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Gap-opening transition and fractal ground-state phase diagram in one-dimensional fermions
with long-range interaction: Mott transition as a quantum phase transition of infinite order

Yasuhiro Hatsugai*
Department of Applied Physics, University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113, Japan

~Received 20 January 1997; revised manuscript received 29 May 1997!

The metal-insulator transition in one-dimensional fermionic systems with long-range interaction is investi-
gated. We have focused on an excitation spectrum by the exact diagonalization technique in sectors with
different momentum quantum numbers. At rational fillings, we have demonstrated gap opening transitions
from the Tomonaga-Luttinger liquid to the Mott insulator associated with a discrete symmetry breaking by
changing the interaction strength. Finite interaction range is crucial to have the Mott transition at a rational
filling away from the half filling. It is consistent with the strong coupling picture where the Mott gap exists at
any rational fillings with sufficiently strong interaction. The critical regions as a quantum phase transition are
also investigated numerically. Nonanalytic behavior of the Mott gap is the characteristic in the weak coupling.
It is of the order of the interaction in the strong coupling. It implies that the metal-insulator transition of the
model is of the infinite order as a quantum phase transition at zero temperature. The fractal nature of the
ground-state phase diagram is also revealed.@S0163-1829~97!04143-X#
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I. INTRODUCTION

Effects of an electron-electron interaction in electron
systems have become a focus of the condensed-matter p
ics recently. In a three or higher dimensions, it is wide
believed that Landau’s fermi-liquid theory is valid and t
effect of the interaction is absorbed into several phenome
logical Landau parameters. The system is metallic even w
the interaction if the ground state is adiabatically connec
to the free Fermi sea where the excitations are given by
electron-holegaplessexcitation across the Fermi surface.
one dimension, however, the ground state is unstable ag
a perturbation of the interaction and the ground state is gi
by the so-called Tomonaga-Luttinger~TL! liquid. Although
the Fermi-liquid theory is not valid in one dimension, the T
liquid is also metallic and the excitations are gapless. T
TL liquid has been focused on again recently and there a
huge number of studies by several techniques such as
bosonization and the conformal field theory.1–7 In the paper,
we are trying to investigate the breakdown of the TL liqu
behavior in a simple fermionic system.5,4,12 In a system with
periodic potential, that is, on a lattice as a model Ham
tonian, the allowed kinetic energy is restricted by a fin
bandwidth. Therefore the strong electron-electron interac
may bring an opening of the energy gap in electronic s
tems which is known as a Mott transition. The opening of
energy gap implies a metal-insulator transition which h
become a focus again in connection to new materials
metal-oxides, organic materials, and the high-TC supercon-
ductors.

As far as the conductivity of the electronic system is co
cerned, the Mott transition can be understood as a freezin
the charge degree of freedom. There can be spin related
nomena in a small energy scale, however, the Mott transi
is a phenomenon of the order of the electron-electron in
action. Noting this fact, we have focused on a charge deg
of freedom and chosen a model Hamiltonian of spinless
mions on a lattice,
560163-1829/97/56~19!/12183~7!/$10.00
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iÞ j
Vu i 2 j uninj ~Vk>0!,

~1!

where the interaction can be long range.~We sett51 in the
following.! When the interaction is nonzero only for th
nearest-neighbor~NN! sites, it is mapped to the spin-1/2 an
tiferromagneticXXZ model by the Jordan-Wigner transfor
mation. In this case, Haldane investigated the model in de
by using the Bethe Ansatz solution of theXXZ model.3 Ge-
neric ground states of the NN model are the TL liquid wit
out the energy gap except at a half filling where the mo
has a metal-insulator transition atV15t. It is identified as an
antiferromagnetic Ising gap in terms of theXXZ spin model.

In this paper, we investigate the model, when the inter
tion is long range, with various filling factors of the fermio
numbers. As shown later, it has a rich structure as afractal.

