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Abstract: Tunable metasurfaces can replace conventional
bulky active optical modules to realize practical flat opti-
cal devices such as lenses, LiDAR, holography, and
augmented reality. However, tunable metasurfaces have
generally been limited to switching between two distinct
states. Here, we present liquid crystal (LC) integrated chiral
metasurfaces, of which the metahologram intensity can be
adjusted continuously between fully ‘on’ and ‘off’ states.
The chiral metasurface consists of a gap-shifted split ring
resonator (SRR), and exhibits spin angular momentum
selection that reflects left-circularly-polarized light but
perfectly absorbs right-circularly-polarized light (99.9%).
The gap-shifted SRR realizes spin angular momentum
selection using a metal–dielectric–metal multilayer struc-
ture and thereby induces a strong gap-plasmonic response,
achieving the maximum calculated circular dichroism

in reflection (CDR) of 0.99 at the wavelength of 635 nm.
With the chiral metasurface, metaholograms are demon-
strated with tunable intensities using LCs that change the
polarization state of the output light using an applied
voltage. With the LC integrated chiral metasurfaces, 23
steps of polarization are demonstrated for the continuous
tuning of the holographic image intensity, achieving
measured CDR of 0.91. The proposed LC integrated spin-
selective chiral metasurface provides a new resource for
development of compact active optical modules with
continuously-tunable intensity.

Keywords: chiral plasmonics; chirality; metahologram;
metasurface; tunable metasurface.

1 Introduction

Structured materials have been used to manipulate elec-
tromagnetic properties of light, such as amplitude, phase,
polarization, and frequency [1–14]. Recently, metasurfaces
composed of two-dimensional (2D) materials that have
arrayed structures at a subwavelength scale have emerged
as ultrathin flat optical components [15–24]. Structured
materials can induce various optical responses that cannot
be observed in nature depending on their periodicity,
materials, and geometry of structures, therefore, the use of
metasurfaces has been evaluated as a way to control light
at will, including focusing light at the desired position
[25–28], displaying high-resolution holographic images
[29–36], miniaturizing sizes of high-brightness color pixels
[37–39], tunable color display for sensing devices [40–42],
and extreme beam-steering at desired angles with high
efficiency [43]. Therefore, due to their compact form factor
with subwavelength pixels, metasurfaces have the poten-
tial to be applied in augmented reality [44], LiDAR [45],
photonic sensors [46, 47], dispersion controlling devices
[48], selective light reflectors [49–52], absorbers [53–56],
and microscopic components [57].

Younghwan Yang and Hongyoon Kim contributed equally to this work.

*Corresponding author: Junsuk Rho, Department of Mechanical
Engineering, Pohang University of Science and Technology
(POSTECH), Pohang 37673, Republic of Korea; Department of
Chemical Engineering, Pohang University of Science and Technology
(POSTECH), Pohang 37673, Republic of Korea; POSCO-POSCTECH-RIST
Convergence Research Center for Flat Optics and Metaphotonics,
Pohang 37673, Republic of Korea; and National Institute of
Nanomaterials Technology (NINT), Pohang 37673, Republic of Korea,
E-mail: jsrho@postech.ac.kr. https://orcid.org/0000-0002-2179-
2890
Younghwan Yang, Hongyoon Kim and Trevon Badloe, Department of
Mechanical Engineering, Pohang University of Science and
Technology (POSTECH), Pohang 37673, Republic of Korea,
E-mail: younghwan@postech.ac.kr (Y. Yang),
din1999dr@postech.ac.kr (H. Kim), trevon@postech.ac.kr
(T. Badloe). https://orcid.org/0000-0003-2173-4217 (Y. Yang).
https://orcid.org/0000-0003-2113-3921 (H. Kim). https://orcid.org/
0000-0001-9458-6062 (T. Badloe)

Nanophotonics 2022; 11(17): 4123–4133

Open Access. © 2022 Younghwan Yang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/nanoph-2022-0075
mailto:jsrho@postech.ac.kr
https://orcid.org/0000-0002-2179-2890
https://orcid.org/0000-0002-2179-2890
mailto:younghwan@postech.ac.kr
mailto:din1999dr@postech.ac.kr
mailto:trevon@postech.ac.kr
https://orcid.org/0000-0003-2173-4217
https://orcid.org/0000-0003-2113-3921
https://orcid.org/0000-0001-9458-6062
https://orcid.org/0000-0001-9458-6062


