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Abstract

We introduce a point process model for inter-gang violence driven by retaliatory be-
havior. For this purpose we use a coupled system of state-dependent jump stochastic
differential equations to model the conditional intensities of the directed network of
gang rivalries. The system admits an exact simulation strategy based upon Poisson
thinning. The model produces a wide variety of transient or stationary weighted
network configurations and in certain parameter regimes rivalry interdependency is
shown to have surprising consequences for policing strategies. We investigate the
stability of gang rivalries in Los Angeles by fitting the model to gang violence data
provided by the Hollenbeck district of the Los Angeles Police Department.

Key words: point process, network, jump stochastic differential equation

1 Introduction

The behavioral basis of clustering in crime data has recently been investigated
using reaction-diffusion PDEs [6,10,12–14], agent based models [2,6,13], and
point processes [2,7,15]. In the case of burglary, an initial crime has been
shown to increase the likelihood of more crime at the same location, as well
as neighboring houses within a few hundred meters [3,5,7,15]. In [13] this
phenomenon is modeled using the coupled PDE system,

∂A

∂t
= D∇2A− A+ A0 + ρA, (1)

∂ρ

∂t
= ~∇ ·

[
~∇ρ− 2ρ

A
~∇A

]
− ρA+ A− A0 , (2)
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where A denotes target attractiveness and ρ denotes criminal density. Here
criminals diffuse in their urban environment, biased towards areas of high
attractiveness. As they commit crimes the local attractiveness is increased
and macroscopic crime “hotspots” can form, where a majority of the total
crime is localized in a few small areas. The stability of crime hotspots implies
important consequences for policing strategies [6,10,14], as some hotspots can
be suppressed while others can only be relocated.

In the context of gang violence, “hotspots” can form within the inter-gang
rivalry network, localized within a small subset of the rivalry links between
gangs. In [2], temporal clustering in inter-gang violence data from the Hollen-
beck district in Los Angeles is modeled using self-exciting point processes. In
particular, a Hawkes Process with conditional intensity,

λ(t) = µ+ θ
∑
t>ti

ωe−ω(t−ti), (3)

is used to model the increase in the rate of crime between gangs due to re-
taliation. Here crimes occur according to a Poisson process with intensity µ,
representing attacks that occur by random chance. The overall rate λ is in-
creased as each event ti occurs, reflecting the propensity of gangs to respond
to previous attacks. This leads to clusters of gang violence, with intermit-
tent periods of inactivity due to the exponential decay of the second term
in (3). Similar models are used to explain clustering patterns of earthquake
aftershocks [8].

It is our goal here to capture excitation and inhibition in gang rivalry networks
within the point process modeling framework. For example, if two gangs are
focused on retaliating against each other, they may be significantly less likely
to attack a third gang in the short term. When the ability of a particular gang
to attack is suppressed through police intervention, new rivalries may form
between the former rivals of the disrupted gang. To capture these history
dependent relationships in gang rivalry networks we propose a coupled system
of state-dependent jump stochastic differential equations in Section 2. The
solution to the system defines the conditional intensity of a marked point
process, characterized by events between two gangs exciting that particular
rivalry, while inhibiting others. In Section 3, we outline an exact simulation
strategy for the model. We then present numerical examples of the variety
of transient and stationary rivalry networks that can form in Section 4. We
show that in certain parameter regimes rivalry interdependency can lead to
surprising consequences for policing strategies. We also investigate the stability
of gang rivalries in Los Angeles by fitting the model to gang violence data
provided by the Hollenbeck district of the Los Angeles Police Department.
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2 Description of the Model

We consider a network of M gangs labeled by i = 1, 2, ...,M and model the
distribution of marked event times when gang i attacks gang j with a counting
measure Nij(t). Letting tkij denote the time of the kth event where i attacks j,
the counting measure can be interpreted through delta spikes located at the
marked event times,

dNij(t) =
∞∑
k=1

δ(t− tkij)dt (4)

or through its right continuous conditional intensity [1] λij(t), the rate of
events when i attacks j (analogous to the rate of a Poisson process). The
dependence on time reflects the fact that the intensity of the rivalry will be
changing as events occur. We assume that the rivalry intensity can be written
as a sum,

λij(t) = µ+ gij(t). (5)

Here µ (independent of time) represents the baseline rate of attacks from gang
i towards gang j, as some gang crimes occur by random encounters between
gangs. The next term, gij(t), represents the change in rivalry intensity due
to past crimes where gang j has attacked gang i (excitation) or gang k has
attacked gang i (inhibition). The dynamic portion of the overall intensity
evolves according to the following nonlinear stochastic differential equation,

dgij(t) = −ωgij(t)dt− χgij(t−)
∑
k 6=j,i

dNki(t) + f(λij(t−))dNji(t), (6)

where gij(t−) = lim
s↑t

gij(s). In this equation the first term represents the decay

in rivalry strength back to the baseline rate in the absence of violence, as
gangs eventually forget past attacks. The second term represents the decrease
in the likelihood of gang i attacking gang j when gang k attacks i. The last
term represents the increase in the rate of i attacking j after j attacks i (in
other words i wants to retaliate when attacked by j). For the state-dependent
response to attacks we consider the function f(x) = θe−νx, where for low
values of the intensity the response is greater than for high values, as we
assume gangs have finite resources and thus a bound on the rate, λij, at which
they can attack.
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3 Simulation Methodology

