Gap Filling as Exact Path Length Problem RECOMB 2015

Leena Salmela ${ }^{1}$ Kristoffer Sahlin ${ }^{2}$
Veli Mäkinen ${ }^{1} \quad$ Alexandru I. Tomescu ${ }^{1}$
${ }^{1}$ University of Helsinki
${ }^{2}$ KTH Royal Institute of Technology

April 12th, 2015

Gap filling

- Gap filling is the last phase in genome assembly
- Input: Scaffolds (=linearly ordered contigs) and reads
- Output: Scaffolds where gaps between contigs have been filled

Previous work

- Gap filling module in many popular assemblers:
- Allpaths-LG
- ABySS
- EULER
- ...
- Standalone gap filling tools:
- SOAPdenovo's GapCloser
- GapFiller (Boetzer \& Pirovano 2012)
- General idea:
- Identify reads potentially filling the gap
- Local assembly

Our contribution

- Problem formulation as Exact Path Length problem
- Gap Filling is NP-complete
- Pseudopolynomial algorithm for Gap Filling
- Implementation of the algorithm in a tool called Gap2Seq

Gap filling: Problem definition

Given

- an (overlap or de Bruijn) graph $G=(V, E)$ of the whole read set
- a cost function c : $E \mapsto \mathbb{Z}_{+}$
- two vertices s and t representing the flanks of the contigs
- estimate of the gap length $\left[d^{\prime}, d\right]$
find for all $x \in\left[d^{\prime}, d\right]$ the number of paths $P=v_{1}, v_{2}, \ldots, v_{k}$ such that

$$
\operatorname{cost}(P)=\sum_{i=1}^{k-1} c\left(v_{i}, v_{i+1}\right)=x
$$

Gap filling: Problem definition

Given

- an (overlap or de Bruijn) graph $G=(V, E)$ of the whole read set
- a cost function c : $E \mapsto \mathbb{Z}_{+}$
- two vertices s and t representing the flanks of the contigs
- estimate of the gap length $\left[d^{\prime}, d\right]$
find for all $x \in\left[d^{\prime}, d\right]$ the number of paths $P=v_{1}, v_{2}, \ldots, v_{k}$ such that

> NP-complete

$$
\sum_{i=1}
$$

Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in[0, d]$ define:

$$
a(v, \ell)=\text { number of } s-v \text { paths of cost } \ell
$$

Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in[0, d]$ define:

$$
a(v, \ell)=\text { number of } s-v \text { paths of cost } \ell
$$

Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in[0, d]$ define:

$$
a(v, \ell)=\text { number of } s-v \text { paths of cost } \ell
$$

- Recurrence: $a(v, \ell)=\sum_{u \in N^{-}(v)} a(u, \ell-c(u, v))$ where $\mathrm{N}^{-}(v)$ is the set of in-neighbors of v

Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in[0, d]$ define:

$$
a(v, \ell)=\text { number of } s-v \text { paths of } \operatorname{cost} \ell
$$

- Recurrence: $a(v, \ell)=\sum_{u \in N^{-}(v)} a(u, \ell-c(u, v))$ where $\mathrm{N}^{-}(v)$ is the set of in-neighbors of v

Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in[0, d]$ define:

$$
a(v, \ell)=\text { number of } s-v \text { paths of cost } \ell
$$

- Recurrence: $a(v, \ell)=\sum_{u \in N^{-}(v)} a(u, \ell-c(u, v))$ where $\mathrm{N}^{-}(v)$ is the set of in-neighbors of v

Dynamic programming algorithm

- For each $v \in V(G)$ and $\ell \in[0, d]$ define:

$$
a(v, \ell)=\text { number of } s-v \text { paths of cost } \ell
$$

- Recurrence: $a(v, \ell)=\sum_{u \in N^{-}(v)} a(u, \ell-c(u, v))$ where $\mathrm{N}^{-}(v)$ is the set of in-neiahbors of v
Pseudopolynomial algorithm running in $O(d m)$ time (d : length of gap, m : number of arcs)

Choosing the path

- If there are several paths:

1. Choose the one closest to $\left(d^{\prime}+d\right) / 2$
2. If several such paths, choose one at random.

- Backtracing in the DP matrix gives the path

Implementation: Gap2Seq

- Build a de Bruijn graph of the reads
- We use GATB for efficient implementation of the DBG
- Use a hash table to link reachable vertices to their DP table rows
- DP table rows are sparse
\Longrightarrow List only non-zero entries
- k-mers flanking gaps can have errors
\Longrightarrow Allow paths to start/end at up to e flanking k-mers
- Parallelisation on the scaffold level
- Limit the memory usage of the DP table
\Longrightarrow Abandon search on a gap if limit exceeded

Experimental results: S. aureus GAGE data

- Experiments run on all 8 GAGE assemblies.
- We show aggregates over all assemblies.

Experimental results: S. aureus GAGE data

- Experiments run on all 8 GAGE assemblies.
- We show aggregates over all assemblies.

Further work

- Scaling to larger genomes
- Improving runtime and memory usage
- Meet-in-the-middle: start the search from both flanks of the gap

Thanks!

Questions?

http://www.cs.helsinki.fi/u/lmsalmel/Gap2Seq/

