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Abstract 21 
Genome-Wide Association Study (GWAS) and Genomic Prediction/Selection (GP/GS) are the 22 
two essential enterprises in genomic research. Due to the great magnitude and complexity of 23 
genomic data, analytical methods and their associated software packages are frequently advanced. 24 
GAPIT is a widely used Genomic Association and Prediction Integrated Tool. The first version 25 
was released to the public in 2012 with the implementation of the general linear model (GLM), 26 
mixed linear model (MLM), compressed MLM, and genomic Best Linear Unbiased Prediction 27 
(gBLUP). The second version was released in 2016 with several new implementations, including 28 
Enriched Compressed MLM and Settlement of mixed linear models Under Progressively 29 
Exclusive Relationship (SUPER). All the GWAS methods are based on the single locus test. For 30 
the first time, in the current release of GAPIT, version 3 implemented three multiple loci test 31 
methods, including Multiple Loci Mixed Model (MLMM), Fixed and random model Circulating 32 
Probability Unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium 33 
Iteratively Nested Keyway (BLINK). Additionally, two GP/GS methods were implemented 34 
based on Compressed MLM, named compressed BLUP, and SUPER, named SUPER BLUP. 35 
These new implementations not only boost statistical power for GWAS and prediction accuracy 36 
for GP/GS, but also improve computing speed and increase the capacity to analyze big genomic 37 
data. Here, we document the current upgrade of GAPIT by describing the selection of the 38 
recently developed methods, their implementation, and potential impact. All documents, 39 
including source code, user manual, demo data, and tutorials, are freely available at the GAPIT 40 
website (http://zzlab.net/GAPIT). 41 
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 45 
Introduction 46 
 47 
Computer software is essential tool for genomic research. Genome-wide association studies 48 
(GWAS) and genomic prediction are the two essential enterprises for genomic research. For a 49 
particular trait of interest, GWAS focuses on finding genetic loci associated with the causal 50 
genes and estimating their effects. Genomic prediction, known as genomic selection (GS) in the 51 
fields of animal and plant breeding, focuses on the direct prediction of phenotypes by estimating 52 
the total genetic merit underlying the phenotypes [1]. The estimated genetic merit is also known 53 
as the estimated breeding value (EBV) for animal and plant breeding. In the long term, the 54 
assessment of all genetic loci underlying a trait may eventually lead to highly accurate EBV 55 
predictions. In the short term, methods have been developed to derive EBV even without 56 
identifying those associated genetic loci. Consequently, some statistical methods are shared 57 
between GWAS and GS, and some methods are specific to each. Accordingly, the software 58 
packages are also characterized into GWAS-specific, GS-specific, or packages that perform both. 59 
 60 
For GWAS, many statistical methods and software packages have been developed to improve 61 
computational efficiency, statistical power, and control of false positives. The most 62 
computational efficient method is the General Linear Model (GLM), which can fit population 63 
structure or principal components as fixed effects to reduce the false positives caused by 64 
population stratification[2,3]. To account for the relationships among individuals within sub-65 
populations, kinship among individuals was introduced through the mixed linear model (MLM) 66 
by using genetic markers covered the entire genome[4]. This strategy served to further control 67 
false positives. To reduce the computational burden of MLM, many algorithms have been 68 
developed, including Efficient Mixed Model Association (EMMA)[5], EMMA eXpredited 69 
(EMMAx), Population Parameter Previously Determined (P3D)[6,7], factored spectrally 70 
transformed linear mixed models (FaST-LMM) [8], and GRAMMAR-Gamma[9]. These 71 
methods improve computing efficiency of MLM, but their statistical power remain the same as 72 
MLM. 73 
 74 
Enhancement of MLM have also been introduced to improve statistical power. To reduce the 75 
confounding between kinship and testing markers, individuals in the MLM are replaced with 76 
their corresponding groups in the compressed MLM (CMLM), which also improves computing 77 
efficiency[7]. Refer to the cluster method to fit such relationship between individuals, the 78 
enriched CMLM (ECMLM) was developed to further improve statistical power[10]. Instead of 79 
using all markers to derive kinship among individuals across traits of interest, selection of the 80 
markers according traits of interest can improve statistical power. One of such methods is the  81 
Settlement of MLM Under Progressively Exclusive Relationship (SUPER)[11]. SUPER contains 82 
three steps. The first step was the same as other models such as GLM or MLM to have a initiate 83 
assessment of the marker effects. In the second step, kinship is optimized using maximum 84 
likelihood in a mixed model with kinship derived from the selected markers based on their 85 
effects and relationship on linkage disequilibrium. In the third step, markers are tested again one 86 
at a time as final output with kinship derived from the selected markers except the ones that are 87 
in linkage disequilibrium with the testing markers.  88 
 89 
 90 
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Same as the extension of single-marker tests using GLM to stepwise regression (e.g. GLMSelect 91 
Procedure in SAS)[12,13],  single-locus tests using MLM were also extended to multiple loci 92 
tests, named multiple loci mixed linear model (MLMM) [14]The most significant maker is fitted 93 
as a covariate in the stepwise fashion. The iteration stops when variance associated with the 94 
kinship goes to zero, followed by a backward stepwise regression to eliminate the non-significant 95 
covariate markers. In MLMM, both covariate markers and kinship are fitted in the same MLM. 96 
This model was separated into two models which are iterated back and forth. One model is MLM 97 
which contains the random effect associated with kinship and covariates such as population 98 
structure, but not the associate markers. The associated markers are optimized to derive the 99 
kinship using maximum likelihood. The other model is a GLM containing a testing mark and 100 
covariates such as population structure. The method was named as Fixed and random model 101 
