
RESEARCH Open Access

GapFiller: a de novo assembly approach to fill the
gap within paired reads
Francesca Nadalin1,2*, Francesco Vezzi3, Alberto Policriti1,2

From NETTAB 2011 Workshop on Clinical Bioinformatics

Pavia, Italy. 12-14 October 2011

Abstract

Background: Next Generation Sequencing technologies are able to provide high genome coverages at a relatively

low cost. However, due to limited reads’ length (from 30 bp up to 200 bp), specific bioinformatics problems have

become even more difficult to solve. De novo assembly with short reads, for example, is more complicated at least

for two reasons: first, the overall amount of “noisy” data to cope with increased and, second, as the reads’ length

decreases the number of unsolvable repeats grows. Our work’s aim is to go at the root of the problem by

providing a pre-processing tool capable to produce (in-silico) longer and highly accurate sequences from a

collection of Next Generation Sequencing reads.

Results: In this paper a seed-and-extend local assembler is presented. The kernel algorithm is a loop that, starting

from a read used as seed, keeps extending it using heuristics whose main goal is to produce a collection of error-

free and longer sequences. In particular, GapFiller carefully detects reliable overlaps and operates clustering similar

reads in order to reconstruct the missing part between the two ends of the same insert. Our tool’s output has

been validated on 24 experiments using both simulated and real paired reads datasets. The output sequences are

declared correct when the seed-mate is found. In the experiments performed, GapFiller was able to extend high

percentages of the processed seeds and find their mates, with a false positives rate that turned out to be nearly

negligible.

Conclusions: GapFiller, starting from a sufficiently high short reads coverage, is able to produce high coverages of

accurate longer sequences (from 300 bp up to 3500 bp). The procedure to perform safe extensions, together with

the mate-found check, turned out to be a powerful criterion to guarantee contigs’ correctness. GapFiller has further

potential, as it could be applied in a number of different scenarios, including the post-processing validation of

insertions/deletions detection pipelines, pre-processing routines on datasets for de novo assembly pipelines, or in

any hierarchical approach designed to assemble, analyse or validate pools of sequences.

Background
The recent Next Generation Sequencing (NGS) break-

through and the consequent tremendous increase in

data production, have been accompanied by the appear-

ance of a multitude of pipelines able to assemble the

(relatively) short sequences (i.e., reads) produced by

state-of-the-art sequencers.

In the last two years more than 20 new assemblers

(see [1] for an up-to-date overview) have been proposed,

more than doubling in size the population of the assem-

blers designed for long Sanger reads. Despite the practi-

cal and theoretical problems involved in assembling

complex genomes using only short sequences [2], sev-

eral de novo assembly projects based exclusively on

NGS data have started. Among the most popular ones

we mention the Panda genome project [3], the assembly

of specific human Individuals [4] (Han Chinese and Yor-

uban), and several other species [5].
* Correspondence: fnadalin@appliedgenomics.org
1Department of Mathematics and Computer Science, University of Udine,

Udine 33100, Italy

Full list of author information is available at the end of the article

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

© 2012 Nadalin et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:fnadalin@appliedgenomics.org
http://creativecommons.org/licenses/by/2.0

While several tools became publicly available and sev-

eral projects based on such tools started to appear, a

very lively discussion on how to validate new assemblies

and, in general, on how to estimate assemblers’ output

started. As noticed in [6], all assembly tools are based

on a small number of algorithms and differ from one

another only in matter of details that, very often, relate

to how they deal with errors, inconsistencies, and ambi-

guities. As a consequence, an increasing number of stu-

dies is now being published aiming, on the one hand, at

evaluating de novo assemblers and assemblies, and, on

the other hand, at criticising the results achieved so far.

Assemblathon [7] first and second editions, dnGASP [8],

and GAGE [9] try to assess the performances of existing

tools triggering an assembly evaluation competition

among several bioinformatics groups. Even though these

competitions succeeded in giving a fairly complete over-

view of the assemblers’ potentialities, they are almost

always based on specific (often already sequenced) gen-

omes or on simulated data, leaving open the question of

whether the same tools would have had the same perfor-

mances when run on different datasets (i.e., different gen-

omes or real reads).

Recently proposed assemblies carried out using NGS

data only (usually Illumina reads), are at the center of a

lively debate. Alkan in [10] criticised two of the major

late NGS achievements: the assembly of the Han Chinese

and Yoruban individuals [4], both sequenced with Illu-

mina reads. For example, Alkan identified 420.2 Mbp of

missing repeated sequences from the Yoruban assembly

and estimated that in both assemblies almost 16% of the

genome was missing.

Some studies started to criticise the way in which the

evaluation of assemblies and assemblers is carried out:

standard statistics like the mean contig length and the

N50 emphasize only length and nothing, or almost

nothing, is said about contigs’ correctness [11,12].

Evaluations of simulated data are inherently biased by

the capabilities of the read simulator to faithfully repro-

duce error schemata [12].

More than three years after the so-called NGS revolu-

tion started, it is extremely clear that de novo assembly

needs extensive and standardized validation steps. NGS

breakthrough allowed to sequence a number of new

species and individuals thought to be impossible only

few years ago. While, on the one hand, an increasing

number of people keeps sequencing and assemblying

genomes using available assemblers and short reads, on

the other one, day after day, a larger community criti-

cises and casts doubts on assembly achievements.

At the peak of this difficult moment we try to go back

to basics and propose a new tool, dubbed GapFiller

[13], able to generate small but correct and certified

contigs, that can be used either in a first step of an

assembly project, or in numerous downstream analyses

strongly depending on sequencing and aligning. The

innovative feature of GapFiller is the possibility to pro-

duce a highly reliable output that, having been certified

correct–and hence needing no further validation–, can

be used, for example, to improve or validate a whole

genome assembly.

Our method is based on a seed-and-extend schema

aimed at closing the gap between the two mates of a

paired read. Similarly to other seed-and-extend-based

tools like SSAKE [14], SHARCGS [15], QSRA [16], and

TAIPAN [17], GapFiller selects one read and tries to

extend it using reads that overlap for a significant

region. The main drawback of seed-and-extend assem-

blers is their inherent incapability to cope with complex

(i.e., repetitive) genomes. GapFiller does not aim at pro-

ducing a de novo assembly, but only concentrates on

closing the gap within paired reads. The advantages of

our method lie in the generation of correct and certified

contigs and, as a by-product, in the identification of

“difficult” areas (e.g., repeats, low covered regions, etc.),

thus avoiding the production of wrong contigs. The

assembler TAIPAN [17] is implemented to stop its

extension phase in presence of a repeat; however, like

all other full-fledged assemblers, it is not designed to

return certified contigs as output.

Closing the gap within paired reads is a strategy

already used by software packages like SHERA [18] and

FLASH [19]. However, these tools are able to work only

with “overlapping libraries”, that is, libraries whose frag-

ment size is shorter than twice the reads’ length. GapFil-

ler solves a more challenging problem, aiming at

producing filled paired reads of higher length.

We will show how the contigs produced by our

method, despite being of Sanger-like length or slightly

longer (up to ~ 3500 bp), are highly reliable and correct.

Moreover, the sequences produced generate a genome

coverage consisting of evenly distributed long contigs.

Such contigs can be used to feed another assembler

(designed, for example, for long, Sanger-like, reads) or

to identify and–most importantly–to reconstruct inser-

tion and deletion events in resequencing projects.

On a more technical ground, our algorithm is based

on a carefully chosen hash function together with a set

of heuristics able to avoid or detect errors, as well as on

a test for establishing the correctness of a sequence, that

allow us to create a set of certified contigs.

Methods
GapFiller is a local assembler based on a seed-and-extend

schema [13]. Seed-and-extend assemblers repeatedly pick

up a seed (it can be either a read or a previously

assembled contig) and extend it using other reads. This

procedure is realised by computing and analysing all–or

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 2 of 16

almost all–the overlaps between seed’s tips and the

remaining available reads. The reads used for an exten-

sion are those with the highest alignment score. It is clear

that the seed-and-extend assemblers’ computation bottle-

neck is their capability to quickly cope with all the align-

ment scores to be determined.

