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Abstract

Gap junctions form channels between adjacent cells. The core proteins of these channels are the connexins. Regulation of gap junction

communication (GJC) can be modulated by connexin-associating proteins, such as regulatory protein phosphatases and protein kinases, of

which c-Src is the best-studied. Structural proteins, notably zona occludens-1 (ZO-1) and microtubules, have been found recently at gap

junctions. Along with the expansion of the list of connexin-associating proteins, reports have appeared that suggest that connexins might have

additional roles in addition to their channel function, such as transcriptional and cytoskeletal regulation. Here, gap junction interacting

proteins are reviewed and their function is addressed. The striking similarity of proteins present at the cytoplasmic face of tight junctions,

adherens junctions and gap junctions and their possible role in gene transcription and cytoskeletal anchorage is highlighted.
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1. Introduction

Desmosomes, tight junctions, adherens junctions and gap

junctions were originally identified by their morphological

appearance in electron microscopy (EM). During the last two

decades, the molecules that contribute to the structure,

function and regulation of cell–cell junctions are beginning

to be identified. Interestingly, evidence is accumulating that

cell–cell junctions might initiate signals that modulate gene

transcription and growth control. Identification of proteins

interacting with the junctional proteins is crucial for unrav-

elling possible additional roles of cell–cell contacts. Proteins

associated with desmosomes [1,2], tight junctions [3–5] and

adherens junctions [6,7] have been reviewed recently. The

current review summarizes proteins reported to interact at

gap junctions. The focus will be on the most widely

expressed and best-studied connexin originally identified in

heart: Connexin43 (Cx43). Strikingly, several of the proteins

identified at gap junctions had been localised at adherens

junctions and tight junctions years before. Shared character-

istic between the cell–cell junctions will be discussed.
0008-6363/$ - see front matter D 2004 European Society of Cardiology. Publishe
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2. The gap junction: only a channel?

2.1. Architecture of gap junctions

The pore size of gap junction channels allows diffusion

of molecules of less than f 1000 Da. One gap junction

channel consists of multimers of the four-transmembrane

core protein, the ‘connexin’, of which 20 members have

been identified in human [8]. Six connexins form one

connexon, which transverses the plasma membrane of one

cell and docks with a connexon of the neighboring cell,

thereby creating an extracellular gap (reviewed in Refs. [9–

12]). The three-dimensional channel structure for C-terminal

truncated Cx43 revealed that opposing connexons are stag-

gered by 30j and are tightly packed in the intercellular gap

[13,14]. Inhibition of gap junction communication (GJC)

might be achieved by a twist of the connexons, like in a

diaphragm (reviewed in Ref. [9]). Alternatively, the channel

might be blocked by other molecules or by the connexin tail,

the so-called ‘‘ball-and-chain’’ model [15].

The large number of connexin sub-types allows a fine-

tuned regulation of expression, gating, and channel pore

size. At the protein level, growth factors and second

messengers can regulate gating of gap junctions in a con-

nexin-specific manner. Selectivity of pore size and gap
d by Elsevier B.V. All rights reserved.
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junction regulation by growth factors are illustrated in the

retina model (Section 3.1).

2.2. Physiological importance of gap junctions

Numerous processes are driven by GJC, such as (i) rapid

transmission of action potentials in heart and in neuronal

tissue via so-called electrical synapses [16,17]. (ii) Diffusion

of metabolites and nutrients, such as nucleotides and glu-

cose [18], which depends on the channel type: Cx32

channels are more permeable to adenosine than Cx43-

channels. ATP, however, passes more readily through

Cx43 channels [19]. (iii) Diffusion of second messengers,

such as Ca2 +, inositol-trisphosphate (IP3) and cyclic nucleo-

tides [20] (reviewed in Ref. [10]) might be involved in

induction of apoptosis [21], gene transcription [22] and

growth control [23].

In Cx43 knock-out mice, deregulation of neural crest

cell migration during embryonic development results in

heart malformation (reviewed in Ref. [24]). Deregulation of

Cx43 has been studied in more molecular detail in the

cancer research area. The phenotype of certain transformed

cells can be reversed in a Cx43-dependent manner when

they are co-cultured with their non-transformed counter-

parts [25] (reviewed in Ref. [26]). This might involve

apoptotic signals that can be transferred between these cells

via gap junctions the so-called ‘‘bystander effect‘‘ [21].

Moreover, oncogenic v-Src has been shown to rapidly and

reversibly inhibit GJC [27] as is further described in

Section 3.3.1.

2.3. The Cx43-tail tale

Initially, all effects of connexins were attributed to direct

cell-to-cell diffusion. However, some of the connexin func-

tions seem to occur unrelated to channel function. Cx43 and

Cx32 mutants lacking the C-terminal tail expressed in

transformed cells restored GJC and inhibit proliferation.