In this section we describe how the solution to Equation (6) can be sampled
exactly, up to the error due to round off and uniform random number genera-
tion. Because the intensity in (6) is non-increasing in between events, Poisson
thinning can be used to compute the event times [9]. Since the intensity decays
exponentially in between events, no numerical discretization is necessary. The
overall simulation strategy is as follows. Given the solution λij(t) to (6) and
event times t1, ..., tn < s have been computed up to time s:

(1) Set β =
∑
i 6=j λij(s).

(2) Sample candidate event time t̃ according to a Poisson process with pa-
rameter β: t̃ = s− log(u)/β where u ∼ U [0, 1].

(3) Compute λij(t̃−) = µ + gij(s) exp(−ω(t̃ − s)). Accept event with proba-
bility

∑
i 6=j λij(t̃−)/β and go to (4) otherwise set s = t̃, λij(s) = λij(t̃−),

and go to (1).

(4) Set s, tn+1 = t̃. Choose directed rivalry l1 → l2 as the mark for event time
tn+1 with probability λl1l2(s−)/

∑
i 6=j λij(s−).

(5) Update intensities:
λij(s) = λij(s−)− χgij(s−)

∑
k 6=j,i 1{k=l1,i=l2} + f(λij(s−))1{j=l1,i=l2}

where 1 denotes the indicator function. Go to (1).

We note that for models where the differential equation is not analytically inte-
grable, or when other sources of stochasticity are included through a Brownian
force, thinning can still be used to simulate the process. In this case a stan-
dard numerical method for the approximation of deterministic or stochastic
differential equations is used to evolve the state variable between events [4].

4 Results

4.1 Network Classification

The solutions to Equation (6) exhibit either transient or stationary networks
depending on the parameter regime. Transient rivalry networks are character-
ized by either short bursts of event clusters between gang pairs that quickly
subside and are replaced by new rivalries (Figure 1, top left) or by event clus-
ters that are longer in duration and appear stable over intermediate timescales
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Fig. 1. Network configurations for 5 gangs. Top Left: Transient gang rivalries with
µ = .1, ω = .5, χ = .1, θ = .8, ν = .05. Top Right: Transient gang rivalries
with µ = .1, ω = .1, χ = .1, θ = .8, ν = .05. Bottom Left: Stationary gang
rivalries with µ = .05, ω = .1, χ = .15, θ = .5, ν = .02 characterized by two sets
of two gangs rivalries corresponding to the highest intensity and an intermediate
intensity corresponding to attacks between the first gang and each of the other four
gangs. The first gang attacks several times more than is attacked. Bottom Right:
Stationary gang rivalries with µ = .1, ω = .1, χ = .01, θ = .5, ν = .01 characterized
by one two gang rivalry (highest intensity) and one three gang rivalry (intermediate
intensity).

(Figure 1, top right). As χ is increased and ω, µ are decreased relative to θ, a
phase transition occurs and stationary rivalries form between subsets of two
or more gangs. For example, plotted in Figure 1 are two possible stationary
network configurations for 5 rival gangs. The first network (Figure 1, bottom
left) is characterized by four rivalry intensity levels, the highest corresponding
to two sets of two gang rivalries (between gangs 2 and 5, 3 and 4), the next
highest corresponding to gang 1 attacking each of gangs 2 through 5, the third
corresponding to gangs 2 through 5 attacking gang 1, and the lowest inten-
sity level, slightly above the baseline rate µ, corresponds to all other rivalries.
The second network (Figure 1, bottom right) is characterized by one set of
two gangs (1 and 5) with a high intensity level and one set of three gangs
(2 through 4) with an intermediate intensity level, where all other intensities
are close to the baseline rate. For certain parameter values more than one
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equilibrium state is possible, for example two sets of 3-gang rivalries or three
sets of 2-gang rivalries are possible network topologies in the case of a 6 gang
network. The variety of possible equilibrium configurations is due to the high
degree of nonlinearity in Equation (6).

