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Figure 1: We present an approach for real-time 3D hand tracking from monocular RGB-only input. Our method is compatible

with unconstrained video input such as community videos from YouTube (left), and robust to occlusions (center-left). We

show real-time 3D hand tracking results using an off-the-shelf RGB webcam in unconstrained setups (center-right, right).

Abstract

We address the highly challenging problem of real-time

3D hand tracking based on a monocular RGB-only se-

quence. Our tracking method combines a convolutional

neural network with a kinematic 3D hand model, such that it

generalizes well to unseen data, is robust to occlusions and

varying camera viewpoints, and leads to anatomically plau-

sible as well as temporally smooth hand motions. For train-

ing our CNN we propose a novel approach for the synthetic

generation of training data that is based on a geometrically

consistent image-to-image translation network. To be more

specific, we use a neural network that translates synthetic

images to “real” images, such that the so-generated im-

ages follow the same statistical distribution as real-world

hand images. For training this translation network we com-

bine an adversarial loss and a cycle-consistency loss with

a geometric consistency loss in order to preserve geomet-

ric properties (such as hand pose) during translation. We

demonstrate that our hand tracking system outperforms the

current state-of-the-art on challenging RGB-only footage.

1. Introduction

Estimating the 3D pose of the hand is a long-standing

goal in computer vision with many applications such as in

virtual/augmented reality (VR/AR) [17, 26] and human–

computer interaction [38, 18]. While there is a large body

of existing works that consider marker-free image-based

hand tracking or pose estimation, many of them require

depth cameras [34, 47, 39, 44, 27, 7, 54] or multi-view

setups [41, 1, 56]. However, in many applications these

requirements are unfavorable since such hardware is less

ubiquitous, more expensive, and does not work in all scenes.

In contrast, we address these issues and propose a new

algorithm for real-time skeletal 3D hand tracking with a

single color camera that is robust under object occlusion

and clutter. Recent developments that consider RGB-only

markerless hand tracking [36, 63, 8] come with clear lim-

itations. For example, the approach by Simon et al. [36]

achieves the estimation of 3D joint locations within a multi-

view setup; however in the monocular setting only 2D joint

locations are estimated. Similarly, the method by Gomez-

Donoso et al. [8] is also limited to 2D. Recently, Zimmer-

mann and Brox [63] presented a 3D hand pose estimation

method from monocular RGB which, however, only obtains

relative 3D positions and struggles with occlusions.

Inspired by recent work on hand and body tracking

[49, 20, 19], we combine CNN-based 2D and 3D hand

joint predictions with a kinematic fitting step to track hands

in global 3D from monocular RGB. The major issue of

such (supervised) learning-based approaches is the require-

ment of suitable annotated training data. While it has been

shown to be feasible to manually annotate 2D joint loca-

tions in single-view RGB images [14], it is impossible to

accurately annotate in 3D due to the inherent depth ambi-

guities. One way to overcome this issue is to leverage ex-

isting multi-camera methods for tracking hand motion in

3D [41, 1, 56, 8]. However, the resulting annotations would

lack precision due to inevitable tracking errors. Some works

render synthetic hands for which the perfect ground truth

is known [20, 63]. However, CNNs trained on synthetic



data may not always generalize well to real-world images.

Hence, we propose a method to generate suitable train-

ing data by performing image-to-image translation between

synthetic and real images. We impose two strong require-

ments on this method. First, we want to be able to train on

unpaired images so that we can easily collect a large-scale

real hands dataset. Second, we need the algorithm to pre-

serve the pose of the hand such that the annotations of the

synthetic images are still valid for the translated images. To

this end, we leverage the seminal work on CycleGANs [62],

which successfully learns various image-to-image transla-

tion tasks with unpaired examples. We extend it with a

geometric consistency loss which improves the results in

scenarios where we only want to learn spatially localized

(e.g. only the hand part) image-to-image conversions, pro-

ducing pose-preserving results with less texture bleeding

and sharper contours. Once this network is trained, we can

use it to translate any synthetically generated image into a

“real” image while preserving the perfect (and inexpensive)

ground truth annotation. Throughout the rest of the paper

we denote images as “real” (in quotes), or GANerated, when

we refer to synthetic images after they have been processed

by our translation network such that they follow the same

statistical distribution as real-world images.