The full-length proteins did induce GJC as well, but did

not reduce the growth rate [28]. Moreover, Cx43 has also

been shown to inhibit proliferation when GJC was blocked

by pharmacological inhibitors, or channel formation is

prevented [29]. In addition, Cx43 point-mutants that did

block GJC still reduced cell growth, and expression of the

C-terminal tail alone gave similar results (see below). A

Cx43 mutant that does not form gap junctions, since it is not

properly localized to the plasma membrane, has been shown

to suppress cell growth [30].

These studies raise the possibility that connexin C-

terminal tails, and that of Cx43 in particular, can modulate

gene expression via binding proteins. The overexpressed

Cx43CT localises to the nucleus [31] and does inhibit cell

growth [29,31]. So far, no evidence of an endogenous

cleavage of the tail has been reported, but the C-terminal

tail recently has been related to cell-cycle control. Cx43

overexpression can inhibit cell proliferation, accompanied
by the decreased stability of Skp2, a protein involved in

cell-cycle regulation. Inhibition of proliferation was found

with full-length Cx43, but no effect was seen when mutants

lacking the C-terminal tail were expressed [32]. These

studies suggest that Cx43 can modulate the cellular genetic

program via its C-terminal tail.
3. Connexin-interacting proteins

A complete understanding of connexin and gap junction

function can only be achieved when the proteins that are

present at gap junctions are identified. Several proteins

might be involved in connexin transport, gap junction

formation and gating, while others might be involved in

novel functions of gap junctions. When studying protein–

protein interactions at subcellular structures, the results of

co-immunoprecipitation or co-localisation alone should not

be interpreted as direct protein–protein interactions (see

also Table 1, Figs. 1 and 2).

3.1. Other connexins

Trivial but important: interactions between the different

types of connexins define channel characteristics. Combi-

nation of different connexins can result in formation of

homomeric and heteromeric connexons (reviewed in Refs.

[9,10]). Furthermore, the composition of two docking con-

nexons can be different. The differences in channel pore size

and regulation that can be achieved are impressively illus-

trated in the retina. Gap junctions in amacrine cells enable

diffusion of tracers of 286 and 442 Da between cells

(homologous coupling). However, when these cells are

coupled to cone bipolar cells that express another type of

connexin (heterologous coupling), only diffusion of the

286-Da tracer is found. Furthermore, homologous coupling

is sensitive to dopaminergic stimulation and rise in cAMP

levels, while heterologous coupling is affected by cGMP

and nitric oxide [33]. This model shows that differences in

connexin expression determine gating and channel size in a

complex manner.

3.2. Proteins identified at other cell–cell junctions

3.2.1. Zona occludens-1 protein

Zona occludens-1 protein (ZO-1) has originally been

identified at tight junctions and later at adherens junctions

(Section 4). Interaction of ZO-1 with multiple connexins is

now well characterized (Table 1). The first two reports

describing the Cx43-ZO-1 interaction showed that the

interaction occurs at gap junctions. However, sequence of

the Cx43 tail did not match the consensus sequence known

at that time for PDZ binding [34]. Yet, the interaction was

shown to be a classical juxtamembrane protein with PDZ-

motif/PDZ binding (Fig. 1) [35]. Removal of the C-terminal

isoleucine or extending the tail with different tags complete-



Table 1

Connexin-interacting proteins

Protein Methods aa connexin Partner References

Cx43

ZO-1 FWBa, Y2H, PD, IPb, IFb 379–382 – Ile PDZ2 [35,37,41,66,125]

v-Src PD, IP, P 247, 265 Tyr kinase [56–59]

265 Tyr-p SH2 [58,59]

274–283 PxxP SH3 [58,59]

c-Src PD, IP, P 265 Tyr kinase [36,63,65,66]

265 Tyr-p SH2 [36,63,65,66]

PKAc P 364, 365, 368, 369, 373 Ser kinase [75,76]

PKCs P, IPb, IFb 368, 372 Ser kinase [71–74,126]

PKG P 257 (rat) Ser kinase [77]

MAPK P 255, 279, 282 Ser kinase [127]

Cdc2 P 255 Ser kinase [85,86]

CK1 P, IP 325, 328, 330 Ser kinase [87]

RPTPA IPb 265c Tyr-p phosphatase [70]

h-Catenin IPb [49]

a-Catenin EMb [47]

Cadherin EMb [47]

p120ctn IFb [50]

NOV/CNN IF [108]

Caveolin PD, IP, IFb, CS [104]

a/h-Tubulin, MTs PD, IFb, EMb, CSa 234–262 K,G,V,R,P [41,97]

unknown 282–289 xPPxYxxO [128]

Cx32

Calmodulin IF [106]

Occludin EMb, IPb [53,54]

Claudin EMb, IPb [54]