GapFiller begins by storing all useful reads in a mem-

ory efficient data structure that allows to readily com-

pute overlaps between the contig under construction

and the remaining available reads. In a second phase

each seed read (possibly belonging to a new set of

paired reads) is selected one after the other and used to

start an extension phase. Such phase halts when a stop

condition is reached. Depending on the stop condition,

the contig produced is labelled as trusted or not trusted

(i.e., positive or negative).

Definitions

Let Σ be an alphabet and Σ* be the set of the words from

Σ. For every S Î Σ
* we will denote with |S| the number of

characters of S and with S[p, . . ., p + l - 1] the sub-

sequence of S starting in p Î {0, . . ., |S| - 1} and of length

l Î {0, . . ., |S| - p}. We will refer to S[p, . . ., p + l - 1] as

prefix if p = 0, suffix if p + l = |S|, and as the p-th charac-

ter of S if l = 1, and we will simply write S[p].

In order to quickly identify overlaps between the con-

tig under construction and the reads’ tips, we use an

approach closely related to the one presented in [20]

based on an Hamming-aware hash function. The idea is

that, by representing a string of length l as a base-|Σ|

number, one can often replace expensive char-by-char

comparison by fast integer (or bit-string) comparison.

However, for practical values of l, the integers to be

compared would not fit in a memory word. For this rea-

son, as in the classical Karp-Rabin exact string matching

algorithm [21], we can work with numbers modulo q

considering equality modulo q only as an indication

(necessary condition) that pairs of strings may be the

same (i.e., operating with the strings’ fingerprints). Poli-

criti et al. in [22] proposed an extension of the approach

by Karp and Rabin, introducing a technique to deal with

mismatches, based on the idea of replacing simple fin-

gerprints comparison with a more articulated test. In

particular they noticed that, by choosing q to be a Mers-

enne (prime, when possible) number (i.e., q = 2w - 1, for

some w Î N), to check whether two strings align against

each other at a small Hamming distance can be imple-

mented in average linear time.

Given a string S Î Σ* and its base-|Σ| numerical

representation s Î N, let us define the hash function

fH :
∑∗

→ {0, ..., q − 1} as

S �→ fH(S) := s mod q, (1)

where q is a (prime) number of the form q = 2w- 1,

for some w Î N. The value fH (S) is called the finger-

print of the sequence in S Î Σ* coded with s.

In our context, the use of fH significantly reduces the

size of the set employed in the search of the overlapping

reads. Every read r, as well as its reverse-complement, is

indexed by the fingerprint of a substring of length b,

starting at a fixed position x in r (see also Figure 1). For-

mally, given a set of reads R, a sequence S, a maximum

allowed Hamming distance k, the set Z(k, q) of the wit-

nesses (the Hamming sphere of radius k around S, see

[22] for more details), a fixed value b for the length of

the substring on which the fingerprint is computed in r,

and two positions x and y, the following set:

R(S, x, y) := {r ∈ R|(fH(r[x, ..., x + b − 1]) − fHS[y, ..., y + b − 1])) mod q ∈ Z(k, q)} (2)

contains at least all the reads r ∈ R such that the

hamming distance between r[x, . . ., x + b - 1] and

S[y, ..., y + b − 1] is not greater than k. False positives

can be present but, as showed in [22], their amount is

limited. On this ground the search for reads overlapping

S can be restricted to those belonging to R(S, x, y), for

some x, y Î ℤ.

As far as GapFiller is concerned, we set k = 0 as default,

meaning that we search for exact b-length substrings in

the reads (i.e., r[x, ..., x + b − 1] = S[y, ..., y + b − 1], for

some x and y). As a consequence, better quality output

will be obtained if we select a position x in r such that

the average base quality is expected to be the highest pos-

sible. This point will be further discussed in the section

specifically addressing data structures’ design and

implementation.

Dataset preparation

In order to avoid the generation of wrong contigs, it is

of utmost importance to use only correct reads over the

entire extension phase. Several tools are available to per-

form error correction on Illumina data using the so-

called “read spectrum” (consider QUAKE [23], Hammer

[24], and Allpaths [25] just to mention the most recent

ones). Other tools discard reads or try to improve their

reliability using quality information (rNA [20] and

QSRA [16]).

Our approach, when we are given raw data, is to first

trim (and possibly filter) the reads on the ground of

quality information using a specific rNA option (refer to

[20] for details), and to subsequently correct them with

an error correction tool like QUAKE [23].

Another important way to assess a dataset’s global

quality is to plot the reads’ k-mers distribution. This can

be easily done using Jellyfish [26]. If the genome has

been sequenced tens of times, then two peaks are

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 3 of 16

expected: one in correspondence of the expected cover-

age and one in correspondence of coverage one. k-mers

composing this second peak are likely to be sequencing

errors. As a rule of thumb, a low number of k-mers

occurring only once suggests that the dataset has a good

global quality.

Contig extension

In the contig extension phase, each read is selected in a

loop and used as seed in order to create a new contig.

Once a seed read is selected, the suffix-prefix overlaps

with other reads are computed and, if a sufficiently high

level of global similarity is reached, they are clustered in

a consensus string, which is subsequently used to per-

form further extensions. The procedure continues while

some overlapping reads exist and the consensus string is

highly representative of the clustered reads. If either one

of the previous two conditions is not met, the extension

phase stops, the current sequence is returned in output,

and the loop continues.

Before the extension phase some parameters are set:

the minimum overlap length L and the maximum shift

∆: an overlap between the current contig’s suffix and

the read’s prefix is considered only if the overlap length

l belongs to the interval [L, L + ∆].

GapFiller builds a cluster every time a contig is to be

extended with the overlapping reads. In particular, GapFil-

ler uses only those reads aligning against the contig’s suffix

with at most δ mismatches (where δ = δ(l) is a function of

the overlap length l) and requires at least m reads in order

to compute a consensus string. Notice that b ≤ L ≤ l holds,

hence suffix-prefix overlaps might occur with more than

k = 0 mismatches (see section Definitions).

Let R be the set of the input reads for GapFiller and

r0 ∈ R be a seed read. At step i = 0 the current sequence

is initialized with the seed S0 := r0. Denoting by Si the

current contig at the generic i-th step of the algorithm,

the procedure to build Si+1 is described below:

Step1 Reads are selected according to their similarity

with the current contig Si (see Figure 2a). At this point,

every read overlapping Si for l Î [L, L + ∆] characters

with at most δ mismatches is selected.

Step2 The reads are clustered and a consensus string

is computed. Every character of the consensus string is

assigned a flag indicating how it is representative of the

reads from which it is built. More precisely, for every

position j, GapFiller selects the most occurring character

in the considered reads, and the majority consensus

string C is computed (see Figure 2b). Depending on two

parameters T1 and T2 such that T1 < T2, we say that a

position j is non-represented, low-represented, or high-

represented if the representation rate of the correspond-

ing character in C is lower than T1, lower than T2, or

higher than T2, respectively.

Step3 The reads used to build the consensus C are fil-

tered and trimmed, depending on the presence of low-

represented and non-represented positions, respectively.

The idea is that on low-represented positions we need a

minimum percentage of reads matching the consensus

string, and that on non-represented positions the exten-

sion is considered to be unsafe. Reads differing from C

in correspondence of low-represented positions are dis-

carded and the remaining ones are also trimmed if a

non-represented position occurs (see Figure 2c).

Step4 A new consensus string Cnew is computed, con-

sidering only the reads obtained at Step 3, and possibly

the current contig is extended (see Figure 2d). The

extension is done only if the number of reads is at least

m and the consensus Cnew exceeds Si’s right end: in this

case, a new contig Si+1 is built and the procedure

restarts. Otherwise the algorithm stops and the contig Si
is returned.