II. STRONG COUPLING

Let us first consider a strong coupling limitV@t of the
model when the filling factorr5M /L is rational, whereM is
the number of fermions, andL is the number of sites. We us
a periodic boundary condition in the following. Let us a
sume the interaction satisfies the downward convex con
tion, that is, (i 1 j )Vl< jVl 2 i1 iVl 1 j ~l , j , l ,i , j !L! to
avoid a formation of charge clustering.~See later.! A pos-
sible form of the interaction which we use in the paper is

Vj5V f j
L~a!, ~2!

f j
L~a!5

1

S L

p
sin p

j

L D a ~a>1!, ~3!

which reduced to a simple power law decaying interacti
Vj5V/ j a when j !L in a sufficiently large system. The
nearest-neighbor interaction can be recovered also by ta
12 183 © 1997 The American Physical Society
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a→` andL→`. When the interaction is sufficiently large
the ground state of the system for the rational fillingr
5p/q with mutually prime integersp andq was known for
anyp andq. It is given by a one-dimensional Wigner cryst
with period q.8 Although the ground-state charge orderi
~crystal structure! is complicated ifp and q are large inte-
gers, it is explicitly given.8 In Fig. 1, the shape of the charg
ordering is shown for r5p/q with q5113 and p
51, . . . ,q21 as an example. As is expected for the form
tion of the charge ordering, there are some commensu
conditions to stabilize the system. This commensurabi
condition brings a fractal structure into the system as sho
later. The chemical potential in the thermodynamic limit
evaluated by a similar consideration applied for the lon
range Ising model.9 It is written as

m`~r10!5V(
k51

`

e1~k,r!1F~r!, ~4!

m`~r20!5V(
k51

`

e2~k,r!1F~r!, ~5!

e1~k!5H F k

rG f @k/r#21
` 2S F k

rG21D f @k/r#
` if F k

rG5
k

r

S F k

rG11D f @k/r#
` 2F k

rG f @k/r#11
` otherwise,

e2~k!52F k

rG f @k/r#11
` 1S F k

rG11D f @k/r#
` ,

where@x# is a Gauss symbol which denotes a least inte
which is not larger thatx andF(r) is an ordert contribution
mainly from the kinetic energy which is a smooth function
r. In Fig. 2, the chemical potentials are evaluated for t
different interactions. It is a devil’s staircase which was fi
discussed by Bak and Bruinsma in a context of the lo
range Ising model.9 The discontinuity of the chemical poten

FIG. 1. Ground-state charge ordering of the one-dimensio
spinless fermions with long-range interaction in the strong c
pling. The black points are the positions of the particles.r5p/q
with q5113 andp51, . . . ,q21. The horizontal axis is the spacia
direction j , j 51, . . . ,q21.
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tial, Dm, which is a key quantity to judge whether the syste
is metallic (Dm50) or not (Dm.0) is evaluated as

Dm`S r5
p

qD5m`~r10!2m`~r20!5Vg~r!,

gS r5
p

qD5(
s51

`

sq~ f sq11
` 1 f sq21

` 22 f sq
` !. ~6!

This is generically non-negative for the potential which s
isfies the convex downward condition.~If this condition is
not satisfied,Dm can be negative for some filling facto

al
-

FIG. 2. Evaluation of the chemical potential in the strong co
pling limit. The smooth partF(r) is set to be zero for simplicity.~a!
a52, ~b! a51.5.
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FIG. 3. Low energy spectra of the spinless fermions with long-range interaction classified by the momentum forr51/2. (a52). The
different symbols are for different system sizes;n: L510, L: L514, h: L518, s: L522. ~a! V51. The thin lines are a guide for th
eyes.~b! V54.
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which causes an instability. It is identified as a charge cl
tering.! It implies that the energy gap opens for any ration
fillings if the interaction is strong enough. Further, as can
seen from Eq.~6!, the energy gapDm(p/q) only depends on
q. Its dependence is given by a power lawDm`@r
5(p/q)#;(const/qb). From the consideration in the stron
coupling limit, to have a Mott insulator phase in the syste
with filling factor r5p/q, a finite interaction range overq
sites is crucial.

III. WEAK COUPLING

On the other hand, when the interaction is weak (V!t),
the finite bandwidth due to the lattice effect~periodic poten-
tial! is not so important. In this case, one can approxim
the system as a continuous model with a long rangeg/r a

interaction and with the periodic boundary condition10

When a52, the continuum model is a Sutherland mod
which has been studied extensively.11,13 If a52, the weak
coupling model can be discussed using the information fr
the exact solutions. However, in the strong coupling case
course, neither of the intermediate coupling cases can
discussed by the exact solutions. The ground state of
Sutherland model is a TL liquid without an energy gap ind
pendent of the filling where the ground state is given by
Jastraw wave function.

