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Gap-opening transition and fractal ground-state phase diagram in one-dimensional fermions
with long-range interaction: Mott transition as a quantum phase transition of infinite order
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The metal-insulator transition in one-dimensional fermionic systems with long-range interaction is investi-
gated. We have focused on an excitation spectrum by the exact diagonalization technique in sectors with
different momentum quantum numbers. At rational fillings, we have demonstrated gap opening transitions
from the Tomonaga-Luttinger liquid to the Mott insulator associated with a discrete symmetry breaking by
changing the interaction strength. Finite interaction range is crucial to have the Mott transition at a rational
filling away from the half filling. It is consistent with the strong coupling picture where the Mott gap exists at
any rational fillings with sufficiently strong interaction. The critical regions as a quantum phase transition are
also investigated numerically. Nonanalytic behavior of the Mott gap is the characteristic in the weak coupling.
It is of the order of the interaction in the strong coupling. It implies that the metal-insulator transition of the
model is of the infinite order as a quantum phase transition at zero temperature. The fractal nature of the
ground-state phase diagram is also revedl86163-18207)04143-X]

I. INTRODUCTION

H=—t> cl ici+He+ 2 Vionin;  (V,=0),
Effects of an electron-electron interaction in electronic ! 7 0
systems have become a focus of the condensed-matter phys-

ics recently. In a three or higher dimensions, it is widelywhere the interaction can be long rangé&/e sett=1 in the
believed that Landau’s fermi-liquid theory is valid and the following.) When the interaction is nonzero only for the
effect of the interaction is absorbed into several phenomenaiearest-neighbaiNN) sites, it is mapped to the spin-1/2 an-
logical Landau parameters. The system is metallic even withiferromagneticXXZ model by the Jordan-Wigner transfor-
the interaction if the ground state is adiabatically connectednation. In this case, Haldane investigated the model in detall
to the free Fermi sea where the excitations are given by ahy using the Bethe Ansatz solution of tX&XZ model® Ge-
electron-holegaplessexcitation across the Fermi surface. In neric ground states of the NN model are the TL liquid with-
one dimension, however, the ground state is unstable againstit the energy gap except at a half filling where the model
a perturbation of the interaction and the ground state is givehas a metal-insulator transition\#f=t. It is identified as an

by the so-called Tomonaga-Lutting€FL) liquid. Although  antiferromagnetic Ising gap in terms of tKé&XZ spin model.

the Fermi-liquid theory is not valid in one dimension, the TL  In this paper, we investigate the model, when the interac-
liquid is also metallic and the excitations are gapless. Thigsion is long range, with various filling factors of the fermion
TL liquid has been focused on again recently and there are mumbers. As shown later, it has a rich structure &setal.
huge number of studies by several techniques such as the

bosonization and the conformal field thedry.In the paper, Il. STRONG COUPLING
we are trying to investigate the breakdown of the TL liquid _ _ o
behavior in a simple fermionic systet:2In a system with Let us first consider a strong coupling limit>t of the

periodic potential, that is, on a lattice as a model Hamil-model when the filling factop=M/L is rational, whereM is
tonian, the allowed kinetic energy is restricted by a finitethe number of fermions, arldis the number of sites. We use
bandwidth. Therefore the strong electron-electron interactio@® periodic boundary condition in the following. Let us as-
may bring an opening of the energy gap in electronic syssume the interaction satisfies the downward convex condi-
tems which is known as a Mott transition. The opening of thetion, that is, (+])V|<jV,_j+iV,,; (<], Li,j<L) to
energy gap implies a metal-insulator transition which hagvoid a formation of charge clusteringSee late). A pos-
become a focus again in connection to new materials asible form of the interaction which we use in the paper is
metal-oxides, organic materials, and the highsupercon- L

ductors. Vi=Vfi(a), @)

