaluation

criterion as it is used in high-switching-frequency power-electronics applications such

as CPU power supplies [43] which is one of the primary intended applications for low

voltage GaN technology.

4.2 Device Structure and Simulation Methodology

This work is an extension of our previous work which focused on the lateral optimization

and design of low voltage GaN power HEMTs [44]. As such, a more detailed look into the

simulation setup, models and physics used, as well as other details regarding methodology

can be found in that manuscript. A brief summary of the simulation parameters and setup

are given in this section for reference.
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As this work focuses on a fabless design approach, it is important to note that in the absence

of fabrication results with which to calibrate the simulation models, the data presented

should be viewed in terms of the trends generated, and the underlying principles of why

those trends occur. Even without a physical benchmark to compare against, it can be

verified that the trends seen in simulation are correct. For this reason, the focus is on

understanding the trends and the relative difference, with less emphasis on the exact

accuracy. Towards the goal of calibrating the results with experimental data, we are

fabricating devices in collaboration with National Nano Device Laboratory in Hsinchu,

Taiwan, and also in local facilities at the University of Central Florida in Orlando, Florida.

In the future we will be able to calibrate the models more thoroughly with those results.

An extensive calibration process has been performed by Bahat-Treidel [28] and that process

highlights some of the more critical models that can be used for more accurate results. We

have followed those recommendations in lieu of device results for now.

4.2.1 Device Structure

The baseline device for this simulation is a pGaN-gate GaN HEMT as shown in Figure 4.1.

This structure is a somewhat conservative implementation in that the heterostructure and

device operation has less complexity compared to more advanced structures. Heterostruc-

ture designers for GaN HEMTs have recently pushed towards the use of superlattice buffer

layers to reduce stress and suppress the propagation of defects [34]. Demonstrating effects

of a superlattice buffer in simulation would likely significantly reduce the accuracy of the

simulation. The results of such a simulation would become increasingly more reliant on

the modeling of the effects of tunneling between layers and the accurate accounting of trap

densities within the device. This adds a significant level of complexity to the simulation

and more variables that can affect the results. Thus a more simplified approach is favorable

which will lead to better understanding of the outcome with fewer variables.
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Figure 4.1: Enhancement mode, p-GaN gate, DHFET structure used in simulations.

In regards to operation, the selected device operates as a standard enhancement-mode,

pGaN-gate device. More complex structures can be used to eliminate certain reliability

concerns or to improve performance, however these structures come at the cost of increased

simulation complexity. Some standard modifications to this structure will be introduced

so as to understand the advantages and disadvantages of using the simpler device model.

Our device model uses a Schottky type gate which serves to reduce the gate leakage and

increase the forward voltage of the associated gate diode. This increases the top-end

gate voltage limit the device can operate in without passing the diode forward voltage

(Vf ). By doing this, there is limited current injection from the gate. In contrast, if this

condition (Vth < VG < Vf ) is not met, the device will operate as a Gate Injection Transistor

(GIT). Injection of holes through the gate can significantly increase the drain current by

means of conductivity modulation but at the cost of increased gate leakage current [45, 46].

Furthermore, adding a second pGaN region near the drain can create what is known

as a Hybrid-Drain Gate Injection Transistor (HD-GIT) where the pGaN near the gate

injects holes under the drain in the off-state with a high drain bias. This effectively

releases trapped electrons during the process of switching which effectively eliminates

current collapse. As a result, the HD-GIT does not have dynamic RDS(on) concerns like
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conventional GaN based transistors [47, 48]. An illustration depicting gate injection in

the on-state condition and the hybrid-drain contribution during the off-state condition is

shown in Figure 4.2. Both of these structure changes, while beneficial to device operation,

add significant complexity to the simulation model. For the sake of providing more robust

results and to generate concise conclusions, a simpler device has been chosen.

(a) (b)

Figure 4.2: Example of the HD-GIT structure showing (a) gate injection operation in
on-state to increase drain current and (b) hybrid-drain injection of holes in off-state to
eliminate current collapse.

4.2.2 Simulation Methodology and Simulation Parameters

The simulations presented from Sentaurus TCAD [6] aim to optimize the device towards

low voltage design. Compared to high voltage design, low voltage devices have a distinct

set of design challenges. Low voltage devices tend to be much more balanced laterally,

while high voltage devices generally have a long gate-to-drain region with shorter gate

and gate-to-source lengths. These challenges present a unique opportunity for research

on low voltage power devices as most publications in GaN focus either on high voltage

power devices or low voltage RF devices.

Electrically, the device is setup as a three terminal device (drain/source/gate) with a

floating body contact. Our simulation results (not shown in this paper) show a negligible
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difference in breakdown voltage characteristics when comparing results from three and

four terminal devices. This is due in part to a shift in breakdown voltage behavior for low

voltage devices [33, 44]. From our simulations, vertical leakage current is not a significant

breakdown factor for these low voltage devices, so it follows that the impact of substrate

electrode on performance would be lessened. It is important to note, however, that the

amount of influence that a substrate electrode has on performance is dependent on device

design and that a different device design may be more heavily influenced when including

a fourth electrode.

For the experiment setup, a baseline device has been constructed with fixed lateral and

vertical dimensions. In each simulation experiment, a vertical dimension is selected and all

other parameters are held constant while the selected dimension is varied. This results in a

set of curves showing the influence of each layer on device characteristics and performance.

These simulations are run as 2D experiments in Sentaurus, however, an area factor has

been set which gives the devices a specified width. For these devices the width is 1 mm.

The baseline dimensions as well as the the range of dimensions which are varied for each

experiment are given in Table 4.1.

Table 4.1: Default Benchmark Values for Simulation Trials and Varied Dimensions for Each Experi-
ment.

Lateral Dimensions LGD LG LGS xbu f f er
a

1 µm 2 µm 1 µm 0.05
Vertical Dimensions tpGaN tcap tbarrier tinterlayer tchannel tbu f f er tnucleation

110 nm 200 nm 15 nm 0 nm 10 nm 2 µm 10 nm

Varied Dimensions xbarrier
b tbarrier tinterlayer tchannel tbu f f er

c

0.2-0.3 10-20 nm 0-3 nm 5-15 nm 0.5-3 µm

aMolar fraction of the buffer layer (AlxGa1−x N).
bMolar fraction of the barrier layer (AlxGa1−x N).
cThese simulations were done in our previous work [44] and are summarized here.
∗W = 1 mm.
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Table 4.2: Doping Concentration and Specified Impurity Species.

Layer pGaN Gate Barrier Channel Buffer

Doping Concentration 3 × 1017 cm−3 1 × 1018 cm−3 1 × 1015 cm−3 1 × 1014 cm−3

Impurity Species Boron Arsenic Arsenic Arsenic

Doping concentration and associated impurity species as specified for the simulation

model are given in Table 4.2. Due to the limited availability of doping species within

Sentaurus, and the issues associated with defining doping species, the p-type dopants

have been specified as boron, and n-type dopants as arsenic. Channel and buffer doping as

specified are intended to reflect naturally occurring N-doping for an unintentionally doped

GaN material due to gallium interstitials, nitrogen vacancies, or oxygen incorporation [22].

Accurate specification of traps within GaN HEMTs is critical to robust simulation design as

trap formation has a tremendous impact on performance and reliability. Estimates used in

the simulations for trap type, concentration, and energy level are specified in Table 4.3. The

surface traps have been specified as donor traps and are conservatively set a small margin

higher than our experimental results from devices with a comparable heterostructure.

Additionally, several other sources also report a similar concentration and energy level

for surface traps [23, 24]. AlGaN buffer layer trap levels have been estimated to be similar

to bulk GaN trap levels since the Al molar fraction is quite low. The buffer trap levels

specified for our model are similar to those reported in Ref. [8]. Other simulation reports

also assume similar values for trap concentrations and energy levels [22,25–27]. For a brief

review on reported trap energy levels, refer to Ref. [22].

For details on physics models used in these simulations, please refer to our previous work

for a detailed list and explanation of models used [44].
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Table 4.3: Properties of Specified Traps in the Simulated Structure.

