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1 Introduction

When translations are spontaneously broken in an otherwise translation invariant system,

new gapless modes appear in the spectrum. These are the Nambu-Goldstone bosons of

broken translations (which we will call phonons, by a slight abuse of terminology). The

low energy effective theory describing the dynamics around equilibrium at long wavelengths

and late times is that of Wigner crystals, see [2] for a review. The phonons have a dra-

matic impact on the transverse spectrum: the transverse phonon mixes with transverse

momentum to give two shear sound modes

ωshear = ±
√

G

χPP
q − i

2
q2

(

ξ⊥ +
η

χPP

)

+O(q3) , (1.1)

with a velocity proportional to the square root of the elastic shear modulus G and an

attenuation controlled by the shear viscosity η and the transverse phonon diffusivity ξ⊥.

χPP is the momentum static susceptibility. In contrast, in a fluid, the only hydrodynamic

mode in the transverse sector is purely diffusive

ω = −i η

χPP
q2 +O(q4) . (1.2)

In other words, solids propagate shear sound waves, and fluids do not.
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When translations are explicitly broken (say by disorder or coupling to the underlying

ionic lattice), the transverse sector of a fluid no longer contains any hydrodynamic mode.

Instead, the shear diffusive mode (1.2) is gapped

ω = −iΓ− η

χPP
q2 +O(Γ2, q2Γ, q4) , (1.3)

and encodes the relaxation of transverse momentum. At the longest times and distances

ω, q ≪ Γ, the spectrum is completely incoherent. As Γ is increased from zero, the longitudi-

nal sound modes undergo a collision on the imaginary axis into a gapped, pseudo-diffusive

mode (relaxation of longitudinal momentum) and a diffusive mode (thermal diffusion fol-

lowing from the conservation of energy).

Studying the long wavelength dynamics of holographic phases with explicitly broken

translations has recently attracted a lot of attention and led to a thorough understanding of

the physics of slow momentum relaxation (see [3] for a review and references therein). While

progress was also made for translations broken by inhomogeneous sources [4–8], the brunt of

the effort exploited so-called homogeneous models [9–15], whereby a global bulk symmetry

is broken together with translations. This leads to ordinary differential equations in the

bulk rather than partial differential equations, which is a significant technical simplification.

In spite of their simplicity, these models accurately capture the dynamics of slow momentum

relaxation when translations are weakly broken [16–19].1

In a two-dimensional, isotropic Wigner crystal, explicit breaking of translations gaps

the transverse sound modes, relaxing both the transverse momentum and the transverse

phonon [22]:

ω = − i

2
(Γ + Ω)± 1

2

√

4ω2
o − (Γ− Ω)2 +O(q) . (1.4)

Here Ω is the phonon damping rate and ωo the pinning frequency, related to the phonon

mass by ω2
o = Gm2/χPP .

2 The same occurs in the longitudinal sector for the longitudi-

nal momentum and longitudinal phonon, leaving a single, diffusive hydrodynamic mode,

encoding the conservation of energy.

Pinning of density waves by a soft explicit breaking of translations introduces two

new relaxation parameters, the phonon mass m and damping rate Ω [22, 23]. In [22, 23],

only defects were considered as a microscopic origin for the damping rate Ω. However, as

demonstrated in [1] and further investigated in [24, 25], damping by explicit breaking of

translations enters in the low energy effective theory in precisely the same way.

Spontaneous breaking of translations was also studied holographically starting with [26,

27], leading to the construction of fully backreacted, inhomogeneous, spatially modulated

phases [28–35]. While homogeneous models with a Bianchi VII global symmetry where

studied in parallel (see eg [36]), this setup remains less explored due to its higher technical

difficulty. Simpler homogeneous models were investigated in [37–40]. This opened the way

1These holographic homogeneous models inspired analogous constructions [20] which account for the

translation-breaking dynamics in a purely field-theoretical context. For a generalization of such construc-

tions to inhomogeneous case see [21].
2The pinning frequency can also be written more intuitively as ωo = c⊥ko with ko ≡ m the inverse

length scale defined by the phonon mass and c⊥ ≡
√

G/χPP the shear sound velocity.
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to extensive studies of the effective low energy dynamics of holographic density waves,

pinned or not, [1, 19, 24, 25, 41–47]. The effective, hydrodynamic theory of pinned charge

density waves of [22, 23] provides in most cases the correct framework to interpret these

results.3

In [1, 37, 39, 40, 45], we studied a bi-dimensional holographic ‘Q-lattice’ [11], where

the UV CFT is deformed by complex, neutral scalar operators whose phases are linear

in the boundary spatial coordinates and break translations. If the bulk field dual to the

moduli of the complex operators is not sourced, λ = 0, the breaking is spontaneous. The

complex scalar deformations are the order parameters.4 In [45], we verified that transverse

hydrodynamic modes with the dispersion relation (1.1) are present in the spectrum. In [1],

we showed that these modes become gapped if a small source is turned on, with a dispersion

relation (1.4). We found that Ω ≃ Gm2Ξ, where Ξ ≡ ξ‖/(K +G) is defined from the bulk

and shear moduli K, G and the longitudinal phonon diffusivity ξ‖.
5,6 In other words, the

ratio Ω/m2, where both quantities depend on the microscopic details of the system and of

the breaking of translations, is given by universal thermodynamic and hydrodynamic data.

