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Abstract

Background: The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and
the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing
errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome
architecture.

Results: Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in
combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the
ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new
assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic
pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being
repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector
proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families
showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally
active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-
conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in
four segmental duplications.

Conclusion: The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously
poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM
gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host
adaptation in this asexual pathogen.
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Background
Thousands of fungal genome sequences, covering 996

different species, are currently available in public data-

bases (April 2017, http://www.ncbi.nlm.nih.gov/genome/

browse/). The majority of these comprise fragmented

draft assemblies that were produced from relatively short

DNA sequence reads generated by the Sanger method

(up to 1,000 bp) or ‘second-generation sequencing’

(SGS) technology such as 454 and Illumina (up to 500

bp) [1]. Although fragmented genome assemblies can

provide good coverage of the ‘gene space’, corresponding

to the protein-coding genes, in-depth studies of genome

architecture, evolution and speciation of organisms

require access to other parts of the genome which until

recently were regarded as ‘junk’ DNA, for example re-

gions containing repetitive sequences such as transpos-

able elements [2]. During de novo genome assembly,

repeats that are longer than the sequence reads create

gaps, and in addition identical repeats may be collapsed

on to each other or misassembled [3]. Third-generation

sequencing (TGS) methods such as single-molecule real-

time (SMRT) sequencing and Nanopore sequencing pro-

duce reads up to 60 kb in length that are potentially long

enough to span repetitive regions. Thus, TGS methods

open the possibility to obtain complete genome

assemblies, either using hybrid approaches where TGS is

used for completeness and SGS for sequencing accuracy

[4, 5], or by combining TGS with optical mapping [6–8],

which provides high-resolution restriction maps to assist

assembly editing and to assign sequence contigs to chro-

mosomes [9].

Colletotrichum higginsianum is responsible for severe

yield losses on brassica crops in tropical and subtropical

regions [10–12]. In addition to cultivated Brassica and

Raphanus species it also infects the model plant Arabi-

dopsis thaliana, providing a tractable model pathosys-

tem in which both partners can be genetically

manipulated. Based on optical mapping, we previously

reported that the genome of C. higginsianum strain IMI

349063 comprises 12 chromosomes including two mini-

chromosomes <1 Mb in length [13], consistent with re-

sults obtained more recently from mitotic cytological

karyotyping [14]. This strain was sequenced in 2009

using a combination of short-read data from 454 GS-

FLX (350 bp) and Illumina GAII (100 bp) sequencing

platforms together with a small quantity of Sanger reads

(Table 1). The resulting assembly (GenBank accession

number CACQ02000000) was highly fragmented, con-

taining 10,269 small contigs (N50 = 6,150 bp) and 376

scaffolds [13]. One limitation of this assembly was that

many of the predicted 16,172 protein-coding genes were

truncated (9%) or split between contigs, resulting in

multiple gene calls (7%). Fragmentation was especially

problematic for the prediction of large secondary

metabolism key genes and gene clusters. In addition,

transposable elements could not be annotated because

repetitive sequences had been largely eliminated during

assembly. Furthermore, few of the sequence scaffolds

were large enough to be unambiguously aligned to the

optical map, so that chromosome locations could not be

ascribed to genes or repeat elements.

Here, we re-sequenced the same C. higginsianum

strain using Pacific Biosciences SMRT sequencing to

make a de novo assembly. By combining this with previ-

ous optical mapping data, we obtained a near-complete

assembly of the nuclear genome, in which all 12 chro-

mosomes are sequenced telomere to telomere with no

gaps, except for one region containing the rDNA re-

peats. The gapless assembly enabled a more precise an-

notation of protein-coding genes in C. higginsianum and

allowed us to obtain a comprehensive inventory of sec-

ondary metabolism-related genes and gene clusters,

many of which are new. Genomic regions that were pre-

viously badly assembled are now accessible to analysis,

notably the two mini-chromosomes, which are revealed

to differ markedly from the core genome in their gene

and repeat content. An accurate annotation of repeats

uncovered a significant association of TEs, including

some that are transcriptionally active, with genes encod-

ing secreted effector proteins and secondary metabolism

genes. Finally, the complete assembly enabled us to

identify chromosome segmental duplications associated

with highly conserved subtelomeric TEs, which provide

potential sites for homologous recombination.

Methods

Genome sequencing and assembly

High molecular-weight genomic DNA was extracted

from mycelium of 3 day-old liquid cultures of C. higgin-

sianum strain IMI 349063 as follows. After grinding the

mycelium in liquid nitrogen with a mortar and pestle,

DNA was extracted using Nucleobond AXG100 columns

(Macherey Nagel, Ref. 740545) according to the manu-

facturer’s instructions. Approximately 10 μg of genomic

DNA was used to prepare a ~20 Kb size-selected library

and then sequenced on the Pacific Biosciences RS II

platform at Keygene N.V., Wageningen, The Netherlands

using the P5-C3 polymerase-chemistry combination and

240 min movie time. For de novo assembly of the se-

quence data we used the Hierarchical Genome Assembly

Process (HGAP) approach [15] (SMRT analysis version

2.3.0, HGAP3.0). Reads were first filtered (minimum

read length = 500 bp; minimum read quality = 0.8; mini-

mum sub-read length = 500 bp) and then long, highly

accurate sequences were pre-assembled by mapping the

single-pass reads onto longer ‘seed’ reads. The Overlap

Layout Consensus algorithm (WGS-Celera Assembler

7.0) was then used to perform an HGAP assembly of the
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pre-assembled reads. Finally, InDel and base substitution

errors remaining in the draft assembly were reduced by

polishing the consensus sequence using Quiver (https://

github.com/PacificBiosciences/GenomicConsensus). The

assembly was validated by Polymerase Chain Reaction

(PCR) with primers shown in Additional file 1 using

standard molecular biology techniques [16]. For Illumina

sequencing, libraries were prepared from 1 μg of gen-

omic DNA at the Max Planck Genome Centre Cologne

and sequenced on the Illumina Hiseq 2500 platform to

produce 100 bp paired-end reads. These data were used

exclusively for detecting sequence polymorphisms and

were not included in the genome assembly.

Genome assembly comparison and sequence accuracy

Whole-genome alignments between contigs of the old

and new genome assemblies were performed using

MUMmer 3.0 [17]. To assess the accuracy of the

PacBio-derived genome sequence, we mapped Illumina

paired-end 100 bp reads to the new assembly using

BWA-MEM v. 0.7.15 [18]. After filtering to retain only

uniquely mapped and properly paired reads, Freebayes

[19] was used to detect sequence polymorphisms (SNPs,

Indels) between the Illumina reads and the PacBio as-

sembly. To limit false-positive detections, two filters

were applied sequentially, as recommended for whole-

genome variant calling [20] using the VCFFiltering script

(https://urgi.versailles.inra.fr/download/gandalf/VCFtools

-1.2.tar.gz). The first-pass filter eliminated variants lo-

cated in low complexity regions detected by mdust [21]

or in annotated TEs (AN <2, AF >0.9, 98<DP>201). In

the second pass, parameters were relaxed to allow detec-

tion of weakly covered variants (AN <2, AF <0.8,

12<DP).