Interface/Region Type Concentration Energy Level

SiN/AlGaN (cap/barrier) Donor 5 × 1013cm−2 0.6 eV above midband
AlGaN/AlN (barrier/interlayer)a Acceptor 6 × 1012cm−2 0.23 eV below cond. band
AlN/GaN (interlayer/channel)a Acceptor 6 × 1012cm−2 0.23 eV below cond. band
GaN/AlGaN (channel/buffer) Acceptor 6 × 1012cm−2 0.23 eV below cond. band
AlGaN (buffer) Acceptor 1 × 1015cm−3 0.45 eV below cond. band
AlGaN/AlN (buffer/nucl.) Acceptor 5 × 1013cm−2 0.6 eV above midband

aOnly specified when an interlayer is used in the simulation.

4.2.3 Definitions for Parameter Extraction

When extracting simulation data, in nearly all cases we follow the industry standard

for data extraction, except in the cases where a modification of the standard produces

more meaningful results. For example, breakdown voltage is typically defined in testing

as the off-state drain-to-source voltage at which the drain leakage current exceeds 250

µA [29, 30], however, this does not account for device scale. In order to accommodate

device scale, breakdown is alternatively defined as the voltage at which the drain leakage

current exceeds 1 mA/mm [28, 31, 32]. The definition used for breakdown voltage in our

simulations has been modified further to include area factor. This change is necessary to

accommodate how the plot of breakdown current will change shape when altering lateral

dimensions. In order to keep consistency with our previous work [44], the definition for

breakdown used in our simulations has been modified to 10 mA/mm2. Using current

density for the breakdown criterion keeps the results consistent as the shape of the I-V

curve changes. This is more significant when modifying lateral dimensions, but even with

the alteration of vertical dimensions the breakdown I-V curve will change shape. This

information can be used to evaluate particular leakage mechanisms and breakdown factors

(such as traps-filled-limit-voltage).

On-state resistance and gate charge extraction follow the industry standard methods.
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RDS(on) is extracted from an ID-VD curve with the device in the linear region. Extraction is

performed at VG = 6 V with the drain voltage sampled at ID = 0.1 A/mm. The resistance is

then calculated as the inverse of the slope at that point. Gate charge is extracted at VD =

30 V and VG = 6 V from a standard QG-VG plot. For more information, examples of the

curves used for extraction are presented in our previous work [44].

4.3 Results and Discussion

In the subsections to follow we will discuss, in order, the optimization of the channel layer

thickness, barrier layer and molar fraction, impact of an AlN interlayer, and briefly discuss

the influence of the buffer layer. The impact of buffer layer thickness and associated trap

density in the buffer has been evaluated in detail in our work in Ref. [44].

4.3.1 Channel Layer Optimization

Optimization of channel layer thickness depends on many factors including the conductiv-

ity of the channel layer, the density of the 2DEG layer, the impact on the lateral electric

field, and depending on the heterostructure orientation, it can also impact gate control.

In general, increasing the channel thickness is known to suppress buffer-related current

collapse: suggesting that a thicker GaN channel serves to reduce the deep traps in the

channel and to reduce electron capture probability by deep traps in the buffer layer [49].

This will serve to improve breakdown performance and reliability as the channel thick-

ness is increased. However, in addition to this, there are multiple competing influences

on breakdown voltage and device performance that can be seen when investigating the

underlying physics behind the trends. For example, the breakdown voltage trend seen

in Figure 4.3 is demonstrated to increase as the channel thickness increases; however,

breakdown voltage is influenced by RDS(on), drain induced barrier lowering (DIBL), the
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traps-filled-limit voltage (VTFL), and lateral electric field peaks. These factors each con-

tribute to breakdown voltage but in a competing fashion: three out of four of them suggest

breakdown voltage should decrease, and of these factors only the lateral electric field

results suggests that breakdown should increase. These factors will each be discussed in

length, and from these results, it is apparent that the effect of the lateral electric field is the

dominating factor determining breakdown voltage behavior. Examining the simulations

results gives critical insight into device physics. The results for breakdown voltage, figure

of merit, RDS(on), and QG as channel thickness is scaled are given in Figure 4.3.

(a) (b)

Figure 4.3: Simulation results for tChannel presenting (a) breakdown voltage and FOM
trends as well as (b) on-state resistance and gate charge trends.

As mentioned previously, when considering breakdown performance, there are several

factors to consider. On-state resistance is known to decrease as channel thickness increases

[50]. This is due to a wider current path and higher 2DEG concentration resulting from

the thicker channel region. This trend for RDS(on) is verified in Figure 4.3(b). Excluding all

other factors, a lower channel resistance should trend towards lowering the breakdown

voltage.
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Another factor that influences breakdown voltage results from a change in drain-induced-

barrier-lowering (DIBL). As seen in Figure 4.4(a) the energy barrier at the source side of

the gate becomes increasingly lower as the drain voltage increases. This is called the DIBL

effect, which is commonly known to occur in short channel devices, and can be greater

after the application of off-state stress [51–53]. As the barrier height is lowered, electrons

from the source region can punch through the buffer layer resulting in buffer leakage

current. Comparing results from Figure 4.4(a) to Figure 4.4(b) shows more DIBL for the

device with the thicker channel, which will result in more punch through leakage. Leading

to the conclusion that increasing the channel thickness should result in influencing the

breakdown voltage to decrease due to the effects of DIBL. One last thing to note about

DIBL is that the values reported from the simulation are quite small (≪ 1 eV) and will

have a very small impact on the device performance or breakdown voltage.

(a) (b)

Figure 4.4: Drain-induced-barrier-lowering increases as the channel thickness increases
showing (a) tChannel = 5 nm and (b) tChannel = 15 nm.

Concerning traps-filled-limit voltage (VTFL): the simulation results are inconclusive to

show the change in traps-filled-limit voltage as the channel thickness increases. In reality,

the trap density in the channel will decrease as the channel thickness increases according
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to Hinoki et al. [8]; this in turn will lower the breakdown voltage as the trap density

increases when considering the effect resulting from the change in the traps-filled-limit

voltage. However, the simulation has been designed to keep the trap density constant as

the channel thickness is varied, so the effect of VTFL on breakdown is not represented in

the results shown.

Breakdown voltage is known scale inversely with the electric field intensity, which is

why high voltage devices employ various types of field plates to reduce the electric field

and thereby increase the breakdown voltage [3, 54, 55]. Impact ionization resulting from

the high electric field can cause high off-state current, contribute to or result in device

breakdown, and generate long-term reliability issues. In addition, high electric field

in the buffer can generate defects due to grain-boundary states [50, 53]. As the electric

field is increased, more defects are produced leading to a high defect density which can

develop into an additional electron leakage path as defects overlap or develop into large

clusters [56, 57]. In any case, reducing the electric field intensity is critical to increasing

breakdown voltage. Results from Figure 4.5(a) show that increasing the channel thickness

results in a lower electric field, which in turn leads to a higher breakdown voltage. These

results for the lateral electric field are taken at the channel/buffer interface. Comparing

the maximum electric field from both devices, the peak lateral electric field intensity for

the thinner channel device is 12% higher than for the thicker device.

A summary of the influence of the individual components on breakdown voltage as

channel thickness varies is presented in Table 4.4. Note that this table is not an exhaustive

list of the phenomena affecting breakdown voltage, but just a summary of some of the

significant factors that contribute to breakdown. Trap related effects mentioned in the

beginning of this section are challenging to display in simulation (such as the influence

of channel thickness on electron capture probability) and were therefore not subject to

independent examination like the parameters in this table. For reference, the energy band
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diagrams have been included for tChannel = 5 nm and 15 nm (Figure 4.5(b)). Overall, the

breakdown results from Figure 4.3(a) are in agreement with those reported elsewhere

[49, 50].

(a) (b)

Figure 4.5: (a) Lateral electric field calculated along the channel/buffer interface with
different channel thickness values (5 nm and 15 nm). (b) Energy band diagrams for tChannel

= 5 nm and 15 nm in off-state with 50 V applied bias.

Table 4.4: Influence of Individual Components on Breakdown as Channel Thickness
Increases.

