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GAPDH in neuroblastoma:
Functions in metabolism
and survival
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and Rolf Craven*

Department of Pharmacology and Nutritional Sciences, College of Medicine, University of
Kentucky, Lexington, KY, United States
Neuroblastoma is a pediatric cancer of neural crest cells. It develops most

frequently in nerve cells around the adrenal gland, although other locations are

possible. Neuroblastomas rely on glycolysis as a source of energy and

metabolites, and the enzymes that catalyze glycolysis are potential

therapeutic targets for neuroblastoma. Furthermore, glycolysis provides a

protective function against DNA damage, and there is evidence that

glycolysis inhibitors may improve outcomes from other cancer treatments.

This mini-review will focus on glyceraldehyde 3-phosphate dehydrogenase

(GAPDH), one of the central enzymes in glycolysis. GAPDH has a key role in

metabolism, catalyzing the sixth step in glycolysis and generating NADH.

GAPDH also has a surprisingly diverse number of localizations, including the

nucleus, where it performs multiple functions, and the plasma membrane. One

membrane-associated function of GAPDH is stimulating glucose uptake,

consistent with a role for GAPDH in energy and metabolite production. The

plasma membrane localization of GAPDH and its role in glucose uptake have

been verified in neuroblastoma. Membrane-associated GAPDH also

participates in iron uptake, although this has not been tested in

neuroblastoma. Finally, GAPDH activates autophagy through a nuclear

complex with Sirtuin. This review will discuss these activities and their

potential role in cancer metabolism, treatment and drug resistance.
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Introduction

Neuroblastoma is a cancer of neural crest cells and is the most common tumor before

the age of one. Although neuroblastoma accounts for 5% of pediatric cancers, it results in

9% of pediatric cancer deaths. Neuroblastoma is a remarkably heterogeneous disease in

which some patients undergo spontaneous remission, while other patients endure disease
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progression that is largely refractory to treatment.

Neuroblastomas arise from the neural crest sympathoadrenal

lineage that would normally form sympathetic ganglia.

Disease progression is associated with amplification of the

MYCN transcription factor in 20-30% of neuroblastomas (1). N-

MYC is a basic helix-loop-helix protein that drives the expression

of a number of genes associated with survival and proliferation

(2), including genes that are required for glycolysis (3, 4). This

review will focus on the role of the GAPDH protein in

metabolism, nutrient transport and survival in neuroblastoma.
Glycolysis and cancer

Non-malignant human cells release energy via oxidative

phosphorylation, which is highly efficient, and use other less

efficient pathways like glycolysis under specific stress conditions.

However, cancer cells prefer to utilize glycolysis, producing

lactate and pyruvate, even when oxygen is present. This

metabolic preference, called the Warburg Effect (5), is a

central property of cancer cells and is the target of a number

of emerging therapeutic approaches. In neuroblastoma, the

activity of succinate dehydrogenase is significantly reduced (6),

reflecting the shift to glycolysis.

Glycolysis is not as efficient in producing energy as oxidative

phosphorylation, producing a profound requirement for glucose

uptake that has been a mainstay of cancer imaging for decades.

Although glycolysis is not particularly efficient in generating

ATP, it produces metabolic intermediates that include

precursors of nucleotides, amino acids and lipids that are

needed in rapidly proliferating cells, and these metabolites

have been reviewed (7, 8). Cancer cells preferentially utilize

anaerobic glycolysis, generating lactate, and rely on glutamine

metabolism for metabolites (9). Some of the key glycolytic genes

are regulated by pathways that are frequently altered in

neuroblastoma (3), as are pathways associated with

glutaminolysis (10, 11).

Importantly, tumor metabolism increases chemo- and radio-

resistance (12, 13). A number of studies suggest that inhibition of

glycolysis is effective against multiple types of cancer (14–19).