As far as the conductivity of the electronic system is con-
cerned, the Mott transition can be understood as a freezing of
the charge degree of freedom. There can be spin related phe-
nomena in a small energy scale, however, the Mott transition
is a phenomenon of the order of the electron-electron inter-
action. Noting this fact, we have focused on a charge degreahich reduced to a simple power law decaying interaction
of freedom and chosen a model Hamiltonian of spinless ferV;=V/j“ when j<L in a sufficiently large system. The
mions on a lattice, nearest-neighbor interaction can be recovered also by taking

fH(a)=

— sin T—
T

L j)a (a’?l), (3)
L
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FIG. 1. Ground-state charge ordering of the one-dimensional
spinless fermions with long-range interaction in the strong cou-
pling. The black points are the positions of the particles.p/q

with g=113 andp=1, ... g—1. The horizontal axis is the spacial
directionj, j=1,... g-1. 0 0.2 0.4 0.6 0.8 1 0
a—o andL—oco. When the interaction is sufficiently large, b
the ground state of the system for the rational fillipg ( )
= p/qg with mutually prime integerg andq was known for
anyp andq. Itis given by a one-dimensional Wigner crystal
with period .8 Although the ground-state charge ordering 3.5
(crystal structurgis complicated ifp and q are large inte-
gers, it is explicitly givert In Fig. 1, the shape of the charge 3
ordering is shown forp=p/q with q=113 and p
=1,... g—1 as an example. As is expected for the forma-  ,
tion of the charge ordering, there are some commensurate
conditions to stabilize the system. This commensurability )
condition brings a fractal structure into the system as shown
later. The chemical potential in the thermodynamic limit is
evaluated by a similar consideration applied for the long- 1-5
range Ising modél.It is written as
1
pa(pt0)=V2, e.(kp)+F(p), @ s
Mm(p—O)zVE e_(k,p)+F(p), (5) 0 0.2 0.4 0.6 0.8 1 0
k=1
k| . k S 4 I ¢ FIG. 2. Evaluation of the chemical potential in the strong cou-
; f[k/p]*l_ I_) -1 f[k/p] if - ; pling limit. The smooth par(p) is set to be zero for simplicitya)
e. (k)= a=2, (b) a=1.5.
|+ 1 flw—| =|ffkp+1 Otherwise, , o : :
p p tial, Au, which is a key quantity to judge whether the system
is metallic A =0) or not A «>0) is evaluated as
k k
e_(k)=- —}f” +( —+1)f°° , p
p) WPF T [p (k] Ap.. P=4 = Ux(p+0)—p(p—0)=Vyg(p),
where[x] is a Gauss symbol which denotes a least integer
which is not larger thax andF (p) is an ordett contribution p ” . . .
mainly from the kinetic energy which is a smooth function of gl p= q :Szl SA(feqe1tFeq-1—2Fsg)- (6)

p. In Fig. 2, the chemical potentials are evaluated for two
different interactions. It is a devil's staircase which was firstThis is generically non-negative for the potential which sat-
discussed by Bak and Bruinsma in a context of the longisfies the convex downward conditiofif this condition is
range Ising model.The discontinuity of the chemical poten- not satisfied,Ax can be negative for some filling factor
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FIG. 3. Low energy spectra of the spinless fermions with long-range interaction classified by the momenganifar («=2). The
different symbols are for different system sizés; L=10, ¢: L=14, [0: L=18, O: L=22. (a) V=1. The thin lines are a guide for the
eyes.(b) V=4.

which causes an instability. It is identified as a charge clusis that there is always a nonzero energy gap, that is, the
tering) It implies that the energy gap opens for any rationalcritical value where the energy gap opeWg(p)=0. How-
fillings if the interaction is strong enough. Further, as can besver, even in the nearest-neighbor model where the energy
seen from Eq(6), the energy gap w(p/q) only depends on gap can be most stable, there is a gapless TL pl¥se

g. Its dependence is given by a power lavu.[p  phase in theXXZ mode). Therefore we can expect that there
=(p/q)]~ (consth?). From the consideration in the strong are always finite regions of the gapless TL liquid phases in
coupling limit, to have a Mott insulator phase in the systemany filling factors and inevitably the Mott transition.

with filling factor p=p/q, a finite interaction range over In the weak coupling, the opening of the energy gap
sites is crucial. causes an instability of the TL liquid which can be described
by the Umklapp operators generated in the higher order in

. WEAK COUPLING perturbation theory:* By this perturbational consideration,

to have the opening of the energy gap at a higher commen-
surability, strong repulsion is required. For models with short

On the other hand, when the interaction is wesk() : . "
- . ' . s ' range interactiorithe Hubbard model, etc.the condition for
the finite bandwidth due to the lattice effegeriodic poten the instability cannot be satisfied since the so-called TL pa-

tial) is not so 'mpo”"’“.“- In this case, one can aploroX'matefameterK can have the restricted value. It implies that the
the system as a continuous model with a long ragfe

interaction and with the periodic boundary conditidn finite range interaction is important to have the instability.
When a=2, the continuum model is a Sutherland modelTh|s is also consistent with the strong coupling picture.