Cx49

CK1 P, IP kinase [88,89]

Cx50

CK2 P 363 Ser kinase [90]

Caveolin associated connexins

Cx43, 32, 36, 46 CS [104]

ZO-1 interacting connexins

Cx43 FWBa, Y2H, PD, IPb, IFb C-terminal – Ile PDZ2 [35,37,41,66,125]

Cx45 Y2H, IP, IF C-terminal – Ile PDZ2 [38,39]

Cx46 PD, IP, IF C-terminal – Ile PDZ2 [129]

Cx50 PD C-terminal –Val PDZ2 [129]

Cx31.9 PD C-terminal – Ile PDZ2 [130]

Cx36 PD, IP, IF, EM C-terminal –Val PDZ1 [40]

Direct associations with ZO-1 and Src are well-established. Cx43 is a substrate of several other kinases, but direct interaction with most kinases has not been

found. Other interactions do warrant follow-up studies since they only just emerged, are less well documented, might be indirect or are found in overexpression

systems. See text for further nuances. Abbreviations: aa: amino acids, FWB: far Western blot, Y2H: yeast two-hybrid, PD: GST protein pull-down, IP:

immunoprecipitation, IF: immunofluorescence, EM: (immuno)-electron-microscopy, P: phosphorylation state, CS: in vitro co-sedimentation assay.
a Showing direct interaction.
b Includes experiments with endogenous proteins only, without inhibitors.
c Putative.
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ly abolished the binding (see also Ref. [36]). However, the

interaction between ZO-1 and Cx43 has also been demon-

strated using a C-terminal flag-tagged Cx43 to co-immuno-

precipitate ZO-1 [37]. The discrepancy in these findings

might be explained by the different cell-types that were used
(COS7 and HEK293 cells, respectively). The latter cell type

expresses moderate levels of endogenous Cx43 that might

bridge Cx43-flag and ZO-1.

Other connexins have now been found to bind to ZO-1 as

well (Table 1). Interestingly, a reciprocal two hybrid assay



Fig. 1. Human Cx43 amino acid sequence and consensus interacting protein modules. Conserved cysteines in the extracellular gap are encircled; proposed

regulatory sites are in bold. For a complete overview of modular protein interaction domains and consensus sequences, see Ref. [124]. Src homology 2 domain

(SH2). SH2 domains characteristically bind phospho-tyrosine residues in a hydrophobic pocket. An additional pocket confers substrate specificity by binding

amino acids more C-terminally located. Note that Tyr265 of Cx43 is target of Src phosphorylation. Src homology 3 domain (SH3). Aliphatic proline residues of

the substrate located on one side of an a-helix bind separately to hydrophobic pockets in the SH3 domain. The flanking region determines binding specificity.

PSD95/disc large/ZO-1 homology domain (PDZ). PDZ domains form a hydrophobic pocket that binds the very C-terminal residues (-x-S/T/V/I/L-x-V/I/L-

COOH) of their target proteins typically transmembrane proteins [34]. Microtubules. Microtubule binding regions are often enriched in K, V, G, P and R. See

Table 1 and text for further details.
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using PDZ domains of ZO-1 as bait showed Cx45 interac-

tion with ZO-1 and ZO-3, but not ZO-2 [38]. This con-

firmed the ZO-1/Cx45 interaction found using biochemical

techniques [39]. Whenever binding sites were mapped, the

C-terminal amino acids of connexins and the second PDZ

domain of ZO-1 were found to mediate the interaction.

Recently however, Cx36 has been found to bind exclusively

to the first PDZ domain of ZO-1 [40]. Based on their C-

terminal amino acid sequence, all human connexins, except

Cx30, 30.3, 31.3, 32 and 62, are potential ZO-1 binders.

C-terminal tagging or mutation of Cx43 abolishes ZO-1

interaction [35,41], but truncated [14] or tagged [42,43]

connexins form gap junction plaques. Therefore, functional

involvement of ZO-1 in gap junction formation is unlikely.

However, the plaques formed with tagged Cx43 seem to be

larger than with endogenous Cx43, which might point to a

function of ZO-1 in gap junction turnover [42–44]. Further

experimentation is needed to test this model.

Previously, we postulated a function for ZO-1 in assem-

bly of the signaling proteins at gap junctions [35]. However,

all candidates we now have tested, including several PKCs,

PLC, G proteins, G protein-coupled receptors, but also h-
catenin and p120ctn, could not be found in pull-downs with
Fig. 2. Molecular and cellular organisation of cell –cell junctions. Left: Cx43-assoc

known proteins associated with adherens [6] and tight junctions [4,5]. See text for

network, which is only present in cell –cell contacts that face the apical contact site

of Lauran Oomen), a projection (right) and an X/Z section are shown). Adherens ju

show a typical punctate staining (Rat-1 fibroblast; bottom panel).
the SH3 or PDZ domains of ZO-1 (unpublished results).