Circulating Probability Unification (FarmCPU) [15]. Because a marker test in GLM does not 102 
involve kinship, FarmCPU is not only faster but gives higher statistical power than MLMM. The 103 
MLM in FarmCPU was further replaced with GLM to speed up in the new method named the 104 
Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) [16]. 105 
The maximum likelihood method in MLM was replaced by the Bayesian-information content. 106 
BLINK eliminates the restriction assuming that causal genes are evenly distributed across the 107 
genome by SUPER and FarmCPU method, consequently boosting statistical power. 108 
 109 
For genomic prediction/selection, the earliest effort can be traced to the use of marker-based 110 
kinship in the Best Linear Unbiased Prediction (BLUP) method, currently known as genomic 111 
BLUP or gBLUP [17–19]. The method uses all markers covering the whole genome to define the 112 
kinship among individuals to estimate their EBV. A different strategy is to estimate the effects of 113 
all markers and sum them together to predict individuals’ total genetic effects [20]. To avoid the 114 
overfitting problem in the fixed-effect model, these markers are fitted as random effects 115 
simultaneously. A variety of restrictions and assumptions are applied to these random effects and 116 
their prior distributions under the Bayesian theorem. Different methods were named according to 117 
different priors, such as Bayes A, B, Cpi, and LASSO [20]. The case assuming the effect of all 118 
markers have the same distribution with constant prior variance is equivalent to Ridge 119 
Regression [18,21]. 120 
 121 

Many of the software package developments accompanied GWAS and GS method developments 122 
so that the methods and the software were given the same name, such as EMMA[5], 123 
EMMAx[22], FaST-LMM[8], FarmCPU [15], and BLINK[16]. Often, to compare different 124 
statistical methods, users must learn how to use the various software packages. To reduce the 125 
multiple steep learning curves for users, some packages were developed with more than one 126 
statistical method. These packages include PLINK with GLM and logistic regression [23]; 127 
TASSEL [24] with GLM and MLM; rrBLUP with ridge regression and gBLUP [25]; and BGLR 128 
with ridge regression, gBLUP, and Bayesian methods [26]. Also, some packages have 129 
implemented methods for both GWAS and GS so that users can use one software package to 130 
conduct both analyses. One example is Genome Association and Prediction Integrated Tool 131 
(GAPIT). GAPIT was initiated with GLM, MLM, EMMAx/P3D, CMLM, and gBLUP in version 132 
1 [27] and enriched with ECMLM, FaST-LMM, and SUPER in version 2[28]. 133 
 134 

Furthermore, with such a variety of available methods, researchers feel extremely overwhelmed 135 
when trying to choose the best method to analyze their particular data. This dilemma is 136 
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especially true when only a subset of these methods has been compared under conditions less 137 
relevant to a researcher's specific study conditions. For example, simulation studies have 138 
demonstrated that FarmCPU is superior to MLMM for GWAS [15]; however, no comparisons 139 
have been conducted between SUPER and FarmCPU or between SUPER and MLMM. Similarly, 140 
for GS, gBLUP, SUPER BLUP (sBLUP), and Compression BLUP (cBLUP) have been 141 
compared with Bayesian LASSO [1]. Thus, software packages with features that allow 142 
researchers to conduct comparisons for model selection—especially under the conditions 143 
relevant to their studies—are critically needed.  144 
 145 
Moreover, because the results of existing software packages are displayed as static output, 146 
researchers often find that extracting relevant information is challenging. For example, users 147 
must spend additional effort searching through file outputs to obtain the estimated effect and 148 
minor allele frequency (MAF) for a particular marker observed on Manhattan and QQ plots. Yet, 149 
this extra effort is necessary because these two factors are essential to infer the causes of 150 
association. For 3-D plots of population structure, users are unable to identify properties that are 151 
currently hidden by the angles determined by the software. The capability of angle adjustment 152 
would largely resolve this issue. Therefore, researchers are also in critical need of an interactive, 153 
dynamic output display system that allows flexibility, easy extraction of relevant information. 154 
 155 
To address these critical needs, we continuously strive to upgrade GAPIT software by adding 156 
state-of-the-art GWAS and GS methods as they become available. Herein, we report our most 157 
recent efforts to upgrade GAPIT to version 3 (GAPIT3) by implementing MLMM, FarmCPU 158 
and BLINK [14–16] for GWAS, and sBLUP and cBLUP for GS[1]. We also added features that 159 
allow users to interact with both the analytical methods and displayed outputs for comparison 160 
and interpretation. Users’ prior knowledge can now be used to enhance method selection and 161 
unfold the discoveries hidden by static outputs.  162 
 163 
Methods 164 
 165 
Architecture of GAPIT version 3 166 
To implement three multiple-locus GWAS methods (MLMM, FarmCPU, and BLINK) and two 167 
new methods of GS (cBLUP and sBLUP), we redesigned GAPIT with a new architecture to 168 
easily incorporates an external software package. In order of execution, GAPIT is 169 
compartmentalized into five modules: 1) Data and Parameters (DP); 2) Quality Control (QC); 3) 170 
Intermediate Components (IC); 4) Sufficient Statistics (SS); and 5) Interpretation and Diagnoses 171 
(ID). Any of these modules are optional and can be skipped. However, GAPIT3 does not allow 172 
modules to be executed in reverse order (Figure 2).  173 
 174 
The DP module contains functions to interpret input data, input parameters, genotype format 175 
transformation, missing genotype imputation, and phenotype simulations. The types of input data 176 
and their labels are the same as previous versions of GAPIT, including phenotype data (Y); 177 
genotype data in either Hapmap format (G), or numeric data format (GD) with genetic map 178 
(GM); covariate variables (CV), and kinship (K). The input parameters include those from 179 
previous GAPIT versions plus the parameters for the new GWAS and GS methods and the 180 
enrichments associated with the other four modules. Two genetic models, additive and dominant, 181 
are available to transform genotypes in HapMap format into numeric format. Under the additive 182 
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model, homozygous genotypes with recessive allele combinations are coded 0, homozygous 183 