In this work, we study the interplay between two conceptually distinct sources of

relaxation, as described in section 2. One is the source λ for the Q-lattice, which can

be thought of as a source for the translation-breaking order parameters themselves. The

other comes from massless scalar fields linear in the boundary spatial coordinates, in the

spirit of [12]. They are dual to a marginal deformations of the UV CFT, with a source

ℓ 6= 0. These deformations break translations weakly, relax momentum and lead to finite

DC conductivities. They leave intact the global U(1) symmetries of the Q-lattice, which

shift the phases of the complex scalars by a constant. As a consequence, setting λ = 0, the

spectrum still contains gapless modes even though momentum relaxes [44].

In section 3, we study the spectrum in the transverse sector with only the source ℓ

turned on. At zero wavevector q = 0, we find a single gapped mode with dispersion relation

ω = −iΓ, in marked contrast to (1.4). This tension is resolved by observing that when

ℓ 6= 0 and λ = 0, the phonons remain gapless and only momentum relaxes. Thus we

should set m = Ω = 0 in (1.4). For small ℓ ≪ µ, the location of the remaining gapped

pole agrees with the memory matrix prediction for the momentum relaxation rate of the

3As explained above, the longitudinal diffusive mode reported in [24, 25] corresponds to diffusion of

energy [22]. The other two gapped modes are the gapped longitudinal phonon and momentum density.

The case of [41] is conceptually distinct, as momentum is decoupled. [44, 47] work in the limit where

the momentum relaxation rate is much larger than phonon damping and pinning. [46] finds a discrepancy

between the hydrodynamic prediction in the longitudinal sector and the holographic result, which is not

resolved at this point. It is likely though that a resolution lies in a proper accounting of the background

strain of these phases, along the lines explained in [48]. This sources new contributions in the dispersion

relations of the longitudinal modes.
4As described in [39, 40], a UV analysis shows that the holographic setup we consider corresponds to a

complex scalar deformation for each spatial dimension where the moduli of all the operators are constrained

to be equal.
5For an isotropic crystal, ξ‖/(K +G) = ξ⊥/G ≡ Ξ, so this relation can also be expressed in terms of the

transverse phonon diffusivity ξ⊥.
6This relation was later confirmed in a holographic massive gravity model [24], and in [49] in the limit

where only the global symmetry is broken.
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system (3.2). At small nonzero wavector q 6= 0, we find two light modes (one gapless,

the other gapped) with dispersion relation (3.6), which are the modes predicted by Wigner

crystal hydrodynamics in the absence of any phonon mass or damping m = Ω = 0, but

with nonzero momentum relaxation Γ 6= 0. The comparison between the holographic

and hydrodynamic dispersion relations allows us to provide a prescription to compute

unambiguously the phonon shear modulus G in the holographic model, by subtracting

from the quantity − limω→0Re
[

GRTxyTxy

]

a negative contribution proportional to ℓ2. Using

this prescription for G, we find that the transverse quasinormal modes (QNMs) computed

holographically agree very well with the hydrodynamic dispersion relations.

With this prescription in hand, we then turn on both sources of explicit translation

breaking λ 6= 0, ℓ 6= 0 in section 4. At zero wavector and for small sources λ, ℓ ≪ µ, the

spectrum contains two light, gapped modes with a dispersion relation given by (1.4). In

contrast to [1], Γ is non-negligible with ℓ 6= 0, which allows us to further test the validity of

the hydrodynamic theory of relaxed Wigner crystals. We also check that the hydrodynamic

prediction (4.2) for the ac conductivity agrees with our numerics.

Next, we test the validity of the relation Ω ≃ Gm2Ξ at varying λ and ℓ. At high

temperature, we find that it is quite insensitive to the value of the source ℓ. This is in

agreement with our earlier result [1] that the phonon mass and damping rate are controlled

by λ at leading order (see also [47, 49]). At low temperatures, the system quickly becomes

more incoherent and relaxation is stronger, which leads to a failure of the relation above

as ℓ increases, see figure 9.

Finally, at nonzero wavevector, the dispersion relation of the QNMs matches the hy-

drodynamic dispersion relation (4.6).

We conclude with some final comments and future directions in section 5.

Note added. While this project was underway, [47] appeared which contains some over-

lap with our results. The analysis of [47] focuses on the longitudinal sector, at scales

ω ∼ Ω ∼ ωo ≪ Γ. Where applicable, their results appear compatible with ours.

2 The holographic model

We consider the following holographic model:

S =

∫

d4x
√−g

[

R− 1

2
∂φ2 − 1

4
Z(φ)F 2 + V (φ)− 1

2
Y (φ)

2
∑

I=1

∂ψ2
I −

1

2
Ỹ (φ)

2
∑

I=1

∂ψ̃2
I

]

.

(2.1)

A similar model has been previously studied in [44]. Choosing the following Ansatz for the

scalars ψI and ψ̃I

ψI = kδIjxj , ψ̃I = ℓδIjxj , with xj = {x, y} , (2.2)

breaks translations along the spatial directions x and y of the dual field theory. For

simplicity, we restrict to an isotropic breaking and choose each scalar in the pairs ψI , ψ̃I

– 4 –
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to be aligned along one spatial direction only, e.g. ψ1 = kx.7 So in the following, we no

longer distinguish between capital and lowercase latin indices. The Ansatz (2.2) breaks

both translations and the global symmetry of the scalars ψI 7→ ψI + cI , ψ̃I 7→ ψ̃I + c̃I
to a diagonal U(1) combination. Thus translations are broken homogeneously, and the

remaining U(1) allows the background metric, scalar field φ and gauge potential At to

depend only on the radial coordinate r [11, 12]. This is a considerable simplification.