Whether gap junctional ZO-1 might serve a role in cyto-

skeletal anchorage and sequestering of transcription factors

as has been postulated for adherens junctions and tight

junctions is discussed in Sections 3.5 and 4.

3.2.2. Cadherins, b-catenin and p120ctn

Cadherin-mediated cell–cell adhesion (Fig. 2, Section

4.1) is a prerequisite for formation of gap junctions. Upre-

gulation of E-cadherin-dependent cell–cell contacts has

been shown to increase GJC [45]. Furthermore, anti-N-

cadherin antibodies prevent both adherens junctions forma-

tion and GJC [46]. E-Cadherin and a-catenin are co-local-

ized with newly formed gap junctions, which might reflect

an adherens junction focus that primes gap junction forma-

tion [47]. Moreover, N-cadherin has been shown to co-

localize with Cx43 in cardiac myocytes [48]. In the same

cell-type, h-catenin has been found to co-localize and co-

immunoprecipitate with Cx43 following Wnt expression

[49]. Another catenin, p120ctn, has been found to co-localize

not only with cadherins, but also with Cx43 [50].

Besides its role in adherens junctions, h-catenin acts as a

transcriptional co-factor downstream of the Wnt signaling
iating proteins are depicted. See recent reviews for a complete picture of all

details. Right: Confocal scanning light microscopy. Tight junctions form a

s of cells (20 MDCK cells; a three dimensional reconstruction (left; courtesy

nctions zip cells together (MDCK cells; middle panel). Gap junction plaques

cres/article/62/2/233/315558 by U
.S. D

epartm
ent of Justice user on 16 August 2022



B.N.G. Giepmans / Cardiovascular Research 62 (2004) 233–245238

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/62/2/233/315558 by U

.S. D
epartm

ent of Justice user on 16 August 2022
pathway. Although controversial, cadherins have been pro-

posed to sequester h-catenin at adherens junctions and

thereby modulate Wnt-mediated gene transcription [51]

(reviewed in Ref. [52]). In analogy with this model,

inhibition of lithium-induced Wnt signaling found in

Cx43 overexpressing cells has been suggested to be medi-

ated by sequestration h-catenin at gap junctions [49].

Despite lack of evidence of a direct interaction between

connexins and h-catenin to date, the physical interactions

found so far and a possible function in GJC-independent

regulation of gene expression by Cx43 by sequestering

transcriptional regulators are noteworthy and will be further

discussed in Section 4.

3.2.3. Claudins and occludin

Claudins and occludin are core proteins of tight junctions

(Fig. 2, see also Section 4.2). Occludin has been reported to

co-immunoprecipitate with overexpressed Cx32 in one

clone, but not in another [53]. At the ultrastructural level,

EM convincingly showed distinct tight junction strands

surrounding gap junction plaques [53]. In a follow-up study,

Cx32 was not only found in immunoprecipitations of

occludin, but also of ZO-1 and claudins [54]. Site-directed

mutagenesis and direct protein–protein interaction assays

should answer whether these core proteins are connected

directly or entire gap junction plaques are co-precipitated

with tight junction strands.

3.3. Tyrosine kinases and phosphatases

Pharmacological inhibitors of kinases and phoshatases

have been useful tools to determine which kinases play an

(in)direct role in connexin phosphorylation. Furthermore,

inactive kinases and site-directed mutagenesis of connexins

has lead to progress in mapping of phosphorylation sites.

3.3.1. Src

Before the first gap junction proteins were cloned, the

viral Src oncoprotein was already known to shut down GJC

[55]. Once cloned, Cx43 was soon found to be a v-Src

substrate [56,57]. Mutation of the putative v-Src phosphor-

ylation site results in lack of gap junction closure by v-Src in

Xenopus oocytes [57]. Further studies showed that phos-

phorylated Tyr265 in Cx43 forms a docking site for the SH2

domain of v-Src and that the SH3 domain of v-Src can bind

to a proline rich stretch in Cx43 [58] (Fig. 1). In addition,

Tyr247 can be phosphorylated by v-Src [59]. A model was

proposed in which (i) v-Src binds via a SH3 domain/proline-

rich motif association; (ii) Src than phosphorylates Cx43,

mainly on Tyr265; and (iii) subsequent docking of the SH2

domain of Src to Cx43Tyr265 increases affinity and posi-

tions Src for (iv) Tyr247 phosphorylation leading to channel

closure.