genotypes with dominant allele combinations are coded 2, and heterozygous genotypes are coded 184 
1. Under the dominant model, both types of homozygous genotypes are coded 0 and 185 
heterozygous genotypes are coded 1. When genotype, heritability, and number of QTNs are 186 
provided without phenotype data, GAPIT3 will conduct a phenotype simulation from the 187 
genotype data.  188 
 189 
By default, GAPIT3 assumes users provide quality data and does not perform data quality 190 
control. When the quality control option is turned on, GAPIT will conduct quality control on 191 
imputing missing genotypes, filtering markers by MAF, sorting individuals in phenotype and 192 
genotype data, and matching the phenotype and genotype data together. GAPIT provides 193 
multiple options for genotype imputation, including major homozygous genotypes and 194 
heterozygous genotypes. 195 
 196 
In the IC module, GAPIT provides comprehensive functions to generate intermediate graphs and 197 
reports, including phenotype distribution, MAF distribution, heterozygosity distribution, marker 198 
density, LD decay, principal components, and kinship. These reports and graphs help users to 199 
diagnosis and identify problems with the input data for quality control. For example, an 200 
associated marker should be further investigated if it has low MAF. 201 
 202 
The SS module contains multiple adapters that generate sufficient statistics for existing methods 203 
in the previous versions of GAPIT and new external methods. The sufficient statistics are the P 204 
values for GWAS and predicted phenotypes for GS. The methods in the previous versions 205 
include GLM, MLM, CMLM, ECMLM, SUPER, and gBLUP. The new adapters developed in 206 
GAPIT3 include MLMM, FarmCPU, BLINK, cBLUP, and sBLUP.  207 
 208 
The ID module contains the static reports developed in previous GAPIT versions and the new 209 
interactive reports generated in GAPIT3. The interactive reports include the rotational three-210 
dimensional plot of the first three principal components, display of marker information on 211 
Manhattan plots and QQ plots, and individual information on the phenotype plots (predicted vs. 212 
the observed). The marker information includes maker name, chromosome, position, MAF, and 213 
effect estimate. The individual information consists of the individual name and the values for 214 
predicted and observed phenotypes. 215 
 216 
Implementation of MLMM and FarmCPU 217 
Both MLMM and FarmCPU have source code available on their websites. These source codes 218 
were directly integrated into the GAPIT source code, so users are only required to install 219 
GAPIT3, not all three packages. We also added the input parameters specific to MLMM and 220 
FarmCPU into the input parameter list of GAPIT3. These two software packages share a similar 221 
input and output data format for phenotypes, genotypes, covariate variables, and P values. 222 
GAPIT currently does not support some formats for genotype data, including objects with 223 
bigmemory and biganalytics. Consequently, the data scale that can be processed by FarmCPU is 224 
larger than GAPIT for using FarmCPU GWAS method.  225 
 226 
Integrating MLMM and FarmCPU source code into GAPIT source code lowers the risk of 227 
breaking the linkage between GAPIT and these two software packages when they release 228 
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updates. The disadvantage is that MLMM and FarmCPU source codes remain static in GAPIT. 229 
The GAPIT team periodically checks for updates of these two packages and correspondingly 230 
updates the GAPIT source code. 231 
 232 
Implementation of Blink R and C versions 233 
BLINK R version was released as an executable R package on GitHub. GAPIT accesses BLINK 234 
R as an independent package. The BLINK C version was released as an executable C package on 235 
GitHub. To access BLINK C, GAPIT needs the executable program in the working directory. To 236 
avoid the potential risk of breaking the linkage between GAPIT and BLINK, the GAPIT team 237 
maintains a close connection with the BLINK team for updates. BLINK C conducts analyses on 238 
binary files for genotypes. The binary files not only make BLINK C faster, but also provide the 239 
capacity to process big data with limited memory. Running BLINK C through GAPIT requires 240 
nonbinary files first, then BLINK C is used to convert them to binary. For big data, we 241 
recommend directly accessing BLINK C to obtain P values and using the GAPIT ID module to 242 
interpret and diagnosis the results. 243 
 244 
Implementation of cBLUP and sBLUP 245 
The compressed BLUP (cBLUP) and SUPER BLUP (sBLUP) were developed from the 246 
corresponding GWAS methods: compressed MLM (CMLM) and SUPER. Because CMLM and 247 
SUPER were already implemented in GAPIT versions 1 and 2, respectively, implementation of 248 
cBLUP and sBLUP was more straightforward than other implementations. For cBLUP, the 249 
solutions of the random group effects in CMLM are used as the genomic estimated breeding 250 
values for the corresponding individuals. For sBLUP, the calculation is even easier than the 251 
SUPER GWAS method. For the SUPER GWAS method, a complementary kinship is used for a 252 
testing SNP that is in linkage disequilibrium with some of the associated SNPs. For sBLUP, all 253 
associated markers are used to derive the kinship and subsequently to predict the breeding values 254 
of individuals. No operation for the complementary process is necessary. 255 
 256 
Implementation of interactive reports 257 
Two types of interactive reports are included in the current GAPIT3. First, users can now interact 258 
with Manhattan plots, QQ plots, and scatter plots of predicted vs. observed phenotypes to extract 259 
information about markers and individuals. For example, by moving the cursor or pointing 260 
device over a data point, users can find names and positions of markers or names and phenotypes 261 
of individuals. An R package plotly was used to store this type of information in the format of 262 
HTML files, which can be displayed by web browsers. Second, users can rotate graphs such as 263 
three-dimensional PC plots using a pointing device such as mouse or trackpad. The R packages 264 
(rgl and rglwidget) were jointly used to realize the functions. 265 
 266 
Proportion of variance explained 267 
In GAPIT3, the proportion of total phenotypic variance explained by significantly associated 268 
markers is evaluated. A Bonferroni multiple test threshold is used to determine significance. The 269 