The adopted strategy is aimed at either avoiding

errors and overcoming the problems arising when Gap-

Filler attempts to cluster reads that are different from

each other. In the last part of this section we will dis-

cuss in more detail how the algorithm works. The

reader who is not interested in the technical formalism

might skip this part and move directly to the Subsection

Stop criteria.

Figure 1 Fingerprint computation on b-length substrings. When looking for overlaps between S and r, the fingerprints are computed on the

substrings r[x, . . ., x+b -1] and S[y, . . ., y + b - 1], respectively, where x and b are set before the contig’s extension phase. We require an (almost) exact

b-length match between r and S in order to include r in the set of putative overlapping reads, by setting fH (r[x, . . ., x + b - 1]) = fH (S[y, . . ., y + b -1]).

Using such a method, the suffix-prefix overlaps that can be detected are those of length l ≥ x + b.

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 4 of 16

Figure 2 GapFiller extension phase (an example with L = 5, ∆ = 4, δ = 2, m = 2, T1 = 0.3, T2 = 0.5). (a) The putative overlapping reads,

selected by their fingerprint values, are checked for the presence of mismatches and possibly discarded. For each remaining read (say, r1, r2, r3,

and r4), the number of mismatches (highlighted in red) with Si’s suffix does not exceed δ = 2. (b) The consensus string is computed for every

position j such that either j ≤ F (C) or at least m = 2 reads are available. The characters rounded in gray and red refer to low-represented and

non-represented positions, respectively. In presence of ambiguities (i.e., positions in which more than one character with the same

representation rate occur) GapFiller chooses the character belonging to the first read encountered, from left to right. (c) Reads with mismatches

in correspondence of the low-represented positions are discarded (say, r1 and r2), hence they do not contribute to reach the threshold m to

compute a new consensus string. In our example read r4’s tail is cut in the non-represented position, regardless on whether it matches the

consensus string or not. (d) The reads still alive after Step 3 are used to compute the final consensus string Cnew. Since there are 2 ≥ m available

reads exceeding Si’s tail, Cnew is computed, it is attached to Si, and the extended contig Si+1 is obtained.

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 5 of 16

Step 1. Overlapping reads selection

Let us denote with R(Si, l) the set of the putative over-

lapping reads with respect to the l-suffix of Si, selected

by their fingerprint values (see (2), with y = |S| - l + x,

for some values of x Î {0, . . ., l - b}). For every fixed

value of l, the set of the reads overlapping the l-suffix of

Si with at most δ mismatches is defined as

R̂(Si, l) : {r ∈ R(Si, l) : dH(r[0, ..., l − 1], Si[|Si| − l, ..., |Si| − 1]) ≤ δ} (3)

where dH : Σl × Σ
l
® ℝ

+ is the Hamming distance. The

set of all the overlapping reads will be denoted by

R̂(Si) :=

L+�⋃

l=L

R̂(Si, l). (4)

Given a read r ∈ R̂(Si, l), we define its starting and

ending positions as

I(r) := |Si| − l F(r) := I(r) + |r| − 1. (5)

I(r) and F(r) represent the position of the read r with

respect to the current contig Si, therefore we set I(Si) = 0.

For instance, in the case depicted in Figure 2, we have

R̂(Si, 8) = {r1, r4} and R̂(Si) = {r1, r2, r3, r4} , I(r1) = 10

and F(r1) = 20.

Step 2. Reads clustering and consensus string computation

The subsequent phase consists of the computation of

the consensus string obtained from the set of reads

R̂(Si) (see (4)). Notice that, in order to compute reli-

able extensions, we require the number of reads to be at

least m, a parameter that may depend on the dataset

used. If there exists no l such that the l-suffix of Si is

covered by at least m reads of R̂(Si) , then the proce-

dure stops. Otherwise, the starting and ending positions

of the consensus string C with respect to Si can be com-

puted, thanks to (5). In practice, we let the consensus

string start from the leftmost reads, i.e., those covering

the longest suffix of Si (see, for instance, the read r2 in

Figure 2) and end at the rightmost position in which the

number of reads is at least m. More precisely, the start-

ing and ending positions of C are defined as

I(C) := min {I(r) : r ∈ R̂(Si)};

F(C) := max {F(r) : r ∈ R̂(Si)�|{r′ ∈ R̂(Si) : F(r′) ≥ F(r)}| ≥ m},

respectively. If F(C) > |Si|-1 the procedure continues,

otherwise it stops as Si cannot be further extended.

Looking at Figure 1 we have I(C) = 9 and F(C) = 21 and

the procedure continues since F(C) > F (Si+1) = 17.

The consensus string C is then computed by selecting

the most represented character at every position. For

every X Î Σ and for every j = I(C), . . ., F(C) we define

the number of occurrences of the character X in posi-

tion j with respect to Si as

σ (X, j) := |{r ∈ R̂(Si) : I(r) ≤ j ≤ F(r) � r[j − I(r)] = X}|.

The consensus string C is defined, for every j = I(C), . . .,

F (C), by setting C[j - I(C)] equal to the highest occurring

character, i.e., the X Î Σ with the highest number of

occurrences in position j

C[j − I(C)] := arg max
X∈

∑ σ (X, j).

Loosely speaking, the character selected on a particular

position of the consensus string is the most occurring char-

acter in the reads on that position; hence s(C[j - I(C)], j)

is the number of occurrences of character C[j - I(C)] on

position j.

Step 3. Consensus-based reads selection

As above mentioned, in order to check, on the one

hand, whether a read r is highly representative of the

consensus C and, on the other hand, if the extension is

“safe”, it is important to introduce the notion of non-

represented, low-represented, and high-represented char-

acters in the consensus string. We simply define the

representation rate of the position j as

π(j) :=
σ (C[j − I(C)], j)

|{r ∈ R̂(Si) : I(r) ≤ j ≤ F(r)}|
. (6)

Hence we fix two threshold values T1 and T2 such

that 0.25 ≤ T1 < T2 < 1 (notice that π (j) Î [0.25, 1] as

|Σ| = 4) and we distinguish three types of positions in

the consensus string:

j is non-represented ⇔ π(j) ≤ T1

j is low-represented ⇔ T1 < π(j) ≤ T2

j is high-represented ⇔ π(j) > T2.

The idea is to discard those reads that “differ from C”

and to cut them out, as there is not sufficiently high evi-

dence that GapFiller is extending correctly. In practice, we

do not consider a read r if it does not match the consensus

string on a low-represented position, i.e., r[j -I(r)] ≠ C[j - I

(C)], for some j such that π (j) ≤ T2. Clearly, this applies to

non-represented positions as well. Then, we trim every

read overlapping any non-represented position of C. More

precisely, if jnot is the first non-represented position occur-

ring in r (i.e., π (jnot) ≤ T1), we consider r[0, . . ., jnot - I(r) -

1] instead of r.

After unsafe reads are discarded and the remaining

ones are trimmed, a new set of reads, that can be

denoted by R̂new(Si), is finally obtained (see Figure 2c).

Every read in R̂new(Si) is both matching the consensus

string C on each low-represented position and not cov-

ering any non-represented one. Using this mechanism

we take into account only the most representative reads

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 6 of 16

and do not extend the contig with a consensus character

when its representation rate is too low.

Step 4. Final consensus string computation and contig

update

After previous step, the new set of overlapping reads

R̂new(Si) is obtained. A new consensus string Cnew can

be computed as C was before. If F(Cnew) > |Si| - 1 the

extension is performed, the current contig is updated

Si+1 := Si[0, ..., I(Cnew) − 1].Cnew

and the (i + 2)-th extension phase restarts from Si+1.

Stop criteria

The algorithm described in the previous section may

potentially extend a contig for an arbitrarily large num-

ber of times, without checking any “global” properties of

the current sequence. With our method the extension

phase halts if at least one of the following conditions is

met: (i) the available overlapping reads for the consensus

C are less than m; (ii) the available overlapping reads for

the new consensus Cnew are less than m; (iii) contig’s

length exceeds the maximum length; (iv) the seed-mate

has been found.