Detection and annotation of transposable elements and

simple sequence repeats

Two pipelines from the REPET package (http://urgi.ver-

sailles.inra.fr/tools/REPET) were used to annotate trans-

posable elements (TEs). The TEdenovo pipeline [22] was

Table 1 Comparison of Colletotrichum higginsianum genome assemblies and annotations

Input data & Assembly statistics NCBI accession number

CACQ02000000 LTAN01000000

Type of input data:

PacBio P5-C3 read coverage - 133x

Sanger Fosmid (For/Rev) read coverage 0.2x -

Illumina GAII read coverage 76x -

454 GS-FLX Titanium read coverage 25x -

Chromosome numbera 12 12

Genome physical sizeb 53.35 Mb 53.35 Mb

Assembly length 49.08 Mb 50.72 Mb

Total sequence alignable to optical map 77.14 kb 50.38 Mb

Number of contigs 10,269 28

Largest contig 49.23 kb 6.04 Mb

N50 contig length 6.15 kb 5.20 Mb

G+C content 55.10% 51.86%

Coverage by Transposable Elementsc 1.2% 7.0%

Coverage by Simple Sequence Repeatsd - 12.7%

Number of predicted gene modelse 16,172 14,651

Genes with RNA-Seq evidencef 14,502 12,878

Annotation completeness (BUSCO)g

Complete genes 2,946 (79%) 3,616 (97%)

Fragmented genes 569 (15%) 76 (2%)

Missing genes 210 (6%) 33 (0.9%)

aIndependently determined by optical mapping [13] and cytological karyotyping [14]
bEstimated by optical mapping
cTEs were detected using RepeatMasker for assembly CACQ02000000 and REPET for assembly LTAN01000000
dSSRs were detected using REPET for assembly LTAN01000000 (not analyzed for assembly CACQ02000000)
eDifferent gene annotation pipelines were used for each assembly
fFive or more mapped Illumina reads
gGene annotation completeness was estimated using a set of 3,725 Sordariomycete Benchmarking Universal Single-Copy Orthologs (BUSCOs)
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used to detect repeats in the genome, build consensus

sequences and to classify them [23]. Consensus

sequences classified as simple sequence repeats (SSR) or

those built from less than 10 ‘high-scoring segment

pairs’ were filtered out. The remaining 91 consensus

sequences were added to 11 TE sequences previously re-

ported from other Colletotrichum species (Additional file

2). The library of 102 consensus sequences was used to

annotate TE copies in the genome using the TEannot

pipeline [22]. The results were manually filtered for con-

sensus sequences lacking a full-length copy in the gen-

ome, chimeric sequences and potential host genes.

TEannot was then run again using the new library of

41 filtered consensus sequences. Multiple alignments

of full-length copies from each TE family against the

genome assembly were performed using Muscle

v3.8.31 [24].

Analysis of Repeat-Induced Point mutation (RIP)

Phylogenetic trees for DNA methyl transferases were

built as described previously [25] with PhyML [26] from

a multiple alignment generated with T-Coffee [27] and

manually edited to remove non-informative sites. Se-

quence divergence plots were drawn as described by

Maumus et al. [28]. RIP analyses followed the steps de-

scribed previously [25]. Briefly, (i) each TE copy was

aligned against its consensus in a pair-wise manner with

REPET tools (refalign, refalign2fasta) to derive a multiple

alignment, (ii) TE copies smaller than 400 bp and with

less than 80 % identity with the consensus were filtered

out, (iii) RIPCAL [29] was applied to each TE family,

using the copy with highest GC content to compute base

transition, and (iv) in-house Perl and R scripts were used

to calculate dinucleotide bias and produce graphical out-

puts. To increase the weak RIP signal observed for RLX

families, we relaxed the threshold Ti/Tv ratio to 1.5, in-

stead of 2.0 as more commonly used.

Gene prediction

Coding genes were predicted using the MAKER2 pipe-

line, version 2.31.8 [30]. The SNAP ab initio gene finder

[31] was trained with protein homology evidence from

47,455 fungal annotated genes in the UniProt database

(http://www.uniprot.org/; release 2015_08) and 16,172

predicted genes from the previous C. higginsianum an-

notation (http://fungi.ensembl.org/Colletotrichum_hig-

ginsianum/Info/Index), and transcriptomic data derived

from Sanger and 454 GS FLEX ESTs [32], and Illumina

RNA-seq reads [13]. For the latter, we made a genome-

guided transcript assembly by mapping the Illumina

reads to the genome sequence with TopHat2 [33]

followed by assembly with Cufflinks v.2.2.1 [34].

MAKER2 was run with the SNAP models and the result-

ing gene models were used to train Augustus 3.1.0 [35].

MAKER2 was then run a second time using the trained

files from SNAP and Augustus (Fusarium graminearum)

as well as the de novo predicted gene models from

Augustus. Some gene structures were inspected and

manually corrected where necessary using Geneious ver-

sion R8 [36]. To compare gene content between the new

and old annotations of C. higginsianum, we used

BUSCO v.1.2 to search for a set of 3,725 Sordariomycete

universal single-copy orthologous genes [37]. In

addition, we aligned the 16,172 CDS predicted in the old

annotation against the new genome assembly using Blat

[38]. After filtering with pslReps, the results were

exported with pslToBed into BEDtools [39] to find the

correspondence between the old and new CDS

predictions.

Functional annotation

Functional annotations for the predicted proteins were

obtained using BLASTP to search the UniProt/SwissProt

protein database and Blast2GO. The Fungal Transcrip-

tion Factor Database [40] and Fungal Cytochrome P450

Database [41] were used to annotate transcription fac-

tors and cytochrome P450 enzymes, respectively. The

CAZy annotation pipeline ([42], http://www.cazy.org)

was used to annotate the repertoire of carbohydrate-active

enzymes. Secondary metabolism key enzyme-encoding

genes (SMKGs) and gene clusters were identified by com-

bining predictions from SMURF [43], antiSMASH v.3.0

[44], SMIPS [45], CASSIS [45] and an in-house pipeline

reported previously [46]. Clusters were further defined

based on gene co-expression [47]. Extracellular secreted

proteins (with no predicted transmembrane domain or a

GPI-anchor) were predicted using SignalP v.4.1 [48] and

PredGPI [49]. Candidate Secreted Effector Proteins

(CSEPs) were defined as extracellular secreted proteins

that were not present in species outside the genus Colleto-

trichum, based on BLAST searches against the NCBI nr

database (27.07.2016). We further categorised the CSEPs

as either genus- or species-specific based on the BLAST

results. To identify secreted proteases, sequences of extra-

cellular proteins were subjected to batch BLAST against

the MEROPS database [50].

Phylogenetic analysis of secondary metabolism key genes

Concatenated sequences of the KS and AT domains of

predicted C. higginsianum PKS and PKS-NRPS hybrids

were aligned with well-characterized enzymes experi-

mentally linked to a metabolite using Muscle [24]. Fur-

ther sequences from well-annotated fungal genomes

were included in the dataset (Additional file 3). Evolu-

tionary history was inferred using the Maximum Likeli-

hood method based on the Le and Gascuel model with

1,000 iterations [51]. The initial tree for the heuristic

search was obtained by applying Neighbor-Join and
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BioNJ algorithms to a matrix of pairwise distances

estimated using a JTT model, and then selecting the top-

ology with superior log likelihood value. A discrete

Gamma distribution was used to model evolutionary

rate differences among sites (gamma parameter, 4). Less

than 30 % of alignment gaps, missing data, and ambigu-

ous bases were allowed at any one position. Evolutionary

analyses were conducted in MEGA6 [52] and the tree

was edited with Treedyn version 198.3 [53].

Relationship of TEs to genes and gene clusters

The distances between TEs and (a) genes encoding can-

didate secreted effector proteins, and (b) all genes con-

tained within secondary metabolism gene clusters were

analysed using permutation tests implemented in the R

package regioneR [54]. The mean distance between each

gene in each functional category and the nearest TE was

compared to the mean distance of a random sample of

genes taken from the whole genome. Ten thousand ran-

dom permutations were sampled from the whole gen-

ome to establish a distribution of means, which was

then used to calculate a p-value for each gene class.