We are interested in solutions with Anti de Sitter asymptotic boundary conditions. To

this end, we choose the boundary φ→ 0 behavior of the scalar couplings as:

Vuv(φ) = −6− φ2 +O(φ3) , Zuv(φ) = 1 +O(φ) ,

Yuv(φ) = Y2φ
2 +O(φ4) , Ỹuv(φ) = Ỹ0 +O(φ2) .

(2.3)

Near the AdS boundary r → 0, the scalar field φ behaves as:

φ = λr + φ(v)r
2 +O(r3) , (2.4)

so that indeed φ→ 0 at the boundary.

As explained in [39, 40, 44], when the leading mode λ of the scalar field φ is set to zero,

the operators ψI break translations spontaneously in the dual field theory. In brief, this is

because the small φ asymptotics of the coupling Y allows to rewrite the scalars (φ, ψI) into

a pair of complex scalars Φ ∼ φ exp(iψI), as in [11]. If λ = 0, the background solution for

this scalar breaks translations spontaneously in the dual field theory, while it breaks them

explicitly if λ 6= 0. In past work [1, 39, 40, 45], we have explicitly constructed both types

of solutions wih λ = 0 or λ 6= 0 in the model (2.1), either with the choice of potentials (2.3)

or different potentials.

In principle, thermodynamically stable phases breaking translations spontaneously

minimize the free energy with respect to k [11]. This is indeed the logic followed in previous

works to construct the backreacted, inhomogeneous solutions [29, 50]. The solutions con-

structed in the present work do not minimize the free energy with respect to k (or would

do so at k = 0, in which case translations are not broken at all). Yet, there is by now

abundant evidence [1, 39, 40, 44, 45, 47] that the low energy dynamics of such phases is

still well described by Wigner crystal hydrodynamics. As we showed in [39], stable phases

can be found by including e.g. higher derivative terms in the bulk action, with generally

small values for their couplings. It is likely a Chern-Simons term would also work, as in

inhomogeneous constructions.

The field ψ̃I with ℓ 6= 0 always breaks translations explicitly due to the different

boundary behavior of Ỹ , as in [12].

Our main goal is to identify the effective field theory described by this holographic

model. Once the UV behavior (2.3) is fixed, our results will be mostly independent on the

specific choice of the potentials, but, for concreteness, the numeric results will be obtained

for:
V (φ) = −6 cosh(φ) , Z(φ) = cosh(3φ)

4

3 ,

Y (φ) = 12 sinh(φ)2 , Ỹ (φ) = 12(1 + sinh(φ)2) .
(2.5)

7This is an Ansatz, and does not guarantee that other solutions do not exist, e.g. inhomogeneous solutions

with a lower free energy. This is an interesting question for future work.

– 5 –
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2.1 Background geometry and thermodynamics

We are going to consider the following gauge for the metric:

ds2 =
1

r2

(

−U(r)dt2 +
dr2

U(r)
+ c(r)(dx2 + dy2)

)

. (2.6)

The asymptotic expansion of the background fields near the boundary r = 0, reads:

U(r) = 1− 3

4
(8ℓ2 + λ2)r2 + u3r

3 +O(r4) ,

c(r) = 1− 3λ2

4
r2 − λφ(v)r

3 +O(r4) ,

A(r) = µ− ρr +O(r2) ,

φ(r) = λr + φ(v)r
2 +O(r3) .

(2.7)

There is a radially conserved quantity defined by the relation:

[

−ρA(r) + c(r)

r2

(

U(r)

c(r)

)′

− k2
∫ r

rh

Y (φ)

r2
dr − l2

∫ r

rh

Ỹ (φ)

r2
dr

]′

= 0 . (2.8)

We are interested in studying finite temperature states, which correspond to introduc-

ing a black hole with a regular horizon at r = rh in the bulk gravitational theory. The

background fields have the following near horizon behavior:

ds2 = −4πT (rh − r)dt2 +
dt2

4πT (rh − r)
+

s

4π
(dx2 + dy2) + . . .

At = Ah(rh − r) + . . . , φ = φh + . . . ,

(2.9)

where T and s are the temperature and the entropy of the black hole respectively, namely:

s = 4π
c(rh)

r2h
, T =

1

4π

√

U ′(r)2 − 4U(r)

r2

∣

∣

∣

∣

∣

r=rh

. (2.10)

Evaluating (2.8) at the horizon and at the boundary, we obtain the relation:

sT + µρ = −3u3 + λφ(v) − k2IY − ℓ2IỸ , (2.11)

with

IY =

∫ rh

0

Y (φ)

r2
dr , IỸ = lim

ǫ→0

[

∫ rh

ǫ

Ỹ (φ)

r2
dr − Ỹ (0)

ǫ

]

, (2.12)

where in the last equality the UV divergence of
∫

Ỹ (r)/r2 is regulated by the second term.