Tunable metasurfaces have been widely explored
with chemical, thermal, and mechanical stimuli due to
the requirement of real-time active modulation of optical
responses at visible frequencies [21, 58, 59]. Various
tunable materials, including phase change materials
(PCMs) and liquid crystals (LCs), have been proposed
to actively manipulate scattering properties with those
stimuli [58, 60]. However, previous tunable metasurfaces
have been mainly exploited for the active modulation be-
tween two or a few more particular states. For example,
PCM metasurfaces including vanadium dioxide (VO2)
[60–62], and germanium antimony tellurium alloy (GeSbTe,
GST) [63, 64], controls the functionality of the metasurfaces
using only two distinct states, neglecting the intermediate
states. Additionally, in the case of LC integrated meta-
surfaces, even though the vectorialmetaholography concept
has been applied using LCs to increase the number of states,
only LCP, RCP, and several elliptical polarization states is
used, so the maximum number of reconstructed images is
limited to nine [65]. Therefore, a method to fully utilize the
elliptically polarized states between the RCP and LCP states
of the tunable metasurface should be developed to increase
the degree of freedom and for continuously tunable
functionality.

Chiral metasurfaces are metasurfaces with structured
materials that have mirror images that are not superim-
posable. Such metasurfaces can independently manipu-
late amplitude, phase, polarization, and frequencies
of light depending on its spin angular momentum (SAM)
[3, 5, 6]. Since independent control of different SAMs en-
ables two selective scattering properties by manipulating
spin states of input light, chiral metasurfaces have been
actively investigated for tunable metasurfaces with po-
larization control of input light. Switchable images [66,
67], high-Q resonances [68], and nonreciprocal meta-
holograms [69] have been reported using chiral structured
materials. However, previous chiral metasurfaces have
been exploited only in the infrared regime [66, 67, 69],
because strong chiral plasmonic responses require three-
dimensional structures [3, 70], which cannot be fabricated
using conventional methods that are compatible with
complementary metal-oxide-semiconductor. Thus, the
practical application of tunable chiral metasurfaces re-
quires planar structured materials at visible wavelength
scales with conventional fabrication methods.

Here, an electrically intensity tunable metahologram
is designed by integrating an LC with spin-selective chiral
metasurfaces. The combination undergoes a continuous
change of holographic intensity in response to the applied
voltage Vac (Figure 1). The arrangement of the LC is
controlled by Vac, therefore enabling precise control of the
polarization of the transmitted light. The transmitted light

from the LC is left-circularly polarized (LCP) when
Vac = 1.18 V, and gradually becomes right-circularly
polarized (RCP) as Vac is increased from 1.18 to 1.39 V.
The designed spin-selective chiral metasurface reflects
incident LCP that creates images from an encoded
computer-generated hologram, while perfectly absorbing
the incident RCP. By exploiting the orthogonality of LCP
and RCP, this LC-integrated spin-selective chiral meta-
surface can continuously control the intensity of a holo-
gram by adjusting Vac to change the proportion of incident
LCP. Therefore, continuously intensity-tunable meta-
holography is achieved by controlling the voltage applied
to the LC-assisted chiral metasurface.

2 Results and discussion

LC-integrated spin-selective chiral metasurfaces realize in-
tensity-tunablemetaholograms by adjustingVac (Figure 1A).
Each LC functions as a quarter-wave plate with ordered
molecules, and their optical axis is manipulated by chang-
ing the applied voltage. When 45° linearly-polarized light is
incident to LCs, the output light can be changed to a desired
polarization by adjusting Vac. At Vac = 1.39 V, the output
polarization of LC isRCP, and the output polarization state is
converted to LCP at Vac = 1.18 V (Figure 1B). In addition, at
1.18 V ≤ Vac ≤ 1.39 V, the output polarization is elliptically
polarized light, i.e., a combination of LCP and RCP. Thus,
depending on the proportion of LCP in the output light, the
SAM-selective chiral metasurfaces produce holographic
images with different intensities (Figure 1A–C). When
Vac = 1.39 V is applied to the LC, RCP is incident to the SAM
selective chiral metasurface, and nearly all incident light
(99.9%) is absorbed, so the metaholographic image has
near-zero intensity (Figure 1C). In contrast, whenVac = 1.18V
is applied to the LC, it transmits LCP, and the bright meta-
holographic images are reconstructed at the image plane
(Figure 1C). The intensity of the holographic images can be
continuously controlled by varying Vac between 1.18 and
1.39 V. Various hologram intensities were experimentally
achieved using 23 steps of polarization state (Figure 1C,
Supplementary Material 1, Figure S1).