associated markers are fitted as random effects in a multiple random variable model. The model 270 
also include other fixed effects are used in the GWAS to select these associated markers. The 271 
multiple random variable model is analyzed using an R package, lme4, to estimate the variance 272 
of residuals and the variances of the associated markers. The proportions explained by the 273 
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markers are calculated as their corresponding variances divided by the total variance, which is 274 
the sum of residual variance and the variance of the associated markers. 275 
 276 
Results 277 
 278 
GAPIT is a widely used software package. GAPIT website received over 22,000 pageviews. The 279 
GAPIT forum on Google contains ~1600 posts covering ~400 topics regarding the usage, 280 
functions, bugs, and fixes. These posts were viewed ~3000 times by the GAPIT community 281 
between 2016 and 2019. During this period, GAPIT received 887 and 89 citations for version 1 282 
and version 2 articles, respectively (Figure S1 and S2). The GAPIT3 project started after the 283 
2016 publication of GAPIT version 2 (GAPIT2). Since then, we implemented three multiple 284 
locus methods for GWAS and two methods for GS (Figure 1). In addition, we enhanced the 285 
outputs of GAPIT to improve their quality and to help users more easily diagnose the data 286 
quality, compare analytical methods, and interpret the results.  287 
 288 
Implementation of GWAS and GS methods 289 
GAPIT version 1 (GAPIT1) was initiated with the single-locus test based on the CMLM, which 290 
clusters individuals into groups based on kinship. Because the CMLM is in a general format 291 
covering GLM and regular MLM, GAPIT can also conduct the MLM and the GLM. The MLM 292 
is equivalent to assigning each individual as its own group; the GLM is equivalent to assigning 293 
all individuals into one group. Consequently, CMLM is an optimization between MLM and 294 
GLM. The computation complexity of MLM is cubic to the number of individuals; thus, 295 
compression of individuals to groups not only improves statistical power, but also dramatically 296 
reduces computing time (Figure 1A).  297 
 298 
To improve the computing speed of MLM, GAPIT2 implemented FaST-LMM, which uses a set 299 
of markers to define kinship without performing the actual calculations. To further improve the 300 
statistical power of CMLM, the ECMLM was implemented to optimize the group kinship. 301 
Furthermore, two similar methods, SUPER and FaST-LMM-Select, were implemented in 302 
GAPIT2 to use a kinship that is complementary to testing markers.  303 
 304 
All GWAS methods implemented in GAPIT1 and GAPIT2 are based on the single locus testing. 305 
The opposite approach, multiple loci tests, has received more attention since 2012, with the 306 
introduction of multiple loci mixed models (MLMM) using stepwise regression[14]. Through the 307 
use of iteration, two additional methods have been developed for multiple loci tests. The first 308 
method, Fixed and random model Circulating Probability Unification (FarmCPU); uses iteration 309 
between a fixed effect model and a random effect model. The second method, Bayesian-310 
information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), uses iteration 311 
between two fixed-effect models. In GAPIT3, we implemented all of three of these multiple loci 312 
test methods (MLMM, FarmCPU, and BLINK). We simulated 100 traits and ran four methods 313 
(GLM and MLM are single locus methods, FarmCPU and Blink are multiple loci methods). The 314 
result of power against FDR and power against type I error were used to compare the 315 
performance differences between single locus and multiple loci (Figure S6). 316 
 317 
For genomic prediction or selection, GAPIT1 and GAPIT2 implement gBLUP using MLM. This 318 
method works well for traits controlled by many genes, but not as well for traits controlled by a 319 
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small number of genes. To overcome this difficulty, the updated GAPIT3 implements the sBLUP 320 
method which is superior to gBLUP for traits controlled by a small number of genes[1]. Both 321 
gBLUP and sBLUP have a disadvantage for traits with low heritability. Therefore, GAPIT3 322 
implements the cBLUP method [1]which is superior to both gBLUP and sBLUP for traits with 323 
low heritability (Figure 1B). 324 
 325 
For most GWAS methods, GAPIT3 executes both GWAS and GS by default. This default option 326 
can be changed by including the statement “SNP.test=F” to conduct GS only. For GWAS with 327 
MLM and FaST-LMM, gBLUP is used for GS. For CMLM and ECMLM, cBLUP is used for 328 
GS. For SUPER and FaST-LMM-Select, sBLUP is used for GS. The exceptions are GLM, 329 
MLMM, FarmCPU, and BLINK. When these methods are selected, only GWAS is executed.  330 
 331 
The new GAPIT3 creates two types of Manhattan plots, the standard orthogonal type with x- and 332 
y-axes (Figure S3A), and a circular type (Figure S3B) which take less display space. The 333 
overlap in results between multiple methods is displayed as either solid or dashed vertical lines 334 
that will extend through the Manhattan plots for all methods (Figure S3). A solid vertical line 335 
indicates that the overlap of significant SNP is shared by more than two methods and a dashed 336 
vertical line indicates the overlap is between only two methods. When multiple traits are 337 
analyzed with a single method, the trait results are displayed in the same style as multiple 338 
methods. When both multiple methods and multiple traits are employed, the method plots are 339 
nested within the trait plots. 340 
 341 
Adaptation of existing GAPIT users. 342 
Users already familiar with GAPIT software have experienced no difficulty migrating to version 343 
3. Experiences of using other related software packages also help to use GAPIT. GAPIT 344 
generated identical results for the same methods implemented in the separated packages (Figure 345 
3). By default, GAPIT3 conducts GWAS using the BLINK method, which has the highest 346 
statistical power and computing efficiency among all methods implemented. Users can change 347 
the default to other methods by including a model statement. For example, to use the FarmCPU 348 
method, the user would include the statement “model = "FarmCPU "” to override the default. 349 
The model options include GLM, MLM, CMLM, ECMLM, FaST-LMM, FaST-LMM-Select, 350 
SUPER, MLMM, FarmCPU, and BLINK.  351 
 352 
GAPIT can also conduct GWAS and GS with multiple methods in a single analysis, allowing 353 
comparisons among methods  for selection. For example, when the five methods (GLM, MLM, 354 