Neuroblastomas have high levels of glucose uptake, high lactic

acid production and low oxygen consumption (3), and there is

evidence that glycolysis plays an important role in clinical

responses in the disease. Doxorubicin is a standard

chemotherapeutic agent used in the treatment of intermediate

and high-risk neuroblastoma. When doxorubicin-resistant

neuroblastoma cells were treated with both a glycolysis

inhibitor and doxorubicin, cell viability was significantly

decreased compared to either treatment alone, suggesting that

glycolysis may increase chemoresistance (20).

One mechanism of chemoresistance involves P-

glycoprotein, a drug efflux pump that relies on ATP.

Decreased chemoresistance in the presence of a glycolysis
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inhibitor could possibly be explained by compromised P-

glycoprotein activity due to ATP depletion following glycolysis

inhibition (20). However, several studies suggested that the role

and expression of P-glycoprotein in neuroblastoma cells remain

to be fully elucidated (21, 22).
Background on GAPDH

GAPDH catalyzes the fifth step in glycolysis, the conversion

of glyceraldehyde 3-phosphate into 1,3-biphosphoglycerate (23),

a reaction that generates NADH- a “high energy” compound

that subsequently generates ATP. GAPDH is best known for this

reaction and is often used as a “housekeeping” gene or loading

control in expression analyses, belying its complex role in

growth and survival. GAPDH contains two domains- for

NAD+ binding and the catalytic domain. At the junction,

cysteine 149 is a site for post-translational modification and is

required for multiple GAPDH functions.

While GAPDH is generally localized to the cytoplasm, it’s

sub-cellular localization can change, particularly when modified

by nitrosylation, oxidation and phosphorylation (23). This

review will focus on three areas as they pertain to

neuroblastoma: (i) the role of GAPDH in glycolysis, (ii)

GAPDH functions in plasma membrane nutrient transport,

and (iii) GAPDH nuclear functions as they pertain to DNA

repair and the control of apoptosis and autophagy. Other

functions of GAPDH, including RNA binding and tRNA

nuclear export have been reviewed elsewhere (23).
GAPDH at the plasma membrane

A subset of GAPDH has been identified at the plasma

membrane (23), and we detected plasma membrane GAPDH

in neuroblastoma cells by membrane labeling (24). In other cell

types, GAPDH at the plasma membrane catalyzes membrane

fusion (25) and acts as a receptor for iron carrier proteins (26,

27). The role of the former in neuroblastoma is unclear.

However, iron is increasingly linked to neuroblastoma, because

there is an elevated requirement for iron in the disease (28, 29),

and because there is an emerging link between MYCN and

ferroptosis- a type of cell death mediated by iron (30). However,

it is unclear whether GAPDH-mediated iron uptake has any role

in ferroptosis in neuroblastoma. Membrane GAPDH also acts as

a plasminogen receptor in infiltrating macrophages (31), and it is

intriguing to consider that cancer cells might utilize this function

to promote invasion. However, this idea is purely speculative.

In neuroblastoma cells, GAPDH contributes to glucose

uptake (24). This function resembles earlier findings in which

GAPDH physically associates with GLUT1 in erythrocyte

membranes (32) (Figure 1). Similarly, GAPDH associates with

the intracellular surface of GLUT4 in rat L6 myotubes (33), and
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GAPDH expression is required for insulin-induced glucose

transport. Glucose uptake is important in neuroblastoma,

being used in imaging (34), and GLUT1 is a predictor of poor

survival (35, 36). Furthermore, GLUT1 is essential for

neuroblastoma cell survival in culture (36–38).

One model suggests that GAPDH binds to microtubules and

localizes to secretory vesicles (39). The GAPDH-Pro234Ser

mutant, which was identified by a chemical mutagenesis

screen, inhibits vesicle transport in normal kidney cells (40).