To achieve spin-selective chiral metasurfaces that
perfectly absorb RCP at visible frequencies, gap-shifted
split-ring resonators (SRR) are designed (Figure 2) using
metal–dielectric–metal multilayer structures to produce
strong gap-plasmonic responses [71] (Figure 2A(i)–C(i)).
We simulate three SRRs with different gap displacements
δ = 0, 30, and 60.5 nm, and with the same geometric
parameter of length L = 345 nm of long axis, length
S = 242 nm of short-axis, gap g = 58 nm, gold width
w = 83 nm, gold thickness tAu = 57 nm, SiO2 thickness
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tSiO2 = 308 nm, and periodicity p = 450 nm. The SRR with
δ = 0 shows a non-chiroptical response due to symmetry,
and therefore has the same reflectance under both RCP
and LCP incident light (Figure 2A(iii)). However, for the
gap-shifted SRRs (δ = 30, 60.5 nm), the displacement of
the gap positions breaks the mirror symmetry, therefore,
chiroptical properties are observed in that the reflectance
of RCP and LCP incident light differ (Figure 2B(iii) and
C(iii)). The circular dichroism in reflection (CDR) is defined
as the ratio of the normalized difference of the total
reflectance of incident LCP and RCP: (RL − RR)/(RL + RR),
where R indicates reflectance, and the subscripts L and R
represent the reflectance when LCP and RCP light is inci-
dent, respectively. The gap-shifted SRR with δ = 60.5 nm
shows large inherent chiroptical characteristics, with a
significant difference in reflectance under normal incident
RCP and LCP illumination, achieving 99.9% absorption of
RCP incidence, and 14.0% reflectance of LCP incident light
at the wavelength λ = 635 nm (Figure 2C(iii)).

The CDR spectra for the three SRRs (δ = 0, 30, and
60.5 nm) are simulated with commercial finite element
methods (Multiphysics, COMSOL v5.6) (Figure 3A). At
δ = 60.5 nm, the gap shifted-SRR exhibit strong CDR (0.99)
at the wavelength of 635 nm. The SRR with δ = 0 nm is
achiral, and therefore has zero CDR over the entire spec-
trum due to the symmetry of the geometry, and the SRRs
with δ = 30 nm exhibit maximum CDR at the wavelength
of 706 nm, but it cannot be applied to SAM selective
metasurfaces due to low CDR (details about CDR of gap-
shifted SRR with δ = 30 nm see Supplementary Material 2,
Figure S2). To analyze SAM conversion, the LCP and RCP
components (R−−, R++, R−+, and R+−) of reflectance are
plotted in Figure 3B with subscripts + and − representing
the LCP and RCP components, respectively; the former
subscript indicates the output polarization states and the
latter indicates the input. For example, R+− denotes the
reflectance component of the input RCP and output LCP.
Thus, the total reflectance under RCP is the sum of R+− and

Figure 1: Schematic of electrically-tunable chiral metasurfaces for intensity manipulation of metaholography. (A) Schematic of electrically-
tunable intensity of holograms with chiral metasurfaces. First, 45°-rotated linearly-polarized light is incident on the LC, and the polarization
state of transmitted light is controlled by adjusting the applied voltage Vac. As Vac is decreased from 1.39 to 1.18 V, the transmitted RCP
gradually decreases, while the transmitted LCP increases. The chiral metasurface only display the holographic image under LCP, so the
reconstructed hologram intensity can be continuously tuned by adjustingVac. Red arrow: Rubbing direction. (B) Schematic of transmitted light
polarization states from LC when Vac was (i) 1.39 V, (ii) 1.30 V, (iii) 1.24 V, and (iv) 1.18 V. As Vac decreased from 1.39 to 1.18 V, the polarization
states changed from RCP to LCP. (C) Experimentally-obtained intensity-tunable holographic images when Vac were (i) 1.39 V, (ii) 1.30 V, (iii)
1.24 V, and (iv) 1.18 V.
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R++. For the gap-shifted SRR with δ = 60.5 nm, R−+ = 0.140
at λ = 635 nm and the other reflectance are near zero
(R+− = 5.90 × 10–4, R++ = 5.13 × 10–5, R−− = 5.34 × 10–5), so
RCP incident light is perfectly absorbed and only LCP
incident light is reflected and converted to RCP light.