CMLM, FarmCPU, and BLINK) are used on maize flowering time in the demo data, inflation of 355 
p values and power of the analyses can be compared on the side-by-side Manhattan plots (Figure 356 
S3). All plots for the multiple methods show an interconnected vertical line that runs through 357 
chromosome 8. The results show that the GLM method identified association signals above the 358 
Bonferroni threshold (horizontal dashed red line in each plot). However, the association signals 359 
are inflated across the genome (the red dots on the QQ plots). BLINK method also identified two 360 
associated markers, including the marker close to a flowering time gene, VGT1 on chromosome 361 
8. The QQ plot suggests that 99% of the markers have p values below the expected p values, 362 
which are indicated by the solid red line.  363 
 364 
Assessment of explained variance  365 
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GAPIT1 outputs the proportion of the regression sum of squares of testing markers to the total 366 
sum of squares as the estimate of variance explained by the markers. This approach is debatable 367 
because the sum of these proportions can exceed 100% when multiple markers are tested 368 
independently. In GAPIT2, this output was suppressed. However, we received substantial 369 
demands from GAPIT users for such output because some journals and reviewers require this 370 
information. To solve both of these problems, GAPIT3 conducts additional analyses using all 371 
associated markers as random effects. The proportion of variance of a marker over the total 372 
variance, including the residual variance, is reported as the proportion of total variance explained 373 
by the markers. This guarantees the sum of proportions of variance explained by the associated 374 
markers is below 100%. The non-associated markers are considered to contribute nothing to the 375 
total variance. The proportion of phenotypic variance explained by a marker is correlated with its 376 
minor allele frequency (MAF) and magnitude of marker effect. These relationships are 377 
demonstrated by scatter plots and a heatmap (Figure 4). The heat map indicates which markers 378 
explain a high proportion of the variance due to either a high MAF or a large magnitude of 379 
effect, or both. 380 
 381 
Enriched report output 382 
When viewing the output graphics, such as Manhattan plots, QQ plots, and scatter plots of 383 
predicted vs. observed phenotypes, users are interested in the names and properties of markers 384 
and individuals. Finding this information usually requires computer programming to extract data 385 
from multiple resources, which includes searching files for P values, genotypes, estimated effects, 386 
and MAFs. With GAPIT3, in the interactive result all of information can be found by moving the 387 
cursor over the data point of interest (Figure 5 and S4). For example, on the Manhattan and QQ 388 
plots, when the cursor moves over a data point, the marker information will be displayed. The 389 
Manhattan plot also contains a chromosome legend. Chromosomes can be hidden or displayed 390 
with different mouse clicking patterns. If a chromosome is clicked once, the plot will hide this 391 
chromosome; if clicked twice, the plot will hide all of the chromosomes besides chosen one. For 392 
the scatter plot of predicted vs. observed phenotypes, information about an individual is 393 
displayed when the cursor is moved over the associated data point of interest, including their 394 
names, observed, and predicted values.  395 
 396 
Computing time  397 
GAPIT3 newly implemented three multiple locus test methods (MLMM, FarmCPU, and BLINK) 398 
for GWAS and two methods (cBLUP and sBLUP) for genomic selection. All methods (GWAS 399 
and GS) have linear computing time to number of markers (Figure 6AB, and S5). However, they 400 
have mixed computing complexity to number of individuals. Most of them have computing time 401 
complexity that are cubic to number of individuals, including gBLUP and cBLUP for GS, and 402 
MLMM for GWAS. There are only two methods that have linear computing time to number of 403 
individuals: FarmCPU and BLINK (Figure 6AB). There is a minimal time increase for using 404 
MLMM. FarmCPU and BLINK packages within GAPIT from using them separately. There are 405 
two versions for BLINK methods: C version and R version. Literature demonstrated that the C 406 
version was much faster than the R version when they were operated as standard alone. When 407 
they were executed within GAPIT, the situation was reversed. This was because that GAPIT use 408 
the input and output directly for the R version. When GAPIT execute C version, the input and 409 
output data have to be transformed between memory and disk (Figure 6AB).  For execution of 410 
gBLUP, GCTA was vigorous at all conditions to other packages, including BGLR, EMMREML, 411 
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GAPIT and rrBLUP. All of these packages had linear computing time to number of markers, and 412 
nonlinear time to number of individuals. Their order changed depending number of individuals 413 
due to different setting cost. With number of markers duplicated four times and number of 414 
individuals duplicated at multiple levels (12, 20, and 28 fold), the computing show nonlinear 415 
relationship to number of individuals, except the GCTA package (Figure 6C). For small number 416 
of individuals (1124), BGLR was the slowest. When number of individuals was increased to 417 
three-fold (1124x3), rrBLUP became the slowest (Figure 6DE).. Therefore, GCTA is 418 
recommended for gBLUP, and GAPIT is preferred over other methods for using cBLUP and 419 
sBLUP. 420 
 421 
Discussion 422 
 423 
Comprehensive and specific software packages 424 
Developments of sophisticated and computationally efficient methods are essential for genomic 425 
research. Software initiation, upgrade, and maintenance are equally crucial for turning genomic 426 
data into knowledge. These software packages can be classified into two categories: specific and 427 
comprehensive. Packages in the specific category are usually accompanied by the development 428 
of new methods, such as MLMM[14], FarmCPU[15], and BLINK[16]. Due to the limitation of 429 
time and resources, these software packages target the implementation of specific methods with a 430 
direct link between input data and output, mainly the p values. This type of software package 431 
does not provide comprehensive functions for input data diagnosis or output results 432 
interpretation. Consequently, users must rely on other types of software packages 433 