Finally, using annotated RGB images produced by our

GAN, we train a CNN that jointly regresses image-space 2D

and root-relative 3D hand joint positions. While the skeletal

hand model in combination with the 2D predictions are suf-

ficient to estimate the global translation of the hand, the rel-

ative 3D positions resolve the inherent ambiguities in global

rotation and articulation which occur in the 2D positions. In

summary, our main contributions are:

• The first real-time hand tracking system that tracks global

3D joint positions from unconstrained monocular RGB-

only images.

• A novel geometrically consistent GAN that performs

image-to-image translation while preserving poses dur-

ing translation.

• Based on this network, we are able to enhance synthetic

hand image datasets such that the statistical distribution

resembles real-world hand images.

• A new RGB dataset with annotated 3D hand joint po-

sitions. We overcome existing datasets in terms of size

(>260k frames), image fidelity, and annotation precision.

2. Related Work

Our goal is to track hand pose from unconstrained

monocular RGB video streams at real-time framerates. This

is a challenging problem due the large pose space, occlu-

sions due to objects, depth ambiguity, appearance variation

due to lighting and skin tone, and camera viewpoint varia-

tion. While glove-based solutions would address some of

these challenges [57], they are cumbersome to wear. Thus,

in the following we restrict our discussion to markerless

camera-based methods that try to tackle these challenges.

Multi-view methods: The use of multiple RGB cam-

eras considerably alleviates occlusions during hand motion

and interaction. Wang et al. [56] demonstrated hand track-

ing with two cameras using a discriminative approach to

quickly find the closest pose in a database. Oikonomidis

et al. [23] showed tracking of both the hand and a manip-

ulated object using 8 calibrated cameras in a studio setup.

Ballan et al. [1] also used 8 synchronized RGB cameras to

estimate pose with added input from discriminatively de-

tected points on the fingers. Sridhar et al. [41, 42] used

5 RGB cameras and an additional depth sensor to demon-

strate real-time hand pose estimation. Panteleris and Argy-

ros [24] propose using a short-baseline stereo camera for

hand pose estimation without the need for a disparity map.

All of the above approaches utilize multiple calibrated cam-

eras, making it hard to setup and operate on general hand

motions in unconstrained scenes (e.g. community videos).

More recently, Simon et al. [36] proposed a method to gen-

erate large amounts of 2D and 3D hand pose data by us-

ing a panoptic camera setup which restricts natural motion

and appearance variation. They also leverage their data for

2D hand pose estimation but cannot estimate 3D pose in

monocular RGB videos. Our contributions address both

data variation for general scenes and the difficult 3D pose

estimation problem.

Monocular methods: Monocular methods for 3D hand

pose estimation are preferable because they can be used for

many applications without a setup overhead. The avail-

ability of inexpensive consumer depth sensors has lead to

extensive research in using them for hand pose estimation.

Hamer et al. [10] proposed one of the first generative meth-

ods to use monocular RGB-D data for hand tracking, even

under partial occlusions. As such methods often suffer from

issues due to local optima, a learning-based discriminative

method was proposed by Keskin et al. [15]. Numerous

follow-up works have been proposed to improve the gen-

erative component [44, 46, 51, 52], and the learning-based

discriminator [58, 16, 45, 49, 55, 7, 37, 22, 61, 5, 4, 29].

Hybrid methods that combine the best of both generative

and discriminative methods show the best performance on

benchmark datasets [47, 39, 40, 20, 59].