The impedance-matching conditions are further
investigated to reveal the mechanism of perfect absorption
in the gap-shifted SRR with δ = 60.5 nm. Assuming that
the structure is homogeneous, the effective impedance z of
an SRR is calculated using the S-parameter retrieval
method [72]:

z = ±
̅̅̅̅̅̅̅̅̅̅̅̅
(1 + S11)2 − S221
(1 − S11)2 − S221

√
, (1)

where S is the S-parameter element; and the former and
latter subscripts represent the output and input compo-
nents, respectively.When the impedance of themetasurface
matches the air impedance, which is 1, the metasurface
functions as a perfect absorber. The impedance of the gap-
shifted SRR (δ = 60.5 nm) is calculated for RCP incidence
(Figure 3C), where at λ = 635 nm, the real part of the
impedance is 1.01, and the imaginary part is 0.0321, which
are similar to the impedance of the air and there, yield
perfect absorption. On the other hand, the effective imped-
ance of z=0.451−0.0190iunder LCP incidence at λ=635 nm
does not match that of air, so perfect absorption is not

achieved due to the impedance mismatch (Supplementary
Material 3, Figure S2). In addition, the gap-shifted SRR
(δ = 60.5 nm) showed robustness in incident angle. The CDR
maintains >0.95where an incident angle θx and θy are under
7⁰ and 6⁰, respectively. After that, they continuously
decrease as the incident angle θx and θy increase to 50⁰
(Figure 3D, details in Supplementary Materials 4).

For the spin-selective metahologram that works at
λ = 635 nm, the concept of reflective geometricmetasurfaces
[73] is used to demonstrate metaholography by using the
gap-shifted SRR (δ= 60.5 nm) as a unit cell, because the SRR
completely absorbs RCP and converts 14.0% of LCP to
RCP, which is essential for the use of Pancharatnam–Berry
(PB) phase, as PB phase utilizes conversion efficiency to
modulate the phase. To reconstruct the holographic images,
the phase distribution of the hologram is retrieved using
the iterative Gerchberg–Saxton (GS) algorithm (details in
Supplementary Material 5). The phase of each pixel is
encoded using the geometric PB phase, which achieves
phase 2θ by rotating the nanostructure unit cells by an
angle θ, andwasdesigned to exhibit off-axis images toavoid
overlapping with zeroth-order diffraction. By rotating the
gap-shifted SRR (δ=60.5 nm), from0 to 180° in the xy-plane,
0 to 2π phase is achieved by the PB phase as shown in
Figure 4A. The phase retardation is almost proportional to
the rotation angle of the SRR, and small variationsmay be a

Figure 2: Effect of gap-shift on chiro-optical responses in split-ring resonators (SRR). Geometric parameters of the gap-shifted SRRs are long-
axis length L, short-axis length S, gap g, gold width w, Au thickness tAu, and SiO2 thickness tSiO2, gap displacement δ, and periodicity P.
Geometric parameters are L = 345 nm, S = 242 nm, g = 58 nm, w = 83 nm, tAu = 57 nm, tSiO2 = 308 nm, and p = 450 nm. Simulated reflectance
spectra of three SRRs, that have gaps in (A(i)) The center (δ=0nm) (B(i)) Themid-right (δ=30 nm), and (C(i)) The right (δ=60.5 nm). Red dotted
line: center of unit cell; blue dotted line: center of gap. (i) Top-view, (ii) tilted view of unit cells, and (iii) simulated reflectance under LCP and
RCP, respectively.
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result of interaction between adjacent SRRs. Reflected
electric-field profiles are calculated when the SRR is rotated
in eight steps between 0 and 180°; the profiles shift in pro-
portion to the rotation (Figure 4B).