Following the work on oncogenic v-Src, its normal

cellular counterpart c-Src has been shown to inhibit Cx43-

based GJC downstream of receptor stimulation as well. c-
Src activation is used by several receptor-families to finally

inhibit GJC, namely G protein-coupled receptors, notably

those for lysophosphatidic acid (LPA), endothelin-1 and

thrombin [60,61,62], tumour necrosis factor-a (TNFa

[63]) and endotoxin, which may stimulate the toll-like

receptors [64]. These studies show that ligand-induced gap

junction closure is inhibited by tyrosine kinase inhibitors,

and in particular by Src kinase inhibitors. Furthermore,

inhibition of GJC correlates with Src activation and tyrosine

phosphorylation of Cx43, while gap junctions in Src defi-

cient cells do not close in response to ligand-stimulation. In

vivo data showed a correlation between Cx43 tyrosine

phosphorylation and Src activity in cardiomyopathic heart

[65]. This finding further suggests that c-Src might be an

important (patho)physiological regulator of Cx43. In vitro

models revealed that the SH2 and SH3 are involved in this

interaction (Fig. 1), and Src binding to Cx43 excludes the C-

terminal tail for ZO-1 binding [66]. Cx43Tyr265 was shown

to be phosphorylated by Src and phospho-Tyr265 was found

to be crucial for the co-immunoprecipitation of Cx43 and

Src [36,66]. The inability of Src to phosphorylate and

associate with Cx43Y265F leads to a rescue of Src-induced

gap junction closure [36,66]. Moreover, Cx43Y265-

F;Y247F gap junctions are no longer regulated by TNF-a

[63]. Taken together, these data show that certain ligands

utilize c-Src to regulate GJC via a mechanism possibly

similar to that described above for v-Src.

3.3.2. RPTPl
Inhibition of tyrosine phosphatases by pervanadate

results in Cx43 tyrosine phosphorylation and closure of

gap junctions [61,67,68]. Interestingly, Cx45 gap junctions

have also been shown to be inhibited by pervanadate [69].

Tyrosine phosphorylation of the Cx43 C-terminal tail might

trigger the closure, similar to Src action. Recently, we

showed that the phosphatase domain of receptor protein

tyrosine phosphatase A (RPTPA) brings down overexpressed
Cx43. Furthermore, endogenous RPTPA was co-immuno-

precipitated with Cx43 [70]. These data favor a model in

which RPTPA can counteract Src phosphorylation at gap

junctions, keeping Cx43 in the non-phosphotyrosine state

and thereby prevent channel closure. However, further

studies are needed to substantiate this notion.

3.4. Serine/threonine kinases and phosphatases

Serine and threonine kinases that phosphorylate Cx43

(Fig. 1, Table 1) are less well documented to form a

complex with Cx43. These kinases will therefore be de-

scribed only briefly.

3.4.1. PKC/PKA/PKG

The best studied of these three kinases in gap junction

regulation is the one activated by phorbol ester: protein

kinase C (PKC). Phorbol ester treatment of cells can result

in dramatic activation of multiple PKC isotypes and phos-
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phorylation of several substrates, but a direct effect of PKC

on gap junctions has been difficult to address. An elegant

study combining in vivo phosphopeptide mapping and site-

directed mutagenesis showed that PKC acts on Ser368 of

Cx43 (see Table 1 and Fig. 1), resulting in inhibition of

GJC (see Ref. [71] and references therein). Interestingly,

PKCq, which has been implicated in inhibition of GJC

downstream of the fibroblast growth factor-2, has been

reported to co-immunoprecipitate and co-localize with

Cx43 [72] in cardiomyocytes. Similar results have been

described for the PKCg isotype acting downstream of the

insulin-like growth factor receptor-I [73]. However, lack of

any effect of PKC on GJC [61] or even an upregulation of

GJC by PKCa paralleled with Cx43 phosphorylation [74]

have also been described. The seemingly controversial

effects of PKCs on Cx43 and GJC likely reflect the

complexity of channel regulation. The convergence of

several signal transduction pathways that impinge on

Cx43 turnover, transport and assembly and gating of gap

junctions dictate GJC status.

cAMP-dependent protein kinase (PKA) has been shown

to upregulate Cx43 assembly. Although Ser364 is critically

involved in the enhanced assembly, it remains unclear if

PKA directly phosphorylates Cx43 on this residue. A

negative charge on this site, which might be through

phosphorylation of Ser364 by another kinase, seems to be

critical for PKA-induced assembly of gap junctions [75]

and references therein. Activation of PKA by ligand

stimulation and subsequent phosphopeptide mapping of

point-mutated Cx43 has implicated phosphorylation of

serines 365, 368, 369 and 373 downstream of PKA. GJC

was completely reduced when the quadruple mutant was

expressed [76].

cGMP-dependent protein kinase (PKG) has been shown

to phosphorylate rat Cx43, which is correlated with a

decrease of GJC [77]. However, the processes in which

PKG might be involved to reduce gating remain to be

elucidated.