Despite all the above-mentioned progress in monocular

RGB-D or depth-based hand pose estimation, it is impor-

tant to notice that these devices do not work in all scenes,

e.g. outdoors due to interference with sunlight, and have

higher power consumption. Furthermore, 3D hand pose es-

timation in unconstrained RGB videos would enable us to

handle community videos, as shown in Figure 1. Some of

the first methods for this problem [12, 43, 30] did not pro-

duce metrically accurate 3D pose as they only fetched the
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Figure 2: Pipeline of our real-time system for monocular RGB hand tracking in 3D.

nearest 3D neighbor for a given input or assume that the z-

coordinate is fixed. Zimmermann and Brox [63] proposed

a learning-based method to address this problem. However,

their 3D joint predictions are relative to a canonical frame,

i.e. the absolute coordinates are unknown, and it is not ro-

bust to occlusions by objects. Furthermore, their method is

not able to distinguish 3D poses with the same 2D joint po-

sition projection since their 3D predictions are merely based

on the abstract 2D heatmaps and do not directly take the

image into account. In contrast, our work addresses these

limitations by jointly learning 2D and 3D joint positions

from image evidence, so that we are able to correctly esti-

mate poses with ambiguous 2D joint positions. In addition,

our skeleton fitting framework combines a prior hand model

with these predictions to obtain global 3D coordinates.

Training of learning-based methods: One of the chal-

lenges in using learning-based models for hand pose estima-

tion is the difficulty of obtaining annotated data with suffi-

cient real-world variations. For depth-based hand pose esti-

mation, multiple training datasets have been proposed that

leverage generative model fitting to obtain ground truth an-

notations [49, 39] or to sample pose space better [21]. A

multi-view bootstrapping approach was proposed by Simon

et al. [36]. However, such outside-in capture setups could

still suffer from occlusions due to objects being manipu-

lated by the hand. Synthetic data is promising for obtaining

perfect ground truth, but there exists a domain gap when

models trained on this data are applied to real input [20].

Techniques like domain adaptation [6, 50, 25] aim to

bridge the gap between real and synthetic data by learn-

ing features that are invariant to the underlying differences.

Other techniques use real–synthetic image pairs [13, 32, 3]

to train networks that can generate images that contain

many features of real images. Because it is hard to obtain

real–synthetic image pairs, Shrivastava et al. [35] recently

proposed a synthetic-to-real refinement network requiring

only unpaired examples. However, the extent of refinement

is limited due to pixel-wise similarity constraints to the in-

put. In contrast, the unpaired image-to-image translation

work of Zhu et al. [62] relaxes these constraints to finding a

bijection between the two domains. We build upon [62] to

enable richer refinement and introduce a geometric consis-

tency constraint to ensure valid annotation transfer. With-

out the need for corresponding real–synthetic image pairs,

we can generate images of hands that contain many of the

features found in real datasets.

3. Hand Tracking System

The main goal of this paper is to present a real-time

system for monocular RGB-only hand tracking in 3D. The

overall system is outlined in Fig. 2. Given a live monocular

RGB-only video stream we use a CNN hand joint regressor,

the RegNet, to predict 2D joint heatmaps and 3D joint po-

sitions (Sec. 3.2). The RegNet is trained with images that

are generated by a novel image-to-image translation net-

work, the GeoConGAN, (Sec. 3.1) that enriches synthetic

hand images. The output images of the GeoConGAN—the

GANerated images—are better suited to train a CNN that

will work on real imagery. After joint regression, we fit a

kinematic skeleton to both the 2D and 3D predictions by

minimizing our fitting energy (Sec. 3.3), which has several

key advantages for achieving a robust 3D hand pose track-

ing: it enforces biomechanical plausibility; we can retrieve

the absolute 3D positions; and furthermore we are able to

impose temporal stability across multiple frames.