Let Si be the contig obtained at the i-th step, starting

from the seed read r0. Criterion (i) applies when the con-

sensus string C does not exceed the current contig. This

means that there are no more than m - 1 overlapping

reads, or that they are too short. In such a case, the contig

produced is labelled as NO_MORE_EXTENSION.

Criterion (ii) applies when the consensus may have

been produced as consequence of the presence of reads

belonging to different genomic locations. More precisely,

this situation is likely to appear when the consensus

extension is “trying” to exit from a repeat. In this case,

either too many reads are discarded (due to the presence

of low-represented positions) or a significant trimming of

them has been performed (as some non-represented

positions occur far before the end of the consensus). In

such a situation, the extension is halted and the contig is

labelled as REPEAT_FOUND.

Criterion (iii) is satisfied as |Si+1| > Lmax, where Lmax is

fixed at the beginning of the algorithm and is usually set

to the maximum insert size, plus a tolerance value. In

such a situation, we could have been able to continue the

extension but, however, we could not find the seed-mate.

This suggests that the contig produced may be wrong or,

at least, that it contains a high number of unreliable

bases. When the maximum allowed length is exceeded,

the computation is halted and the contig, labelled as

LENGTH_EXCEED, is returned.

Criterion (iv) is used to stop the extension as the mate

r̃0 of the seed r0 is found. At the generic i-th step, every

p ∈ {0, ..., |si| − |r̃0|} is checked to see whether the fol-

lowing condition is satisfied

dH(Si[p, ..., p + |r̃0| − 1], r̃0) ≤ M, (7)

where M is the maximum number of mismatches

allowed between r̃0 and Si. Inequality (7) is satisfied if

and only if the mate is found in Si at position p with no

more than M mismatches. This control is performed

on-the-fly and hence the positions already checked at

the i-th step will not be re-checked. The mate-check cri-

terion is used as a guarantee of correctness of the whole

contig. This is in contrast to previous criteria, which are

used to detect and prevent errors introduced in the

extension phase. From this point of view, criteria (i) and

(ii) can be seen as strictly local, since no information

collected during previous steps is used. In this last case

the contig returned is labelled as MATE_FOUND.

Data structures

In this section we will take a closer look at the data

structures designed for our algorithm and at their

implementation. GapFiller’s core is the module working

during the extension phase. At this point, we assume

that the set R has already been trimmed and possibly

filtered.

The basic idea is to pre-compute as much as possible

of the useful information on the reads, in order to speed

up the computation of the overlaps needed to perform

the extension phase. Suppose that GapFiller is working

at the (i+1)-th step of an extension, with i ≥ 0, and let

Si be the current contig. When constructing the consen-

sus string C (see Figure 2a) we are always interested in

obtaining overlaps between suffixes of Si and prefixes of

reads belonging to R.

In order to compute overlaps, GapFiller employs a

hashing schema based on the one implemented in rNA

[20]; in particular, a data structure similar to the one

proposed in [22] is built. A simplified schema of GapFil-

ler’s data structure is presented in Figure 3. The basic

idea behind GapFiller is the possibility to obtain in a

fast and efficient way the set of reads whose prefixes

overlap a suffix of the partial contig under construction.

Therefore we used the rNA hash function to find reads

that are likely to overlap a suffix of Si; those reads are

subsequently checked to see if they actually overlap Si
or not.

Obviously, all the data must be stored in the main

memory, thus requiring a careful data structures’ engi-

neering. It is clear that, since overlaps between reads

and the current contig can take place on both strands,

reads must be stored together with their reverse

complement.

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 7 of 16

With the goal to save as much memory as possible,

reads are represented as arrays of integers, so that a

base needs 2 bits instead of 8 (A®00, C®01, G®10,

T®11). The data structure used to compute overlaps

and to construct contigs is built from the reads. Three

arrays are used to represent in a compact way the reads

stored in ℛ and to compute overlaps among them:

1. HASHcounter: it is an array of pointers to HASH-

values. In position i it stores the first position in

HASHvalues such that a read r or its reverse com-

plement has a prefix whose fingerprint is i.

2. HASHvalues: each array entry stores the read’s

location in the array Reads together with a boolean

value indicating whether the fingerprint has been

computed from the original read or from its reverse

complement. For this reason the size of HASHvalues

is twice the number of reads in R;

3. Reads: this array stores the reads and other useful

informations, like paired read location, paired read

order (first or second in a pair), and read status

(used, not used, etc.).

The overall memory requirement for GapFiller

depends on the size of HASHcounter and on the num-

ber of reads. As for rNA, a reasonable value for q is

230 -1. Such a number guarantees a reduction of the

number of false positives (i.e., reads reported to align

with the contig suffix, even though they do not overlap

with it). As far as the number of reads is concerned,

we can limit q, without loss of generality, to 231: with

state-of-the-art Illumina technology, such a number of

reads represents approximately a 70× coverage of the

human genome. An Illumina read of length 100 bp

requires two memory locations in HASHvalues of 4

bytes each (31 bits to access array Reads and one bit

to store the overlap orientation) and one entry in

Reads of 9 bytes (7 bytes to store the read’s numerical

representation, one to store the mate position in

Reads, and one more byte to store several useful infor-

mations about read status). In total the amount of

memory required is 4q + 2 ∗ 4|R| + 9|R| = 4q + 17|R|

bytes.

The reads’ fingerprint is computed on a precise sub-

string of length b (see (2)). As pointed out in section

Definitions, the fingerprint of r ∈ R should be com-

puted on the position x such that the (expected) aver-

age base quality is as high as possible and the

substring r[x, . . ., x + b - 1] falls into the contigs’ suf-

fix, independently on the overlap length l. For these

two reasons, having the Illumina error-profile in mind,

we choose x = 0 if r is considered on its original

strand, x = L - b if r has been reverse-complemented

(see Figure 4).

In order to compute the overlaps between the current

contig Si and the reads, one has to compute the

Figure 3 GapFiller data structure. The data structure used for GapFiller’s implementation is composed of three arrays: HASHcounter, whose

length depends on the parameter q used to compute the fingerprints; Reads and HASHvalues, whose lengths depend on the number of reads

in ℛ. HASHvalues is divided in blocks, each of them corresponding to a fingerprint value; each HASHvalues’ entry contains a pointer to an

element of Reads and a boolean value indicating whether the read has been reverse-complemented or not.

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 8 of 16

fingerprints of the substrings of length b starting from y,

for every y Î {|Si| - L - ∆, . . ., |Si| - L} if original-

stranded reads are searched, and for every y Î {|Si | - ∆

- b, . . ., |Si| - b} if reverse-complemented ones are to be

extracted. Let us indicate with sy the fingerprint com-

puted from Si[y, . . ., y + b - 1] (see Figure 4). GapFiller

uses this number to retrieve reads whose l-length prefix

(l = |Si| - y for original-stranded reads, l = |Si| - y + L -

b for reverse-complemented ones) is likely to match a

substring of Si close to the sequence’s end. In particular

GapFiller accesses all HASHvalues positions between

HASHcounter[sy] and HASHcounter[sy + 1] and, subse-

quently, accesses Reads to identify the set of candidate

overlapping sequences R(Si, l) (in Figure 3 GapFiller

scans all positions between k and r - 1 of HASHvalues).

Finally, the set R(Si, l) is used to compute R̂(Si, l) , the

set of real overlapping reads. This is done by checking

all candidate reads singularly. Due to the fact that only

a limited number of mismatches is allowed in this phase

and that the employed hash function guarantees a low

false positive rate, this step is extremely fast.

Results
GapFiller outputs a set of labelled contigs. The label

describes the level of reliability of the sequence, in particu-

lar we divide GapFiller’s output in two sets: positive/

trusted contigs are those labelled MATE_FOUND, while

negative/non-trusted contigs are those labelled NO_MOR-

E_EXTENSION, REPEAT_FOUND, LENGTH_EXCEED.