Applying the usual holographic renormalization procedure [51], one can compute the

on-shell background action and the one-point functions of the model:

〈T tt〉 = ǫ = −2u3 + λφ(v) , 〈T xx〉 = 〈T yy〉 = −u3 = p+ k2IY + ℓ2IỸ

〈J t〉 = ρ , 〈Oφ〉 = φ(v) ,
(2.13)

– 6 –



J
H
E
P
0
1
(
2
0
2
0
)
0
5
8

●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.005 0.01
ℓ/μ

-0.0002
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0.005 0.01
ℓ/μ

-0.388

-0.389

Im[ωQNM3 ]/μ

Figure 1. Second and third purely imaginary QNMs for (T/µ, k/µ, λ) = (0.1, 0.01, 0). The first

QNM (not depicted) stays fixed at the origin as ℓ/µ is varied. Left: QNM2 is gapped for ℓ 6= 0 and

becomes gapless for ℓ/µ→ 0. Right: QNM3 remains gapped as ℓ/µ→ 0.

where ǫ, p and ρ are the energy density, the pressure (identified from the renormalized

on-shell action) and the charge density respectively.

Plugging these expressions in (2.11), we obtain the usual Smarr relation:

sT + µρ = ǫ+ p . (2.14)

As explained in [39], the momentum susceptibility χPP can be computed exactly in k

and l by boosting the expressions (2.13) for the one-point functions of the various compo-

nents of the stress energy tensor. This leads to:

χPP = sT + µρ+ k2IY + ℓ2IỸ = −3u3 + λφ(v) . (2.15)

In the rest of this work, we will be interested in the spectrum of transverse fluctuations

at nonzero frequency and nonzero wavevector. Due to the homogeneity of the background

solution, we can decompose them in plane waves as

δψx = δψx(r)e
−iωt+iqy , δψ̃x = δψ̃x(r)e

−iωt+iqy ,

δax = δax(r)e
−iωt+iqy , δgxt = δgxt (r)e

−iωt+iqy .
(2.16)

For the computation of the quasinormal modes we use the determinant method follow-

ing [52].

3 Gapless phonons

We will not review Wigner crystal hydrodynamics in this work. However, the reader

unfamiliar with this material is invited to consult [22] from which all dispersion relations

quoted here can be derived, or [1, 45, 46] for more recent reviews of the formalism.

3.1 Spectrum and conductivity at zero wavevector

Setting λ = 0, the background Ansatz of the fields ψ breaks translations spontaneously,

as explained above. On the other hand, the background Ansatz of the fields ψ̃ breaks

translations explicitly.

– 7 –
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In the absence of the fields ψ̃, the spectrum of modes includes gapless modes corre-

sponding to the phonons and momentum densities along each spatial direction. As the

global symmetry associated to the ψ fields is left unbroken when ℓ 6= 0, we expect that

only the momentum modes are gapped, and the phonons remain gapless. As we shall now

see, this is exactly what happens.

We have computed the lowest-lying QNMs for T/µ = 0.1 and k/µ = 0.01 while varying

ℓ/µ from 0 to 0.01. We find a first quasinormal mode, QNM1, at the origin, whereas the

second and the third are purely imaginary (they are denoted by QNM2,3 in figure 1). QNM2

becomes gapless as ℓ/µ→ 0 and at nonzero ℓ≪ µ, its gap is the momentum relaxation rate

Γ. Instead, QNM3 remains gapped in the limit ℓ/µ→ 0. At frequencies comparable to its

gap, we expect the effective description in terms of relaxed Wigner crystal hydrodynamics

to break down.

To confirm that the gap of QNM2 gives the momentum relaxation rate of the system,

we compare it to the memory matrix prediction ΓMM (see eg [3])

ΓMM =
1

χPP
lim
ω→0

lim
ℓ→0

1

ω
ImGR∂tP∂tP (ω, q = 0) , (3.1)

where P is the momentum operator and χPP is the static momentum susceptibility com-

puted in (2.15).

The correlator in (3.1) can be evaluated holographically relying on the Ward-Takahashi

identity for the vev of the momentum density ∂tπ = −ℓ 〈δOψ̃〉 (valid at the level of bulk

fluctuations). Thus,

ΓMM =
ℓ2

χPP
lim
ω→0

1

ω
ImGRO

ψ̃
O
ψ̃
(ω, q = 0)

∣

∣

∣

∣

ℓ=0

=
ℓ2chỸ (φh)

χPP r2h
. (3.2)

Because of the zero relaxation limit in (3.1), one only needs to know the holographic cor-

relator at ℓ = 0, hence the computations can be done as in the appendix of [1]. In figure 2,

we show that the absolute value of the imaginary part of QNM2 is well approximated by

ΓMM . Therefore, the QNM spectrum at q = 0 confirms that momentum is relaxed (QNM2)

while the phonon (QNM1) is neither damped nor pinned.

Adopting the notation of [22], we have Γ = ΓMM and Ω = ωo = 0. The hydrodynamic

conductivity is

σhydro(ω) = σo +
ρ2

χPP

1

Γ− iω
. (3.3)

Using for ρ and χPP the results obtained in section 2, as well as the formula for σo derived

in [39],

σo =
1

χ2
PP

[

(sT + k2IY )
2Z(φh) +

4πk2I2Y ρ
2

sY (φh)

]

, (3.4)

we find excellent agreement with the ac conductivity computed numerically, see figure 2,

right plot. The small frequency limit of the numerical ac conductivity agrees with the dc

formula computed in [44] for this class of holographic models

σdc(λ = 0) = Z(φh) +
4πρ2

sℓ2Ỹ (φh)
. (3.5)

This constitutes additional evidence that for λ = 0, only momentum relaxes.