As a proof-of-concept of the spin-selective metaholo-
gram, holographic images are measured using a home-
made optical setup that is composed of a compact diode
635 nm laser, linear polarizer (LP), quarter-wave plates
(QWP), and pinhole with a diameter of 300 µm (Figure 4C).
LCP and RCP are created by placing the LP and the QWP on
the optical paths. The light is incident on the fabricated
reflective spin-selective metasurface composed of rotated
gap-shifted SRR (δ = 60.5 nm) unit cells that are rotated to
encode the desired phase at each spatial location, and the
screen was placed off-axis at the same side of the beam to
avoid the zeroth-order beam. Figure 4D shows an SEM
image of part of the fabricated spin-selective metasurface.
Using the experimental setup in Figure 4C, a clear holo-
graphic image of the word ‘POSTECH’ is observed on the
image plane when illuminated by LCP (Figure 4E(i));
however, the image disappears under RCP incidence and
also with the zeroth-order diffracted light, because the

metasurface completely absorbs RCP (Figure 4E(ii)). This
result demonstrates the spin-selective characteristics of the
metasurface.

To realize a continuously-tunable intensity of holo-
gram, the gap-shifted SRRs were integrated with LCs,
which act as a retarder and function as an electrically-
tunable QWP (Figure 5A). The LCs, 4-cyano-4′pentylbi-
phenyl (5CB); their refractive index (extraordinary
refractive index ne) on the long axis differs from that on
the short axis (ordinary refractive index no). The effective
refractive index of the LC cells neff is defined as

none/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n2ocos 2(α) + n2ecos 2(α)

√
− no, where α is the angle

between the rubbing direction and the long axis [74, 75].
The LCs reorder their long axis to be parallel to the
direction of an applied electrical field, varying their op-
tical axis in response to Vac, allowing them to act as phase
retarders. The amount of the phase retardation is defined

as τ = ∫t

0
2πΔneff(z)/λdz rad, where t is the thickness of the

LC cell [74, 75]. Consequently, by combining the LC with
the 45°-rotated LP, the output light can be controlled from
LCP to RCP by precisely manipulating Vac. The possible

Figure 3: Chiroptical responses of the gap-shifted SRR. (A) Calculated circular dichroism in reflection (CDR) when the gap displacement δ is
varied as 0, 30, and 60.5 nm. (B) Reflectance components of the gap-shifted SRR (δ=60.5 nm). (C) Calculated effective impedance z of the gap-
shifted SRR (δ = 60.5 nm) under RCP incidence. The dotted green line indicates the wavelength of 635 nm, where the metasurfaces perfectly
absorb incident RCP. (D) Calculated CDR of the gap-shifted SRR (δ = 60.5 nm) depending on the incident angle from 0 to 50⁰. θx and θy denote
incident angles with respect to the yz- and xz-plane, respectively.
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polarization states of output light can be represented
using a Poincaré sphere (Figure 5B). The polarization is
rotated with respect to the S1 axis of the Poincaré sphere
when the input light is 45°-rotated linearly polarized light
(Figure 5B, green square). A detailed description of LC for
implanting in metasurfaces is given in refs. [65, 76].

For the case when 45°-rotated linearly polarized light
(green square in S2–S3 plane on the Poincaré sphere) is
incident to the LC, when Vac = 0 V, the LC had τ = 18.3 rad,
which is 2.9 turns on the S2–S3 plane in Poincaré sphere
with respect to the S1 axis (Figure 5B, black dot). When Vac

is applied to the LC, the τ of the LC decreases, and the
polarization states that pass through the LC rotates clock-
wise on the S2–S3 plane in the Poincaré spherewith respect
to the S1 axis (Figure 5B) [65]. Here, the S1 axis corresponds
to the rubbing direction. By continuously increasing Vac,
we determined thatVac = 1.39 V results in RCP (blue square)
output polarization, and Vac = 1.18 V results in LCP (red
square) output polarization, respectively. Vac between
these RCP and LCP values creates elliptical polarization

states that are composed of RCP and LCP, and when Vac

increases and get closer to 1.39 V, the LCP ratio decreases
so the intensity of the hologram decreases.

The intensity of the reconstructed hologram image
was measured, and it is consistent with the simulated
conversion efficiency of the gap-shifted SRR (Figure 5C).
The simulation was conducted by changing the input po-
larization states to the spin-selective metasurface that
corresponds to applied Vac; the contrast of reconstructed
hologram intensity reaches ∼1:240, which agrees with the
calculated conversion efficiency (14.0% for LCP incidence,
0.0590% for RCP incidence). The reconstructed hologram
intensity is measured as 0.022 μW at Vac = 1.18 V and
0.001 μW at Vac = 1.39 V, which is 22 times larger, reaching
CDR of 0.91 (details in Section 4). The discrepancy between
simulated and measured intensity originates from (1)
minor thickness variation in homemade LC cells, and
(2) fabrication defects in realized metasurfaces. These
discrepancies can be corrected through optimization of the
LC-made and themetasurfacemanufacturing process. As a