Trusted contigs are those that we consider certified cor-

rect and can therefore be used in subsequent analysis.

Non-trusted contigs are defined in this way because we

were not able to find the seed-mate and hence we have no

way to estimate their correctness.

We decided to perform experiments on both simu-

lated and real data. Despite being aware that results on

simulated datasets are strongly connected with the abil-

ity of read simulators to successfully reproduce realistic

error schemata [12], we are also conscious that they are

the only way to precisely estimate the reliability of

assembled reads. In contrast, experiments on real data-

sets are necessary in order to test the applicability of

our tool.

We simulated NGS experiments on five bacterial gen-

omes, producing four coverages for each of them, in

order to show how GapFiller’s performances scale at dif-

ferent coverages. Moreover, in order to test correctness,

we aligned each output contig against a precise region

of the reference, as seed reads’ coordinates and orienta-

tion are known.

The experiments on real datasets were performed on

public data, for which the results obtained by various

assemblers are public as well. In this case, we first

checked the correctness of GapFiller’s output contigs and

then used them as input for an assembler for long reads.

Dataset

The reference genomes used for simulated experiments

were downloaded from NCBI website [27] and we used

SimSeq, the reads simulator employed in Assemblathon

1 [7], to generate paired reads coverages. More specifi-

cally, we performed our experiments on five bacterial

genomes (see Table 1). We generated a library consti-

tuted by 100 bp-length paired reads, with insert size

Figure 4 Reads selection by fingerprint values. The substring on which the fingerprint is computed must belong to the reads’ L-prefix in

order to be independent on the overlap length l. The fingerprint is computed on the leftmost substring of length b for original-stranded reads,

and on the rightmost b-length substring for reverse-complemented ones.

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 9 of 16

600 ± 200 bp, using error profiles provided by SimSeq for

reads 1 and 2, respectively. In particular, we obtained 20

simulated datasets generating, for each organism, four

paired-ends coverages: 30×, 50×, 70×, and 90×. The rea-

sons behind this choice lie on the fact that, on the one

hand, we need at least a 30× coverage in order to provide

GapFiller an adequate reads distribution, and, on the

other hand, we noticed that coverages equal or higher

than 100× do not appreciably increase GapFiller’s

performances.

The real datasets were dowloaded from GAGE website

[28] (see Table 2). Fragment (paired-ends) and short

jump (mate-pairs) libraries are available, and corrected

data are provided as well. For both datasets, we com-

bined the two libraries in two ways: in a first attempt

we ran GapFiller using only reads from the fragment

library, while in a second experiment we used both

libraries, but we selected seeds from the short jump

dataset only, creating in this way contigs of average

length 3.5 Kbp.

As far as the experiments on real data are concerned,

it is important to notice that the datasets provided by

GAGE, together with the assembly results described in

[9], represent the first available benchmarks that can be

used to evaluate new instruments like GapFiller.

Using a specific rNA option, each simulated dataset

was filtered to prune and trim reads on the basis of

their quality information. For the real datasets, instead,

we chose to use the Allpaths error-corrected reads,

hence there was no need to trim them.

Design of experiments

We used simulated data in order to evaluate GapFiller’s

ability to correctly reconstruct the gap between two

paired reads and to assess the reliability of the output

classification (NO_MORE_EXTENSION, REPEAT_-

FOUND, LENGTH_EXCEED, and MATE_FOUND). In

particular we used these datasets–easy to build and vali-

date–to explore how coverage affects GapFiller’s exten-

sion phase. Results on real datasets have been used

instead to evaluate GapFiller’s potential when its output

is used as an input dataset for an assembler for long

reads. However, the capability of producing correct con-

tigs is a fundamental feature when GapFiller is used in

this context.

GapFiller’s performances rely on the choice of three

crucial parameters: the minimum overlap length L, the

slack ∆, and the length b of the substring on which the

fingerprint is computed. We decided to set L = 50 and

∆ = 40, as reads’ length is approximately 100 bp for every

library used for the experiments. The value of b identifies

the length of a substring on which we (almost always)

require an exact matching between read and contig (see

Figure 4), due to the fact that the employed hash function

has a low false-positives rate (see (2)). We set b = 20

because we observed that a greater value of b (i.e., close

to L) dramatically prevents GapFiller to find even few-

mismatch-affected overlaps.

The parameters T1 and T2, necessary to discern among

high/low/non-represented positions in the consensus

string (see Subsection Implementation-Contig extension),

are set to T1 = 0.6 and T2 = 0.9. Recall that when a posi-

tion in the consensus string has a representation rate

lower than T1, all the reads are trimmed on that position;

instead, if the representation rate is lower than T2, only

the reads not matching the consensus string are dropped.

The value of m, the minimum number of reads required

in order to compute the consensus string, has always

been set to 2. We chose not to let m depend upon cover-

age, since the number of reads after Step 3 strongly

depends on the parameters used (say, T1 and T2).

We set the maximum length of a contig to be much

greater than the expected mean insert size, i.e., 1800 bp

for simulated data, 550 bp and 4500 bp for GAGE frag-

ment and short jump libraries, respectively (see also

Table 1 and Table 2).

We allowed for the presence of mismatches when

looking for the seed-mate in the contig being con-

structed with parameter M. In all the performed experi-

ments we set M = 10 (i.e., approximately 10% of the

reads’ length). This choice is justified by two reasons:

the first one lies in the fact that the data simulated with

SimSeq have a quite high amount of low-quality bases

even far from the rightmost positions within the reads;

the second one is that, on real datasets, lower values of

M (e.g., 5 or 2) do not increase output quality. The

value of δ, representing the maximum number of mis-

matches allowed when computing overlaps, depends on

the overlap length l and was set to Ml / |r|, where |r| is

the average read length.

Table 1 Reference genomes for simulated datasets

Organism Genome length (bp) Read length (bp) Insert size (bp)

Alcanivorax borkumensis 3, 120, 143 100 600

Alteromonas macleodii 4, 412, 282 100 600

Bacillus amyloliquefaciens 3, 980, 199 100 600

Bacillus cereus 5, 699, 545 100 600

Bordetella bronchiseptica 5, 339, 179 100 600

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 10 of 16

Analysis

The post-processing phase of GapFiller’s output is

aimed at both quantitative and qualitative analysis. The

first is focused on evaluating the amount of trusted con-

tigs our tool is able to produce, the second on results’

validation. The main goal is to compare the perfor-

mances on different input datasets and coverages.

Due to their nature, experiments on simulated data

allow to precisely estimate correctness by aligning a

contig in the exact place where it is supposed to occur

in the reference genome. More precisely, we used the

Smith-Waterman alignment algorithm [29], assigning a

score of 1 to a match, -1 to a mismatch, and -2 to an

indel. For instance, let us consider a contig S generated

by extending a seed read r, and suppose that r has been

extracted from the genome G at position x, on the for-

ward strand. To test its correctness, S is aligned against

G[x, ..., x + |S| + g - 1], where g is the maximum num-

ber of allowed indels, depending on a user-defined

threshold for the alignment score. We say that S is cor-

rectly aligned if and only if the ratio between the best

alignment score of S against G[x, ..., x + |S| + g - 1] and

|S| is at least 0.95 (for instance, we allow up to 5 mis-

matches, 1 indel and 1 mismatch, or 3 indels every

200 bp, on average). For this particular choice of the

alignment score, g is fixed to be ⌈3|S|/200⌉.

Alignments performed in this way allowed us to divide

contigs in four subsets: true and false positives and true

and false negatives, depending on the contigs classifica-

tion and correctness (see Table 3). This gave us the pos-

sibility not only to estimate the percentage of correctly

reconstructed contigs, but also to evaluate GapFiller’s

ability to discern between trusted and not trusted ones.