– 8 –
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5.×10-40.001 0.005 0.010
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1.0015

1.0020

Γ/ΓMM

0.0005 0.0010 0.0015 0.0020 0.0025
ω/μ

1000

2000

3000

4000

Re[σ(ω)]

Figure 2. In both panels, (T/µ, k/µ, λ/µ) = (0.1, 0.01, 0). Left: comparison between ΓMM in (3.2)

and Γ, the gap of the purely imaginary QNM2. Right: comparison at ℓ/µ = 5 × 10−3 between

σhydro(ω) in (3.3) (dashed, black) and the numerical σ(ω) (red); the dashed, gray line is the dc

conductivity computed from the formula (3.5).

3.2 Transverse spectrum at nonzero wavevector

To provide further evidence that the model at λ = 0, ℓ 6= 0 is well described by Wigner

crystal hydrodynamics with momentum relaxation only (recall that λ = 0 implies Ω = ωo =

0), we have computed the transverse QNMs at nonzero wavevector q. In the transverse

channel, Wigner crystal hydrodynamics predicts the existence of two light modes [22],

whose dispersion relation is given by:

ω± =
1

2

[

−iΓ− iq2
(

ξ⊥ +
η

χPP

)

± 1

χPP

√

−Γ2χ2
PP + 2q2χPP (2G+ Γξ⊥χPP − Γη)− q4 (η − ξ⊥χPP )

2

]

. (3.6)

For small q ≪ Γ ≪ Λ (denoting by Λ the UV cutoff of the hydrodynamic regime),

these modes capture transverse phonon diffusion and momentum relaxation, respectively:

ω+ = −i G

χPPΓ
q2− iξ⊥q

2+O

(

q4

Γ3

)

, ω− = −iΓ+ i
G

χPPΓ
q2− η

χPP
q2+O

(

q4

Γ3

)

. (3.7)

In the limit Γ ≪ q ≪ Λ, the modes are instead propagating

ω± = ±
√

G

χPP
q − i

2
Γ +O (qΓ) . (3.8)

Indeed, this regime is probing shorter scales than the scale at which momentum relaxes,

so the modes resemble shear sound waves.

Finally, we can also consider the regime Γ ≪ q ≃ Λ, which amounts to sending q → +∞
in (3.6). The modes become purely imaginary once again

ω+ = −iξ⊥q2 −
iG

η − χPP ξ⊥
+O

(

q4

Γ3

)

, ω− = − iηq
2

χPP
+

iG

η − χPP ξ⊥
− iΓ +O

(

1

q2
,
Γ

q2

)

.

(3.9)
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Figure 3. Comparison of the hydrodynamic dispersion relation (3.6) (red lines) to the numeri-

cal results (black dots) for large q (left panels) and small q (right panels), at (ℓ/µ, k/µ, T/µ) =

(10−4, 10−2, 10−1).

Strictly speaking this regime is outside the validity of the hydrodynamic approximation.

Yet, as we shall see, the expressions above agree very well with the dispersion relation of

the QNMs computed holographically.

In the previous formulae G is the phonon shear modulus, η is the shear viscosity and

ξ⊥ is the diffusivity of the transverse phonon ϕ⊥. These quantities are defined by the

hydrodynamic correlators

GRTxyTxy = G− iωη , GRϕ⊥ϕ⊥
=

1

χPP ω2
− ξ⊥
G

i

ω
. (3.10)

In figure 3, we compare the dispersion relation (3.6) to the location of the two longest-

lived QNMs computed numerically. In (3.6), we have used for G and η the approximate

relations [45] (see also [38, 53]):

η ≃ s

4π
, G ≃ k2IY . (3.11)

The prescription for G is further discussed in subsection 3.3. Due to isotropy, the diffusivity

ξ⊥ is related to ξ‖ and is given by the formula, [45]:

ξ⊥
G

=
ξ‖

K +G
=

1

χ2
PP

[

4π (sT + µρ)2

k2sY (φh)
+ µ2Z(φh)

]

. (3.12)

As shown in figure 3 the agreement between the numerics and (3.6) is excellent. In partic-

ular, the three regimes described above can be observed, including the regime Γ ≪ q ≃ Λ
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where we might have expected the hydrodynamic approximation to fail. This suggests that

the true hydrodynamic cutoff in our system is not set by T (observe that the agreement

persists to q ≃ T ) but by some higher-energy scale.8

3.3 The phonon stiffness prescription

In this section, we highlight a subtlety in the correct determination of the shear phonon

stiffness G. When translations are only broken spontaneously, G can be extracted unam-

biguously from a Kubo formula involving the shear stress tensor

G = − lim
ω→0

Re
[

GRTxyTxy(ω, q = 0)
]

. (3.13)

This formula directly follows from using the expression in (3.10). It states that the phonon

shear modulus (stiffness) is equal to the total shear modulus, defined as the response of

the system to shear strain.