3.4.2. MAPK

Mitogen-activated protein kinase (MAPK)-mediated

Cx43 serine phosphorylation induced by LPA [78] and

epidermal growth factor (EGF) [79] has been postulated to

control inhibition of Cx43-based GJC. In epithelial cells,

inhibition of GJC and MAPK activation by EGF correlated

well in a time- and dose-dependent manner [79]. Stimula-

tion of epithelial cells with platelet-derived growth factor

(PDGF) leads to a rapid, but transient inhibition of GJC,

accompanied by an increase in Cx43 phosphorylation [80],

mediated by MAPK and PKC. In a more recent study,

however, MAPK-mediated Cx43 phosphorylation induced

by PDGF did not result in inhibition of GJC [81]. Moreover,

kinetics of MAPK activation correlated with Cx43 phos-

phorylation in EGF- or phorbol ester-treated cells. However,

the effects on GJC were opposite: EGF increased GJC,

whereas phorbol ester inhibited GJC [82]. Increased GJC
has also been shown after sustained MAPK activation [83].

Moreover, v-Src activates MAPK, but blocking MAPK

activation does not block Src-induced gap junction closure

[15]. Furthermore, long-term treatment of cultured cardio-

myocytes with endothelin-I or angiotensin-II results in a

MAPK-dependent upregulation of Cx43 and increase in

GJC [84].

In conclusion, MAPK-mediated phosphorylation of

Cx43 is well established, but can have opposite effects on

GJC.

3.4.3. Cdc2

Cdc2 is indispensable for cell-cycle progression. Direct

phosphorylation of Cx43 by Cdc2 could be detected in vitro

on peptides with the putative target residue Cx43Ser255 or

using the entire C-terminal Cx43 tail. Cx43 was phosphor-

ylated on Ser255 in a Cdc2-dependent manner, but also on

other sites as well, which might reflect activation of kinases

downstream of Cdc2 [85,86]. Cdc2-mediated connexin

phosphorylation might reflect plasma membrane deprivation

of gap junctions during mitosis.

3.4.4. CK1 and CK2

Cx43 gap junction assembly might be affected by phos-

phorylation by casein kinase 1 (CK1). Target residue(s) are

the serines between 320 and 345, with Ser325, 328 and 330

being the candidate serines for CK1 action. CK1 has been

found to co-immunoprecipitate with Cx43. Inhibition of

CK1 reduced Cx43 phosphorylation concomitant with a

decrease of plasma membrane targeting of Cx43 [87].

However, truncation mutants lacking these sites have been

shown to form gap junctions [14]. Further studies should

reveal the exact target sites of CK1 and to what extent CK1

is a major player in assembly of connexins. In addition to

Cx43, Cx49 has been reported to be a CK1 substrate, but the

effect of phosphorylation remains unknown [88,89]. Casein

kinase 2 (CK2) is an upstream kinase for the chicken

homologue of human Cx50. Cx50Ser363 is phosphorylated

by CK2. The Cx50Ser363Ala mutant is more stable, sug-

gesting that CK2 phosphorylation might target Cx50 for

degradation [90].

3.4.5. Phosphatases

GJC is affected by several inhibitors of serine and

threonine phosphatases (reviewed in Ref. [91]). However,

the identity of particular serine/threonine phosphatases and

their effect on connexins remain to be identified. To date, no

physical interactions between connexins and this group of

phosphatases have been reported.

Taken together, serine phosphorylation may affect sev-

eral properties of Cx43: its transport to the plasma mem-

brane [92], assembly into connexons and gap junctions [93],

internalisation [85], its degradation [94], disassembly [95]

and gating. For more details on serine/threonine kinases

acting on connexins, the reader is referred to two recent

comprehensive reviews [91,96].
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3.5. Cytoskeletal proteins

3.5.1. Microtubules and tubulin

Recently, we found that Cx43 directly binds to a- and

h-tubulin and that microtubules at the cell-periphery co-

localize with Cx43-based gap junctions [41,97]. The 35

juxtamembrane amino acids of the C-terminal tail were

found to be necessary and sufficient for this interaction

(Fig. 1). Inhibition of GJC by endothelin was not affected

by microtubule disassembly [97]. In contacted cells, mi-

crotubule dynamics is suppressed [98]. It has been postu-

lated that cell–cell contact promotes the activity of an as-

yet-unidentified ‘‘plus-end’’ capping protein at the cell

periphery, that might be adherens junction or gap junction

proteins. Moreover, cadherins may regulate microtubule

stability [99], and dynein links microtubules via h-catenin
to adherens junctions [100]. Another protein that might

link microtubules to adherens junctions via h-catenin is

adenomatous polyposis coli protein (APC) [101]. These

studies suggest that gap junctions and adherens junction

might function as microtubule-anchoring points (see also

Section 4).