Figure 4: Demonstration of the spin-selective chiral metasurface. (A) Simulation of phase retardation depending on the rotation angle of the
gap-shifted SRR under LCP.When LCP is incident to themetasurface, the phase of output light is retarded proportional to the rotation angle of
gap-shifted SRRs. (B) Normalized electrical field Ex of the reflected light from rotated gap-shifted SRR that shows the PB phase of the chiral
nanostructure under incident LCP. (C) Optical setup designed with 635 nm laser, linear polarizer (LP), quarter-wave plate (QWP), and 300 μm
diameter pinhole for the proof of concept of the spin-selectivemetahologram. Holographicmetasurface was designed as an off-axis hologram
to avoid overlapping of zeroth-order diffraction light and hologram image. (D) Top view scanning electron microscope image of the fabricated
metasurface. (E) Holographic image ‘POSTECH’ is obtained under (i) incident LCP, and disappears under (ii) RCP. Twin images are not obtained
under both RCP and LCP, which are omitted from the figure for clarity.
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result, by continuously modulating Vac (in the experiment,
increments of 0.01 V) from 1.39 to 1.18 V, the intensity of the
holographic image ‘POSTECH’ is continuously increased
(Figures 5D and S3). We assume that the incident light has
uniform light intensity distribution (not the Gaussian
beam) because the beam size is enough to fully cover that
of metasurfaces.

To verify the intensity-tunable metahologram, measured
holographic images are compared with simulated recon-
structed holographic images depending on applied Vac from
1.39 to 1.18 V (Figure 5E). In the measured reconstructed
holograms, the center characters of the word ‘ST’ exhibit
higher intensity than that of the side ones. However, simu-
lated reconstructed holograms have coherent intensity
tunability regardless of the position of the characters. The
different intensitymaybe inducedbydifferent distances from
the reflective metasurface to the point of the reconstructed
image on the screen. Side characters havemore distance than
center characters, so they are turned off more rapidly. This
discrepancy can be further corrected by modifying the in-
tensity of the initial target images.

3 Conclusions

In conclusion, we designed spin-selective chiral meta-
surfaces composed of the gap-shifted SRR and implanted
them with LC cells to achieve electrically intensity-tunable
metaholography. The measured CDR of our device
approaches 0.91, and its theoretical value reaches 0.99 at
λ = 635 nm, enabling perfect SAM selection by the gap-
shifted SRR. The measured CDR of 0.91 is the highest value
of any previously reported PB-phase based chiral plas-
monic metasurfaces working at the visible and infrared
regions (Table 1). In addition, the SAM selective chiral
metasurfaces can be fabricated using conventional
electron-beam lithography and deposition processes, so it
has higher fabrication feasibility than previously-reported
three-dimensional chiral plasmonic metasurfaces such as
helical structures [66] (Table 1).

Compared to dielectric metasurfaces that exploit the
PB phase, the SAM selective chiral metasurface has the
advantage that the output phase map is not reversed when
the input handedness is converted. When input light has

Figure 5: Demonstration of electrically-tunable intensity using LC-assisted spin-selective chiral metasurfaces. (A) Schematic of the optical
setup for electrically-tunable intensity with LC-assisted spin-selective chiral metasurfaces. (B) Output polarization states pass through the LC
when 45° rotated linearly polarized light is incident. Green, red, and blue squares: Incident and output polarization states when Vac is 1.18 and
1.39 V, respectively. Black dot: polarization states at Vac = 0 V (C) Calculated (solid line) and measured (dotted line) intensity of metaholo-
grams. (D) Measured and (E) simulated continuous intensity-tunable holograms when Vac were (i) 1.39 V, (ii) 1.34 V, (iii) 1.30 V, (iv) 1.26 V, (v)
1.22 V, and (vi) 1.18 V.
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imperfect circular polarization states such as elliptical
or linear polarization, the conventional dielectric meta-
surface for metaholograms and metalenses cannot avoid
twin-holographic images and dispersion of light, respec-
tively. Although combining the geometrical phase with the
propagation phase has been evaluated as away to generate
independent responses depending on the handedness of
input circularly polarized light [77, 78], their structured
materials have low fabrication tolerance, because they
require both desired amplitude and phase profiles. Thus,
the SAM selective metasurfaces can be beneficial to avoid
noise (e.g., twin hologram images) caused by imperfectly
polarized light when metalenses and metaholograms are
designed.