Segmental duplication analysis

To detect segmental duplications (SDs) we developed a

new tool called SDDetector (https://github.com/nlapalu/

SDDetector), based on the protocol of Khaja et al. [55].

Using this tool, we performed a soft-masked megablast

(version 2.3.0+) alignment of the PacBio unitigs to the

TE-masked genome. Matches were then chained to-

gether based on the following parameters: minimum se-

quence identity = 90%, maximum gap size between

fragments = 3 kb, minimum fragment size = 3 kb. SD

gene content was analysed to detect sequence polymor-

phisms among duplicated genes, and their potential ef-

fects were manually inspected. Genomic regions (≥ 5 kb)

bordering each SD were extracted and compared to the

TE annotation. In cases of overlap with TEs, extracted

regions were extended up to the end of TE features and

corresponding sequences involved in the SD were sub-

jected to Blast in a pair-wise manner. A sequence iden-

tity of 80% and the length of Blast matches were used as

criteria to evaluate SD border sequence similarity and

the possible role of TEs in duplication events.

Transcriptome analysis

For gene expression profiling, we re-analysed previously

published RNA-Seq data [13], corresponding to four de-

velopmental stages of C. higginsianum, namely appresso-

ria in vitro (22 hpi), appressoria in planta (22 hpi), the

biotrophic stage of infection (40 hpi), and the switch

from biotrophy to necrotrophy (60 hpi). These data sets

comprising 100 bp single reads (3 replicates per stage)

are available under GEO accession number GSE33683.

Filtered reads were mapped with TopHat2 [33] (version

2.0.14, I = 5000, a = 10, g = 5) against the new annota-

tion of the C. higginsianum genome. HTseq [56] (version

0.5.3p9) was used to count reads per gene before statis-

tical analysis with DESeq2 version 1.1.0 [57] using de-

fault parameters. Genes were considered differentially

expressed if |log2 FC| ≥ 2, q-value < 0.01. To evaluate

TE expression, we used three of the above-mentioned

RNA-Seq data sets, namely appressoria in vitro, appres-

soria in planta and the biotrophic phase. After read

mapping with TopHat2, read counts were obtained for

TEs using FeatureCounts [58] with or without the op-

tion ‘multi-mapped reads’ (-M). Counts were then trans-

formed into average log(CPMi) according to the formula

below, where i = total number of TE copies, n = number

of replicates, N = number of mapped reads, X = (read

counts +1).

average log CPMið Þ ¼
1

n

X

j¼1

n

log
X ij

N j

:106
� �� �

Expressed and non-expressed TE copies were discrimi-

nated according to their log (CPM) distribution. Expressed

TEs in at least one condition were clustered by k-means

using R scripts.

Generation of a fungal reporter strain

For constructing a transcriptional reporter strain, the pro-

moter of polyketide synthase gene ChPKS38

(CH63R_14350) was fused to the red fluorescent protein

gene mRFP. The 1.3kb promoter of ChPKS38 was amplified

with Phusion polymerase (ThermoFisher Scientific, Wal-

tham, Massachusetts) using primer pair 1 and the 1.2kb 3'

flanking region of ChPKS38 with primer pair 2. The mRFP

and G418 resistance genes were amplified from the plasmid

pFPL-Rg [59] with primer pairs 3 and 4, respectively. The

four fragments were then joined using primer pair 5 by

double-joint PCR [60]. All primers are listed in Additional

file 1. The resulting cassette was cloned into the pCR-

BluntII-TOPO vector (450245, Invitrogen, Carlsbad, Cali-

fornia) to give the plasmid pCRII-pChPKS38RFP used for

fungal transformation.

Fungal transformation

The C. higginsianum wild-type strain was used for PEG-

mediated transformation of protoplasts. Spores were ger-

minated in liquid Mathur's medium for 16-18h, har-

vested by filtration and resuspended in digestion mix

(0.7 M NaCl; 1 M NaPO4, pH 5.8; 30 mg.ml-1 lysing en-

zyme (Sigma L1412, St-Louis, Missouri), pH adjusted to

5.6). After digestion for 3-4 h at 25°C with gentle shak-

ing, the protoplasts were filtered through 30 μm nylon

mesh, washed twice each with cold 0.7 M NaCl and cold

STC (1.2 M Sorbitol, 10 mM Tris-HCl pH 7.5, 50 mM
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CaCl2), and either used immediately or stored at -80°C.

For transformation, 107 protoplasts were incubated on ice

with 5-10 μg of DNA for 20min. After adding successively

1 volume, 1 volume and 4 volumes of PEG solution (60%

w/v PEG4000, 10 mM Tris-HCl pH 7.5, 50 mM CaCl2)

followed by 1 mL STC, the protoplasts were plated with

regeneration medium (1M sucrose, 0.1%, yeast extract,

0.1% casein hydrolysate, 1.6% agar). After growth for 16 h

at 25°C, the regeneration medium was over-layered with

1% agar containing 300 μg.ml-1 G418 (geneticin). Trans-

formants were selected on PDA supplemented with 300

μg.ml-1 G418 and screened by fluorescence microscopy.

Confocal microscopy

Spores of the pChPKS38::mRFP reporter strain were inocu-

lated either onto dialysis tubing (Visking, Roth) or the coty-

ledons of 7-day old seedlings of Arabidopsis thaliana Col-0

as described previously [32]. Images of mRFP fluorescence

(excitation: 532 nm; emission: 588-621 nm) were recorded

using a Leica SPE confocal microscope with a 63x/NA 1.15

water-immersion objective. Images were analysed using Fiji

software and the FigureJ plugin [61, 62].

Results

Genome sequencing and assembly

Sequencing a total of 15 SMRT cells produced 7.8 Gb of

raw sequence reads, and after quality and length

filtering, the remaining reads provided ~133× genome

coverage. A total of 92,834 error-corrected reads (N50

length = 16,193 bp) were assembled using the Celera As-

sembler to give a raw assembly of 44 unitigs. These were

then aligned to the C. higginsianum optical map [13]

using map aligner software to order and orientate the

contigs and to identify overlaps between them. The 16

largest unitigs aligned to the chromosome optical maps

while the remainder were too small (17.0-34.8 kb) to be

unambiguously mapped. Overlapping contigs were

merged and validated by re-alignment to the optical

map using stringent settings (Fig. 1). The final edited as-

sembly contained 28 unitigs with a total length of 50.82

Mb (Additional file 4). The 12 largest unitigs correspond

to the expected number of chromosomes and account

for 99.14% of the total genome assembly. Eleven of the

12 chromosomes are completely sequenced from telo-

mere to telomere without gaps. Only the 5’ region of

chromosome 7, corresponding to the rDNA repeats, re-

mains incompletely assembled and is represented by 13

small unitigs. A further three unitigs contain the mito-

chondrial genome.

Two striking breaks in the alignment concern chromo-

somes 7 and 9 (Fig. 1). PCR using primer pairs located

on each side of the putative break-points confirmed the

sequence continuity of unitigs 7 and 9 and did not sup-

port the optical map (Additional file 5A). However, the

Fig 1 Validation of the C. higginsianum genome assembly by alignment of unitig sequences (orange) against chromosome optical maps (blue).
MluI restriction sites are represented in optical maps and unitigs by vertical bars. Chromosomes 7 and 9 show discrepancies between unitigs and

optical maps. These optical maps are colour-coded to highlight the break-points
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chromosome optical maps show no evidence for misas-

sembly of the raw single DNA molecule maps at these

break-points. One possible explanation for this anomaly

is that a chromosome translocation event occurred after

the strain was subjected to optical mapping in 2010 and

before the genome was re-sequenced in 2015.