3.1. Generation of Training Data

Since the annotation of 3D joint positions in hundreds

of real hand images is infeasible, synthetically generated

images are commonly used. While the main advantage of

synthetic images is that the ground truth 3D joint positions

are known, an important shortcoming is that they usually

lack realism. Such discrepancy between real and synthetic

images limits the generalization ability of a CNN trained

only on the latter. In order to account for this disparity,

we propose to use an image-to-image translation network,

the GeoConGAN, with the objective to translate synthetic to

real images. Most importantly, to train this network we use

unpaired real and synthetic images, as will be described in

the following. Note that for both the real and the synthetic

data we use only foreground-segmented images that contain

a hand on white background, which facilitates training and

focuses the network capacity on the hand region.

Real hand image acquisition: To acquire our dataset

of real images we used a green-screen setup to capture hand

images with varying poses and camera extrinsics from 7 dif-
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Figure 3: Network architecture of our GeoConGAN. The trainable part comprises the real2synth and the synth2real compo-

nents, where we show both components twice for visualization purposes. The loss functions are shown in black, images from

our database in green boxes, images generated by the networks in blue boxes, and the existing SilNet in orange boxes.

ferent subjects with different skin tones and hand shapes. In

total, we captured 28,903 real hand images using a desktop

webcam with image resolution 640× 480.

Synthetic hand image generation: Our synthetic hand

image dataset is a combination of the SynthHands dataset

[20] that contains hand images from an egocentric view-

point, with our own renderings of hand images from vari-

ous third-person viewpoints. In order to generate the lat-

ter, we used the standard strategy in state-of-the-art datasets

[20, 63], where the hand motion, obtained either via a hand

tracker or a hand animation platform, is re-targeted to a

kinematic 3D hand model.

Geometrically consistent CycleGAN (GeoConGAN):

While the above procedure allows to generate a large

amount of synthetic training images with diverse hand pose

configurations, training a hand joint regression network

based on synthetic images alone has the strong disadvan-

tage that the so-trained network has limited generalization

to real images, as we will demonstrate in Sec. 4.1

To tackle this problem, we train a network that trans-

lates synthetic images to “real” (or GANerated) images.

Our translation network is based on CycleGAN [62], which

uses adversarial discriminators [9] to simultaneously learn

cycle-consistent forward and backward mappings. Cycle-

consistency means that the composition of both mappings

(in either direction) is the identity mapping. In our case we

learn mappings from synthetic to real images (synth2real),

and from real to synthetic images (real2synth). In contrast

to many existing image-to-image or style transfer networks

[13, 32], CycleGAN has the advantage that it does not re-

quire paired images, i.e. there must not exist a real image

counterpart for a given synthetic image, which is crucial for

our purpose due to the unavailability of such pairs.

The architecture of this GeoConGAN is illustrated in

Synthetic CycleGAN GANerated Synthetic CycleGAN GANerated

Figure 4: Our GeoConGAN translates from synthetic to real

images by using an additional geometric consistency loss.

Fig. 3. The input to this network are (cropped) synthetic

and real images of the hand on a white background in con-

junction with their respective silhouettes, i.e. foreground

segmentation masks. In its core, The GeoConGAN re-

sembles CycleGAN [62] with its discriminator and cycle-

consistency loss, as well as the two trainable translators

synth2real and real2synth. However, unlike CycleGAN,

we incorporate an additional geometric consistency loss

(based on cross-entropy) that ensures that the real2synth

and synth2real components produce images that maintain

the hand pose during image translation. Enforcing consis-

tent hand poses is of utmost importance in order to ensure

that the ground truth joint locations of the synthetic images

are also valid for the “real” images produced by synth2real.

Fig. 4 shows the benefits of adding this new loss term.

In order to extract the silhouettes of the images that are

produced by both real2synth and synth2real (blue boxes in

Fig. 3), we train a binary classification network, the SilNet,

based on a simple UNet [31] that has three 2-strided con-

volutions and three deconvolutions. Note that this is a rela-

tively easy task as the images have white background. We

chose a differentiable network over naı̈ve thresholding to

make the training of GeoConGAN more well-behaved. Our

SilNet is trained beforehand on a small disjoint subset of the

data and is fixed while training synth2real and real2synth.