RDS(on) DIBL VTFL Lateral ε-field

as tChannel ↑ ↓ ↑ ↓ ↓
Resulting Effect VBR ↓ VBR ↓ VBR ↓ VBR ↑

4.3.2 Barrier Layer Optimization

Thickness of the barrier layer is a critical factor as it affects 2DEG concentration and

can impact breakdown voltage behavior by affecting the vertical gate ε-field. As such,

the impact of barrier layer thickness should be evaluated by examining maximum drain
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current, peak transconductance, and breakdown characteristics. It is generally understood

that increasing the barrier layer thickness will increase the drain current while lowering

transconductance [58, 59]. For that reason, it is desirable to have a thicker barrier layer if

power density is critical (such as for power electronics) and consequently a low barrier

thickness is desirable to maximize high-frequency performance and to minimize short-

channel effects [58]. This trend is supported by our simulation work shown in Figure

4.6(a). Additionally, the barrier layer thickness impacts breakdown voltage by affecting

the vertical gate ε-field which in turn affects punch-through, gate leakage current, and

device degradation. A thicker barrier layer will reduce the vertical ε-field thereby lowering

the breakdown voltage. This effect can be seen in Figure 4.7(a). In contrast, a thinner

barrier layer is known to reduce gate leakage current [60] and improve punch-through

control. The barrier thickness also heavily impacts threshold voltage [shown in Figure

4.6(b)] due to gate capacitance being directly proportional to barrier thickness. These

observations are supported by device models, other simulation work, and experimental

data in Refs. [58–61]. A summary of these effects is presented in Table 4.5. It is important

to note that this simulated barrier layer optimization does not account for the dependency

of layer quality and robustness on layer thickness. Layer quality and robustness cannot be

effectively modeled for simulation, however those parameters are of critical importance

and will depend on device structure as well as growth conditions.

Table 4.5: Summary of Factors Influenced by AlGaN Barrier Thickness.

N2DEG IG−leakage Vth Vertical ε-field Punch-through VBR

as tBarrier ↑ ↑ ↑ ↓ ↓ ↑ ↓
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(a) (b)

Figure 4.6: Simulation results for tBarrier presenting (a) maximum drain current and
transconductance as well as (b) threshold voltage trends.

Concerning device performance, the increase in 2DEG concentration resulting from an

increase in tBarrier thickness will result in lowering RDS(on) as shown in Figure 4.7(b). How-

ever, the increase in 2DEG concentration resulting from increasing the barrier thickness

will eventually saturate due to strain relaxation [62, 63]. Considering the effect on gate

charge, it is reasonable to expect that an increase in barrier thickness would result in a

decrease in gate charge. As the distance between the channel and gate increases, the

capacitance between those figurative electrodes will decrease. Therefore it is valid to

consider that QG will decrease as Q = C × V. This trend is demonstrated Figure 4.7(b).

Another important factor to consider when optimizing the barrier layer is the impact of

the Al molar fraction (xAlGaN) in the barrier layer on device performance. Higher molar

fraction is known to increase 2DEG concentration in the channel, increase carrier mobility

(ideally), and also increase carrier confinement [59]. However, fabricating AlGaN layers

with molar fraction above 0.3 is challenging due to the large lattice mismatch between GaN

and AlN [64, 65]. Consequently, the poor quality barrier layer resulting from a high molar

fraction AlGaN layer would result in electrical degradation. Additionally, a higher molar
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fraction can lead to larger interface roughness which in turn reduces electron mobility.

Considering this, the most optimum design for an AlGaN barrier layer generally targets a

molar fraction between 0.2 - 0.3. Within this range, increasing the molar fraction results in

an increase in 2DEG concentration and mobility (ignoring interface roughness) which will

yield a reduction in RDS(on) as a result. Accordingly, as the on-state resistance drops, the

breakdown voltage will follow. The drop in gate charge can be attributed to a decrease

in capacitance partially due to the increased molar fraction, which consequently leads to

a drop in threshold voltage as well. This decrease in capacitance is due to the change in

permittivity (eq. 4.1) as the dielectric constant is dependent on the molar fraction (eq. 4.2,

where y is the molar fraction) [59]. Additionally, the gate charge waveform changes shape

as the molar fraction is increased; QGS is reduced by two-thirds and VT is reduced by 0.9 V

causing an overall decrease in gate charge as molar fraction is increased. These trends are

displayed in Figure 4.8.

(a) (b)

Figure 4.7: Simulation results for tBarrier presenting (a) breakdown voltage and FOM trends
as well as (b) on-state resistance and gate charge trends.
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(a) (b)

Figure 4.8: Simulation results for xAlGaN presenting (a) breakdown voltage and FOM
trends as well as (b) on-state resistance and gate charge trends.

CAlGaN = εAlGaN/tAlGaN (4.1)

εAlGaN = (8.9 − 1.9y)εy (4.2)

4.3.3 AlN Interlayer Optimization

After investigating the impact on barrier layer thickness and aluminum molar fraction, it

is natural to suggest the use of an AlN interlayer to reap the benefits of a high Al content

barrier layer without the drawbacks associated with it. The primary reason why high

molar fraction AlGaN layers are not used is due to the large lattice mismatch causing

structural issues and leading to electrical degradation. However, adding an AlN interlayer

alleviates this issue as the interlayer can be kept below a critical thickness that would cause
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lattice mismatch to affect the structure growth or cause strain relaxation [66]. Adding an

AlN interlayer can improve 2DEG concentration, help to reduce vertical leakage current

(depending on the thickness of the layer), increase carrier mobility, and improve carrier

confinement [64, 66, 67]. These effects can have a significant impact in device performance

in regards to breakdown voltage, on-state resistance, and gate charge as seen in Figure

4.9. The addition of an AlN interlayer serves to lower the FOM, however the thickness of

the interlayer is critical concerning the impact on breakdown voltage as an interlayer that

is too thick can precipitously lower breakdown voltage performance. In our simulation,

depositing a uniform AlN interlayer thicker than 3 nm can result in blocking all vertical

current across that region rendering the device inoperable. This is the result of how AlN

is defined in the simulation model, and is in contrast to most literature on AlN/GaN

devices where the critical thickness can be as high as 9 nm [68]. In most cases, the critical

thickness is a factor of lattice mismatch between the two materials, however, this cannot

be effectively modeled in simulation. Results from our simulations suggest significant

improvement in performance with the addition of an ultra-thin interlayer.

(a) (b)

Figure 4.9: Simulation results for tAlN presenting (a) breakdown voltage and FOM trends
as well as (b) on-state resistance and gate charge trends.

72



The significant drop in RDS(on) seen in Figure 4.9(b) when adding an AlN interlayer can be

attributed primarily to the significant increase in 2DEG density. Simulation data shows

a four-fold increase in electron density in the channel as a result of adding a 1.5 nm AlN

layer as shown in Figure 4.10. This increase in 2DEG density is also supported in other

works, although the change is not as severe as it is here [64]. In addition, the increase

in mobility due to the AlN interlayer will also serve to reduce RDS(on). Concerning the

impact on gate charge as seen in Figure 4.9(b), the addition of an insulator material (with

a similar dielectric constant to the surrounding material) between the gate and channel

will serve to lower the gate capacitance, and thereby the gate charge, by adding a series

capacitance. As the AlN layer becomes thicker, this capacitance will be reduced further

and gate charge should continue to decrease. However, the simulation data shows a slight

increase in gate charge as tAlN increases, which suggests the added series capacitance

is not the most significant factor. According to gate charge plots, QGS and VT are both

reduced with the addition of an interlayer. In addition, adding an interlayer significantly

changed the gate charge waveform and nearly eliminates the miller plateau. This is what

causes the significant reduction in gate charge.

(a) (b)

Figure 4.10: Simulation results showing conduction band energy and electron density in
the on-state for devices with (a) no AlN interlayer and (b) with a 1.5 nm AlN interlayer.
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As seen from this data, it is advantageous from a performance perspective to add an AlN

interlayer, and it is crucial to target an interlayer thickness between 0.5-1.5 nm. While an

AlN interlayer can reduce interface roughness, a thicker AlN interlayer is undesirable as

it will lead to structural degradation due to partial strain relaxation [66]. Lastly, for RF

devices, the addition of an AlN interlayer can cause certain reliability issues under RF

stress conditions [69].

4.3.4 Buffer Layer Optimization

Buffer layer optimization is critical to obtain high breakdown voltage and device reliability

as an increased buffer thickness leads to lower dislocation density in the channel, and

higher breakdown voltage due to suppressed vertical leakage and buffer leakage current.

Additionally, due to the reduced defect density near the channel and improved surface

morphology, the mobility and on-state resistance show improvement as a result of the

thicker buffer layer [70]: one causing charged line scattering and the other interface

roughness scattering.