Noting that there is an energy gap in the strong coupl
at a rational fillingr, it suggests that there is a finite value
the interaction where the energy gap opens. One possib
-
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is that there is always a nonzero energy gap, that is,
critical value where the energy gap opens,VC(r)50. How-
ever, even in the nearest-neighbor model where the en
gap can be most stable, there is a gapless TL phase~XY
phase in theXXZ model!. Therefore we can expect that the
are always finite regions of the gapless TL liquid phases
any filling factors and inevitably the Mott transition.

In the weak coupling, the opening of the energy g
causes an instability of the TL liquid which can be describ
by the Umklapp operators generated in the higher orde
perturbation theory.5,4,7 By this perturbational consideration
to have the opening of the energy gap at a higher comm
surability, strong repulsion is required. For models with sh
range interaction~the Hubbard model, etc.!, the condition for
the instability cannot be satisfied since the so-called TL
rameterK can have the restricted value. It implies that t
finite range interaction is important to have the instabili
This is also consistent with the strong coupling picture.

In the next section, we give numerical results to confi
these considerations~strong coupling and weak coupling!
and special efforts are focused on the critical region~inter-
mediate coupling! where the other technique cannot be a
plied.

IV. NUMERICAL RESULTS AND DISCUSSIONS

As we have discussed, the ground state of the spin
fermions with long-range interaction has two phases for a
rational filling when the interaction strength is varied. T
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FIG. 4. Low energy spectrum of the spinless fermions with long-range interaction classified by the momentum forr51/3. ~a52, t
51.! The different symbols are for different system sizes;n: L59, L: L515, h: L521, s: L527. ~a! V54. The thin lines are a guide
for the eyes.~b! V532.
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one is the TL liquid metallic phase and the other is the M
insulator phase. The transition between the two is a typ
quantum phase transition at zero temperature. In this sec
these phase transitions are demonstrated numerically.
main focus of the numerical calculations here is to inve
gate a critical behavior near the gap opening~the transition
point!. Our main strategy is to investigate the system from
insulator side.

We use the exact diagonalization technique for syste
with a periodic boundary condition. The Hilbert space is
vided into several sectors with different momentum quant
numbers and diagonalized within them to obtain the low
few energies. For small systems, the full spectra are
obtained. Due to the small system size available, it is
efficient to calculate the chemical potential directly. Inste
of it, we calculate an excitation gapEex which can be com-
parable withDm.

In Fig. 3 and Fig. 4, lower parts of energy spectra a
shown for systems withr51/2 and r51/3, respectively.
When the interaction is sufficiently weak, one observe
behavior of the gapless TL liquid as shown in Fig. 3~a! and
Fig. 4~a!. On the other hand, opening of the energy gap n
k52nkF , n50,61,62, . . . ~52pm/q mod q, m
51,2, . . . ,q for r5p/q! is clearly shown when the inter
action is sufficiently strong@see Fig. 3~b! and Fig. 4~b!#. As
is known from the strong coupling analysis, there is a d
crete symmetry breaking~translational symmetry! in the
strong coupling phase. For ther5p/q case, this is aZq
symmetry breaking. Correspondingly there is almostq de-
t
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generate~ground! states in a finite system. They have diffe
ent total momentum 2nkF (n51, . . . ,q mod q), respec-
tively. At these momentum sectors, the lowest energy sta
given by one of theq degenerate ground states. Therefore
lowest energy gap, the energy difference between the low
energy state at the momentum and the true ground stat
the finite system~usuallyk50!, is related to an energy bar
rier between the degenerateq ground-states barrier as show
in Eq. ~7!. The physical energy gap that we are concern
with is the second lowest one as seen in the figures. In
Fig. 5, the lowest energy gap atk52kF for r51/3 is plotted
as a function of the system size for several values of
interaction strength. ForV532, the gap size obeys an exp
nential law as

Eex~k52kF ,L !;e2cL, ~7!

which is a signature of the~discrete! symmetry breaking and
c is the order of the symmetry breaking potential. The d
crete symmetry breaking is confirmed numerically forV532
in Fig. 5. To confirm the discrete symmetry breaking, w
have also calculated a spectral flow, that is, the energy
function of the Aharonov-Bohm flux through the periodic
system~ring!.14 In Fig. 6, the spectral flows of three differen
momentum sectors~k50, 2p/3, and 4p/3! for the r51/3
system are shown where theZ3 symmetry breaking is ex-
pected. It is clearly shown that the three low energy states
entangled with each other. That is, these three states
equivalent in the thermodynamic limit which is a signatu
of the discrete symmetry breaking.
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56 12 187GAP-OPENING TRANSITION AND FRACTAL GROUND- . . .
FIG. 5. The energy gap atk52kF is shown as a function of the
system sizes forr51/3 in log scale. (a52). The different lines are
for different values of the interaction strength;V54, 8, 16, and 32
from above.