The consensus calling results obtained from Quiver in-

dicated that the sequence accuracy of this assembly is

high (≥99.9%). To verify this, we mapped Illumina 100

bp paired-end reads (total 9.07 Gb, ~178× genome

coverage) against the assembly. After filtering to exclude

false positives, only 21 InDels and no SNPs were

detected with strict filtering, while with less stringent pa-

rameters, 87 InDels and 11 weakly-covered SNPs were

recovered. InDels predominantly affected nucleotides

within tracts of homopolymer sequence, as noted previ-

ously for SMRT sequencing data [63].

Comparing old and new gene annotations

A total of 14,651 protein-coding gene models were pre-

dicted by the MAKER2 pipeline from the new genome

assembly, 1521 fewer than were predicted in the previ-

ous annotation (Table 1) [13]. Although different gene-

calling pipelines were used, this discrepancy largely re-

flects the reduced number of fragmented and truncated

genes in the new assembly. Thus, among 3,725 Sordario-

mycete Benchmarking Universal Single-Copy Ortholo-

gous genes [37] the proportion classified as ‘fragmented’

declined from 15% in the old annotation to 2% in the

new annotation, and the proportion classified as ‘miss-

ing’ reduced from 6% to 0.9% (Table 1). Further evidence

that the gapless assembly has resolved the problem of

split gene models came from aligning the old gene

annotation to the new assembly, revealing that 2,699

MAKER2 genes match to two or more of the previous

gene models. The new annotation includes 2,289 new

genes with no match in the previous annotation. The ma-

jority of these were not previously predicted due to their

fragmentation between contigs or because transcript evi-

dence from RNA-Seq was not used in the previous anno-

tation. The new genes include all but one of the 133 genes

on chromosome 12, which was covered by only two small

contigs in the old assembly (Additional file 6). Conversely,

944 genes from the old annotation are absent from the

new annotation, most of which correspond to putative

ORFs inside TEs or transposases and reverse transcrip-

tases that were excluded by the MAKER2 pipeline. The

correspondence between old and new gene IDs is shown

in Additional file 7. Taken together, these data indicate the

quality of the revised annotation is dramatically improved

compared to the previous version, largely due to the ab-

sence of gaps in the new assembly.

Based on the new gene annotation, we re-predicted genes

encoding transcription factors, cytochrome P450 enzymes,

carbohydrate-active enzymes, secreted proteins, candidate

secreted effector proteins (CSEPs) and secreted proteases.

A detailed comparison of the new and old annotations of

these gene categories is beyond the scope of the present

paper and will be reported elsewhere. Inventories of all

these gene categories are provided in Additional file 8A.

Characteristics of mini-chromosomes 11 and 12

Examination of the two mini-chromosomes showed that

their gene content (~25% protein-coding genes by

length) is almost 2-fold lower than that of the larger 10

‘core’ chromosomes (mean = 46%, Table 2; Additional

Table 2 Differences between the core chromosomes (1-10) of Colletotrichum higginsianum and mini-chromosomes 11 and 12

Chromosome

Characteristic 1-10 (mean) 11 12

Total length (bp) 4,914,036 646,208 597,935

Number of protein-coding genes 1,438 138 133

Proportion of genes by length (%) 46.0 25.5*** 25.4***

Proportion of expressed genes (%)a 54.1 31.9** 9.8***

Number of transposable element (TE) copies 128 146 63

Proportion of TEs by length (%) 5.9 38.4*** 28.0***

G+C (%) 54.5 49.3*** 47.2***

Proportion of genes with unknown function (%) 25.7 55.8*** 73.7***

Proportion of secreted protein genes (%) 11.2 10.1 7.5

Proportion of effector genes (%) b 1.9 5.8** 4.5*

Asterisks indicate data for the mini-chromosomes differ significantly from the mean for chromosomes 1-10 (Fisher’s exact test, *** P <0.001; ** P <0.01; * P <0.05)
aGenes were considered to be expressed if they showed ≥1% of the expression-level of actin (corresponding to ≥10 TPM), based RNA-Seq data from one in vitro

and three in planta samples [13]
bCandidate secreted effector protein genes included CSEPs predicted from the genome (secreted proteins without homologs outside the genus Colletotrichum)

and some ChECs (C. higginsianum effector candidates) previously predicted from the transcriptome [32] that are absent from the new annotation or have BLAST

hits to effectors from outside the genus
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file 6). Moreover, a lower proportion of genes located on

chromosomes 11 and 12 are expressed either in vitro or

in planta (32 and 10%, respectively) compared to those

in the core genome (mean = 54%). Conversely, chromo-

somes 11 and 12 are highly enriched with transposable

elements (38 and 28% by length, respectively) compared

to a mean of only 6% on the core chromosomes (Table

2). They are also more AT-rich (50.7% and 52.8%, re-

spectively, compared to a mean of 45.5% for the core

genome). Furthermore, the proportion of predicted

genes encoding proteins of unknown function (anno-

tated as hypothetical proteins) was 2 to 3-fold higher on

the mini-chromosomes compared to the core genome

(Additional file 6). Thus, nearly three-quarters of all

genes on chromosome 12 encode hypothetical proteins.

Interestingly, although the mini-chromosomes are not

enriched with genes encoding secreted proteins relative

to the core genome, they contain 2.5 to 3-fold more se-

creted effector genes, of which 7 are highly expressed in

planta. In contrast, other genes potentially related to

pathogenicity, e.g. those encoding secondary metabolism

enzymes, CAZymes, cytochrome P450 enzymes, secreted

proteases and transcription factors, are almost absent

from the mini-chromosomes (Additional file 6). All

the differences observed between core and mini-

chromosomes were statistically significant using Fish-

er’s exact test (Table 2).

Annotation of secondary metabolism genes

Large genes such as secondary metabolism key genes

(SMKGs; commonly 6-8 kb, up to 37 kb) were dispro-

portionately affected by fragmentation between multiple

contigs in the old assembly, for example 23 SMKGs were

fragmented into 56 separate gene models [13]. To obtain

a more complete and accurate inventory, we predicted

SMKGs de novo from the new annotation by combining

predictions from SMURF [43], antiSMASH [44], SMIPS

[45] and an in-house pipeline [46]. In this way, a total of

89 unique SMKGs were defined and classified into major

functional categories in Table 3. Notably, 7 of the

SMKGs (ChDMATS01, ChPKS27 and 40, ChTS02, 07,

09 and 14) are novel in that they have no matching gene

call in the previous annotation. In addition we detected

12 NRPS-like genes (monomodular NRPSs with an un-

conventional reductive release domain) and one type III

PKS (chalcone synthase). All SMKG predictions were

manually curated and their predicted enzymatic domains

are summarized in Additional file 9.

To predict secondary metabolism (SM) gene clusters,

we used a combination of SMURF [43], antiSMASH [44]

and CASSIS [45], while cluster borders were further

defined based on gene co-expression evidence. On this

basis, 69 clusters were delimited (77 including those

with only an NRPS-like key gene) compared to only 47

that were previously found [13] (Additional file 8B). Of

these 77 clusters, 28 (38%) contain at least one predicted

transcription factor (previously only 9). In addition to

the greater number of predicted clusters, most are larger

and more complete, partly because repeat-rich regions

within clusters have been resolved in the new assembly.