which has been studied extensivély? If a=2, the weak In the next section, we give numerical results to confirm

coupling model can be discussed using the information fron%.‘hese considerationgstrong coupling and weak coupling
0

the exact solutions. However, in the strong coupling case nd _speC|aI ef_forts are focused on the (_:rmcal regiower-
: ' ; T . ' ‘mediate couplingwhere the other technique cannot be ap-

course, neither of the intermediate coupling cases can b ied
discussed by the exact solutions. The ground state of th '
Sutherland model is a TL liquid without an energy gap inde-
pendent of the filling where the ground state is given by the
Jastraw wave function.

Noting that there is an energy gap in the strong coupling As we have discussed, the ground state of the spinless
at a rational fillingp, it suggests that there is a finite value of fermions with long-range interaction has two phases for any
the interaction where the energy gap opens. One possibilitsational filling when the interaction strength is varied. The

IV. NUMERICAL RESULTS AND DISCUSSIONS
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FIG. 4. Low energy spectrum of the spinless fermions with long-range interaction classified by the momentuailf8r (=2, t
=1.) The different symbols are for different system siz&s;L =9, ¢: L=15, [0: L=21, O: L=27. (@) V=4. The thin lines are a guide
for the eyes(b) V=32.

one is the TL liquid metallic phase and the other is the Mottgenerat€ground states in a finite system. They have differ-
insulator phase. The transition between the two is a typicaént total momentum k- (n=1,... g modq), respec-
guantum phase transition at zero temperature. In this sectiofively. At these momentum sectors, the lowest energy state is
these phase transitions are demonstrated numerically. Tigiven by one of the| degenerate ground states. Therefore the
main focus of the numerical calculations here is to investilowest energy gap, the energy difference between the lowest
gate a critical behavior near the gap openitite transition energy state at the momentum and the true ground state of
point). Our main strategy is to investigate the system from arthe finite systen{usuallyk=0), is related to an energy bar-
insulator side. rier between the degenerategground-states barrier as shown

We use the exact diagonalization technique for systemi Eq. (7). The physical energy gap that we are concerned
with a periodic boundary condition. The Hilbert space is di-with is the second lowest one as seen in the figures. In the
vided into several sectors with different momentum quantunfig. 5, the lowest energy gap lat 2kg for p=1/3 is plotted
numbers and diagonalized within them to obtain the lowestas a function of the system size for several values of the
few energies. For small systems, the full spectra are alsmteraction strength. Fo¥ =32, the gap size obeys an expo-
obtained. Due to the small system size available, it is nohential law as
efficient to calculate the chemical potential directly. Instead _ el
of it, we calculate an excitation gdp., which can be com- Eedk=2ke,L)~e"", (@)
parable withAu. which is a signature of thadiscret¢ symmetry breaking and

In Fig. 3 and Fig. 4, lower parts of energy spectra arec is the order of the symmetry breaking potential. The dis-
shown for systems wittp=1/2 and p=1/3, respectively. crete symmetry breaking is confirmed numerically Yo+ 32
When the interaction is sufficiently weak, one observes an Fig. 5. To confirm the discrete symmetry breaking, we
behavior of the gapless TL liquid as shown in Figa)3and  have also calculated a spectral flow, that is, the energy as a
Fig. 4(@. On the other hand, opening of the energy gap neafunction of the Aharonov-Bohm flux through the periodical
k=2nke, n=0,=1,*2,... (=2am/gmodg, m  system(ring).}*In Fig. 6, the spectral flows of three different
=1,2,... g for p=pl/q) is clearly shown when the inter- momentum sector&k=0, 27/3, and 47/3) for the p=1/3
action is sufficiently stronfisee Fig. 8) and Fig. 4b)]. As  system are shown where tf& symmetry breaking is ex-
is known from the strong coupling analysis, there is a dispected. It is clearly shown that the three low energy states are
crete symmetry breakindtranslational symmetjyin the entangled with each other. That is, these three states are
strong coupling phase. For the=p/q case, this is &, equivalent in the thermodynamic limit which is a signature
symmetry breaking. Correspondingly there is almgstie-  of the discrete symmetry breaking.
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FIG. 5. The energy gap &&= 2kg is shown as a function of the o .
system sizes fop=1/3 in log scale. &=2). The different lines are FIG. 7. The excitation gaf., as a function otV for p=1/2.
for different values of the interaction strengWi=4, 8, 16, and 32 (a=2). The data are taken by extrapolating to the infinite size.
from above.
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FIG. 6. The spectral flowgenergies as a function of the
Aharonov-Bohm flux® through the ring systenof the three lowest 0 5 10 15 20 25
energy states with momentuks= 0, 27/3, and 4r/3 for the system V
with the filling factorp=1/3 (L=21). (=2 andV=32). ® is the
flux quantum. When® =L®,=21d,, the system returns to the FIG. 8. The excitation gaf., as a function ofV for p=1/3.
original state by thésmall gauge invariance. (@=2). The data are taken by extrapolating to the infinite size.
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FIG. 9. The excitation gaft., as a function ofV for p=1/4.