3.5.2. Actin and a-spectrin?
Actin is linked to adherens junctions and tight junctions

(Section 4, Fig. 2) via a-catenin and ZO-1 [7,102]. There-

fore, it is tempting to speculate that ZO-1 might also link

actin to gap junctions. Another cytoskeletal protein linked to

tight junctions by ZO-1, is spectrin [103]. In studies over-

expressing c-terminal tagged Cx43 and ZO-1, spectrin has

been reported to co-immunoprecipitate with gap junctional

ZO-1 [37]. However, further research is needed to address

the cell biological relevance of this interaction.

3.6. Other proteins

3.6.1. Caveolin

Recently, Cx43 was found to bind two distinct domains

of caveolin, the marker of the caveolae lipid rafts. Besides

Cx43, Cx32, Cx36 and Cx46 were found to co-sediment in

the same fraction as caveolin, whereas Cx26 and Cx50 were

not [104]. This suggests that multiple connexins might

localize to lipid rafts, but the function of this interaction

remains to be established.

3.6.2. Calmodulin

Calmodulin was found to directly bind to proteins

immunoprecipitated with a crude anti-gap junction anti-

body [105]. Recently, gating of Cx32 gap junctions was

shown to be affected by calmodulin mutants in Xenopus

oocytes. Moreover, overexpressed Cx32 co-localized with

calmodulin [106]. These data, together with earlier work

(see Ref. [96,106] and references therein) suggest that

calmodulin can regulate gap junction gating. Whether this

involves a direct interaction with Cx32 warrants further

investigation.
3.6.3. NOV/CCN3

NOV/CCN3 is a secreted extracellular matrix protein

with growth suppressive effects and has been implicated in

angiogenesis [107]. NOV has been found to be upregulated

in Cx43 overexpressing cells using micro-array. Strikingly,

NOV co-localizes with Cx43 gap junctions [108]. Further

developments should reveal the significance and function of

NOV at gap junctions.
4. Connexin-associated proteins at other cell –cell

junctions

Several proteins described recently identified at gap

junctions were identified before at tight junctions and/or

adherens junctions. This leads to unexpected shared char-

acteristics between these junctions, which had been so

distinctly grouped on EM characteristics and ‘‘primary

function’’. Putative novel functions in cytoskeletal anchor-

age and transcriptional regulation that might be shared

between adherens, tight and gap junctions are discussed.

4.1. Adherens junctions

Adherens junctions zip cells together, and thereby main-

tain cell and tissue polarity (Fig. 2). Furthermore, these

junctions anchor the cytoskeleton to the plasma membrane

[6,109]. The structural proteins of adherens junctions are the

transmembrane proteins cadherins, which form homodimers

in the intercellular space in a calcium-dependent manner.

The short intracellular domain of cadherin can bind p120ctn,

h-catenin and g-catenin (plakoglobin). h-Catenin on its turn

binds to a-catenin that recruits ZO-1 [102,110,111], vincu-

lin and a-actinin. The major proteins linking actin to

adherens junctions are a-catenin and ZO-1 (reviewed in

Refs. [6,7]). The latter protein also recruits ZO-2 into

adherens junctions [112]. Cadherins have been shown to

bind microtubules directly and thereby may regulate micro-

tubule stability [99]. Moreover, dynein can link microtu-

bules via h-catenin to adherens junctions [100]. Another

protein that might link microtubules to adherens junctions

via h-catenin is APC [101]. The latter two proteins are

important players in the Wnt signalling pathway. Cadherin

might sequester h-catenin from the Wnt pathway (reviewed

in Ref. [2], see also Section 3.2.2), a function also proposed

for ZO-1 [113]. h-Catenin is, like Cx43, a substrate for

CK1. Whereas Cx43 phosphorylation by CK1 might play a

role in gap junction assembly (Section 3.4.4, Ref. [87]), h-
catenin phosphorylation by CK1 is the initial step leading to

degradation [114].

Another striking similarity between adherens junctions

and gap junctions is the regulation by tyrosine phosphory-

lation. Active Src has been shown to inhibit cell–cell

adhesion, concomitant with tyrosine phosphorylation of N-

cadherins and catenins [115]. This can be counteracted by

certain protein tyrosine phosphatases [116]. Of note, Src-



B.N.G. Giepmans / Cardiovascular Research 62 (2004) 233–245 241

D
ow

nloaded from
 https://academ

ic.oup.com
/cardiovascres/article/62/2/233/315558 by U

.S. D
epartm

ent of Justice user on 16 August 2022
mediated tyrosine phosphorylation of the adherens junction

component p120ctn, which correlates with decreased adhe-

sion [117], might be counteracted by RPTPA [118].