The shear correlator GRTxyTxy can be computed holographically by solving the (de-

coupled) perturbation equation for hyx.9 For small enough k, the exact numerical result

matches well with a perturbative analytical computation, [45] (see also [38, 53]):

ℓ = 0, λ = 0 : − lim
ω→0

Re
[

GRTxyTxy(ω, q = 0)
]

= k2IY +O(k4) . (3.14)

Putting (3.14) together with (3.13) leads to the identification of the shear phonon stiffness G

ℓ = 0, λ = 0 : G = k2IY +O(k4) . (3.15)

We are quoting a formula valid for sufficiently small k, but a non-perturbative formula

in terms of the hyx perturbation evaluated at the horizon also exists (see eg [57]). Upon

turning weak explicit breaking λ ≪ µ, the holographic shear correlator computed

numerically only receives very small, O(λ) corrections and it is straightforward to verify

that the approximate formula (3.14) is still valid.

The explicit breaking scale ℓ has a qualitatively different effect. Upon turning weak

explicit breaking ℓ≪ µ, the holographic shear Kubo formula above becomes

− lim
ω→0

Re
[

GRTxyTxy(ω, q = 0)
]

= k2IY + ℓ2IỸ +O(k4, ℓ4, ℓ2k2) , (3.16)

where we are still assuming small k ≪ µ. IY and IỸ are given in (2.12). In particular,

the right-hand side is nonzero even in absence of any spontaneous breaking k = 0, as was

noted in [56].

As a consequence, identifying the phonon shear modulus G by combining (3.13)

and (3.16) is no longer correct, and instead the prescription (3.15) should still be used.

8A more precise characterization of the validity of the hydrodynamic regime would require a detailed

study of deviations between the numerical and hydrodynamic dispersion relations, taking into account

corrections from terms appearing at higher order in gradients or in the relaxation parameters in the hydro-

dynamic expansion, and the proximity of other gapped QNMs. See eg [54, 55].
9This is by now a standard computation. It proceeds exactly along the same lines as described in [45]

for our model. See eg [56] for earlier versions of this computation.
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Figure 4. Comparison between the total shear modulus − limω→0 Re
[

GR

TxyTxy
(ω, q = 0)

]

com-

puted numerically (black line) and the approximation (3.16) (red dashed line) at varying ℓ/µ with

(T/µ, k/µ, λ/µ) = (0.1, 10−3, 0).

For the very small value of ℓ/µ = 10−4 used in the previous section, we found that

the total shear modulus, namely the real part of the correlator GRTxyTxy , is always well

approximated by the k2 contribution in (3.14). So the numerical results for the dispersion

relation of the transverse modes plotted in figure 3 are still well reproduced by using

either (3.14) or the exact numerical result (3.13).

For larger values of ℓ, the total shear modulus starts to deviate from (3.14) and in-

stead (3.16) should be used. (3.16) agrees very well with the numerics for ℓ not too large,

see figure 4. We observe that the first term in (3.16) (proportional to k2) is always positive,

while the second term (proportional to ℓ2) is negative. Accordingly, for large enough ℓ,

the total shear modulus becomes negative. As G is positive definite (it is a static suscep-

tibility), the Kubo formula (3.13) is manifestly wrong in this regime. This implies that

the contribution to the total shear modulus coming from ℓ should be removed to identify

correctly the phonon shear modulus. This is in agreement with the fact that the explicit

breaking scale ℓ only relaxes momentum, not the phonons, as it does not break the global

shift symmetry associated to them.

In figure 5 we compare the dispersion relation of the transverse QNMs for two sets

of values (ℓ/µ, T/µ, k/µ) = (0.01, 0.1, 0.1) and (ℓ/µ, T/µ, k/µ) = (0.003, 0.1, 0.001) to the

hydrodynamic prediction (3.6) using for the phonon shear modulus either the correct pre-

scription (3.15) or the wrong one (3.13). For the first case, the total shear modulus is

positive, but the prescription (3.15) gives significantly better results. For the second case,

the total shear modulus is now negative. The prescription (3.13) predicts that the gapless

mode is in the upper half plane (not displayed) and does not agree very well with the

gapped mode. Instead, the prescription (3.15) gives a very good account of the numerical

result for the gapless mode, and agrees better with the gapped mode.

Our observation that the explicit breaking scale ℓ contributes to the total shear modu-

lus with the opposite sign compared to the spontaneous scale k is consistent with previous

literature [1, 12, 19, 35, 38, 43, 53, 56, 58, 59].

– 12 –



J
H
E
P
0
1
(
2
0
2
0
)
0
5
8

Numerics

G=-Re[GRxyxy]dc

G=k2IY

0.002 0.003 0.004 0.005
q/μ0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

-Im[ω]/μ

Numerics

G=k2IY

G=-Re[GRxyxy]dc

0.001 0.002 0.003 0.004 0.005 0.006 0.007
q/μ

0.00001

0.00002

0.00003

0.00004

0.00005

-Im[ω]/μ

Figure 5. Comparison between the exact numerical dispersion relation of the two longest-lived

transverse QNMs and the hydrodynamic prediction (3.6) for the dispersion relation, using for the

Goldstone shear modulus the correct prescription (3.15) or the wrong one (3.13). In the right panel,

the wrong prescription predicts that the gapless mode is in the upper half plane (not displayed).

Left: ℓ/µ = 0.01, T/µ = 0.1, k/µ = 0.1. Right: ℓ/µ = 0.003, T/µ = 0.1, k/µ = 0.001.