However, breakdown voltage optimization for buffer layer thickness comes with a set

of challenges as there are many competing factors that influence breakdown trends. For

example, high voltage devices are generally known to increase in breakdown voltage as

buffer thickness increases, this is generally due to the dominate breakdown mechanism

being substrate breakdown. Alternately, low voltage devices can have a negative trend

if the dominant breakdown mechanism is due to trapping. As device dimensions scale

towards low voltage device design (< 100 V) the dominant influence on breakdown

voltage can shift, leading to results contrary to conventional understanding. Conventional

understanding of breakdown voltage trends is well detailed in Ref. [38, 70] and a detailed

discussion on the impact of buffer thickness concerning low voltage design can be found in

our work in Ref. [44]. As this topic has been extensively covered in the past, we choose to
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present only this brief overview of buffer layer optimization and the underlying challenges

as opposed to an in-depth analysis.

4.4 Conclusion

We have presented optimization trends for channel layer thickness, barrier layer thickness

and molar fraction, impact of an AlN interlayer, and a brief discussion on buffer layer

thickness. This fabless design approach is unique in that it targets a design approach for

low voltage (< 100 V) GaN power devices. The optimization of the channel layer thickness

showed advantageous properties for low voltage devices. Increasing the channel thickness

not only increased breakdown voltage but also lowered the figure of merit. In contrast,

the optimization curves for the barrier thickness and molar fraction showed a trade-off

between high voltage and low FOM. However, for power electronics design, increasing

the barrier thickness is beneficial as it increases the maximum drain current, which will

increase the power density. The addition of an AlN interlayer with a targeted thickness

between 0.5-1.5 nm results in similar breakdown performance but a vastly improved FOM.

Simulations from Sentaurus gave critical insight into the optimization curves, and act as

an aid for heterostructure design.
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CHAPTER 5: GAN HEMT FABRICATION

A fabrication process flow has been developed for fabricating Schottky-gate, and MIS-

HEMT structures at UCF in the CREOL cleanroom. The fabricated devices were designed

to validate the simulation work for low voltage GaN devices. The UCF fabrication process

is done with a four layer mask, and consists of mesa isolation, ohmic recess etch, an

optional gate insulator layer, ohmic metallization, and gate metallization. Following this

work, the fabrication process was transferred to the National Nano Device Laboratories

(NDL) in Hsinchu, Taiwan, to take advantage of the more advanced facilities there. At NDL

the fabrication process was done with an eight layer mask, which allowed for inclusion

of a gate field-plate structure, bilayer passivation, and pad metallization. Devices were

primarily fabricated on 6” GaN-on-Si wafers procured from Episil.

This chapter outlines the fabrication process at UCF, and summarizes the continued effort

at the lab in Taiwan.

5.1 UCF HEMT Fabrication Process

The process for fabricating depletion-mode GaN HEMTs includes the following process

steps:

• Mesa isolation

– Can be done by etching or ion-implantation.

• Gate dielectric
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– Required for MIS-HEMTs. Can be Al2O3 or Si3N4.

• Ohmic metallization

– Typically Ti/Al/Ni/Au.

• Gate metallization

– Typically Ni/Au.

• Passivation

– Typically Si3N4.

Mesa isolation is critical to prevent leakage from source to drain (around the edge of

the gate), and is also used to prevent cross-talk when operating multiple devices. For

our devices at UCF, the mesa was achieved by Cl2/Ar etching with ICP-RIE. For proper

isolation, the GaN channel is etched completely through; although depending on the

conductivity of the channel layer, it may be sufficient to etch through the 2DEG region.

This process is shown in Figure 5.1 step 2.

For our devices, an ohmic recess etch was added as an optional step, which was intended

to improve RDS(on) performance. This process is shown in Figure 5.1 step 3. Following

the ohmic recess etch, ohmic metallization is performed using an E-beam evaporator to

deposit Ti/Al metal followed by lift-off to form contacts as seen in Figure 5.1 step 4. Next,

gate metallization is performed using the E-beam evaporator to deposit Ni/Au in both the

gate and source/drain regions as seen in Figure 5.1 step 5. The ohmic contact metal layers

were divided up like this to conserve gold, so that gold would only need to be deposited

once. Following the metallization, the contacts were annealed in a rapid thermal annealer

(RTA) at 700 °C for 60 sec. in a nitrogen ambient. This is done to make the source/drain

contacts ohmic or semi-ohmic.
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Figure 5.1: A simplified fabrication process flow for the UCF Schottky-gate GaN HEMTs.



The high temperature anneal allows the Ti on the surface to interact with the GaN, forming

TiN, which lowers the barrier height giving semi-ohmic performance from the contacts.

The devices fabricated at UCF employed a double finger design with one drain, two gates,

and two source terminals as shown in Figure 5.2(a). This serves two purposes as it doubles

the maximum drain current, and also helps with yield as it can be tested as two devices in

parallel. The mask legend and physical mask plate for the UCF HEMT design can be seen

in Figure 5.2(b) and 5.2(c). The full mask and fabricated devices are shown in Figure 5.3.

(a)

(b) (c)

Figure 5.2: (a) Double finger mask design for UCF HEMTs, (b) mask legend for the UCF
HEMT four layer mask, and (c) UCF GaN HEMT photomask on 4” quartz plate.
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(a)

(b)

Figure 5.3: (a) Actual four layer mask design image and (b) microscope image of UCF
devices after all fabrication steps are complete.
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5.1.1 UCF Mask - Test Structures

The UCF mask contains 148 HEMTs, plus 6 types of test and verification structures. These

test structures include hall-effect and junction diode test structures (as shown in Figure

5.4), which can be used to determine sheet carrier concentration and carrier mobility. In

addition, we have included a transmission line measurement (TLM) test structure for

determining sheet resistance, contact resistance, and contact resistivity (as shown in Figure

5.5(a)). For alignment calibration, we have included alignment test structures with vernier

marks for quantification of misalignment with 0.25 µm tolerance (Figure 5.5(b)). Finally,

we have included profile/height test structures for verifying etch depths and metal heights,

and have also included a lithography linewidth test structure to check exposure and also

used to qualify the mask design from the manufacturer (Figure 5.5(c) and 5.5(d)).

(a)

(b)

Figure 5.4: (a) Hall-effect test structure and (b) Schottky junction diode test structure.
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(a)

(b)

(c) (d)

Figure 5.5: (a) TLM test structure, (b) alignment test structure, (c) profile/height test
structure, and (d) linewidth test structure.
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The goal of the UCF fabrication was to calibrate the simulation models by providing a

comprehensive set of devices with varying features. To do this, there were twelve basic

HEMT structures designed. Each of those structures was in a 3x3 cell, to account for yield

issues. The minimum feature size was 1 µm, and each mask layer is approximately 1 cm2

for chip-scale processing. This led to 148 devices per chip, with variations in LGD, LG, LGS,

device width, and Ldri f t. Finally, a set of devices on the mask were scaled 400% to account

for lithography processing issues.

Exact processing details are given in APPENDIX: UCF FABRICATION PROCESSING

STEPS.

5.2 NDL Fabrication Process

We built off our fabrication experience at UCF to fabricate GaN MIS-HEMTs at the National

Nano Device Laboratories in Hsinchu Taiwan. Whereas the UCF process used a 4-layer

mask, the NDL process used an 8-layer mask which allowed for bilayer passivation,

addition of a gate field-plate structure, and pad metallization. The bilayer passivation

was necessary to lower film stress, as stress accumulation on wafer-scale production is a

significant issue that is not seen during chip scale production like what is done in the UCF

cleanrooms.

The process for fabricating GaN MIS-HEMTs at NDL is as follows:

• Mesa isolation

– Done by dual-energy Ar ion-implantation.

• Ohmic metallization

– Ti/Al/Ni/Au.
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• Gate recess/gate dielectric/hard mask

– Gate dielectric is Al2O3. Hard mask is Si3N4.

• Hard mask opening

– ICP-RIE etching.

• Gate metal (+Field-plate)

– Ni/Au metal plus bilayer passivation (Si3N4/SiO2)

• Contact hole #1

– Etch passivation to create a window for metal contacts.

• Pad metallization

– Au/Al/Au or similar metal plus passivation.

• Contact hole #2

– Etch passivation to create a window for metal contacts.

This fabrication process is shown in Figure 5.6, with the red dotted line showing the active

process area during each step. The devices shown in Figure 5.6 are single finger MIS-

HEMTs; in addition to these devices, the mask contained many of the same test features

used on the UCF mask, and also had many different device types including high current

designs for 10 A devices.
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Figure 5.6: The 8-layer mask used at NDL for HEMT fabrication.