In this assay, GAPDH also bound to the AKT serine-threonine

kinase- a key signaling protein in cancer cell survival. This assay

utilized a purified form of wild-type or mutant GAPDH added

directly to cells (40), suggesting an uncharacterized uptake

pathway for the protein. It is intriguing to speculate that

GAPDH’s putative function in binding AKT and vesicle

trafficking might be related to the transport of metabolic

proteins such as GLUT1 and GLUT4, but this function is

uncharacterized in cancer cells. This model is supported by a

role for GAPDH in vesicle biogenesis (41), vesicular glycolysis

(42, 43), and inhibiting vesicle transport (44) but the relevance of

these findings for neuroblastoma is not known.
Nuclear functions of GAPDH

Upon modification, GAPDH can change binding partners

and translocate to the nucleus, where it regulates multiple

functions, including DNA repair. A number of modifications
Frontiers in Oncology 03
can cause GAPDH to translocate to the nucleus. These include

phosphorylation of GAPDH-Ser122 by AMPK, AMP-dependent

protein kinase (45). In contrast, AKT2 phosphorylation prevents

nuclear translocation of GAPDH (46). The many chemical

modifications of cysteine that alter GAPDH localization and

alter its function have been reviewed recently (47). There are

interactions between phosphorylation and other modifications,

for example that AMPK phosphorylation can override

nitrosylation (48), so that GAPDH-Ser122Ala mutants do not

translocate to the nucleus (48), even if the protein undergoes

other modifications.

In addition, GAPDH associates with the acetyltransferase

p300/CBP (cyclic adenosine monophosphate response element/

CREB-binding protein), which acetylates GAPDH on multiple

lysine residues, which are required for translocation of a GAPDH-

SIAH1 (seven in absentia homolog 1 E3 ubiquitin ligase) complex

(49) to the nucleus (50). A number of studies of non-malignant

tissues suggest that the transit of GAPDH to the nucleus after

DNA damage promotes apoptosis (51–53). If GAPDH promotes

apoptosis, then GAPDH inhibitors might suppress apoptosis in

non-malignant cells while promoting cell death in cancer cells- a

potential therapeutic window. Indeed, binding of GAPDH to the

cytoplasmic protein GOSPEL (GAPDH competitor of SIAH

protein enhances life/Rab interacting lysosomal protein like 1)

competes with SIAH for binding to GAPDH and prevents

NMDA-glutamate excitotoxicity (54). However, in some

settings, nuclear GAPDH can perform repair or metabolic

functions, and these are described next.
FIGURE 1

Diagram depicting subcellular localizations of GAPDH associated with glycolysis (cytoplasm), DNA repair (nucleus), autophagy (nucleus) and
increased glucose transport (plasma membrane). Likely binding partners are also shown. Details of the model are described in Aim 1.
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GAPDH and DNA repair

Nuclear GAPDH contributes to DNA repair by binding DNA

directly and enzymatically modifying DNA. Uracil is sometimes

mis-incorporated into DNA as dUMP or is created through

deamination of cytosine, and uracil-DNA glycosylase activity

eliminates uracil from DNA and initiates the base excision

repair pathway. GAPDH is a uracil-DNA glycosylase, and

GAPDH also interacts with the repair protein APE1 [apurinic/

apyrimidinic endodeoxyribonuclease 1 (55)], an endonuclease

that creates a nick in the DNA phosphodiesterase backbone

following the removal of a damaged base by a DNA glycosylase.

GAPDH requires Cys152 for APE1 binding (55), and the GAPDH

inhibitor koningic acid blocks active site cysteines of GAPDH,

disrupting the GAPDH-APE1 interaction (55). As a result,

koningic acid enhances the toxicity of H2O2-mediated oxidative

damage in smooth muscle cells (55). Koningic acid was isolated

from three different fungi from soil (56) and inhibits GAPDH (57)

with resulting activity towards a variety of cancer cell types (58–

60), including neuroblastoma (61). In some cases, koningic acid

reverses drug resistance in cancer (62).

In addition to APE1 (apurinic/apyrimidinic endo-

deoxyribonuclease 1), GAPDH also associates with the DNA

repair protein PARP1, polyADP ribose polymerase (55, 63, 64),

which is critical for single-strand break repair and double-strand

repair (65). PARP can ADP-ribosylate and inactivate GAPDH,

contributing to GAPDH depletion and in some cases, cell death

(64, 66–68). Thus, mutants disrupting this interaction can elevate

DNA damage and cell death through a failure in repair (55) or can

inflict damage through uncontrolled PARP activity (64).