Details can be found in the supplementary document.
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Figure 6: Architecture of RegNet. While only ResNet and

conv are trainable, errors are still back-propagated through

our ProjLayer. Input data is shown in green, data generated

by the network in blue, and the loss is shown in black.

Data augmentation: Once the GeoConGAN is

trained, we feed all synthetically generated images into the

synth2real component and obtain the set of “real” images

that have associated ground truth 3D joint locations. By

using the background masks from the original synthetic im-

ages, we perform background augmentation by composit-

ing GANerated images (foreground) with random images

(background) [53, 19, 28]. Similarly, we also perform aug-

mentation with a randomly textured object by leveraging

the object masks produced when rendering the synthetic

sequences [20]. Training on images without background

or objects and hence employing data augmentation as post

processing significantly eases the task for the GeoConGAN.

Fig. 5 shows some GANerated images.

3.2. Hand Joints Regression

In order to regress the hand pose from a (cropped) RGB

image of the hand, we train a CNN, the RegNet, that pre-

dicts 2D and 3D positions of 21 hand joints. The 2D joint

positions are represented as heatmaps in image space, and

the 3D positions are represented as 3D coordinates relative

to the root joint. We have found that regressing both 2D

and 3D joints are complementary to each other, as the 2D

heatmaps are able to represent uncertainties, whereas the

3D positions resolve the depth ambiguities.

The RegNet, shown in Fig. 6, is based on a residual net-

work consisting of 10 residual blocks that is derived from

the ResNet50 architecture [11], as done in [20]. Addition-

ally, we incorporate a (differentiable) refinement module

based on a projection layer (ProjLayer) to better coalesce

the 2D and 3D predictions. The idea of the ProjLayer is to

perform an orthographic projection of (preliminary) inter-

mediate 3D predictions, from which 2D Gaussian heatmaps

are created (within the layer). These heatmaps are then

leveraged in the remaining part of the network (conv) to ob-

tain the final 2D and 3D predictions. In Fig. 7a we show

that this leads to improved results.

The training is based on a mixture of GANerated

(Sec. 3.1) and synthetic images, in conjunction with cor-

responding 3D ground truth joint positions. The training set

contains ≈ 440, 000 samples in total out of which 60% are

GANerated. We empirically found that the performance on

real test data does not further improve by increasing this

percentage. We train the RegNet with relative 3D joint

positions, which we compute by normalizing the absolute

3D ground truth joint positions such that the middle finger

metacarpophalangeal (MCP) joint is at the origin and the

distance between the wrist joint and the middle MCP joint

is 1. Details can be found in the supplementary document.

During test time, i.e. for hand tracking, the input to the

RegNet is a cropped RGB image, where the (square) bound-

ing box is derived from the 2D detections of the previous

frame. In the first frame, the square bounding box is lo-

cated at the center of the image, with size equal to the input

image height. Also, we filter the output of RegNet with the

1e filter [2] to obtain temporally smoother predictions.

3.3. Kinematic Skeleton Fitting

After obtaining the 2D joint predictions in the form of

heatmaps in image space, and the 3D joint coordinates rel-

ative to the root joint, we fit a kinematic skeleton model

to this data. This ensures an anatomically plausible hand

pose, while at the same time allowing to retrieve the ab-

solute hand pose, as we will describe below. Moreover,

when processing a sequence of images, i.e. performing hand

tracking, we can additionally impose temporal smoothness.