-0.0015 -0.0010 -0.0005 0.0005 0.0010 0.0015

Re[ω]/μ
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-0.0015
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Figure 6. λ/µ = 0.0002, k/µ = 0.1, T/µ = 0.1 and 0.001 ≤ ℓ/µ ≤ 0.03. As ℓ/µ increases,

the complex QNMs move down the lower half plane and approach the imaginary axis, where they

eventually collide.

4 Gapped phonons

4.1 Spectrum at zero wavevector

Once a small source λ for the field φ is switched on, we expect the phonons in our holo-

graphic system to become massive and damped. Indeed, we plot the lightest QNMs of the

system in figure 6 and observe that now two gapped, complex QNMs are present close to

the real axis at small ℓ/µ. Increasing ℓ/µ, the QNMs move down in the lower half plane,

getting closer to the imaginary axis, where a collision eventually happens at large enough

ℓ/µ (not displayed). The dc conductivity can be computed holographically [44]:

σdc(λ 6= 0, ℓ 6= 0) = Z(φh) +
4πρ2

s(ℓ2Ỹ (φh) + k2Y (φh))
. (4.1)

The ac conductivity predicted by Wigner crystal hydrodynamics assumes the form:

σ(ω) = σo +
γ21χ

2
PPω

2
o(Γ− iω) + 2γ1ρχPPω

2
o + ρ2(iω − Ω)

χPP ((Γ− iω)(Ω− iω) + ω2
o)

. (4.2)
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Figure 7. (λ/µ, k/µ, T/µ) = (0.0002, 0.1, 0.1). Left: ℓ dependence of the relaxation parameters

extracted from the two lightest QNMs and the dc conductivity. Right: real part of the ac electric

conductivity computed numerically (blue dots) together with the hydrodynamic prediction (4.2)

(black dashed line) for ℓ/µ = 0.001.
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Figure 8. (λ/µ, k/µ, T/µ) = (2× 10−4, 0.1, 0.1). Left: ℓ dependence of the ratio Γ/(ω2
o/Ω). Right:

comparison between Γ, ω2
o/Ω and their approximate memory matrix expressions.

It predicts two poles located at (complex) frequencies given by (1.4). We have evaluated

χPP and σo using (2.15) and (3.4), while γ1 is given by [45]:

γ1 = − 1

χ2
PP

[

µ(sT + k2IY )Z(φh) +
4πIY ρ(sT + µρ)

sY (φh)

]

. (4.3)

We identify ωo, Γ and Ω by matching the dc conductivity and pole locations computed

holographically and within hydrodynamics, which fixes all the parameters in (4.2). The

relaxation parameters are displayed in the left panel of figure 7. The numerics and the

hydrodynamic prediction agree very well, see the right panel of figure 7. We also display

the dependence of the relaxation parameters on the scale ℓ. As in the case λ = 0, Γ shows

a clear quadratic dependence. On the other hand, Ω and ωo depend very weakly on ℓ.

From (1.4), it is clear that if Γ becomes large enough compared to ωo, the complex poles

collide and become purely imaginary, which is what we observe in figure 6.

Since ℓ 6= 0, in this model Γ is comparable to Ω and ωo (see left panel of figure 8), in

contrast to our previous work [1], where ℓ = 0 and we found Γ ≪ ωo,Ω. This lets us verify

the validity of Wigner crystal hydrodynamics in the presence of a non-negligible source
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of momentum relaxation, which can be tuned independently from the leading source of

phonon damping and pinning, λ.

We saw in the previous section that when λ = 0, Γ was very well approximated by the

memory matrix prediction ΓMM in (3.2). In [1], setting ℓ = 0, we had shown that ω2
o/Ω

was very well approximated by another memory matrix prediction

ω2
o

Ω
=
k2chY (φh)

r2hχPP
. (4.4)

This captures the phonon contribution to momentum relaxation. In [1], with ℓ = 0, Γ was

negligible and so momentum was solely relaxed through phonon damping. As can be seen

in the left panel of figure 8, this is no longer the case with ℓ 6= 0.

In the right panel of figure 8, we compare the predictions (3.2) and (4.4) to the actual

numerical results, at nonzero ℓ and λ. While (4.4) holds reasonably well at small ℓ, the

agreement steadily gets worse as ℓ is increased. On the other hand, while Γ agrees rea-

sonably well with ΓMM at larger values of ℓ (but still low enough that momentum can be

considered to be relaxing slowly), there is a sharp disagreement at very low values of ℓ, as

the numerical value of Γ becomes very small. This is in agreement with our results of [1]

at ℓ = 0, where we always observed Γ ≪ ω2
o/Ω.

Having two different sources of explicit translation symmetry breaking, namely λ (the

source for φ) and ℓ, it is interesting to check the validity of the universal relaxation relation

we found in [1], which relates the ratio of phonon damping rate Ω and the phonon mass m

to a combination of thermodynamic and hydrodynamic data:

Ω ≃ Gm2 ξ‖

K +G
= Gm2Ξ = χPPω

2
oΞ . (4.5)

In the last equality, we have used the relation between the pinning frequency and the

phonon mass ω2
o = m2G/χPP .

In [1], we observed (in a slightly different model) that the relation (4.5) is spoiled as

λ is increased and that the parameters Ω and m take values well-approximated by their

k = 0 limit. We explained this by setting k = 0 and observing that Ω corresponds to

the gap of the longest-lived purely imaginary QNM, which is interpreted as the gapped

Goldstone of the pseudo-spontaneously broken global U(1) symmetry of our model (see

also [49]). By increasing λ, this QNM collides with another QNM coming up from deeper

in the lower half plane, after which both QNMs acquire a real part, signalling the exit of

the pseudo-spontaneous regime. At this point, the relation (4.5) fails.