(comprehensive) to complete their analyses.  434 
 435 
Some software packages may initiate as a specific package, but build functions over time to 436 
become comprehensive. One example is TASSEL. Alternatively, some software packages, such 437 
as PLINK[23], BGLR [29], rrBLUP[25], GCTA[30], iPAT[31], and GAPIT[27,28], are designed 438 
to be comprehensive from the start. Originally, GAPIT1 implemented GLM, MLM, and CMLM 439 
for GWAS and gBLUP for GS. GAPIT1 also provided a comprehensive report, including many 440 
figures and tables that can be used in publications. In GAPIT2, we added four new methods for 441 
GWAS, including FaST-LMM, FaST-LMM-Select, ECMLM, and SUPER, and updated the 442 
report outputs. In the current GAPIT3, we added three multiple locus test methods for GWAS 443 
(MLMM, FarmCPU, and BLINK) and two methods for GS (cBLUP and sBLUP).  444 
 445 
The learning curves for the two types of software packages, specific and comprehensive, vary 446 
across users and packages. Some users are eager to learn new software packages, especially the 447 
specific software packages that are more straightforward. In contrast, some users are comfortable 448 
with their existing knowledge and skills, especially when they have mastered a particular 449 
comprehensive software package. GAPIT3 targets both types of users. For users that are new to 450 
GAPIT, we designed simple prompts and commands: “tell me your genotype and phenotype 451 
data, we do our best.” For existing users, we maximized the consistency between versions such 452 
as typing commands, selecting options, and navigating reports and graphics to obtain 453 
information. For example, to choose a GWAS method among the ten available methods in 454 
GAPIT3, users simply add the model statement as in previous GAPIT versions. According to the 455 
GAPIT forum, no difficulties have been expressed in using GAPIT3 compared to previous 456 
versions. 457 
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 458 
Selection of GWAS and GS methods 459 
Although the current architecture of GAPIT3 makes is easy to implement an R package, 460 
selection of methods is critical for boosting statistical power and accuracy for GWAS and GS. 461 
We used the gaps of implementations and performance as the criteria for the selection of these 462 
packages. The method of fitting all markers simultaneously as random effects as an alternative to 463 
gBLUP for GS was introduced in 2001 [32]. The ridge regression and Bayes theory-based 464 
methods (e.g., Bayes A, B, and CPi) can be used not only to predict individuals’ breeding values 465 
by summing the effects of all markers, but also to map genetic markers associated with 466 
phenotypes of interest [33]. Multiple comprehensive software packages have been developed for 467 
both GWAS and GS, including BGLR [29], rrBLUP [21], GCTA [30].  468 
 469 
For the conventional method of single-locus test, many advanced methods were developed, 470 
including incorporation of population structure [2], kinship [34], compressed kinship [35], and 471 
complementary kinship [11,36]. Many software packages were developed for these specific 472 
methods, including EMMA, EMMAx, FaSTLMM, GEMMA, and GenABEL. Comprehensive 473 
software packages, including PLINK, TASSEL, and GAPIT, were also developed to implement 474 
many of these methods. 475 
 476 
The multiple-locus test, evolved over time to use the format of stepwise regression with a fixed 477 
effect model, for example, the SAS GLMSELECT procedure [37], or with a mixed model, for 478 
example, the R package of MLMM [38]. Furthermore, the stepwise regression format was 479 
advanced to the iteration of two models. The first model is used to test markers one at a time, and 480 
the second model is used to evaluate the associated markers as cofactors in the first model to re-481 
test markers [15,16]. Two different iterative models are available: FarmCPU and BLINK. 482 
FarmCPU uses a fixed effect model and a random effect model. BLINK uses two fixed effect 483 
models. Related studies have demonstrated that multiple-locus methods are generally superior to 484 
single-locus methods. With the exception of GLMSELECT by SAS, multiple-locus methods for 485 
GWAS have yet to be implemented in a comprehensive software package[39]. Consequently, we 486 
chose to implement FarmCPU and BLINK in GAPIT3 to boost statistical power for GWAS. 487 
 488 
For GS, GAPIT1 implemented gBLUP, which is superior for traits controlled by a large number 489 
of genes, but not as effective for traits controlled by a small number of genes. In GAPIT3, we 490 
implemented a newly developed method, sBLUP, which is superior to gBLUP for such traits. 491 
The common problem for both gBLUP and sBLUP is their lack of effectiveness when executing 492 
GS for traits with low heritability. Therefore, in the updated GAPIT3, we implemented a newly 493 
developed method, cBLUP, which is superior for traits with low heritability. By doing so, 494 
GAPIT3 performs well across the full spectrum of traits, whether controlled by a large or small 495 
number of genes and with either high or low heritability. 496 
 497 
Operation of GAPIT 498 
GAPIT is an R package executed through the command-line interface (CLI), which is efficient 499 
for repetitive analyses such as multiple traits and using multiple methods and models. However, 500 
CLI is not as straightforward as the software packages equipped with a graphical user interface 501 
(GUI), such as TASSEL and iPAT. Instead, GAPIT requires users to input some keywords in 502 
specific formats. The advantage of living in the age of the Internet, is that we can transform 503 
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peoples’ excellent reading, copying, and pasting skills into actions that reduce the complexities 504 
of executing GAPIT. We provide ~20 tutorials on the GAPIT website that users can read, edit, 505 
copy, and paste as necessary to efficiently use the CLI to conduct most of the analyses. 506 
 507 
Limitations 508 
As an R package, GAPIT faces challenges when dealing with big data. Most of the analyses 509 
using GAPIT require data to be loaded into memory. However, the FarmCPU can use a R 510 
package (bigmemory) to import big data and carry all analyses into the final P values. The 511 
current GAPIT team is currently working on this feature. For users with big data, a viable option 512 
is to run GAPIT with the BLINK C version, which only reads data pertinent to the analyses from 513 
a specific section on the disk/drive. The only requirement is an executable file of the BLINK C 514 