Kinematic Hand Model: Our kinematic hand model is

illustrated as Skeleton Fitting block in Fig. 2. The model

comprises one root joint (the wrist) and 20 finger joints, re-

sulting in a total number of 21 joints. Note, that this num-

ber includes the finger tips as joints without any degree-of-

freedom. Let t ∈ R
3 and R ∈ SO(3) (for convenience

represented in Euler angles) be the global position and rota-

tion of the root joint, and θ ∈ R
20 be the hand articulation

angles of the 15 finger joints with one or two degrees-of-

freedom. We stack all parameters into Θ = (t,R, θ). By

M(Θ) ∈ R
J×3 we denote the absolute 3D positions of all

J=21 hand joints (including the root joint and finger tips),

where we use Mj(Θ) ∈ R
3 to denote the position of the

j-th joint. In order to compute the position for non-root

joints, a traversal of the kinematic tree is conducted. Note

that we take the camera coordinate system as global coor-

dinate frame. To account for bone length variability across

different users, we perform a per-user skeleton adaptation.

The user-specific bone lengths are obtained by averaging



relative bone lengths of the 2D prediction over 30 frames

while the users hold their hand parallel to the camera im-

age plane. Up to a single factor due to the inherent scale

ambiguity in RGB data, we can determine global 3D results

which is important for many applications and not supported

by previous work [63]. In addition, we obtain metrically ac-

curate 3D results when provided with the metric length of a

single bone. For model fitting, we minimize the energy

E(Θ) = E2D(Θ)+E3D(Θ)+Elimits(Θ)+Etemp(Θ) , (1)

where the individual energy terms are described below.

2D Fitting Term: The purpose of E2D is to minimize

the distance between the hand joint position projected onto

the image plane and the heatmap maxima. It is given by

E2D(Θ) =
∑

j

ωj‖Π(Mj(Θ)))− uj‖
2
2 , (2)

where uj ∈ R
2 denotes the heatmap maxima of the j-th

joint, ωj > 0 is a scalar confidence weight derived from the

heatmap, and Π : R3 7→ R
2 is the projection from 3D space

to 2D image plane, which is based on the camera intrinsics.

Note that this 2D term is essential in order to retrieve abso-

lute 3D positions since the 3D fitting term E3D takes only

root-relative articulation into account, as described next.

3D Fitting Term: The term E3D has the purpose to ob-

tain a good hand articulation by using the predicted rela-

tive 3D joint positions. Moreover, this term resolves depth

ambiguities that are present when using 2D joint positions

only. We define E3D as

E3D(Θ) =
∑

j

‖(Mj(Θ)−Mroot(Θ))− zj‖
2
2 . (3)

The variable zj ∈ R
3 is the user-specific position of the j-th

joint relative to the root joint, which is computed from the

output of the RegNet, xj , as

zj = zp(j) +
‖Mj(Θ)−Mp(j)(Θ)‖2

‖xj − xp(j)‖2
(xj − xp(j)) , (4)

where p(j) is the parent of joint j and we set zroot = 0 ∈
R

3. The idea of using user-specific positions is to avoid

poor local minima caused by bone length inconsistencies

between the hand model and the 3D predictions.

Joint Angle Constraints: The term Elimits penalizes

anatomically implausible hand articulations by enforcing

that joints do not bend too far. Mathematically, we define

Elimits(θ) = ‖max(
[

0, θ−θmax, θmin−θ
]

)‖22 , (5)

where θmax, θmin ∈ R
20 are the upper and lower joint angle

limits for the degrees-of-freedom of the non-root joints, and

max : R20×3 7→ R
20 computes the row-wise maximum.

Temporal Smoothness: The term Etemp penalizes devi-

ations from constant velocity in Θ. We formulate

Etemp(Θ) = ‖(∇Θprev −∇Θ)‖22 , (6)

where the gradients of the pose parameters Θ are deter-

mined using finite (backward) differences.

Optimization: In order to minimize the energy in (1)

we use a gradient-descent strategy. For the first frame, θ

and t are initialized to represent a flat hand that is centered

in the image and 45cm away from the camera plane. For

the remaining frames we use the translation and articulation

parameters t and θ from the previous frame as initialization.

In our experiments we have found that fast global hand rota-

tions may lead to a poor optimization result corresponding

to a local minimum in the non-convex energy landscape (1).