For wafer-scale processing, the 6” Si wafer is divided up into 32 dies that are processed

using an i-line stepper. Between the individual dies are alignment markers which are

placed on mask 0. An example of these alignment markers is depicted on a drawing

showing a four die arrangement with alignment markers on a wafer (Figure 5.7)

Figure 5.7: Example drawing of mask 0 with sample alignment marker blocks.

One of the advantages of wafer-scale production is that it gives insight into critical aspects

of quality control challenges. Wafer mapping allows us to evaluate process uniformity.

Typically wafer mapping was done for threshold voltage, transconductance, and on-state

resistance after processing. Figure 5.8(a) gives an example of wafer mapping done on

NDL wafer AB0. This threshold voltage mapping shows significant variation in threshold

voltage at the top and bottom edge of the wafer. This suggests there is some non-uniformity

in gate dielectric deposition. Meaning that dielectric deposition for the top row of dies is

very thin, and the bottom row deposition is thicker than the nominal value. The median

threshold voltage was -5.1 V, and the top row of devices showed a threshold voltage as

low as -3.1 V which is indicative of a Schottky-gate HEMT with a very thin dielectric. A

wafer image of AB0 is shown in Figure 5.8(b).
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(a)

(b)

Figure 5.8: (a) Threshold voltage mapping of NDL wafer “AB0” for d-mode devices and
(b) wafer image of AB0.
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5.3 Fabrication Results

5.3.1 UCF Devices

The UCF devices were fabricated successfully showing a threshold voltage of -4.7 V for

MIS-HEMT devices with a 20 nm SiN insulator, and a threshold voltage of -0.9 V for

Schottky-gate HEMT devices with no gate insulator. A device is shown in Figure 5.9

showing the features of each mask layer. Standard ID-VD, ID-VG, and IG-VG curves are

shown in Figure 5.10. For these devices, due to the design of the mesa, a drain current

leakage path formed causing significant current leakage. This leakage current is normalized

and removed from the drain current plots shown in Figure 5.10 and the issue was corrected

in the next mask revision by shrinking the mesa isolation to remove the leakage path

around the gate.

Figure 5.9: UCF GaN HEMT before high temperature annealing, showing features from
each mask layer.
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(a)

(b) (c)

Figure 5.10: Curves for UCF d-mode MIS-HEMT devices showing (a) normalized drain
current versus drain voltage curves, (b) normalized drain current versus gate voltage plot,
and (c) gate current versus gate voltage plot.

5.3.2 NDL Devices

Curves for an NDL MIS-HEMT device from wafer AB0 are shown in Figure 5.11: presenting

ID-VD, ID-VG, IG-VG, and transconductance plots. The NDL devices have a 15 nm Al2O3

dielectric, yielding a median threshold voltage of -5.1 V.
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(a) (b)

Figure 5.11: Curves for NDL d-mode MIS-HEMT devices showing (a) plot of drain current
versus drain voltage, and (b) plot of drain and gate current and transconductance versus
gate voltage.

The Taiwan devices showed significant passivation peeling and pitting as a result of stress

accumulation on the surface (Figure 5.12(a)). Poor passivation quality results in a high

concentration of surface states, leading to current collapse. These wafers were extremely

fragile as a result of the high stress growth process. One method to address this issue is to

use a superlattice buffer structure which acts as a stress-relief layer and can reduce surface

stress by one to two orders of magnitude. Figure 5.12(b) shows how the superlattice buffer

structure can also reduce dislocations in the channel by terminating propagating defects

in the buffer structure. In addition, a structure with lower stress will also have a lowered

defect density. Based on these observations, it is recommended that a superlattice buffer

structure should be used for these devices in the future. This would significantly reduce

much of the defect-induced performance degradation that is seen with these devices

(presented in the next chapter).
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(a) (b)

Figure 5.12: (a) NDL devices showing passivation layer pitting and peeling on the surface
and (b) superlattice induced annihilation of dislocations.

5.4 Conclusion

The UCF fabrication effort served as a proof of concept for fabrication in the CREOL

cleanroom. Both Schottky-gate HEMTs and MIS-HEMTs were successfully fabricated at

UCF using a 4-layer mask. This fabrication process was transferred to the NDL facilities

to take advantage of a more mature process-flow. At NDL, an 8-layer mask was used to

fabricate MIS-HEMTs on 6” Si wafers. These devices were used to calibrate our simulation

models, and it is on these devices that the trap-induced defect study is done; this study is

presented in the following chapter.

This extensive fabrication work led to some observations on current fabrication challenges

for GaN HEMTs. First, there is a need for Au free contracts, which is a limitation imposed

by silicon based cleanrooms. This is because Au serves as a deep level trap for silicon

processing. GaN devices many times use Ti/Al/Ni/Au for ohmic contacts to achieve low
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contact resistance, and this metallization scheme is especially popular among research

institutions. While there is work being done on Au free contacts, the work is not mature

enough to be widely adopted, and hence GaN processing (when using Au based contacts)

is restricted in silicon fabs. The cost of fabricating GaN devices would be lessened if the

need for duplicate dedicated processing equipment could be eliminated.

The second challenge is that GaN heterostructure design shows trade-offs in terms of

performance/reliability and thermal conductivity. For high performance devices, the

defect density in the heterostructure needs to be reduced, and surface stress needs to be

minimized to improve passivation adhesion. One way to do this is by using superlattice

stress relief layers, which not only reduces stress but also reduces defect density and can

suppress propagating defects. The superlattice structure has reduced thermal performance

compared to a graded buffer structure, so while reliability will be improved, power density

will be reduced. In order to address the thermal performance issue, it may be prudent to

consider switching from silicon wafers to silicon carbide wafers as they have for RF GaN

HEMTs. However, SiC wafers cost significantly more than Si wafers, which presents a

thermal performance vs. cost trade-off.

Lastly, as some of this research has been done on low voltage GaN devices, it has been seen

that to extract the full potential of low voltage design it may be necessary to use higher

resolution lithography equipment than is typically used for power devices. Sub-micron

lithography is necessary for 30 V breakdown devices to fully reap the benefits of using

GaN, possibly requiring features less than 0.5 µm. As an i-line stepper may have a global

alignment tolerance of ≤ 0.25 µm this poses a challenge for the fabrication of low voltage

power HEMTs.
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CHAPTER 6: EXPERIMENTAL RESULTS AND TRAP INDUCED

PERFORMANCE ANALYSIS

This chapter covers the experimental results of our fabricated devices, and includes a

discussion on trap induced performance analysis for GaN HEMTs.

Negative differential conductance (NDC) seen in the drain current saturation region is

typically attributed to self-heating effects in GaN HEMTs. In this chapter, it is demonstrated

that NDC is due to trap states in the buffer resulting from poor carrier confinement in the

channel during saturation which leads to stray electrons exiting the channel and becoming

trapped. Substrate bias testing has been used to confirm that severe current collapse occurs

when those electrons are forced to the surface, and that NDC occurs when the carriers are

forced to the buffer. In addition to this, pulsed I-V characterization is performed among

other tests to isolate the cause of NDC in the saturation region, which effectively eliminated

trapping mechanisms that lead to gate- and drain-lag from contributing to NDC. To the

best of our knowledge, we are the first to report NDC not as a result of self-heating, but

due to trapping within the buffer.

6.1 Introduction

Wide bandgap GaN power devices deliver superior performance in terms of power density

and efficiency for power electronics systems due to materials advantages such as higher

electron mobility, high critical electric field, and a large bandgap in comparison to con-

ventional silicon based electronics [10, 71, 72]. Fabrication costs are continually reduced as
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GaN-on-Si scales to larger-diameter epi-wafers (now up to 8-inch), which makes GaN inte-

gration even more desirable [18,73]. Despite these advantages, GaN high electron mobility

transistors (HEMTs) suffer from performance and reliability degradation as a result of trap

centers that capture free electrons and have a varying release time. These trap centers are a

result of poor structural quality, defects caused by lattice/thermal mismatch, surface states,

and buffer dopants. Traps within the device are responsible for current collapse (dynamic

RDS(on)), knee-walkout, current slump, and other phenomena contributing negatively to

device performance and reliability [74, 75]. These effects can be mitigated by reducing the

trap concentration primarily on the surface and in the buffer. Surface states can be reduced

by advanced passivation techniques, such as charge polarized AlN/SiN surface passiva-

tion as demonstrated by Chen et. al [76]. In addition, field plate techniques can be effective

in suppressing surface trapping by reducing the peak electric field at the drain-side gate

edge [43, 77–79]. Buffer traps can be minimized by using superlattice stress relief layers in

the buffer to halt the propagation of defects due to lattice mismatch between the buffer

and substrate layers [34, 80], however even with this technique there still exists an ample

trap concentration in part due to intentionally incorporated compensation dopants in the

buffer layer (e.g., C) used to obtain a high resistivity buffer stack [21, 81]. To understand

the impact on breakdown and reliability, it is crucial to study defect induced performance

degradation and to develop ways to further mitigate the effects of carrier traps.