version in the working directory of R. 515 
 516 
Conclusion 517 
 518 
GAPIT has served the genomic research community for eight years, since 2012, as a Genomic 519 
Association and Prediction Tool in the form of an R package. The software is extensively used 520 
worldwide, as indicated by over 800 citations of two publications (Bioinformatics in 2012 and 521 
The Plant Genome in 2016), ~2000 posts on GAPIT forum, and ~22,000 page views on the 522 
GAPIT website. In the new GAPIT3, we implemented three multiple-loci test methods (MLMM, 523 
FarmCPU, and BLINK) for GWAS and two more variations of BLUP (compressed BLUP and 524 
SUPER BLUP) for genomic selection. GAPIT3 also includes enhancements to the analytical 525 
reports as part of our continuous efforts to build upon the comprehensive output reports 526 
developed in versions 1 and 2. These enhancements assist users in the interpretation of input data 527 
and analytical results. Valuable new features include the users' ability to instantly and 528 
interactively extract information for individuals and markers on Manhattan plots, QQ plots, and 529 
scatter plots of predicted vs. observed phenotypes. 530 
 531 
Availability 532 
The GAPIT source code, demo script, and demo data are freely available on the GAPIT website 533 
(www.zzlab.net/GAPIT).  534 
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Figure legends 642 
 643 
 644 
Figure 1. Statistical methods implemented in previous and current versions of GAPIT. The 645 
statistical methods are characterized by statistical power and computing efficiency (A) for 646 
genome-wide association study (GWAS) and by genetic architecture of targeting traits for 647 
Genomic Selection (GS) with respect to heritability and complexity (B). The GWAS methods 648 
include General linear model (GLM), Mixed linear model (MLM), compressed MLM (CMLM), 649 
factored spectrally transformed linear mixed models (FaST-LMM), FaST-LMM-Select, enriched 650 
CMLM (ECMLM), and settlement of mixed linear models under progressively exclusive 651 
relationship (SUPER). The GS methods include the regular genomic Best Linear Unbiased 652 
Prediction (gBLUP), compressed BLUP (cBLUP), and SUPER BLUP (sBLUP). Methods in 653 
black text were the ones implemented in the initial version of GAPIT, methods in blue text were 654 
new in GAPIT2, and methods in red text are new in the current GAPIT3. 655 
 656 
Figure 2. GAPIT essential modules and adapters to external packages. GAPIT version 3 was 657 
designed to have five sequential modules and multiple adapters that connect external software 658 
packages. The first module (DP) is responsible to process input data and parameters from users. 659 
The second module (QC) is responsible for quality control, including missing genotype 660 
imputation. The third module (IC) provides intermediate results, including Minor Allele 661 
Frequency (MAF), Principal Component Analysis (PCA), kinship, Linkage Disequilibrium (LD) 662 
analysis, and maker density distribution. The fourth module (SS) contains multiple adapters that 663 
convert input data into sufficient statistics, including maker effects, P values, and predicted 664 
phenotypes. The current adapters include General Linear Model (GLM), Mixed Linear Model 665 
(MLM), Compressed MLM (CMLM), SUPER (Settlement of MLM Under Progressively 666 
Exclusive Relationship), Multiple Locus Mixed Model (MLMM), FarmCPU (Fixed and random 667 
model Circulating Probability Unification), BLINK (Bayesian-information and Linkage-668 
disequilibrium Iteratively Nested Keyway), genomic Best Linear Unbiased Prediction (gBLUP), 669 
Compressed BLUP, and SUPER BLUP (sBLUP). The fifth module provides the interpretation 670 
and diagnosis on the final results, included P values illustrated as Manhattan plots and QQ plots. 671 
 672 
Figure 3. Comparison of P values and estimated breeding values using GAPIT and other 673 
software packages. The comparison was conducted on a trait simulated from the genotypes of 674 
3093 SNPs on 281 maize lines. The simulated trait had 75% heritability with 20 QTNs. P values, 675 
displayed as -log10(P), are compared between GAPIT (vertical axis) and four software packages 676 
(horizontal axis) for genome-wide association studies that were run as standalone packages, 677 
including FarmCPU, MLMM, Blink R version, and BLINK C version. The estimated breeding 678 
values using GAPIT are compared with four software packages that were run as standalone 679 
packages, including rrBLUP, EMMAREML, BGLR, and GCTA. Identical results were obtained 680 
except breeding values using BGLR which involves random sampling to estimate variance 681 
components. The random sampling causes variation from run to run using BGLR. 682 
 683 
Figure 4. Phenotypic Variance Explained by Associated Markers. GAPIT 3 provides 684 
estimates of the proportion of phenotypic variance explained by associated markers. The 685 
proportion is a function of both magnitude of marker effects and minor allele frequency (MAF). 686 
Larger marker effects and larger MAF contribute to larger proportion of phenotypic variance 687 
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explained. This relationship is demonstrated on a trait simulated from the mice genotypes of 688 
12564 SNPs on 1440 individuals. The simulated trait had 75% heritability with 20 QTNs. 689 
Marker effects and MAF may go opposite direction. Some of markers have large magnitude, but 690 
explain little phenotypic variances due to low MAF (A). Similarly, markers with large 691 
MAFexplain little phenotypic variances due to small effect (B). Their joint impact is 692 
demonstrated by the heatmap (C). Markers explaining more variation are further away from the 693 
center where both MAF and marker effect are zeros.  694 
 695 
Figure 5. Interactive extraction of information for markers and individuals. GAPIT3 output 696 
two interactive html files to help user to extract information of markers on Manhattan plots (A) 697 
and QQ plots (B). The interactive plots are demonstrated on a trait simulated from the mice 698 
genotypes with 12564 SNPs on 1440 individuals. The simulated trait had 75% heritability with 699 
20 QTNs. When cursor is moved over a dot, the marker information is displayed instantly, 700 
including name, P values, chromosome, position, and Minor Allele Frequency (MAF). Similarly, 701 
a html file is generated to display the predicted phenotypes against observed phenotypes (C). 702 
When cursor is moved over a dot, the individual information is displayed instantly, including 703 
name, predicted and observed phenotypic values. When multiple prediction methods are used, 704 