Although previous research commented that plas-
monic structures have the limitation on their unavoidable
intrinsic losses and that high index dielectrics (e.g. tita-
nium dioxide, silicon nitride, etc.) will be the dominant
material, we believe that their optical losses can be used in
a practical way (herein, perfect absorption of certain
circularly polarized light), opening new application fields
of plasmonic metasurfaces. Considering that LC cells
can be closely packed by locating them directly on the
metasurfaces to make a more compact form factor [65, 76],
we believe that the SAM selective chiral metasurface will
become one more option for photonic devices that work at
visible frequencies.

4 Experimental section

4.1 Numerical simulations

Numerical simulations were conducted using the commercially
available finite element method (FEM) solver, COMSOL Multiphysics

v5.6. Simulations of reflectance coefficient, impedance, phases, and
reflected intensity profiles were calculated using periodic boundary
conditions in the x and y directions, and perfect boundary conditions
in the z-direction.

4.2 Fabrication of metasurfaces

The designed metasurfaces were fabricated using conventional
manufacturing methods, including electron-beam lithography and
electron beam deposition. Firstly, a 300 nm-thick gold (Au) and
308 nm-thick silicon dioxide (SiO2) layer were sequentially deposited
on a silicon (Si) wafer using electron beam deposition. Electron-beam
resists (Microchem, PMMA 495 A6) were spin-coated on the sample at
2000 rpm for 1 min, then baked at 180 °C for 5 min. The resist was
exposed to electron-beam following prepared nanopatterns at 100 kV
using electron-beam lithography (Elionix, ELS-7000). And then, the
sample was immersed in a developer (Microchem, MIBK: IPA = 1:3) at
0 °C for 10 min to remove exposed patterns. Electron beam deposition
was used to deposit a 57 nm-thick Au film on the sample, and it was
immersed in acetone at 60 °C for 12 h to lift off the unexposed area to
complete the sample fabrication.

4.3 Fabrication of LC cells

The LC cells were prepared using polyimides (Nissan Chemical Korea)
for the alignment layer, and indium tin oxide (ITO) coated glass plates.
The polyimides were spin-coated, baked, and rubbed to create a
rubbing direction for unidirectional alignment for LCs. Two substrates
were prepared using the same method as in Section 4.2. After
assembling two substrates with a gap of 10 µm by using UV-glue
(Norland Products Inc., NOA 65) and glass spacer, sandwiched cells
were filled with nematic LCs (Jiangsu Hucheng Display Technology
Co., Ltd). Specific methods are detained in refs. [65, 76].

Author contributions: J.R., Y.Y., and H.K. conceived the
idea and initiated the work. Y.Y designed LC-integrated
gap-shifted SRR, and H.K. optimized the geometrical
parameters of the structural materials. H.K. analyzed the

Table : Comparison of chiral structural materials for PB-phase metasurfaces working at the near-infrared and visible frequencies. All CDR
value is calculated as an absolute value of (RR−RL)/(RR+ RL) for clear comparison. For transmissivemetasurfaces, CDRs are replacedby circular
dichroism on transmission (CDT) that is expressed as an absolute value of (TR − TL )/(TR + TL ). Superscripts: CDR, CDT calculated by (a):
simulation, (b): measurement.

Year [Reference] Wavelength (nm) CDR, CDT Materials Fabrication feasibility
(Geometric dimension)

Usage

Our work  .a, .b Au, SiO High (D) Hologram
 [] , .a, .b Si High (D) Wave plate
 [] , .a Ge High (D) Hologram
 []  .a, .b Au Low (D) Hologram
 []  .a Lithium niobate High (D) –
 []  .a, .b a-Si:H High (D) Hologram
 [] ,a, ,b

.a, .b Al, SiO High (D) Color printing
 []  .a, .b a-Si:H High (D) –
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absorption mechanism of gap-shifted SRRs using
numerical simulations. Y.Y. fabricated the gap-shifted
SRR metasurfaces and integrated the LC. Y.Y and H.K.
captured the holographic images with voltage generator
and home-made setup. Y.Y. and H.K. mainly wrote the
manuscript, and T.B. partially involved. J.R. guided the
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