(a=2). The data are taken by extrapolating to the infinite size FIG. 11. Estimated ground-state phase diagram of the spinless
limit. fermions with long-range interaction. The solid lines are the region

with nonzero energy gap«(=2). The rest is a gapless TL liquid.

) ) o i v, v
Next let us investigate the critical region. For a nearest—The scale in the horizontal axis is nonlinear "~ 1)/(¢

neighbor model at half fillng, the behavior of the gap open-j, )% (%€= 1+19 and®) = 1.01. (The strong coupling region s
ing is known from the Bethe Ansatz solution and is given by '

Au~exp(c/yV—V,), which is essentially singular at the ior of the gap opening for several filling factors in our long-
critical point!® We have numerically investigated the behav-range interaction model. In Figs. 7, 8, and 9, the excitation
gap is plotted as a function of the interaction strength.

In the massless TL liquid phase and the Mott insulator
phase withZ, symmetry breaking,Eq(k=2m/L)—Eq(k
=0) converges to the true energy gap in the thermodynamic
limit. Therefore we extrapolat&y,(k=2mx/L)—Ey(k=0),
the energy gap between the lowest energkatd andk
=27/L to the infinite size limit by fitting them as a polyno-
mial of the 1L.

An example of the fitting is shown in Fig. 10 for the
=1/3 case with several values of the interaction strength.
The numerical results shown in Figs. 7, 8, and 9 can be well
fitted by the following essentially singular form as a function
of the interaction strength,

e X
N

V 55 56 o7 58 0° 510

5

G

c(p)

TV @] [VEVepl

®

It implies that the transition is a generalized Kosterlitz-
Thouless(KT) type. This is also consistent with a fact that
0 0.05 0.1 0.15 the effective Hamiltonian which describes the weak coupling

1/L theory is a sine-Gordon Hamiltonian. Here we point out that
the possible high symmetry of the transition may cause the
generalizedKT transition. Therefore the transition is of infi-
nite order as a quantum phase transition. This kind of singu-
lar behavior is expected in the conformal field theory for the

EexV,p)NCo(p)eXp(

FIG. 10. The excitation gaf.,(L) as a function olL for sev-
eral values oV (p=1/3). («=2). The solid lines are polynomial
fits of the data in 1..
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off-critical behavior near the conformally invariant critical interaction strength is plotted in a nonlinear scale. It shows
phase. In the S(¥) invariant case, the exponentis evalu-  that there is always an insulator phase for any rational filling.
ated by the renormalization group analysis to beSince then—pu. curve is the devil's staircaselu..(p)
y=l(v+2).2® At the critical point the model has an apparent shows a fractal structure. Correspondingly, the ground-state
Z, symmetry but may have a higher symmetry. Then one ophase diagram of the spinless fermions with long-range in-
the possible guesses for the exponent canybe=p/q) teraction has a cledractal structure

.Nume'rl'cally it is dn_‘flcult to determ_lne\/c(p) and'y(p) ACKNOWLEDGMENTS
with sufficient accuracies due to the singular behavior of the
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bound ofV, since it is plausible to expect the Wigner crystal K. Maki, and D. Lidsky for helpful discussions. This work
at the strong coupling melts near-Au,.. This estimate was supported in part by a Grant-in-Aid from the Ministry of
agrees rather well with numerical results obtaifiéigs. 7, 8, Education, Science and Culture of Japan. The computation in
and 9. In Fig. 11, we have shown a possible ground-statghis work has been partly done using the facilities of the
phase diagram using the above estimate. In the figure, theupercomputer Center, ISSP, University of Tokyo.
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