When using a real dataset reads provenance is

unknown, so in this case we tested output correctness

by aligning the contigs against the reference genome

using BLAST. We set the percentage of identity to be at

least 95% and the hit length to be 100% of contig’s

length, in order to accept an alignment. In real cases it

is interesting to extract two pieces of information from

alignments: the number of (trusted) contigs that cor-

rectly align against the reference, as in the simulated

case, and the coverage profile, as it is useful in order to

estimate the percentage of genome reconstructed by

GapFiller (see Table 4).

Thanks to the presence of theoretical optimal assem-

blies for the two real datasets (see [9]) we evaluated the

performances of GapFiller with respect to other assem-

blers. In particular, we extracted a set of contigs corre-

sponding to a fixed coverage (10× for Staphylococcus

aureus and 15× for Rhodobacter sphaeroides datasets,

respectively) and assembled it with PHRAP [30], a well

known Overlap-Layout-Consensus assembler. We pro-

duced a set of statistics representing the correctness of

our assembly using the same scripts used in [9] and

available for download at [28].

Discussion
All the experiments were performed on a 8CPU

(2500GHz) and 32GB RAM machine. All of them

required no more than ~ 5.4GB RAM memory. See

Table 5 for the time requirements and for the output

coverage produced for each experiment.

Experiments performed on simulated datasets show

how GapFiller’s performances improve as coverage

increases (see Figure 5 and Table 5). From the histo-

grams in Figure 5 we can clearly appreciate how the

number of true positives (see Table 3) increases with

coverage, reaching an average value of 99% when cover-

age is above 50×. In a specular way, we can see that the

number of false negatives decreases as coverage

increases. Table 5 shows how a higher input coverage

allows us to produce a higher output coverage com-

posed by trusted reads.

The simulated datasets allowed us to show how Gap-

Filler is able not only to correctly reconstruct the gap

between paired reads, but also to correctly flag the

generated contigs as trusted (i.e., MATE_FOUND) and

non-trusted (all other cases). Going into more detail,

we observed that the majority of non-trusted contigs

are labelled NO_MORE_EXTENSION, meaning that

GapFiller stops a contig extension depending on some

input dataset features (low covered regions and/or

error-affected reads). Another possible scenario is the

one in which GapFiller computes a wrong consensus

without recognizing it.

Table 2 Reference genomes and libraries for real datasets (Allpaths error-corrected)

Organism Genome length (bp) Library Avg Read length (bp) Insert size (bp) Coverage

S. aureus 2, 903, 081 Fragment
Short jump

101
96

180
3500

29 ×
32 ×

R. sphaeroides 4, 603, 060 Fragment
Short jump

101
101

180
3500

31×
29×

Table 3 Contigs post-processing classification

Aligned Unaligned

Trusted True Positive (TP) False Positive (FP)

Not trusted False Negative (FN) True Negative (TN)

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 11 of 16

Another important result obtained from these datasets

is that the percentage of uncovered bases is negligible,

being strictly less than 0.1% even with low input cov-

erages (e.g., 30×).

On the basis of the results obtained on simulated data,

we tested GapFiller on real data. We decided to use two

datasets provided by GAGE [9]. We opted for these data

because they represent state-of-the-art Illumina

sequences, they are freely available, and they come with a

reference sequence, a set of assemblies obtained with

state-of-the-art assemblies, and with a set of evaluation

scripts.

Table 4 shows GapFiller’s results on Staphylococcus

aureus and Rhodobacter sphaeroides datasets. For both

of them we run GapFiller twice: a first time using only

reads from fragment library and a second time using

reads from short jump library as seeds and reads from

both libraries to close the gap. From Table 4 we can

also see that, in both situations, GapFiller is able to

reconstruct the insert with the expected size; moreover

the amount of aligned trusted contigs is comparable to

that obtained when simulated datasets are used as input.

The percentage of reconstructed genome is extremely

high in S. aureus (for both experiments) and R. sphaer-

oides when fragment library is used alone. When reads

from short jump library are used as seeds, instead, there

is almost 26% of reference missing. This could have

been caused either by a bias in the library (non-uniform

mate-pairs distribution) or by the presence of difficult-

to-assemble areas larger than the insert size.

Table 4 Validation of GapFiller’s output on GAGE datasets

Organism Library Avg contig length (bp) Aligned contigs Aligned length Genome cov

S. aureus Fragment
S.j. + fragment

182
3648

99.48%
98.74%

99.47%
98.76%

98.12%
95.00%

R. sphaeroides Fragment
S.j. + fragment

188
3736

99.91%
98.20%

99.92%
98.22%

98.65%
74.12%

The experiments performed with both short jump (s.j.) and fragment libraries are done by picking the seeds from the short jump library only. We state that a

contig is aligned against the reference if the alignment is a single hit covering 100% of contig’s length and the percentage of identity is at least 95%. The

statistics are computed on trusted contigs.

Table 5 GapFiller performances on both simulated and real datasets

Organism Dataset Output coverage Time

A. borkumensis 30× 80× 25’ 45”

50× 141× 53’ 14”

70× 199× 1 h 30’ 23”

90× 279× 2 h 01’ 03”

A. macleodii 30× 83× 30’ 55”

50× 146× 1 h 12’ 12”

70× 203× 2 h 05’ 36”

90× 262× 3 h 12’ 36”

B. amyloliquefaciens 30× 87× 26’ 40”

50× 154× 1 h 01’ 24

70× 216× 1 h 47’ 51”

90× 278× 2 h 44’ 52”

B.cereus 30× 86× 35’ 54

50× 151× 1 h 20’ 50”

70× 213× 2 h 21’ 28

90× 274× 3 h 36’ 37”

B. bronchiseptica 30× 87× 35’ 27”

50× 153× 1 h 19’ 34”

70× 215× 2 h 19’ 01”

90× 276× 3 h 35’ 01”

S. aureus Fragment 26× 08’ 25”

Short jump + fragment 517× 3 h 34’ 01”

R. sphaeroides Fragment 28× 08’ 43”

Short jump + fragment 230× 5 h 27’ 21”

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 12 of 16

In order to prove GapFiller’s capabilities when used on

real data, we extracted a random 10× coverage from the

set of S. aureus output contigs (in particular from those

obtained using short jump reads as seeds) and a random

15× coverage from R. sphaeroides output contigs (10×

and 5× from those obtained using seeds from fragment

and short jump libraries, respectively). Both coverages

have been assembled with PHRAP with default para-

meters and the results have been compared to the ones

presented in GAGE [9]. It is worth noting that the

assemblies presented in GAGE should be considered the

best achievable assemblies with the employed tools.

Figure 5 Results on 5 simulated datasets. The five histograms represent, for each dataset, the true positives, false positives, false negatives,

and true negatives rates for different input coverages. In order to decide if a (positive or negative) contig is either true or false, it is aligned

against the reference on the exact positions in which it is supposed to occur.

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 13 of 16

In order to obtain a comparison as fair as possible we

employed the same scripts used by Salzberg and collea-

gues in [9]. It is important to say that the presence of a

reference sequence for both the assembled genomes

allows us to compute the real number of errors and

mis-assemblies.

Tables 6 and 7 show the most important statistics

obtained in the validation phase. For what concerns S.

aureus assemblies, we can see that our assembly has a

connectivity level (number of contigs and N50) higher

than that of many other widely used assemblers (e.g.,

Velvet), moreover the number of small contigs (chaffs),

and the number of wrongly assembled repeats (duplica-

tions and compressions) is always comparable and often

better than the other assemblies (all percentages in

Tables 6 and 7 are expressed as a pecentage of true gen-

ome size). The most important columns, however, are

the last four, showing the number of errors (the ideal

assembler should have 0 everywhere). GapFiller+PHRAP

not only is one of the assemblies with the fewest num-

ber of indels, but is also the one having less relocations

(3) and inversions (0). These latest two types of errors

are the most dangerous ones, due to the fact that they

are the result of merging two completely different gen-

ome areas.