individuals are displayed as different colors for different methods, such as genomic Best Linear 705 
Unbiased Prediction (gBLUP), Compressed BLUP (cBLUP), and SUPER BLUP (sBLUP). 706 
 707 
Figure 6. Comparison of computing time using multiple packages of GWAS and GS within 708 
and outside of GAPIT. Three GWAS packages (FarmCPU, BLINK C version and BLINK R 709 
version) were compared by running them within GAPIT and outside of GAPIT as standalone. 710 
The comparison was conducted on a synthetic trait simulated from the maize genotypes (281 711 
individuals and 3093 markers). The trait was simulated with 75% heritability controlled by 20 712 
QTNs. To demonstrate the impact on computing time, the data was duplicated for markers (A) 713 
and individuals (B) at multiple times (8, 12, 20, 28, and 36). Either running within GAPT or 714 
outside of GAPIT as standalone, these GWAS packages exhibit linear computing time to both 715 
number of markers and number of individuals. The extra time of execution of these packages 716 
within GAPIT is minimal comparing to the execution as standard alone. The extra time involves 717 
format transformation of input date and result presentation. Computing time was compared for 718 
five packages of genomic prediction, including GAPIT, GCTA, BGLR, rrBLUP, and 719 
EMMAREML. The genomic Best Linear Unbiased Prediction was selected in GAPIT. With 720 
number of markers duplicated four times and number of individuals duplicated at multiple levels 721 
(12, 20, and 28 fold), the computing show nonlinear relationship to number of individuals, 722 
except the GCTA package (C). With number of individual duplicated 4 (D) and 12 (E) times; 723 
and number of markers duplicated at multiple levels (12, 20, 28, and 36 fold), the computing 724 
time show linear relationship to number of marker for all package. The numbers of individuals 725 
change the rank of the packages. BGLR is the slowest with less individuals (D) and rrBLUP 726 
become the slowest with more individuals (E).  727 
 728 
  729 
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Supplementary material 730 
 731 
Figure S1. Interaction among users and developers on GAPIT forum through Google. Since 732 
the first post in 2012, the forum has received over 700 topics, 3,000 posts and 80,000 views in 733 
total. This trend is increasing overall for all three measurements. Exceptions were observed in 734 
2016 and 2019, corresponding to the 2016 event when Google was withheld from users in China 735 
and the restriction of accessing Google using VPN (https://en.wikipedia.org/wiki/Google_China).  736 
 737 
Figure S2. Usage of GAPIT website. The GAPIT website has received 22,806 page views since 738 
2016 when we began tracking the usage on Google Analytics. We lost about six months of 739 
tracking due to a technology issue. The average page view time is three minutes and eight 740 
seconds, accounting for 49.6 days in total. An increasing trend for weekly total number of page 741 
views is observed, which is currently over 200 pageviews per week. The previous page paths are 742 
FarmCPU (17%), BLINK (12%), Publication (7%), and teaching (4%). The majority of next 743 
page paths are software pages, which host several software packages developed at Zhiwu Zhang 744 
Lab, including FarmCPU and BLINK for GWAS, and GRID and GridFree for image analyses. 745 
 746 
Figure S3. Interactive Manhattan and QQ plots. As a software package that includes multiple 747 
GWAS methods, GAPIT supplies the user with interactive Manhattan and QQ plots to compare 748 
results among the methods selected. Two types of Manhattan plots are displayed, the standard 749 
orthogonal plot (A) and a circle plot (B). A multiple method QQ plot is also displayed (C). Each 750 
method's Manhattan plot includes an interconnected, dashed vertical line that runs through 751 
chromosome 8, signaling that only two methods have detected this association signal (i.e., 752 
potentially significant SNP) with the peak p-value. In contrast, a solid (not dashed) vertical line 753 
is displayed if more than two methods detect the same signal with the peak p-value. The circle 754 
plot also supplies a marker distribution analysis, represented by the colors, ranging from green to 755 
red, in the outermost ring. Areas in the outer ring that are colored red have the greatest number of 756 
markers within the selected window size (10Kbp is the default, but can be changed by the user). 757 
 758 
Figure S4. Interactive display of population structure and kinship cladogram.  759 
Population structure is displayed as an interactive three-dimension plot. Users can adjust the 760 
display at any angle (e.g., A to D). The individuals are displayed with colors that correspond to 761 
the grouping on the kinship cladogram using k-means cluster analysis (E).  762 
 763 
Figure S5. Comparison of computing time using four software packages run separately and 764 
using them within GAPIT. The three standalone software packages are MLMM, FarmCPU, 765 
BLINK R version, and BLINK C version. The comparison was performed on different sized 766 
datasets with respect to duplication of the original data containing 1124 individuals and 12,372 767 
markers. The duplications were conducted for markers only (A) and individuals only (B).  In 768 
either case, these packages exhibit linear computing time to number of markers, and number of 769 
individuals. The extra time of execution of these packages within GAPIT is minimal comparing 770 
to the execution as standard alone. The extra time involves format transformation of input date 771 
and result presentation. MLMM took much longer time than the rest three packages, which are 772 
not able to be differentiated each other when they displayed on the same scale with MLMM.  773 
 774 
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Figure S6. Comparison between single locus and multiple loci methods on power against 775 
FDR and Type I error. Single-locus methods include GLM and MLM.  The Multi-loci methods 776 
include FarmCPU and Blink. The comparison was based a simulated trait using the maize data 777 
containing 282 individuals and 3094 SNPs. The simulated trait had a heritability of 75% 778 
controlled by 20 Quantitative Trait Nucleotides (QTN). Power was calculated as the proportion 779 
of QTN detected. False Discover Rate (FDR) was calculated as the proportion of non-QTNs 780 
among the positives (A). Type I error was calculated as the proportion of tests with false 781 
positives (B). The simulation was replicated 100 times. 782 
 783 
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