This work focuses primarily on effects seen in the drain saturation current such as the neg-

ative differential conductance (NDC) effect, the kink effect (a current collapse phenomena),

and substrate biasing effects on trap distribution. A detailed analysis of dc and pulse I-V

characteristics is carried out for GaN HEMT devices with a focus on effects resulting from

trapping in the device. In addition, substrate biasing, also called back-gating measurement,

has been performed to study the influence of trap distributions (surface vs. buffer traps)

on current collapse and NDC.
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6.2 Device Structure and Fabrication Details

Devices were processed on a commercially available 6” GaN-on-Si epi-wafer. The epitaxial

structure was grown on a p-type Si substrate and consists of an AlN nucleation layer,

graded AlGaN buffer layer, GaN channel layer, AlGaN barrier, and a GaN cap. The

passivation layer consists of a bilayer SiN/SiO2 stack to reduce film stress and provide

improved isolation. Device isolation is achieved by multi-energy argon ion implantation.

Drain and source Ohmic contacts consist of a Ti/Al/Ni/Au metal stack annealed at 875

°C for 30 seconds in a N2 ambient. The MISHEMT gate structure consists of a 15 nm ALD

deposited Al2O3 dielectric with a Ni/Au Schottky gate contact. These devices have a

single-finger gate layout with a gate width of 100 µm and a gate connected field plate

extending 2 µm towards the drain.

Measurements presented in this paper were performed on a device with dimensions

of 2-1-13 µm for LGS, LG, and LGD respectively. All measurements presented in this

paper were repeatable both on the same device and also on devices with different lateral

dimensions. Additionally, all measurements are conducted at room temperature and in a

dark environment, as light irradiation could affect trap behavior within the device [82, 83].

6.3 Results and Discussion

Pulse I-V characterization is typically performed to eliminate self-heating effects. Self-

heating is commonly known to be responsible for negative differential conductance, a

negative drain current slope in the saturation region, which is generally seen in dc ID-VD

curves for GaN power devices. The decrease in drain current is attributed to a decrease in

electron velocity in the channel resulting from the increased lattice temperature [84]. By

pulsing the drain current, the built-up heat can be effectively dissipated between pulses
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and self-heating effects can be eliminated or significantly reduced given that the duty cycle

is sufficiently low [85, 86].

In addition, pulse I-V characterization can be used to study gate-lag and drain-lag [87] due

to traps within the device which cause reduced drain current and increased knee voltage

respectively [88]. Gate- and drain-lag are definied by the response of the drain current

to a step change in gate or drain voltage. During a pulse transient, the current does not

respond instantaneously to the change in voltage bias, resulting in a lag that is attributed

to the presense of traps. By controlling the polarity of the applied pulse (low to high, or

high to low), the trapping and de-trapping mechanism can be controlled, allowing for an

indirect relationship to be obtained for the relative location and intensity of traps within

the device [75, 87].

6.3.1 Static versus Pulse I-V Characterization

To investigate these effects, a test bench was setup to evaluate pulse versus dc I-V charac-

teristics. The pulse test is designed to have a pulse width of 5 ms and a pulse period of 500

ms (1% duty cycle). For the pulse tests, the gate voltage (VGQ) is held at a dc value, and the

drain is pulsed from a quiescent bias point (VDQ) to the target test voltage. The polarity

of the drain pulse determines the state of trapping or de-trapping within the device: a

low-to-high pulse (VDQ = 0V) causes trapping, and a high-to-low pulse (VDQ = 20V)

causes de-trapping. For clarity concerning the testing setup, setting the gate voltage input

as a dc value or as a pulse had little to no effect on the results.

96



Figure 6.1: Pulse versus dc I-V characteristics for AlGaN/GaN HEMT: showing degrada-
tion due to trapping effects.

Comparing the pulse I-V to the dc test characteristics (Fig. 6.1), negative differential

conductance is seen in both pulse and dc I-V tests. Pulse I-V testing can eliminate self-

heating by giving the device ample time to recover from heating by applying a low duty

cycle pulse where the ratio of on to off is low enough that the small amount of heat

generated in the on-state is dissipated in the off-state. To reinforce that the self-heating

was not present, these tests were also repeated with a duty cycle of 0.1% (10× lower) with

the same results. Since the low duty-cycle pulse test showed no change in NDC compared

to dc, the NDC seen in Fig. 6.1 must be caused by some effect other than self-heating.

Therefore we can effectively rule out self-heating as the cause for the saturation current

degradation since the NDC appears both in pulse and dc curves. Excluding self-heating

as the cause for NDC, another mechanisms that could cause the NDC phenomenon is

threshold voltage variation due to applied drain bias. To test this, the threshold voltage
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is extracted from ID-VG curves, and plotted against drain voltage as shown in Fig. 6.2a.

However, in reviewing Fig. 6.2a it is apparent that the threshold voltage variation primarily

occurs when the device is operating with low drain voltage bias, and not when the device

is operating with a drain voltage that would cause saturation. This demonstrates that the

NDC is not being caused by threshold voltage variation due to applied drain bias. With

the exclusion of self-heating or threshold voltage variation causing the NDC, it follows

that the negative slope must be caused either by trapping mechanisms or possibly by

field-dependent mobility degradation.

Figure 6.2: (a) Threshold voltage variation due to drain voltage bias. (b) Non-linear
transconductance profiles due to velocity reduction in the channel.

Field-dependent mobility degradation can be confirmed by examining transconductance

(gm) profiles as the drain voltage bias is increased [74]. In this case, a highly non-linear

profile is observed which is attributed to velocity reduction in the channel as a result of

carrier scattering (Fig. 6.2b). This confirms that some amount of mobility degradation is
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occurring within this device, however, it does not serve as a way to measure or quantify

the degradation. For the purpose of this paper, we wish to focus instead on trapping

mechanisms that can be confirmed to be causing NDC in the saturation region.

6.3.2 Trap Characterization via Pulse I-V

Pulse I-V tests can also be used to examine the effect of hot electrons as well as barrier layer

and buffer layer traps. Modifying the quiescent drain bias for the pulse test (from 0 V to a

positive bias) will incorporate the effects of certain charged trap states. This test is shown

in Fig. 6.3a where a significant shift in knee voltage is seen at a given gate voltage bias. The

shift in knee voltage, known as drain-lag, is attributed to trapping effects where traps act

like a pseudo back gate [75]. Trapped charge located under the metal gate will effectively

change the gate bias, thereby changing the pinch-off voltage characteristics. Additionally,

applying a quiescent drain bias can induce hot electron injection from the 2DEG into the

AlGaN barrier layer which can further increase RDS(on) if the drain bias is sufficiently

high [89]. However, when comparing the two pulse conditions in Fig. 6.3a, there is no

evident change in degradation in drain current in the saturation region. Therefore we can

conclude that the drain bias does not meet the threshold to cause hot electron injection for

these devices.

Controlling the polarity of the applied pulse voltage is also a method to study the trapping

and de-trapping process. When the pulse voltage is higher than the quiescent bias voltage,

the traps capture free charge. Conversely, when the pulse voltage is lower than the quies-

cent bias voltage, the traps release captured charge [90]. The impact of these phenomena

are observed in Fig. 6.3b. When the pulse voltage is higher than the quiescent bias voltage

(VDQ = 0 V), the drain current is reduced due to trapping; this is known as gate-lag which

is attributed to deep traps beneath the channel [90]. Reversing the polarity of the drain

bias pulse serves to release traps, at which point the drain current recovers to the original
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pre-trapped value.

Figure 6.3: (a) Pulse ID-VD characterization showing a shift in knee voltage due to starting
drain bias. (b) Trapping and recovery phenomena due to drain current pulse polarity.