In order to deal with this problem, for the global rotation R

we do not rely on the previous value R
prev, but instead ini-

tialize it based on the relative 3D joint predictions. Specif-

ically, we make use of the observation that in the human

hand the root joint and its four direct children joints of the

non-thumb fingers (the respective MCP joints) are (approx-

imately) rigid (cf. Fig. 2, Skeleton Fitting block). Thus, to

find the global rotation R we solve the problem

min
R∈SO(3)

‖RZ̄ − Z̃‖2F , (7)

where Z̄ contains (fixed) direction vectors derived from the

hand model, and Z̃ contains the corresponding direction

vectors that are derived from the current RegNet predictions.

Both have the form Z =
[

yj1 , yj2 , yj3 , yj4 , n
]

∈ R
3×5,

where the yjk = 1
‖xjk

−xroot‖
(xjk−xroot) ∈ R

3 are (normal-

ized) vectors that point from the root joint to the respective

non-thumb MCP joints j1, . . . , j4, and n = yj1 × yj4 is the

(approximate) normal vector of the “palm-plane”. To obtain

Z̄ we compute the yj based on the xj of the 3D model points

in world space, which is done only once for a skeleton at the

beginning of the tracking when the global rotation of the

model is identity. To obtain Z̃ in each frame, the xj are set

to the RegNet predictions for computing the yj . While prob-

lem (7) is non-convex, it still admits the efficient computa-

tion of a global minimum as it is an instance of the Orthog-

onal Procrustes Problem [33, 48]: for UΣV T being the sin-

gular value decomposition of Z̃Z̄T ∈ R
3×3, the global op-

timum of (7) is given by R = U diag(1, 1, det(UV T ))V T .

4. Experiments

We quantitatively and qualitatively evaluate our method

and compare our results with other state-of-the-art methods

on a variety of publicly available datasets. For that, we use

the Percentage of Correct Keypoints (PCK) score, a popular

criterion to evaluate pose estimation accuracy. PCK defines

a candidate keypoint to be correct if it falls within a circle

(2D) or sphere (3D) of given radius around the ground truth.
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Figure 7: Quantitative evaluation. (a) Ablative study on different training options. (b), (c) 3D and 2D PCK comparison with

state-of-the-art methods on publicly available datasets.

4.1. Quantitative Evaluation

Ablative study: In Fig. 7a we compare the accuracy

when training our joint regressor RegNet with different

types of training data. Specifically, we compare using syn-

thetic images only, synthetic images plus color augmenta-

tion, and synthetic images in combination with GANerated

images, where for the latter we also considered addition-

ally using the ProjLayer in RegNet. For color augmentation,

we employed gamma correction with random γ ∈ [0.25, 2]
sampled uniformly. While we evaluated the RegNet on the

entire Stereo dataset [60] comprising 12 sequences, we did

not train on any frame of the dataset for this test. We show

that training on purely synthetic data leads to poor accuracy

(3D PCK@50mm ≈ 0.55). While color augmentation on

synthetic images improves the results, our GANerated im-

ages significantly outperform standard augmentation tech-

niques, achieving a 3D PCK@50mm ≈ 0.80. This test val-

idates the argument for using GANerated images.

Comparison to state-of-the-art: Fig. 7b evaluates our

detection accuracy on the Stereo dataset, and compares it to

existing methods [60, 63]. We followed the same evaluation

protocol used in [63], i.e. we train on 10 sequences and test

it on the other 2. Furthermore, [63] align their 3D predic-

tion to the ground truth wrist which we also do for fairness.

Our method outperforms all existing methods. Addition-

ally, we test our approach without training on any sequence

of the Stereo dataset, and demonstrate that we still outper-

form some of the existing works (green line in Fig. 7b). This

demonstrates the generalization of our approach.

Figure 7c shows the 2D PCK, in pixels, on the Dex-

ter+Object [40] and EgoDexter [20] datasets. We sig-

nificantly outperform Zimmerman and Brox (Z&B) [63],

which fails under difficult occlusions. Note that we can-

not report 3D PCK since [63] only outputs root-relative 3D,

and these datasets do not have root joint annotations.