For example, new cluster 16 merges two former clusters

that were separated by TE stretches (Fig. 2a). The struc-

ture and composition of all predicted gene clusters are

depicted schematically in Additional file 10 together

with their relationships to TEs. SM gene clusters are

dispersed across most of the chromosomes but are par-

ticularly enriched on chromosome 10 (14 clusters), while

there are none on chromosome 11 and only one on

chromosome 12 (Fig. 3). Fifteen clusters (20%) are lo-

cated within 200 kb of telomeres, and the entire terpene

synthase cluster 45 is duplicated between the ends of

chromosomes 8 and 9 due to a segmental duplication

(see below).

Expression profiling secondary metabolism genes and

clusters

Previous RNA-Seq datasets representing different infec-

tion stages were re-analysed (Additional file 8A) to de-

fine the expression patterns of the SMKGs. Four distinct

waves of expression were recognised: (a) appressoria in

vitro and in planta, (b) appressoria in planta and the

biotrophic phase, (c) biotrophic and necrotrophic

phases, and (d) the necrotrophic phase (Fig. 4a). Re-

markably, out of the 59 significantly regulated SMKGs

(|log2 FC| ≥ 2, q-value ≤ 0.01), 42 (71%) were expressed

exclusively during plant infection and not in appressoria

formed in vitro. To evaluate the expression patterns of

entire SM gene clusters, we used the Transcript Per

Table 3 Summary of predicted C. higginsianum secondary
metabolism key genes and clusters

Gene categorya 2012
assemblyb

New
assemblyc

SM Clusters 47 69d (8)

PKS 58 40e

NRPS 12 15

PKS-NRPS 6 6

TS 17 17f

DMATS 10 11

NRPS-like nd 12

aDMATS, dimethylallyl tryptophan synthase; NRPS, non-ribosomal peptide

synthetase; PKS, polyketide synthase; SM, secondary metabolism; TS,

terpene synthase
bAs published by O'Connell et al. [13]
cThis study. Number in brackets corresponds to SM clusters with NRPS-like

genes as the only key gene
dIncludes one cluster that is duplicated with 98 % homology
eTwo PKS genes are disrupted by TEs and one has a wrongly predicted

gene model
fIncludes one TS that is duplicated with 100% homology
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Million (TPM) normalisation method, where a cluster

was considered to be significantly expressed if most

genes in the cluster had a TPM greater than 1 % of the

expression level of the actin gene, and significantly regu-

lated if |log2FC| ≥ 2 (q-value ≤ 0.01). Among the 23

clusters expressed at any stage, more than half (14) were

preferentially expressed at early stages of plant infection

in appressoria and/or during the biotrophic stage, when

host cells are still alive, whereas only 5 were upregulated

at the switch to necrotrophy (Fig. 4b).

To examine the expression pattern of one SMKG at

the cellular level, we created a transgenic reporter strain

expressing the Red Fluorescent Protein (RFP) under

control of the ChPKS38 promoter. Confocal microscopy

showed the reporter gene is strongly expressed (as

shown by cytoplasmic RFP fluorescence) in appressoria

on the plant surface before penetration, in young bio-

trophic hyphae formed immediately after penetration, as

well as in necrotrophic hyphae (Fig. 4c). Remarkably

however, no RFP fluorescence was detectable at any

time-point during growth in vitro on cellophane mem-

branes, neither in appressoria nor pseudo-biotrophic hy-

phae developing inside the membrane after penetration,

indicating that the expression of ChPKS38 is strictly

plant-induced and not directly linked to the differenti-

ation of specialized fungal infection structures per se.

Phylogeny and comparative genomics of secondary

metabolism gene clusters

Based on a phylogenetic analysis, we found that out of

the 40 PKS and 6 PKS-NRPS hybrid enzymes identified

in C. higginsianum, 12 PKS and 2 hybrids are located in

clades containing a well-characterized key enzyme linked

to the production of a known metabolite (Additional file

11). Using blastp we then looked for the presence of

accessory genes belonging to the characterized clusters

in the C. higginsianum proteome (Additional file 12).

With this approach, we could identify 7 clusters of SM

genes which are well-conserved in C. higginsianum and

therefore likely to produce similar products (Additional

file 12). These clusters correspond to Ace1 (producing a

cytochalasan-related molecule) [64, 65], Alternapyrone

[66], Cercosporin [67], Cytochalasin K [68], Depudecin

[69], Lovastatin [70] and Melanin [13]. It is important to

note that this approach can only provide a clue to the

family of molecules likely to be produced rather than a

definitive structure. One striking example is the cluster

19 which contains ChPKS13 and homologs of all the

Fig. 2 Schematic representation of selected C. higginsianum secondary metabolism (SM) genes clusters. a Resolution of a former split SM cluster
by the PacBio assembly. The new cluster 16 encompasses four contigs from the old assembly [13], two of which contain former clusters 18 and
TRC3. Arrowheads: transposable elements b Comparison of cluster 19 and the depudecin cluster of Alternaria brassicicola. Protein identity is high

(> 70%) and gene order and orientation are conserved except for the gene DEP6/CH63R_06317. c Comparison of cluster 46 and the fusicoccin
cluster from Diaporthe amygdali [74]. In D. amygdali, genes are dispersed at two distinct loci in contrast to C. higginsianum. Protein identity is

moderate to high and genes were extensively rearranged. Shading indicates syntenic blocks and genes pairs. Yellow: acetyl-transferase
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depudecin biosynthetic genes with 78% mean amino-

acid identity (Fig. 2b). Depudecin is a histone deacetylase

inhibitor produced by Alternaria brassicicola [69]. Based

on the co-expression criterion, cluster 19 possesses an

additional gene (CH63R_06318) coding for a 110 amino

acid protein with no homolog in public databases and

containing no functional domain that could be identified

using InterProScan or the Conserved Domain Database.

C. graminicola contains a cluster of genes including one

highly reducing PKS and one non-reducing PKS that is

identical in gene content and order to the RADS cluster

of Pochonia chlamydosporia [71], which produces anti-

fungal resorcylic acid lactones (RALs) such as monorden

[72]. Interestingly, our phylogenetic analysis revealed

that C. higginsianum encodes two HR-PKS and two NR-

PKS belonging to the RALs clade with strong bootstrap

support. However, the accessory genes in both C. higgin-

sianum clusters (10 and 74) have a low percentage

identity to those belonging to known RALs clusters, so

that the final product may be significantly different

(Additional files 11 and 12). It is interesting to note that

the cluster 74 (containing ChPKS37 and 38) is the most

highly induced SM cluster during plant infection, with

peak expression during biotrophy (Fig. 4a and 4c), sug-

gesting the product of that particular biosynthetic cluster

may be crucial for establishment of the infection.

Availability of the complete sequence of chromosome

12 in the PacBio assembly allowed the discovery of a

new SM cluster (cluster 76), which is located within 20

kb from a telomere and hosts four genes, including

ChPKS40. The same cluster is also present in Magna-

porthe oryzae, Diaporthe ampelina and D. helianthi with

remarkably high amino-acid identity (>80%). Inference

of a putative secondary metabolite was not possible for

that particular cluster. Further exploration of the SM

repertoire of C. higginsianum lead to the identification

Fig. 3 Schematic representation of the distribution of secondary metabolism gene clusters and transposable elements across the 12 C. higginsianum

chromosomes. The 5' end of unitig_7 containing the ribosomal repeats is fragmented between 13 unitigs that are too small to align with the optical
map. Putative locations of the centromeres are indicated where possible
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of a fusicoccadiene synthase (ChTS11). This enzyme cat-

alyzes one of the early steps in the biosynthesis of fusi-

coccin A, a well-known phytotoxin which irreversibly

activates plasma membrane H+-ATPases [73]. ChTS11 is

part of a predicted cluster (cluster 46; Fig. 2c) compris-

ing nearly all the genes described in D. amygdali [74].