4.2 Policing Strategies

Reducing gang violence is a high priority in many police departments in large
cities and proactive methods include directed patrols and gang injunctions.
The point process model introduced in Section 2 offers a platform on which
policing strategies can be tested and optimized for reducing overall violence. As
an example, we consider a 7 gang network of rivalries initially characterized by
one set of 3-gang rivalries and two sets of 2-gang rivalries. We first investigate
a policing strategy characterized by focusing all attention on gang 7, the gang
with the highest intensity of crime. We assume that through directed patrols or
injunctions all crime can be suppressed associated with this gang, i.e. λ7k = 0
for all k. In the top of Figure 2 we plot the results of such a strategy. Around
time 325 the directed patrols begin and initially the overall rate of crime is
reduced (top right). However, gang 6 disrupts the 3-gang set leading to the
formation of 3 stable 2-gang rivalries, which actually has a higher rate of
crime compared to the original network of 7 gangs. Thus this type of policing
strategy actually leads to more crime. A more dynamic strategy is displayed
in the bottom of Figure 2, where every seven time units the directed patrols
switch their focus to whichever gang currently is associated with the highest
intensity. The result of such a strategy is that all rivalries become transient
and the overall rate of crime is reduced (bottom right).

4.3 Hollenbeck Gang Rivalries

In the Hollenbeck district of Los Angeles, approximately 33 gangs reside in a
5km by 3km region. Some of the rivalries date back decades, while others are
more transient in nature. The complex rivalry network has been examined in
[2,11] and the degree of each node of the network ranges from a few to over 10
rivalry connections, where links can be defined either through surveys of gang
members and police officers or through violent crime data where the suspect
and victim gang are known (we use the latter in the analysis that follows).

Here we use Equation (6) to investigate the stability of gang rivalries in Hol-
lenbeck over the time period 1999 to 2002. The data set we consider consists of
349 Part one violent crimes committed over a 1044 day span between 1999 and
2002 by one of 33 gangs in Hollenbeck against another one of the 33 gangs.
Each event includes the time (in days past the start of the time window),
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Fig. 2. Top: Static policing strategy. 7 gang rivalry network intensity (left) and total
intensity (right) before and after suppression. Bottom: Dynamic policing strategy
for a different realization of the 7 gang network. Parameter values are µ = .1, ω = .1,
χ = .01, θ = .5, ν = .01

geocoded spatial location, suspected gang, and victim gang (in this study we
ignore the spatial information).

We fit Equation (6) using Maximum Likelihood Estimation, where the log-
likelihood function [1] is given by,

(µ̂, ω̂, χ̂, θ̂, ν̂) = argmax
(µ,ω,χ,θ,ν)

{∑
i 6=j

( Kij∑
k=1

log (λij(t
k
ij))−

T∫
0

λij(t)dt
)}
, (7)

and Kij is the total number of events in the data set where i attacked j. The
first term in the log-likelihood function leads to the selection of parameter
values for which more probability mass is placed at the event times and the
second term forces the intensity to (approximately) integrate to the total num-
ber of events in the data set. The negative log-likelihood function is minimized
using the built in Matlab routine ‘fminsearch’ and we use the homogeneous
initial condition λij(0) = 349/(33 · 32 · 1044) for the starting value of each
rivalry intensity.

Maximum Likelihood Estimation yields the parameter estimates µ̂ = .000124,
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Fig. 3. Top: Observed (left) and simulated (right) fitted conditional intensities for
the 33×32 directed gang rivalries in Hollenbeck over 1,000 days. Bottom: Simulated
conditional intensities of directed gang rivalries over 11,000 days.

ω̂ = .00491, χ̂ = .0164, θ̂ = .00356, and ν̂ = .0193. The baseline rate µ corre-
sponds to an approximate rate of 1 event per 10,000 days, thus an unprovoked
attack between any rivalry pair is a relatively rare event. However, the inten-
sity increases by a factor of (approx.) 30 after an initial attack, leading to
the formation of either transient or stationary hotspots in the rivalry network.
There is also a significant inhibitory effect through the rivalry network due to
occurrence of an attack, reflected in the estimate of χ.

In the top of Figure 3 we plot the fitted conditional intensity over 1,000 days
using the observed 349 events (top left) and simulated events (top right). The
point process is characterized by the majority of the 33× 32 directed rivalries
having intensities close to the baseline rate, though the strongest rivalries
reach a rate as high as .025 events per day. A simulation for a longer time
period, 11,000 days, is plotted in the bottom of Figure 3. Here we observe
that the estimated parameter values lead to transient rivalries similar to those
plotted in the top left of Figure 1. It is also interesting to note that maximum
of the intensity fluctuates between .01 and .03, and thus, according to the
model, the observed Hollenbeck rivalries were at a high point during 1999-
2002. These results indicate that crime hotspots in Hollenbeck are produced
by stochastic fluctuations, rather than by static rivalry relations.
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5 Conclusion

We developed a point process model for the simulation of gang rivalry net-
works, paying close attention to the network dynamics that emerge due to
excitation and inhibition. The model is capable of reproducing hotspots simi-
lar to those observed in gang violence data and is amenable to fast simulation
and parameter estimation. We illustrated how the model can be used to test
policing strategies before they are implemented in the field. This could be
important since the complex, nonlinear network of gang rivalries may respond
in counter-intuitive ways to a given strategy. By fitting the model to gang
violence data, we explored the stability of gang rivalries in Hollenbeck, Los
Angeles through numerical simulation. Our results indicate that rivalries be-
tween the 33 gangs in that district are transient as opposed to stationary.
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