FIG. 6. The spectral flows~energies as a function of th
Aharonov-Bohm fluxF through the ring system! of the three lowest
energy states with momentumk50, 2p/3, and 4p/3 for the system
with the filling factorr51/3 (L521). ~a52 andV532!. F0 is the
flux quantum. WhenF5LF0521F0 , the system returns to th
original state by the~small! gauge invariance.
FIG. 7. The excitation gapEex as a function ofV for r51/2.
(a52). The data are taken by extrapolating to the infinite size

FIG. 8. The excitation gapEex as a function ofV for r51/3.
(a52). The data are taken by extrapolating to the infinite size
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12 188 56YASUHIRO HATSUGAI
Next let us investigate the critical region. For a neare
neighbor model at half filling, the behavior of the gap ope
ing is known from the Bethe Ansatz solution and is given
Dm;exp(2c/AV2Vc), which is essentially singular at th
critical point.15 We have numerically investigated the beha

FIG. 9. The excitation gapEex as a function ofV for r51/4.
(a52). The data are taken by extrapolating to the infinite s
limit.

FIG. 10. The excitation gapEex(L) as a function ofL for sev-
eral values ofV (r51/3). (a52). The solid lines are polynomia
fits of the data in 1/L.
t-
-

-
ior of the gap opening for several filling factors in our lon
range interaction model. In Figs. 7, 8, and 9, the excitat
gap is plotted as a function of the interaction strength.

In the massless TL liquid phase and the Mott insula
phase with Zq symmetry breaking,E0(k52p/L)2E0(k
50) converges to the true energy gap in the thermodyna
limit. Therefore we extrapolateE0(k52p/L)2E0(k50),
the energy gap between the lowest energy atk50 and k
52p/L to the infinite size limit by fitting them as a polyno
mial of the 1/L.

An example of the fitting is shown in Fig. 10 for ther
51/3 case with several values of the interaction streng
The numerical results shown in Figs. 7, 8, and 9 can be w
fitted by the following essentially singular form as a functio
of the interaction strength,

Eex~V,r!;c0~r!expS 2
c~r!

@V2Vc~r!#g~r!D @V>Vc~r!#.

~8!

It implies that the transition is a generalized Kosterlit
Thouless~KT! type. This is also consistent with a fact th
the effective Hamiltonian which describes the weak coupl
theory is a sine-Gordon Hamiltonian. Here we point out th
the possible high symmetry of the transition may cause
generalizedKT transition. Therefore the transition is of infi
nite order as a quantum phase transition. This kind of sin
lar behavior is expected in the conformal field theory for t

e FIG. 11. Estimated ground-state phase diagram of the spin
fermions with long-range interaction. The solid lines are the reg
with nonzero energy gap. (a52). The rest is a gapless TL liquid
The scale in the horizontal axis is nonlinear as@(jV21)/(jV

11)#; ~a! j51.15 and~b! j51.01. ~The strong coupling region is
expanded.!
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off-critical behavior near the conformally invariant critica
phase. In the SU~n! invariant case, the exponentg is evalu-
ated by the renormalization group analysis to
g5n/~n12!.16 At the critical point the model has an appare
Zq symmetry but may have a higher symmetry. Then one
the possible guesses for the exponent can beg(r5p/q)
5q/(q12).

Numerically it is difficult to determineVc(r) and g~r!
with sufficient accuracies due to the singular behavior of
energy gap. However one may useVc(r);t/g(r) as a lower
bound ofVc since it is plausible to expect the Wigner cryst
at the strong coupling melts neart;Dm` . This estimate
agrees rather well with numerical results obtained~Figs. 7, 8,
and 9!. In Fig. 11, we have shown a possible ground-st
phase diagram using the above estimate. In the figure,
t
f

e

l

e
he

interaction strength is plotted in a nonlinear scale. It sho
that there is always an insulator phase for any rational fillin
Since then2m` curve is the devil’s staircase,Dm`(r)
shows a fractal structure. Correspondingly, the ground-s
phase diagram of the spinless fermions with long-range
teraction has a clearfractal structure.
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