Synteny is not conserved, probably as a result of exten-

sive rearrangements which split the gene cluster between

two different loci in D. amygdali. In C. higginsianum,

cluster 46 is up-regulated at the switch to necrotrophic

growth.

Annotation of transposable elements

The content of transposable elements (TEs) in the previ-

ous genome assembly (1.2%) was significantly under-

estimated due to the poor assembly of repeat-rich re-

gions [13]. Using REPET to annotate the new gapless

assembly, TEs were found to cover 7% of the C. higgin-

sianum genome, while simple sequence repeats (SSRs)

cover 12.7% (Table 1; Additional file 13). The TEs were

classified by REPET into 41 families and named using

the three-letter code of the Wicker et al. [75] classifica-

tion (Additional file 14). The 20 families of class I retro-

transposons occupy 67% of the total TE space compared

to only 33% for the 20 families of class II DNA transpo-

sons (Table 4). LTR (Long terminal repeat) retrotranspo-

sons and TIR (Terminal inverted repeat) DNA

transposons are the two most abundant TE orders, with

636 and 474 copies, respectively. Overall, the LTR trans-

poson family RLX_R119 is the single most abundant TE

family in the C. higginsianum genome, with 275 copies

occupying >1 Mb by length (28% of the TE space, 42%

of the retrotransposons). However, only 35 copies are

complete and, taken together with the high level of

a b

c

Fig. 4 Waves of expression of secondary metabolism (SM) genes of C. higginsianum during infection of Arabidopsis thaliana. a Heatmap showing

the expression profiles of SM key genes. Under-represented transcripts (dark green to bright green) and over-represented transcripts (dark red to
bright red) are depicted as log2 relative expression index. The log2 expression levels are presented in the adjoining heatmap colour-coded from
white (not expressed) to dark blue (strongly expressed). Red arrowhead: ChPKS38. b Schematic representation of the stage-specific expression of

SM gene clusters. The expression of all genes within each cluster was evaluated using the Transcript Per Million (TPM) normalisation method. A
cluster was considered expressed if more than 50% of genes had a TPM greater than 1% of the actin gene TPM, and |log2FC| ≥ 2, q-value ≤ 0.01.

c Time-course of the expression of the pChPKS38::RFP reporter gene in planta and in vitro (cellophane) using confocal microscopy. All images are
overlays of bright field and RFP channels captured with the same settings. RFP channels are projections of 15-25 0.2 μm optical sections. Co:
conidium, arrowhead: appressorium, BH: biotrophic hypha, NH: necrotrophic hypha. Bars = 10 μm
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divergence from the consensus sequence in this family

(20.5%), the invasion of the genome by RLX_R119 was

probably an ancient event. Three TE families previously

described from other Colletotrichum species are present

in the REPET annotation, namely the LTR retrotrans-

poson CCRET1 and the non-LTR retrotransposons

CCRET3 from C. cereale [76] and Cgt1 from C. gloeos-

porioides [77]. However, all three families are repre-

sented by few copies in C. higginsianum, nearly all of

which are incomplete (Additional file 14). Strikingly, the

16 families of TIR transposons, mostly of the Tc1-

Mariner superfamily, are represented by 4.5-fold more

full-length copies than the LTR families. Moreover, we

found that 13 TIR family consensus sequences, namely

DTX_G154 to DTX_G164, DTX_P2.24, DTX_P21.16,

DTX_P12.24, DTX_R31 and DTX_R166, contain a

complete transposase gene and flanking inverted repeats

and are therefore potentially active. Interestingly, in

Blastn searches against the NCBI nr database the best

matches to these 13 TIRs were transposases from C.

tofieldiae, C. incanum, C. sublineola and no other Colle-

totrichum species.

Identification of RIP in TE families

Repeat-induced point mutation (RIP) is a fungal-specific

genome defense mechanism occurring at the pre-

meiotic stage of sexual reproduction. It detects dupli-

cated DNA sequences and induces irreversible C:G to

T:A mutations at a high rate in those sequences [78].

Specific dinucleotides are often preferentially mutated,

as in Neurospora crassa where the dinucleotide CA is

the target for RIP, or Aspergillus niger and A. fumigatus

where RIP occurs at CG as well as CA dinucleotides

[79]. Here, we investigated the potential role of RIP in

generating the striking differences in A/T content that

are apparent between C. higginsianum TE families,

which ranged from 42% in the subtelomeric family

DHX_G198 up to 78% in RLX_R119, the most abundant

element in the genome (Additional file 14). Using a

phylogenetic analysis, we found that C. higginsianum

possesses putative orthologues of two genes that are

known to be involved in DNA methylation in other

fungi (Additional file 15), namely the RID gene

(CH63R_07391), a cytosine methyltransferase respon-

sible for C to T mutations during RIP [80], and the

Dim-2 gene (CH63R_01196), another cytosine methyl-

transferase that introduces a potential bias in dinucleo-

tide mutations [81]. Next, we searched for signatures of

RIP among the copies of each TE family by looking for

dinucleotide bias at sites with C/T mutations (Additional

file 16A). Fifteen percent of the DTX (Class II TIR) and

DHX (class II Helitron) elements display the CA di-

nucleotide target specific to RIP [25, 81]. In addition,

50% of the DHX elements contain the CG dinucleotide

target site that could be related to the activity of Dim-2

[25, 81]. However, dinucleotide target sites for RIP muta-

tion were not detectable among the AT-rich RLX (class I

LTR) and RIX (class I LINE) elements, probably because

all copies are ancient and highly mutated. To determine

whether the observed RIP signatures could be correlated

with the age of the TEs, we compared the relative ages

of C. higginsianum TEs using the method of Maumus et

al. [28]. The evolution of TE families is assumed to fol-

low a ‘burst and decay’ model, in which identical copies

proliferate and independently accumulate random muta-

tions after integration into the genome [28]. By plotting

the sequence divergence of TE copies relative to their re-

spective family consensus sequence, which is assumed to

model the intact ancestral element prior to mutation, we

found evidence for a recent burst of transposition by the

Table 4 Major families and characteristics of transposable elements in the C. higginsianum genome

Type of elementa No. consensusb No. copies No. complete copies Complete/incomplete
copies

Genome coverage
(%)c

TE space coverage
(%)d

Class I (retrotransposons)

LTR 11 636 86 0.135 3.55 50.71

LARD 2 47 10 0.213 0.67 Class I 9.57 Class I

LINE 3 50 13 0.260 0.23 4.7 3.29 67

Class I (unclassified) 4 123 2 0.016 0.24 3.43

Class II (DNA transposons)

TIR 16 474 289 0.610 1.64 Class II 23.43 Class II

MITE 1 30 17 0.567 0.04 2.3 0.57 33

Helitron 3 111 19 0.171 0.62 8.86

Uncategorized TEs 1 11 4 0.364 0.01 0.14

aLTR: long terminal repeat, LARD: large retrotransposon derivative element, LINE: long interspersed element, TIR: terminal inverted repeat, MITE: miniature

inverted-repeat transposable element
bNumber of TE concensus sequences in the genome
cPercentage of genome covered by the element
dPercentage of repetitive fraction covered by the element
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TIR DNA transposon (DTX) families (Additional file

16B). In contrast, the LTR retrotransposon (RLX) fam-

ilies showed much higher levels of sequence divergence

(from 5 to 25%), consistent with more ancient transpos-

ition events. These results support our hypothesis that

the LTRs are older, heavily mutated elements in which

RIP is now difficult to detect using available techniques.