Interestingly, some natural products have PARP inhibitory

activity and may partially reverse this pathway (69).
GAPDH and autophagy

Cancer cells activate numerous signaling pathways,

particularly the mTOR (mammalian target of rapamycin)

kinase, to inhibit autophagy (70). Numerous signaling,

transport and proteolytic steps are in turn controlled by

autophagy (71). In glioblastoma, GAPDH is included in an

autophagy-related group of seven genes that served as a

prognostic indicator (72). But autophagy has a complex role in

neuroblastoma, as it does in other cancer types. Rapamycin

inhibits mTOR and induces autophagy, and rapamycin induces

growth arrest in neuroblastoma cells (73), suggesting a growth

inhibitory role for autophagy in neuroblastoma. However,

proteins that activate autophagy correlate with poor

prognosis (70).

One possible explanation is that autophagy inhibits

proliferation in the absence of cell stress but is necessary for

cell survival under stressful or damaging conditions. Indeed,
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chemotherapy [vincristine, doxorubicin and cisplatin (70)],

endoplasmic reticulum stress (74), rotenone (75) and retinoid/

apigenin treatment (76) in neuroblastoma. In contrast,

autophagy uenhances or is required for cell death in

neuroblastoma cells treated with the ribonuclease Onconase

(77) the Akt inhibitor MK-2206 (78) and agents inducing

oxidative damage (79). There are numerous additional

examples of autophagy enhancing or inhibiting cell death in

neuroblastoma, and some have been recently reviewed (63).

Thus, the cell survival function of autophagy in neuroblastoma is

dependent on the type of stress and precise experimental

conditions (i.e. media components, time of treatment and

experimental endpoints).

Given its role in energy metabolism, it is not surprising that

GAPDH contributes to autophagy. Under low glucose

conditions, ATP decreases and AMP increases, activating

AMPK, which phosphorylates GAPDH on serine 122,

triggering the translocation of GAPDH to the nucleus (48).

There, GAPDH activates SIRT1/sirtuin 1, an NAD-dependent

protein deacetylase, displacing a SIRT1 inhibitor and forming an

active complex. Activated SIRT1, in turn, deacetylates LC3, a key

marker of autophagy (80), increasing LC3 puncta formation in

the cytoplasm, promoting autophagy (48), shown in Figure 1.

These experiments were performed in mouse embryonic

fibroblasts and HEK293 human embryonic kidney cells. In

human pancreatic cancer cells, GAPDH nuclear translocation

was inhibited by an arginine-273-histidine mutated form of the

p53 tumor suppressor protein, favoring glycolysis and cell

survival (63).
GAPDH function in neuroblastoma

One of the key questions is how the different pathways

directed by GAPDHmight intersect in neuroblastoma. There are

clues from the literature, although each has caveats. First, there

are numerous gene expression studies in neuroblastoma using

GAPDH as a loading control for other genes (81), in spite of

concerns over utilizing GAPDH as a loading control (82). Other

studies directly addressed the function of GAPDH in

neuroblastoma. In cultured NG108-15 neuroblastoma-glioma

hybrid cells, GAPDH inhibition for 24 hours efficiently induced

apoptosis (61). Conversely, GAPDH was detected on the surface

of Neuro2A and B103 neuroblastoma cells, and extracellular

GAPDH increased neurite outgrowth in cultured neurons (83),

although its role in neuroblastoma growth and survival were

not determined.

A number of investigators have linked chemically modified

forms of GAPDH to increased cell death (66, 84). Other studies

support a role for nuclear GAPDH in the progression of

apoptosis due to multiple stimuli in neuroblastoma (85–92).
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Aggregation of GAPDH into multimers also contributes to

nuclear translocation and apoptosis (93, 94). Finally, secreted

GAPDH may also contribute to cell death (95).