These measurements give more insight into trapping and de-trapping mechanisms, and

into how I-V curves are affected by the ionization of traps, however, saturation region

NDC was unaffected by pulse I-V quiescent bias testing. Therefore, the trapping mecha-

nisms leading to drain- and gate-lag can be eliminated from consideration in causing or

contributing to the NDC effect. According to the aforementioned understanding of drain-

and gate-lag, this rules out certain trapped charges under the metal gate, and certain deep

traps beneath the channel from contributing to the NDC phenomena.

6.3.3 Substrate Biasing Effects

Substrate biasing can be used as a tool to understand how traps affect device performance.

Under standard operation conditions, in the on-state with the substrate grounded, some

electrons will exit the channel and become trapped in the buffer or at the surface (Fig. 6.4a).

When VBS is positive, the applied electric field vector will be from substrate to surface,
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which will pull these stray channel electrons towards the buffer (Fig. 6.4b). By biasing the

device with a positive substrate voltage, trapped charge resulting from carriers exiting

the channel should be increased in the buffer region and reduced at the surface due to the

presence of the electric field. Conversely, when the applied bias is negative, this will push

electrons towards the surface as seen in Fig. 6.4c, resulting in more traps at the surface, and

less in the buffer. In short, the location of traps resulting from poor channel confinement

can be modified to show the influence due to surface traps (with VBS ≪ 0) or due to buffer

traps (with VBS ≫ 0). It is important to note that these traps are pulled directly from the

2DEG and occur during dc operation, not after an applied stress, or during a switching

transient (as can be observed during the pulse I-V testing).

Both the kink effect and NDC seen in previous ID-VD results are heavily impacted by

substrate biasing. Applying a positive substrate bias (Fig. 6.5c) increases the NDC effect,

and eliminates the kink effect that was seen in Fig. 6.5b. This is due to forcing stray carriers

which exit the channel towards the buffer and away from the surface. On the contrary,

applying a negative substrate bias serves to eliminate NDC when the drain voltage is swept

backwards, however, during a forward sweep, the kink effect is increased significantly

(Fig. 6.5d). In this case the stray carriers are forced towards the surface, and away from

the buffer. It must be noted that the drain voltage must be swept backwards in this case

due to the enormous instability caused by the kink effect. This kink effect is exaggerated

by the poor passivation quality as a result of SiN peeling from stress accumulation on the

wafer. It is expected that improved passivation would result in minimizing the kink effect

and this device would demonstrate no NDC during forwards or backwards sweep with a

negative substrate bias.
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Figure 6.4: Effect of substrate bias on trap distribution within the device at (a) VBS = 0 V,
(b) VBS ≫ 0 V, and (c) VBS ≪ 0 V.
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Figure 6.5: (a) Reverse drain voltage sweep showing eliminated NDC with VBS = -50V.
Forward and reverse DC I-V characteristics with VBS biased at (b) 0V, (c) 50V, and (d) -50V.

Based on these observations, the kink effect seen in these devices is subject primarily

to buffer traps, and surface traps are the cause of NDC. Another thing to note is that a

negative substrate bias shifts the threshold voltage more positive, and a positive substrate

bias shifts threshold voltage more negative due to charge polarization. This results in a

shift in max ID−sat. as shown in Fig. 6.5a. However this shift in threshold voltage remains

for some time after the device is tested, suggesting that the charge polarization remains

trapped with a long time constant as it requires more than 6 hours of recovery for the

threshold voltage to return to the pre-stressed value.

Further examination of substrate biasing can lend insight into the type of traps that are

ionized during positive and negative bias conditions. Toward this end, ramped back-
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gating measurements are performed to study the effect of sweeping the substrate bias on

drain current. For the ramped back-gating measurements, VBS was swept from 0 V to

-100 V and back to 0 V at a sweep rate of 1 V/s. Then after a period of 12 hours rest to

allow for trap recovery, VBS was swept from 0 V to 100 V and back down to 0 V. Drain

current was monitored with the device biased in the saturation region (at VGS = 0 V and

VDS = 10 V). In order to suppress any potential self-heating, low values of VGS and VDS are

chosen. Typically the device is biased in the linear region for this type of test to eliminate

the possibility of current collapse [91, 92], however, to better understand what causes the

kink effect and severe NDC seen previously, the device is biased in the saturation region

where these effects are most prominent.

Figure 6.6: Substrate bias sweep with ID normalized to the value at VGS = 0V, VDS = 10V,
and VBS = 0V. Red line represents the reverse bias sweep, followed by 12 hour rest for
trap recovery and then the forward sweep shown in black.

Results from the ramped back-gating measurements are shown in Fig. 6.6 where red

denotes the negative sweep, and black denotes the positive sweep. The drain current is
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normalized to ID at VGS = 0V, VDS = 10V, and VBS = 0V and the ramp rate of VBS is set

to 1 V/s. It is important to note that it does not matter which sweep direction is done first

in this test, so long as the rest period is sufficiently long to allow for full trap recovery.

The phenomena leading to the curves in Fig. 6.6 are quite complex, and require a detailed

breakdown and analysis of the sweep for better understanding. Starting with the negative

sweep, initially the applied negative back-gate bias reduces the 2DEG concentration due

to the applied electric field and capacitive coupling. At location 1, the reduction in drain

current increases beyond the ideal rate, as carriers are trapped in the surface and the buffer.

As acceptor states near the 2DEG are ionized, free holes are created which travel towards

the substrate where they are trapped and contribute positive space charge. Stray electrons

exiting the channel will of course continue to trap in the surface. This trapping continues

until VBS = −100V. As VBS is swept back from -100 V to 0 V, positive buffer charging (due

to previous ionization of donor traps deep in the buffer) counters the decrease in VBS [92].

This becomes the screening charge which creates the flat portion of the curve on the return

sweep leading up to location 2. These ionized donor traps are being released at the same

rate as VBS decreases, yielding little to no change in drain current. Between location 2 and

3, the rate of de-trapping decreases, and the drain current begins recovering. As the rate

of change of the screening charge decreases, the recovery will start to behave in the ideal

manner (as without trapping effects). After location 3, de-trapping is completely halted,

and drain current increases due to the change in electric field at the ideal rate. However,

after the back-bias, some space charges remain as some traps have a long time constant. At

the end of the sweep ID is degraded by 15% due to reduced 2DEG density from trapped

carriers.

For the positive sweep, the drain current initially increases due to the applied electric

field, however, at location 4 the increase in drain current saturates. This saturation is due

to buffer traps which capture electrons and generate net negative charges which screens

the 2DEG from the substrate bias [91]. Electrons furnished from the ohmic contact or the
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2DEG are injected into the buffer due to the semi-insulating nature of the buffer stack and

the applied voltage polarity [92, 93]. The injected electrons are trapped by acceptor states

in the buffer, creating the screening charge which neutralizes the increase in VBS. The flat

region suggests that acceptor traps are ionized at the same rate of increase in VBS, resulting

in canceling the effect of the applied electric field. During the return sweep, the traps

are consequently released at the same rate as the decrease in VBS, however, at location 4,

further release of traps is halted and more trapped electrons cannot be effectively released:

resulting in the degradation in drain current shown.

The quick saturation of ID when VBS is forward biased also explains why |VT| only increases

slightly (<2%) at VBS = 50V, whereas negative bias has a large impact on threshold voltage

(|VT| ↓ ≈ 20%). In both cases, the trapped carriers contribute to a reduction in threshold

voltage that remains after testing. Tests were run at VBS = 0V immediately after negative

or positive substrate bias testing to confirm this. Concerning trap recovery, in most cases

90% recovery of threshold voltage (return to the unstressed state) is seen after 1 hour,

but 12 hours is required for full recovery back to the original VT pre-substrate-bias stress.

This time interval is consistent with some reported recovery times from other groups.

Nakala [75] used a six hour recovery period and reported that this time interval was not

sufficient for all VDS−MAX bias points.