Overall, despite the lack of evidence for sexual

reproduction in C. higginsianum, the presence of both

RID and Dim-2 genes together with a signal for C to T

mutations suggests that TE silencing mechanisms have

contributed to restricting the invasion of this fungal gen-

ome by TEs.

Chromosome location of TE families

Among the 41 TE families detected by REPET, 39 have

at least one Full Length Copy (FLC). Analysis of the gen-

omic location of these FLCs (Additional file 17) revealed

that while two TE families are distributed across all of

the 12 largest unitigs (i.e. chromosomes), others are con-

fined to mini-chromosomes 11 and 12 (RIX_P24.14) or

single chromosomes (RXX_62 and RXX_R113). The two

LARD families RXX-LARD_R1 and RXX-LARD_G201

occur only on unitigs containing rDNA repeats. Notably,

three TE families were detected as single FLCs at all 24

subtelomeres contained within the assembly (Additional

file 18), namely DHX_G198 (12 copies) and DHX-

chim_G203 (4 copies), and DTX-chim_G199 (7 copies).

The number of telomere-associated copies of these fam-

ilies corresponded exactly to the number of Full Length

Copies (FLC) detected by REPET (Additional file 14).

These telomere-associated TEs are long (11.3 kb to 18.5

kb) and share large blocks of highly conserved sequence

(Fig. 5). All three families encompass variable numbers

of telomere repeat motifs (TTAGGG) together with pre-

dicted helicase and DUF3505 domains. In addition,

DTX-chim_G199 contains DDE-1 transposase and Psq-

type DNA-binding helix-turn-helix (HTH) domains,

whereas DHX-chim-G203 contains five family-specific

PFAM domains typical of retrotransposons, including

reverse transcriptase and integrase domains (Fig. 5).

Although fragmented copies of all three families occur

elsewhere in the genome, FLCs occurred exclusively at

subtelomeres, suggesting that FLCs are preferentially

maintained at that location.

TE expression analysis

To evaluate TE expression patterns, we used available

RNA-Seq data from appressoria in vitro (VA), appresso-

ria in planta (PA) and the biotrophic phase (BP). Genes

(ORFs) within TEs are not annotated and no good tools

are available to annotate them. Without well-defined

gene models, units such as FPKM (Fragments Per Kilo-

base per Million mapped reads) cannot be used. We

therefore calculated expression units as CPM (Counts

Per Million mapped reads), either including or excluding

reads mapping to multiple genomic locations. The

log(CPM) distribution of multi-mapped reads showed a

bimodal distribution (Additional file 19A), and we se-

lected the central inflection point (antimode), i.e. 1.35

log(CPM), as the threshold to discriminate expressed vs

non-expressed TE copies. In striking contrast, a bimodal

distribution of log(CPM) was not obtained for uniquely-

mapped reads (Additional file 19B). For all TE families,

more expressed copies were identified with multi-mapped

reads than with uniquely-mapped reads (Additional file

20). The largest number of expressed TE families (9)

belonged to the TIR order of DNA transposons

(DTX_G154 to DTX_G164, DTX_P12.24, DTX_R31).

Interestingly, three telomere-associated TE families (DTX-

chim_G199, DHX-chim_G203, DHX_G198) and two as-

sociated with the rDNA repeats (RXX-LARD_G201, RXX-

LARD_R1) were also actively transcribed.

Because a quantitative differential expression analysis

using multi-mapped reads is not valid, we instead per-

formed a clustering analysis on the 441 TE copies that

Fig. 5 Schematic representation of the predicted domain structure of three families of conserved repeat elements present in the subtelomeric
regions of all C. higginsianum chromosomes. DTX-chim_G199 was likely derived from DHX-G198 by the insertion of a DNA transposon, whereas

DHX-chim-G203 was derived from DHX-G198 by the insertion of a non-LTR retrotransposon
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were expressed in at least one fungal stage. For each

stage, we computed the proportion of CPM relative to

the total CPM across all stages and used this Relative

Index to perform k-means clustering (Additional file

21A). Five clusters were distinguished (Additional file

21B), from which two with contrasting profiles were se-

lected, namely cluster 2 (high expression in VA, no ex-

pression in PA or BP) and cluster 3 (no expression in

VA or PA, high expression in BP). We analysed in detail

eight TE copies from these clusters showing the most

extreme differential expression. All were LTR retrotrans-

poson fragments, which in two cases comprised ‘solo’-

LTRs, suggesting recombination between two LTRs lead

to deletion of the internal retrotransposon sequence

(Additional file 22). Among the six TE copies expressed

in the biotrophic phase (cluster 3), five were located in

the 3’ UTRs of genes encoding candidate effector pro-

teins expressed at that stage, namely ChEC28, ChEC117,

ChEC104 and ChEC35 and a secreted NUDIX domain

protein encoded by CH63R_12509 (Additional files 21C

and 22).

Relationship of TEs to genes and gene clusters

Manual inspection of the 77 predicted SM gene clusters

revealed that 33 (43%) have at least one repetitive elem-

ent located either inside the cluster or within 5 kb of the

cluster border (Additional file 10). To test the statistical

significance of this association, we employed a permuta-

tion test to compare the distance between TEs and genes

belonging to particular functional categories. This con-

firmed that genes located within SM gene clusters were

located significantly closer (p < 0.001) to TEs than a ran-

dom sample of genes taken from the genome as a whole

(Fig. 6). Similarly, a highly significant association (p <

0.001) was detected between TEs and genes encoding

candidate secreted effector proteins. In addition, we

found that 7 families of retrotransposons and 11 families

of DNA transposons were located significantly (p < 0.01)

closer to SM cluster genes and/or effector genes than

would be expected by chance (Additional file 23). Five of

these families showed a significant association with

genes of both functional categories.

Segmental duplications and their relationship to TEs

To search for segmental duplications (SDs), we devel-

oped the SDDetector tool, based on the approach of

Khaja et al. [55]. This revealed 11 potential duplicated

regions, of which 5 were false-positives corresponding to

multi-copy TE insertions. The remaining six validated

SDs involve nine different chromosomes, five being

inter-chromosomal duplications (SD1 to SD5) and one

(SD6) intra-chromosomal (Fig. 7). SD2 was further vali-

dated by PCR (Additional file 5B). All six duplications

consisted of a single alignment, suggesting that

insertion/deletion of sequences has not occurred post-

duplication. The duplicated regions varied in length

from 4,880 bp (SD4) to 28,020 bp (SD2), with a total

aligned length of ~75.4 kb (Additional file 24). Sequence

polymorphism between the duplicated sequences in SD2

to SD5 was very low (0-0.18%), suggesting they result

from relatively recent duplication events. In contrast,

duplicated sequences in SD1 displayed a much higher

level (2.6%) of mutated bases (Additional file 24), con-

sistent with a more ancient duplication event.