In the present work, we have tested the validity of (4.5) when T and ℓ are varied. The

results are shown in figure 9. At high T , (4.5) is almost insensitive to increasing ℓ. As T

is decreased at fixed ℓ 6= 0 and λ 6= 0, the relation (4.5) ceases to hold. At low T , (4.5) is

recovered as ℓ is decreased.

The following interpretation of these results can be offered. At high T and in absence

of any spontaneous breaking of translations, ℓ is a marginally relevant deformation of the

UV CFT and sources weak momentum relaxation at a small rate Γ ≪ T, µ, which is

well-approximated by the memory matrix prediction [17, 60]. As T is lowered, a coherent-

to-incoherent crossover is expected, sometimes accompanied by a pole collision, at which
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Figure 9. Left: T/µ dependence of the ratio Ω/(m2Ξ) for (ℓ/µ, k/µ, λ/µ) = (0.01, 0.01, 10−5).

Right: ℓ/µ dependence of the ratio Ω/(m2Ξ) for (λ/µ, T/µ, k/µ) = (2 × 10−4, 0.1, 0.1) (red, solid)

and (λ/µ, T/µ, k/µ) = (10−5, 0.035, 0.01) (blue, dashed).

point all notion of almost-conserved momentum is lost. Our case here is more complicated,

since momentum mixes with the Goldstone mode when k 6= 0, but a similar logic applies:

at lower temperatures, higher values of ℓ lead to a faster relaxation of both momentum and

the Goldstone, and consequently to a failure of the relation (4.5), which only holds in the

limit of slow relaxation. Indeed we have checked that at low temperatures T/µ = 0.035,

the relaxation parameters (i.e. Γ, ω2
o/Ω or their sum) are not well-approximated by any

memory matrix expression (i.e. the right-hand side of (3.2), of (4.4) or their sum).

4.2 Transverse spectrum at nonzero wavevector

In the presence of momentum relaxation, phonon pinning and damping, Wigner crystal

hydrodynamics predicts the following dispersion relation (3.6) for the transverse modes:

ω±=− i

2

(

Γ+Ω+q2
(

ξ⊥+
η

χPP

))

(4.6)

± 1

2χPP

√

χ2
PP (4ω2

o−(Γ−Ω)2)+χPP q2(4G+2(ξ⊥χPP −η)(Γ−Ω))−q4(η−ξ⊥χPP )2 .

We have checked the validity of (4.6) against the dispersion relation of the QNMs obtained

numerically for our model, using the same procedure as before to extract the parameters

ωo, Γ and Ω and (3.11), (3.12) for the values of G, η and ξ⊥. The result is displayed

in figure 10 and shows an excellent agreement of the hydrodynamic prediction with the

numerical computation. For the parameter values we have chosen, due to the presence of

phonon pinning and damping, the modes remain complex in the limit of zero wavevector

with a gap given by (1.4).

5 Outlook

In this work, we have extended our previous results [1, 45] on holographic phases which

break translations spontaneously by including a non-negligible source of momentum relax-

ation. Indeed, although [1] already considered the presence of a small explicit translation-

breaking source, momentum relaxation was found to be negligible compared to phonon
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Figure 10. Real (left) and imaginary (right) part of the QNMs computed numerically (black dots)

together with the hydrodynamic prediction (4.6) (red line) as a function of the momentum q for

(λ/µ, k/µ, ℓ/µ, T/µ) = (4× 10−4, 0.01, 0.01, 0.1).

damping and pinning. By comparing the ac conductivity and the spectrum of transverse

QNMs, we have verified that the low energy dynamics of the system is described by Wigner

crystal hydrodynamics with excellent accuracy.

In passing, we have discussed a subtlety in the identification of the phonon stiffness

from the shear Kubo formula. In general, the shear Kubo formula receives an extra con-

tribution from the source of momentum relaxation, which needs to be subtracted. Failing

to do so leads to inconsistencies upon matching to Wigner crystal hydrodynamics.

Finally, we have shown that the universal relation uncovered in [1] between the phonon

damping rate, mass and diffusivities continues to hold in the presence of this new source

of explicit translation symmetry breaking, provided it is weak enough.

In the future, it would be interesting to study the longitudinal sector of these theories

and their match to Wigner crystal hydrodynamics. Some disagreement in holographic

massive gravity models has been reported [46]. On the other hand, [48] recently carried out

a careful analysis of the dispersion relation of the modes with a nonzero background strain,

and find new contributions in the longitudinal sector, which may resolve this discrepancy.On

the other hand, [47] constructed the effective theories in a limit where the momentum

relaxation rate is much bigger than phonon damping and pinning. Their results may

provide an avenue to resolve the discrepancy mentioned above.10

Finally, the universal relation (4.5) remains to be tested more generally, in other

holographic models of spontaneous translation symmetry breaking, homogeneous or

not [19, 35, 42], in particular for thermodynamically stable phases, or directly in field

theory.
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[22] L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Theory of hydrodynamic

transport in fluctuating electronic charge density wave states, Phys. Rev. B 96 (2017) 195128

[arXiv:1702.05104] [INSPIRE].
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