6.4 Summary

These results confirm that negative differential conductance observed in ID-VD curves

is due to trapped charge in the buffer and not due to self-heating effects. This trapped

charge is a result of poor carrier confinement in the channel where stray electrons that

exit the channel become trapped both at the surface and in the buffer. Substrate biasing

tests confirmed that surface trapped charges are responsible for the severe kink effect
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(current collapse) seen, and that buffer trapped charges are responsible for the NDC in

the saturation region. To the best of our knowledge, we are the first to report NDC due to

traps and not as a result of self-heating.
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CHAPTER 7: CONCLUSION

This work has addressed a fabless design approach both for high voltage and low voltage

GaN power HEMTs. Fabless design is critical to reducing time to market and overall

design cost. In addition, these models can improve understanding of device physics,

especially when expanding the boundaries of the technology. High voltage design (> 600

V) relies heavily on scaling for LGD, LGFP, and tBu f f er when optimizing breakdown voltage

and figure of merit. In comparison, low voltage simulations revealed less dependence on

vertical leakage current and substrate breakdown compared to high voltage designs, and

more reliance on buffer leakage and punch-through as the dominant factors leading to

breakdown.

Currently, commercial low voltage GaN power HEMTs are not competitive with silicon

devices in terms of figure of merit, even though the materials advantage still exists at low

voltage. This is thought to be partially due to inability to scale power devices given that

the standard equipment used to fabricate high voltage power HEMTs is not well suited

for submicron scale devices. In addition, some structures and advanced features will

not scale to submicron resolution and thus cannot be used for low voltage devices (one

example being the HD-GIT). This presents challenges for low voltage design especially

concerning heterostructure quality, as some reliability concerns can be overcome with

advanced field-plate designs, or a hybrid drain structure, both of which may not be feasible

at submicron scale. Aggressive scaling for low voltage design suggests that GaN HEMTs

can achieve half the current FOM of state-of-the-art silicon devices.

A portion of this work was dedicated to analysis of defect-induced performance degrada-
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tion, and to the effects of trapping on performance. In this regard, heterostructure quality

is critically important. It was found that devices on wafers with high stress growth had

significant issues with buffer traps, and also poor passivation adhesion, which in turn

produced a high density of surface states leading to current collapse. Substrate bias testing

revealed that buffer traps are responsible for the negative differential conductance seen in

testing, and that in this case it was not due to self-heating. These issues are in part due to

the high stress growth, and as such can potentially be mitigated by using a superlattice

stress relief layer.

To push the boundaries of low voltage fabrication further, it is likely that GaN power

devices will need equipment similar to that used for GaN RF devices such as E-beam

lithography to produce smaller features with an acceptable alignment tolerance. In ad-

dition, as these devices become smaller, thermal performance becomes a critical issue

as the power density increases and the thermal interface becomes smaller. In this way,

every thermal advantage needs to be taken, such as switching from Si to SiC substrates,

and considering the impact a superlattice buffer structure has on thermal performance.

It is likely that improved packaging for thermal performance will become critical to the

adoption of low voltage GaN power HEMTs.
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APPENDIX : UCF FABRICATION PROCESSING STEPS
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Step Item Tool Recipe/Condition Spec Note
1 Wafer cleaning Wet Bench AMD bath

2 Hard mask deposition
Plasma‐Therm 790

PECVD/ICP Etcher (Upstairs)

Recipe: SiN_Diff 
Rate: 9 nm/min 

Time: 27:16 min:sec
SiN THK: 300 nm

recipe in folder: 
Dep0/up/SiN_Diff

3 PR coating Spin Coater
Recipe: 14 

(1) PR: S1813, i‐line 
(2) SB: 130 °C/ 60 sec

4 Photolithography MJB4 (i‐line)
Mask: Layer 1 (clear) 
Dose: 1mW/cm2 

Exposure: 15 sec

5 Development & baking Wet Bench/Hotplate
(1) PEB: 115 °C/ 60 sec 
(2) Dev: 45 sec (CD26)

6 SiN HM etching
Plasma‐Therm 790 

PECVD/ICP Etcher (Upstairs)
Recipe: EtchSiN1
Time: 10 min

7 PR Strip Wet Bench AMD bath

8 Dry etching
Unaxis Shuttleline ICP‐RIE

 III‐V etcher

Recipe:
Gas/flow:   
Cl2/ 7 sccm
N2/ 43 sccm

Pressure: 5.3 mTorr
Power/bias: 500/100 W 
Time: 11:30 min:sec

Depth: 400 nm      

RateGaN: 35 nm/min
RateSiN: 16 nm/min 
Selectivity = 2.17:1 

(GaN:SiN)

9 HM removal Wet Bench

(1) Wet Etch: 50% HCL
Time: 4 min

Rate: 50 nm/min
(2) AMD bath

10 Hard mask deposition
Plasma‐Therm 790 

PECVD/ICP Etcher (Upstairs)

Recipe: SiN_Diff 
Rate: 9 nm/min 
Time: 11 min

SiN THK: 100 nm

recipe in folder: 
Dep0/up/SiN_Diff

11 PR coating Spin Coater
Recipe: 14 

(1) PR: S1813, i‐line 
(2) SB: 130 °C/ 60 sec

12 Photolithography MJB4 (i‐line)
Mask: Layer 2 (clear) 
Dose: 1mW/cm2 

Exposure: 15 sec

13 Development & baking Wet Bench/Hotplate
(1) PEB: 115 °C/ 60 sec 
(2) Dev: 45 sec (CD26)

14 SiN HM etching
Plasma‐Therm 790 

PECVD/ICP Etcher (Upstairs)
Recipe: EtchSiN1

Time: 5 min
15 PR Strip Wet Bench AMD bath

16 Dry etching
Unaxis Shuttleline ICP‐RIE

 III‐V etcher

Recipe:
Gas/flow:   
Cl2/ 7 sccm
N2/ 43 sccm

Pressure: 5.3 mTorr
Power/bias: 500/100 W 

Time: 30? sec

Depth: 15 nm           

RateGaN: 35 nm/min
RateSiN: 16 nm/min 
Selectivity = 2.17:1 

(GaN:SiN)

17 HM removal Wet Bench

(1) Wet Etch: 50% HCL 
Time: 2 min

Rate: 50 nm/min
(2) AMD bath

Mask 1: Mesa isolation

Mask 2: Ohmic Recess Etch
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18 PR coating Spin Coater
Recipe: 14 

(1) PR: S1813, i‐line 
(2) SB: 130 °C/ 60 sec

19 Photolithography MJB4 (i‐line)
Mask: Layer 3 (clear) 
Dose: 1mW/cm2 

Exposure: 15 sec

20 Development & baking Wet Bench/Hotplate
(1) PEB: 115 °C/ 60 sec 
(2) Dev: 45 sec (CD26)

21 PR descum Apex SLR Etcher

Recipe:
Gas/flow: 
O2/ 10 sccm
Ar/ 20 sccm

Pressure: 60? mTorr
Power/bias: 100/50 W

Time: 30 sec

Might be better to do 
with 0 W bias and 

higher RF power (300 
W?)

23 Metal deposition Temescal E‐beam evaporator
Ti/Al/Ni/Au:

30/180/40/100 nm

NDL uses:  
Ti/Al/Ni/Au:

 25/125/45/75 nm

24 Lift‐off Wet Bench
(1) ACE + sonication: 10 min

(2) AMD + N2 dry

26 RTA RTP‐600S
(1) Pre‐run test: 700 °C/30 sec

(2) 700 °C/60 sec
NDL uses:

875 °C/30 sec

For pre‐run use 15 sec 
N2 purge. For standard 
run use 300‐600 sec 

N2 purge.

27 TLM measurement Probe station TLM measurement
Au‐free standard:
 ρc = 1E‐3 Ω‐cm

2
NDL's standard:
 ρc = 5E‐5 Ω‐cm

2

28 PR coating Spin Coater
Recipe: 14 

(1) PR: S1813, i‐line 
(2) SB: 130 °C/ 60 sec

29 Photolithography MJB4 (i‐line)
Mask: Layer 4 (clear) 
Dose: 1mW/cm2 

Exposure: 15 sec

30 Development & baking Wet Bench/Hotplate
(1) PEB: 115 °C/ 60 sec 
(2) Dev: 45 sec (CD26)

31 PR descum Apex SLR Etcher

Recipe:
Gas/flow: 
O2/ 10 sccm
Ar/ 20 sccm

Pressure: 60? mTorr
Power/bias: 100/50 W

Time: 30 sec

Might be better to do 
with 0 W bias and 

higher RF power (300 
W?)

33 Metal deposition Temescal E‐beam evaporator Ni/Au: 40/100 nm
NDL uses:

 Ni/Au: 50/300 nm

34 Lift‐off Wet Bench
(1) ACE + sonication: 10 min

(2) AMD + N2 dry

Mask 4: Gate Metallization

Mask 3: Ohmic S/D Metallization
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