4.2. Qualitative Evaluation

We qualitatively evaluate our method on three different

video sources: publicly available datasets, real-time cap-

ture, and community (or vintage) video (i.e. YouTube).

Fig. 8 presents qualitative results on three datasets,

Stereo [60], Dexter+Object [40] and EgoDexter [20], for

both Z&B [63] and our method. We are able to provide ro-

bust tracking of the hand even under severe occlusions, and

significantly improve over [63] in these cases. While we

already outperformed Z&B [63] in our quantitative evalua-

tion (Fig. 7c), we emphasize that this is not the full picture,

since the datasets from [40, 20] only provide annotations

for visible finger tips due to the manual annotation process.

Thus, the error of occluded joints is not at all reflected in the

quantitative analysis. Since our method is explicitly trained

to deal with occlusion—in contrast to [63]—our qualitative

analysis in the supplementary video and in columns 3–6 of

Fig. 8 highlights our superiority in such scenarios.

We show real-time tracking results in Fig. 9 and in the

supplementary video. This sequence was tracked live with

a regular desktop webcam in an office environment. Note

how our method accurately recovers the full 3D articulated

pose of the hand. In Fig. 1 we demonstrate that our method

is also compatible with community or vintage RGB video.

In particular, we show 3D hand tracking in YouTube videos,

which demonstrates the generalization of our method.

5. Limitations & Discussion

One difficult scenario for our method is when the back-

ground has similar appearance as the hand, as our RegNet

struggles to obtain good predictions and thus tracking be-

comes unstable. This can be addressed by using an explicit

segmenter, similar to Zimmermann and Brox [63]. More-

over, when multiple hands are close in the input image, de-
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Figure 8: We compare our results with Zimmermann and Brox [63] on three different datasets. Our method is more robust in

cluttered scenes and it even correctly retrieves the hand articulation when fingers are hidden behind objects.

Figure 9: Representative frames of a live sequence captured with an off-the-shelf RGB webcam and tracked in real-time. Our

method successfully recovers the global 3D positions of the hand joints. Here, for each input frame, we show the 3D tracked

result projected to the camera plane, and the recovered 3D articulated hand skeleton visualized from a different viewpoint.

tections may be unreliable. While our approach can han-

dle sufficiently separate hands—due to our bounding box

tracker—tracking of interacting hands, or hands of multiple

persons, is an interesting direction for follow-up work.

The 3D tracking of hands in purely 2D images is an ex-

tremely challenging problem. While our real-time method

for 3D hand tracking outperforms state-of-the-art RGB-

only methods, there is still an accuracy gap between our

results and existing RGB-D methods (mean error of ≈5cm

for our proposed RGB approach vs. ≈2cm for the RGB-

D method of [40] on their dataset Dexter+Object). Nev-

ertheless, we believe that our method is an important step

towards democratizing RGB-only 3D hand tracking.

6. Conclusion

Most existing works either consider 2D hand tracking

from monocular RGB, or they use additional inputs, such

as depth images or multi-view RGB, to track the hand mo-

tion in 3D. While the recent method by Zimmermann and

Brox [63] tackles monocular 3D hand tracking from RGB

images, our proposed approach addresses the same prob-

lem but goes one step ahead with regards to several dimen-

sions: our method obtains the absolute 3D hand pose by

kinematic model fitting, is more robust to occlusions, and

generalizes better due to enrichment of our synthetic data

such that it resembles the distribution of real hand images.

Our experimental evaluation demonstrates these benefits as

our method significantly outperforms [63], particularly in

difficult occlusion scenarios. In order to further encourage

future work on monocular 3D RGB hand tracking we make

our dataset available to the research community.
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hand-tracking for computer aided design. In Proc. of UIST,

pages 549–558. ACM, 2011.
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