Results showed in Table 7 for R. sphaeroides are simi-

lar: this time GapFiller+PHRAP has a lower connectivity

level (however greater than SGA and ABySS, two widely

used assemblers). Also in this case our assembly is not

seriously affected by indels (opposite to SOAPdenovo

that has more than 550 indels). Concerning inversions

and relocations, GapFiller + PHRAP’s performances are

comparable to that of the other assemblers.

Conclusion
GapFiller is a local assembler based on a hashing techni-

que. Indeed, on the one hand, it boosts the extension

phase by reducing the search space and hence allows an

exact computation of overlaps, and, on the other hand,

it allows to store in an efficient and compact way all the

needed information.

GapFiller is a tool able to provide certified contigs, in

the sense that those labelled “trusted” are (almost

always) correct. This statement is sustained by various

simulated experiments, as well as by two real ones. Gap-

Filler does not try and does not aim at assembling a

genome but, instead, it aims at providing as output a set

of Sanger-like-length reads certified correct. In a de

novo assembly project, GapFiller can be used in two

modalities. It can realize a preprocessing step, as the

produced trusted contigs can be used as input meta-

reads for an assembler for long reads; as an opposite

strategy, it can be used to join the contigs produced by

a de novo assembler in a scaffolding-like phase or to

(partially) assemble structural variations within an NGS

resequencing project.

Table 6 GAGE comparison statistics on Staphylococcus aureus contigs

Assembler #Ctg NG50 Chaff % Dupl % Comp % Indels ≤ 5 bp Indels > 5 bp Inv Rel

ABySS 301 29198 6.71 23.06 0.98 20 9 3 2

Allpaths-LG 59 96740 0.03 0.03 1.26 4 12 0 4

Bambus2 108 50192 0.00 0.01 1.27 56 164 2 11

MSR-CA 93 59152 0.02 0.71 0.88 23 10 6 7

GapFiller+PHRAP 90 42398 0.00 0.28 1.07 12 4 0 3

SGA 1253 4005 21.34 0.01 1.26 2 2 1 3

SOAPdenovo 106 288184 0.35 1.42 1.39 25 31 1 16

Velvet 161 48440 0.46 0.14 1.31 6 14 5 9

Table 7 GAGE comparison statistics on Rhodobacter sphaeroides contigs

Assembler #Ctg NG50 Chaff % Dupl % Comp % Indels ≤ 5 bp Indels > 5 bp Inv Rel

ABySS 1916 5872 1.67 10.07 0.49 278 34 2 17

Allpaths-LG 203 42455 0.01 0.38 0.33 150 37 0 6

Bambus2 176 93198 0.00 0.00 0.25 149 363 0 5

CABOG 321 20211 0.00 0.12 0.71 145 24 1 9

MSR-CA 394 22128 0.02 1.05 0.53 179 32 1 8

GapFiller+PHRAP 1584 7809 0.12 0.49 0.76 158 14 2 7

SGA 3073 2284 3.49 0.05 0.98 114 5 0 5

SOAPdenovo 204 131681 0.44 1.07 0.54 155 406 0 8

Velvet 583 15665 0.55 0.29 0.96 148 27 0 8

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 14 of 16

In this paper we proved the effectiveness of the first

application. We showed how the Sanger-like-long reads

can be used to feed another assembler (PHRAP [30] in our

case, but many other solutions are possible) in order to

obtain a standard assembly. This assembly is similar and

often better than assemblies generated by state-of-the-art

assemblers. In order to proof this we compare the results

of our tool with the ones recently obtained by GAGE.

GapFiller’s strength lies, on the one hand, in the abil-

ity to produce an output that does not need validation,

and, on the other hand, in being a local assembler,

making it useful when studying limited regions of a

genome.

GapFiller’s applications to structural variations analysis

include indels detection and validation; in particular, it

can be used to assemble insertions occurred in a

sequenced organism, with respect to a reference genome.

It is of primary importance to notice how, while there is

a large number of tools able to identify structural varia-

tions, so far there is no widely accepted strategy to recon-

struct structural variations in re-sequencing projects. We

believe that the localized GapFiller strategy can be used

in order to “fill this gap” and move several approaches

from identification to reconstruction.

Availability and requirements
GapFiller can be freely downloaded from its git repository

git clone git://git.code.sf.net/p/gapfiller/

code gapfillercode. It has been tested on Linux Operating

systems only (Ubuntu and Centos distributions). It has been

written in C++.

Appendix
SimSeq can be freely downloaded from https://

github.com/jstjohn/SimSeq.

Command lines for read simulation:

java -jar -Xmx2048m SimSeq.jar -1 100 -2

100 --error hiseq_mito_default_bwa_map-

ping_mq10_1.txt

--error2 hiseq_mito_default_bwa_map-

ping_mq10_2.txt --insert_size 600 --insert_

stdev 200

--read_number PAIR_NUMBER --reference

reference.fasta -o output.sam;

java -jar SamToFastq.jar INPUT=output.

sam FASTQ=reads_1.fastq SECOND_END_

FASTQ=reads_2.fastq

INCLUDE_NON_PF_READS=true

VALIDATION_STRINGENCY=SILENT

KmerCounter can be freely downloaded from its git

repository git clone

http://git://git.code.sf.net/p/kmer-

counter/code kmercounter-code. Command

line for KmerCounter:

./kmers_count --input reads_1.fastq

--input reads_2.fastq --threads NUM_THREADS

--output 16mer_profile.txt (--mark-reads

READ_NAME)

Command line for GapFiller:

./IGAassembler --k 15 --output output.

fasta --statistics output.stat --overlap

50 --slack 40

--short-1 seed_reads.fasta --short-2

seed_mates.fasta (--short-1 reads1.fasta

--short-2 reads2.fasta) --short-ins

AVG_INSERT_SIZE --short-var INSERT_SIZE_

ST_DEV

--read-length AVG_READ_LENGTH --global-

mismatch 10 --extThr 2 --limit NUM_SEEDS_

TO_EXTEND

--no-read-cycle --max-length MAX_CTG_

LENGTH

Abbreviations

NGS: Next Generation Sequencing.

Acknowledgements

We acknowledge support from Progetto Bandiera Epigenomica “EPIGEN”. We also

would like to thank IGA staff for support and interaction, in particular Simone

Scalabrin, whose suggestions helped us in substantially improving the results

This article has been published as part of BMC Bioinformatics Volume 13

Supplement 14, 2012: Selected articles from Research from the Eleventh

International Workshop on Network Tools and Applications in Biology

(NETTAB 2011). The full contents of the supplement are available online at

http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S14

Author details
1Department of Mathematics and Computer Science, University of Udine,

Udine 33100, Italy. 2IGA Applied Genomics Institute, Udine 33100, Italy.
3Science for Life Laboratory, KTH Royal Institute of Technology, Solna 17121,

Sweden.

Authors’ contributions

FN, FV, and AP equally contributed to the idea and equally contributed to

the design of the experiments. FN and FV developed the tools and FN

performed the experiments. FN, FV, and AP wrote the paper.

Competing interests

The authors declare that they have no competing interests.

Published: 7 September 2012

References

1. Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation

sequencing data. Genomics 2010, 95(6):315-327.

2. Nagarajan N, Pop M: Parametric complexity of sequence assembly:

theory and applications to next generation sequencing. Journal of

Computational Biology 2009, 16(7):897-908.

3. Li R, Fan W, Zhu H, He L, Cai J, Huang Q, Cai Q, Li B, Bai Y, Zhang Z,

Zhang Y, Wang W, Li J, Wei F, Li H, Jian M, Li J, Zhang Z, Nielsen R, Li D,

Gu W, Yang Z, Xuan Z, Ryder OA, Chi-Ching Leung F, Zhou Y, Cao J, Sun X,

Fu Y, Fang X, et al: The sequence and de novo assembly of the giant

panda genome. Nature 2009, 463(7279):311-317.

4. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K,

Li S, Yang H, Wang J, Wang J, et al: De novo assembly of human

genomes with massively parallel short read sequencing. Genome

Research 2010, 20(2):265-72.

5. Assemblathon. [http://assemblathon.org/].

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 15 of 16

git://git.code.sf.net/p/gapfiller/code
git://git.code.sf.net/p/gapfiller/code
https://github.com/jstjohn/SimSeq
https://github.com/jstjohn/SimSeq
http://git://git.code.sf.net/p/kmercounter/code
http://git://git.code.sf.net/p/kmercounter/code
http://www.biomedcentral.com/bmcbioinformatics/supplements/13/S14
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19580519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19580519?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20010809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20010809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20019144?dopt=Abstract
http://assemblathon.org/

6. Paszkiewicz K, Studholme DJ: De novo assembly of short sequence reads.

Briefings in bioinformatics 2010, 11(5):457-472.

7. Earl DA, Bradnam K, St John J, Darling A, Lin D, Faas J, Yu HOK, Vince B,

Zerbino DR, Diekhans M, Nguyen N, Nuwantha P, Sung AWK, Ning Z,

Haimel M, Simpson JT, Fronseca NA, Birol I, Docking TR, Ho IY, Rokhsar DS,

Chikhi R, Lavenier D, Chapuis G, Naquin D, Maillet N, Schatz MC, Kelly DR,

Phillippy AM, Koren S, et al: Assemblathon 1: A competitive assessment of

de novo short read assembly methods. Genome Research 2011,

21(12):2224-2241.

8. dnGASP. [http://cnag.bsc.es/].

9. Salzberg SL, Phillippy AM, Zimin AV, Puiu D, Magoc T, Koren S, Treangen T,

Schatz MC, Delcher AL, Roberts M, Marcais G, Pop M, Yorke JA: GAGE: A

critical evaluation of genome assemblies and assembly algorithms.

Genome Research 2011, 22:557-567 [http://genome.cshlp.org/content/22/3/

557], http://www.ncbi.nlm.nih.gov/pubmed/22147368.

10. Alkan C, Sajjadian S, Eichler E: Limitations of next-generation genome

sequence assembly. Nature methods 2010, 8:61-65.

11. Narzisi G, Mishra B: Comparing de novo genome assembly: the long and

short of it. PLoS ONE 2011, 6(4):e19175.

12. Vezzi F, Narzisi G, Mishra B: Feature-by-Feature, evaluating de novo

sequence assembly. PLoS ONE 2012, 7(2):e31002.

13. Nadalin F, Vezzi F, Policriti A: GapFiller: a preprocessing step for the de

novo assembly problem [abstract]. Proceedings on the 8th annual meeting

of the Bioinformatics Italian Society 2011, 13-14 [http://www.bits2011.it/index.

php?pg=show&id=19].

14. Warren RL, Sutton GG, Jones SJM, Holt RA: Assembling millions of short

DNA sequences using SSAKE. Bioinformatics 2007, 23(4):500-501.

15. Dohm JC, Lottaz C, Borodina T, Himmelbauer H: SHARCGS, a fast and

highly accurate short-read assembly algorithm for de novo genomic

sequencing. Genome Research 2007, 17(11):1697-1706.

16. Bryant DW, Wong WK, Mockler TC: QSRA: a quality-value guided de novo

short read assembler. BMC Bioinformatics 2009, 10:69.

17. Schmidt B, Sinha R, Beresford-Smith B, Puglisi SJ: A fast hybrid short read

fragment assembly algorithm. Bioinformatics (Oxford, England) 2009,

25(17):2279-80 [http://www.ncbi.nlm.nih.gov/pubmed/19535537].

18. Rodrigue S, Materna AC, Timberlake SC, Blackburn MC, Malmstrom RR,

Alm EJ, Chisholm SW: Unlocking short read sequencing for

metagenomics. PLoS ONE 2010, 5(7):e11840.

19. Magoč T, Salzberg SL: FLASH: fast length adjustment of short reads to

improve genome assemblies. Bioinformatics (Oxford, England) 2011,

27(21):2957-2963 [http://www.ncbi.nlm.nih.gov/pubmed/21903629].

20. Vezzi F, Del Fabbro C, Tomescu AI, Policriti A: rNA: a fast and accurate

short reads numerical aligner. Bioinformatics 2011, 28:123-124.

21. Karp R, Rabin M: Efficient randomized pattern-matching algorithms. IBM

Journal of Research and Development 1987, 31(2):249-260.

22. Policriti A, Tomescu AI, Vezzi F: A randomized Numerical Aligner (rNA).

Journal of Computer and System Sciences, http://dx.doi.org/10.1016/j.

jcss.2011.12.007.

23. Kelley DR, Schatz MC, Salzberg SL: Quake: quality-aware detection and

correction of sequencing errors. Genome biology 2010, 11(11):R116.

24. Medvedev P, Scott E, Kakaradov B, Pevzner P: Error correction of high-

throughput sequencing datasets with non-uniform coverage.

Bioinformatics 2011, 27(13):i137-i141.

25. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,

Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R,

Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB: High-quality

draft assemblies of mammalian genomes from massively parallel

sequence data. Proceedings of the National Academy of Sciences 2010,

108(4):1513-1518 [http://www.pnas.org/cgi/doi/10.1073/pnas.1017351108].

26. Marçais G, Kingsford C: A fast, lock-free approach for efficient parallel

counting of occurrences of k-mers. Bioinformatics (Oxford, England) 2011,

27(6):764-770 [http://bioinformatics.oxfordjournals.org/cgi/content/abstract/

btr011v1].

27. NCBI. [http://www.ncbi.nlm.nih.gov].

28. GAGE. [http://gage.cbcb.umd.edu].

29. Smith TF, Waterman MS: Identification of common molecular

subsequences. Journal of molecular biology 1981, 147:195-197.

30. de la Bastide M, McCombie WR: Assembling Genomic DNA Sequences

with PHRAP. Current Protocols in Bioinformatics 2007, 17(11):11.4.1-11.4.15

[http://www.currentprotocols.com/WileyCDA/CPUnit/refId-bi1104.html].

doi:10.1186/1471-2105-13-S14-S8
Cite this article as: Nadalin et al.: GapFiller: a de novo assembly
approach to fill the gap within paired reads. BMC Bioinformatics 2012 13
(Suppl 14):S8.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Nadalin et al. BMC Bioinformatics 2012, 13(Suppl 14):S8

http://www.biomedcentral.com/1471-2105/13/S14/S8

Page 16 of 16

http://www.ncbi.nlm.nih.gov/pubmed/20724458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21926179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21926179?dopt=Abstract
http://cnag.bsc.es/
http://genome.cshlp.org/content/22/3/557
http://genome.cshlp.org/content/22/3/557
http://www.ncbi.nlm.nih.gov/pubmed/21102452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21102452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21559467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21559467?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22319599?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22319599?dopt=Abstract
http://www.bits2011.it/index.php?pg=show&id=19
http://www.bits2011.it/index.php?pg=show&id=19
http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17158514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17908823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19239711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19239711?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19535537
http://www.ncbi.nlm.nih.gov/pubmed/20676378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20676378?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21903629
http://www.ncbi.nlm.nih.gov/pubmed/22084252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22084252?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21114842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21685062?dopt=Abstract
http://www.pnas.org/cgi/doi/10.1073/pnas.1017351108
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btr011v1
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/btr011v1
http://www.ncbi.nlm.nih.gov
http://gage.cbcb.umd.edu
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.currentprotocols.com/WileyCDA/CPUnit/refId-bi1104.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Definitions
	Dataset preparation
	Contig extension
	Step 1. Overlapping reads selection
	Step 2. Reads clustering and consensus string computation
	Step 3. Consensus-based reads selection
	Step 4. Final consensus string computation and contig update

	Stop criteria
	Data structures

	Results
	Dataset
	Design of experiments
	Analysis

	Discussion
	Conclusion
	Availability and requirements
	Appendix
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