SHSY5Y cells are a widely used human model system that

were derived from a 4-year-old girl with neuroblastoma. In

studies with SHSY5Y cells, GAPDH inhibition with CGP3466B

or heptilidic acid did not inhibit the formation of LC3-II (24),

the cleaved and lipidated form of LC3 (80), but suppressed the

degradation of the autophagosome target p62/SQSTM1,

suggesting that GAPDH is not needed for the signaling

pathways that initiate autophagy but is needed autophagic

degradation in neuroblastoma. This is different from the

GAPDH function in activating SIRT1 to promote LC3-II

production (48), perhaps due to differences in glucose in the

media. A separate study by Dodson, et al. in SHSY5Y cells after

koningic acid (another name for heptilidic acid) treatment found

minimal changes in LC3A-II and a slight increase in p62/

SQSTM1 levels (96). But the conditions in the two studies

were different. Craven, et al. used serum-free media for

treatment (with high levels of autophagy), whereas Dodson, et

al. used differentiated cells grown in 10% serum (with low levels

of autophagy) and retinoic acid. It may be that high levels of

autophagy detected in low serum were necessary to detect the

effects of GAPDH inhibition. In the study by Dodson, et al.,

short-term (2 hour) GAPDH inhibition did not affect cell

viability (96), and sensitivity to damaging agents such as

chemotherapy was not measured. In that system, autophagy is

required for viability when glycolysis is disrupted, underscoring

a close and complex relationship between the pathways (96).

In a recent study, Ping, et al. used SHSY5Y cells in a co-

culture system with E. coli expressing the a-synuclein, a soluble
protein that regulates vesicle trafficking and neurotransmitter

release. In this setting, GAPDH suppressed autophagy and

promoted reactive oxygen species generation and cell death

(97). However, this E. coli co-culture system expressing a-
synuclein is not directly comparable to other systems. Finally,

other investigators suggest an essential role for glycolysis in cell

survival in SHSY5Y and SK-N-SH cells (98), based on the ability

of ascorbate to induce cell death while suppressing glycolysis and

inhibiting GAPDH activity. However, ascorbate also induced

high levels of oxidative damage, suggesting that the effects of

ascorbate were not attributable to a single mechanism.
Discussion

GAPDH is a multi-functional protein with separate and

antagonistic roles in cancer cell survival. While GAPDH-

mediated glycolysis and DNA repair promote tumor cell

survival, particularly in the presence of damage, GAPDH also

has pro-apoptotic functions in response to different stimuli.

Some of these functions are driven by changes in GAPDH
Frontiers in Oncology 05
cellular localization, and some GAPDH inhibitors are capable

of blocking specific localizations. One factor that is less clear is

how the function of GAPDH within the nucleus, for example, is

directed towards repair versus pro-apoptotic functions or

complexes that promote autophagy. Presumably, the

availability of binding sites on partner proteins within the

nucleus plays an important role, and this may be dynamic,

depending on the quantity of any damage or metabolic stress

that cells are experiencing.

One limitation to the use of GAPDH inhibitors for treating

neuroblastoma is the possibility that some inhibitors that block

GAPDH activity in glycolysis and glucose uptake may also

inhibit apoptosis by suppressing a pro-apoptotic nuclear form

of GAPDH. These would be contra-indicated when combined

with chemotherapy. If these competing roles can be selectively

inhibited, GAPDH has potential as a therapeutic target in

neuroblastoma, particularly in combining GAPDH glycolytic,

autophagy or DNA repair inhibitors with standard

chemotherapy. For example, an ideal GAPDH inhibitor may

inhibit the cytoplasmic and plasma membrane functions of

GAPDH while leaving the pro-apoptotic nuclear function

undisturbed. Other ideal inhibitors might selectively target

nuclear GAPDH functions promoting autophagy or DNA

repair while minimally inhibiting GAPDH pro-apoptotic

activity. However, research in this area, including therapeutic

development, is needed in order to advance GAPDH inhibitors

as therapeutic approaches for neuroblastoma.
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