The fact that several proteins at the cytoplasmic face of

adherens junctions and gap junctions are identical suggests

that these subcellular domains are tightly regulated. More-

over, gap junctions might play a similar role as adherens

junctions in cytoskeletal anchorage via both actin-ZO-1 and

microtubules. Finally, the channel-independent effects of

gap junctions might be explained by modulation of tran-

scriptional (co)factors.

4.2. Tight junctions

Tight junctions fuse the lateral margins of contiguous

epithelial and endothelial cells together and thereby form a

continuous selective barrier between these cells and the

extracellular space (Fig. 2). In addition, tight junctions

maintain the strict organisation of the plasma membrane

of epithelial cells in an apical and a basolateral compartment

(Fig. 2). Several growth factors that regulate GJC also

regulate tight junction permeability, for instance TNF-a

[119]. Some growth factors might close gap junctions and

simultaneously increase the tight junction function to isolate

cells in stress situations.

The structural integral membrane proteins of tight junc-

tions are the claudins, which have the same overall topology

as connexins [120]. Clearly distinguishable in EM, adjacent

tight junctions and gap junctions have been found, and the

core proteins have been reported to co-immunoprecipitate

(see Section 3.2.3). This suggests the co-existence of these

junctions at the subcellular level. The zona occludens

proteins can cross-linking actin and cortactin to the claudins

and occludins (reviewed in Refs. [4,5]). In addition, the ZO-

proteins might recruit signalling components, like G-pro-

teins, atypical PKC, ASIP (a PKC binding protein), trans-

port proteins like sec6/8, rab3B/13 and other components

found in tight junctions (cingulin, symplexin, 7H6 antigen,

VAP33; reviewed in Refs. [4,5]; Fig. 2). ZO-1 can be

phosphorylated by kinases acting downstream of the recep-

tors described above, resulting in modulation of tight

junction permeability [121].

Interestingly, ZO-1 may be critically involved in regula-

tion of gene expression. Mutant ZO-1 (the PDZ domains)

no longer localises to the plasma membrane and can induce

an epithelium-to-mesenchymal transition, which is paral-

leled by activation of the h-catenin pathway. Downregula-

tion of h-catenin signalling by APC overexpression reverts

this effect [113]. Moreover, overexpression of h-catenin
downregulates ZO-1 levels [122]. Recently, ZO-1 has been

shown to sequester and downregulate transcription repres-

sor protein, ZONAB [123] and thus plays a role in tran-

scription regulation. The novel discovered signal

transduction properties of tight junctions and adherens

junctions have been nicely reviewed [52]. In analogy with

the permeability-unrelated effects at tight junctions, with
ZO-1 at central stage, gap junctional ZO-1 is a candidate to

regulate gene transcription via h-catenin and ZONAB.

Furthermore, ZO-1 might serve to link gap junctions to

the actin cytoskeleton as has been described for tight

junctions and adherens junctions.
5. Concluding remarks and prospective

In the past decade, it has become clear that gap junctions

do not consist only of the pore forming connexins (nicely

illustrated by Unger et al. [14]), but also of several other

proteins.

Kinases, phosphatases and other molecules regulated by

receptor stimulation, subcellular localisation or cell cycle

are in a delicate balance to dictate the final effect on

connexins. Src abrogates GJC by enhancing Cx43 tyrosine

phosphorylation resulting in a Cx43/Src complex. Serine

and threonine kinases that phosphorylate Cx43 are mainly

involved in connexin transport, gap junction assembly,

internalisation and degradation. Several serine/threonine

kinases, in particular PKCs, have also been implicated in

direct modulation of gating, but opposing effects have been

found and the signalling mechanisms remain unclear.

Structural proteins recently found at gap junctions, ZO-1

and microtubules, were known to be present at tight

junctions and/or adherens junctions. Microtubules interac-

tion might serve to anchor the cytoskeleton to the plasma

membrane as has been described for adherens junctions. An

additional mechanism of gap junction interaction with the

cytoskeleton might be via ZO-1/actin as was found previ-

ously in adherens junctions and tight junctions. Several of

the major structural proteins of these two junctions (claudin,

occludin, cadherin, h-catenin and p120ctn) have been found

to co-immunoprecipiate and/or to co-localize with connex-

ins. Future studies, including functional and site-directed

mutagenesis, should reveal whether these interactions are

direct or reflect precipitation of macromolecular/subcellular

complexes.

The channel-independent effects of connexins, which

have now been reported by many groups, might be

explained by (dys)function of connexin-tail interacting pro-

tein(s). Attractive candidates are transcription (co)factors,

like ZONAB binding to ZO-1 at tight junctions, or regu-

lators of the Wnt pathway, like h-catenin as postulated for

tight junctions. Another attractive candidate that might be

downregulated by the Cx43 tail is Src. Future studies should

answer if connexins play indeed an important channel-

independent role in vivo and reveal the function of the

connexin binding partners in (cell) biology.
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