A total of 46 protein-coding genes were predicted

within the six duplicated regions (Additional file 25). Re-

markably, SD2 involves the duplication of an entire sec-

ondary metabolism gene cluster (see TS Clusters 45A and

45B in Additional file 10) which is expressed in planta

during biotrophy. The duplicated genes within SD6 en-

code three predicted secreted proteins, including effector

candidate ChEC7 (CH63R_14381, CH63R_14509), which

is expressed in appressoria [32]. The remaining duplicated

genes either encode proteins of unknown function or

do not appear pathogenicity-related. Using SDDetec-

tor to analyse polymorphisms between pairs of dupli-

cated genes, we found all genes within SD1 are

affected by numerous mutations (340 SNPs, 2 indels)

producing large effects, such as amino-acid changes,

introduction of premature stop codons or gene split-

ting (Additional file 25). The mutations show a bias
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Fig. 6 Violin plot depicting the frequency distribution of the
distance (bp) between genes and the nearest transposable element

(TE). The inner box plots represent the median and interquartile
range of the distance for each of three gene classes. Genes located

within secondary metabolism clusters (SM genes) and genes
encoding candidate secreted effector proteins were located
significantly closer (p < 0.001) to TEs than a random sample of

genes taken from the genome as a whole
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favouring G->A and C->T transitions, suggesting

these sequences have been subject to RIP [25]. In

contrast, no mutations affecting protein sequence

were detected in genes within SD4, SD5 and SD6.

However, an indel in SD3 produced two gene models

on unitig_10 (CH63R_14152, CH63R_14153) that cor-

respond to only one on unitig_6 (CH63R_09249). Five

indels also affected gene predictions in SD2 but all

were found to be sequencing errors, possibly resulting

from their location in homopolymer tracts.

Inspection of the genomic regions bordering SD3

and SD5 revealed no TE blocks or other tracts of

homologous sequence. However, SD1, SD2, SD4 and

SD6 were all located close to telomeres (within 30 kb),

and in each case the borders contained at least one

copy of a telomere-associated TE (DTX-chim_G199,

DHX-chim_G203 or DHX_G198). These conserved

blocks of telomere-associated TEs provide between 7.6

and 28.4 kb of homologous sequence with 88-100%

identity (Additional file 26), and as such represent po-

tential sites for homologous recombination.

Discussion
In this paper we report the complete genome sequence

and revised gene annotation for the reference strain of

C. higginsianum, a widely-used model pathogen and

member of a large genus with enormous economic im-

pact on numerous crops worldwide. By combining the

very long reads from PacBio SMRT sequencing together

with optical mapping, we obtained a highly contiguous

assembly, where all 12 chromosomes are sequenced

telomere to telomere without gaps except for the rDNA

repeats on chromosome 7. This represents the most

complete genome assembly available for any Colletotri-

chum species to date and adds to only a small list of fin-

ished genomes from other phytopathogenic fungi,

namely Zymoseptoria tritici, Sclerotinia sclerotiorum, Bo-

trytis cinerea, Verticillium dahliae and Fusarium grami-

nearum [6–8, 82, 83]. The new assembly has provided

access to genomic regions that were previously not as-

sembled, notably the mini-chromosomes. Importantly,

the absence of gaps in the assembly enabled a much

more accurate annotation of both protein-coding genes

Fig. 7 Circos plot showing segmental duplications (SDs). Genes are represented in green and transposable-elements in red. Gene IDs in each
duplicated block (grey sectors) are given without the prefix "CH63R_". An entire secondary metabolism gene cluster (shaded blue) is duplicated

in SD2. cP450: Cytochrome P450; Eff: Effector protein; Sec: Secreted; TF: Transcription Factor; TS: Terpene Synthase
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and repetitive elements in C. higginsianum and the rela-

tionship between them. Moreover, the complete genome

has revealed the telomere structure of this fungus and

allowed the identification of segmental duplications.

Analysis of the two completely assembled mini-

chromosomes showed that both are highly enriched with

TEs, which likely explains why they were previously so

poorly assembled. The mini-chromosomes of C. higgin-

sianum are strikingly different in their content to the 10

larger ‘core’ chromosomes, and they share many of the

features that are characteristic of so-called ‘conditionally

dispensable’ or ‘accessory’ chromosomes in other plant

pathogenic fungi such as Z. tritici, F. fujikuroi, F. oxy-

sporum, Alternaria alternata, Leptosphaeria maculans

and Nectria haematococca [82, 84–88]. Thus, compared

to the core chromosomes the mini-chromosomes are

repeat-rich and AT-rich, gene-poor, and contain a large

proportion of genes of unknown function (up to 75% of

the predicted genes). However, in contrast to F. oxy-

sporum and N. haemaococca, where certain accessory

chromosomes are enriched with genes important for

pathogenesis [84, 89], gene functional categories related

to pathogenicity are almost entirely absent from the

mini-chromosomes of C. higginsianum. Moreover, fewer

genes are transcribed than on the core chromosomes.

Nevertheless, we found that the mini-chromosomes are

significantly enriched with genes encoding putative ef-

fector proteins relative to the core genome, including

seven that are highly expressed during infection. Condi-

tionally dispensable chromosomes have been defined as

‘accessory chromosomes that are not required for basic

growth but which can confer advantages under certain

conditions’ [90]. Functional studies are now required to

determine the extent to which the C. higginsianum

mini-chromosomes carry genes contributing to fungal

virulence.

We present here the most comprehensive annotation

of repeats available for any Colletotrichum species. The

overall TE content of C. higginsianum (7%) is compar-

able to that reported previously for C. graminicola

(12.2%) and C. orbiculare (8.3%) [13, 91] and other phy-

topathogenic fungi with similar sized genomes such as

Z. tritici (16.7%), S. sclerotiorum (12.9%), B. cinerea

(3.7%) and V. dahliae (12.3%) but is strikingly less than

in L. maculans (33.3%), Blumeria graminis f. sp. hordei

(76.4%) and Melampsora larici-populina (51.7%) [6, 8,

25, 92, 93]. LTR elements are the most abundant TEs in

C. higginsianum, as reported in other fungi, e.g. Cochlio-

bolus heterostrophus, F. fujikuroi, F. oxysporum, L. macu-

lans and V. dahliae [94–97] and several Colletotrichum

species [13, 91]. Most of the DNA transposons in C. hig-

ginsianum belong to the TIR order, superfamily Tc1-

Mariner. Thirteen families of these are present as

complete copies, suggesting they may be active elements,

and they closely resemble Tc1-Mariner elements from C.

incanum, C. tofieldiae and C. sublineola. The presence

of conserved TEs in species from three sister clades

within the Colletotrichum phylogeny (namely the

Destructivum, Spaethianum and Graminicola clades)

[98], but not other members of the genus, suggests they

were acquired by a common ancestor. Based on the

divergence between TE copies and their consensus

sequences, it appears that TIR elements proliferated in

the C. higginsianum genome relatively recently, whereas

most LTR elements are relics of a more ancient burst of

transposition. Our finding that some TE families were

likely subject to RIP mutation is surprising because RIP

occurs during meiosis [78], whereas sexual reproduction

has never been reported in C. higginsianum. Similarly,

RIP-mutated TEs were also detected in another asexual

member of the genus, namely C. cereale [76]. These au-

thors suggested that RIP may have occurred during an

ancestral sexual state or that meiosis occurs cryptically

in nature.

An expression analysis of the C. higginsianum TEs re-

vealed that 441 copies (~30% of the total TE copies

present in the genome) are transcribed in at least one

fungal stage, and are therefore likely to be active trans-

posons. Some of these were highly stage-specific in their

expression, e.g. in appressoria or during the biotrophic

phase. Among those showing the most extreme differen-

tial expression, we identified fragments of four LTR

retrotransposon families inserted into the 3’UTR regions

of five candidate effector proteins expressed in the bio-

trophic phase. Previously we found fragments of two

other retrotransposons, namely CgT1 and Ccret2, in the

UTRs of in planta-expressed effector genes ChEC7 and

ChEC10, respectively [32]. It remains to be determined

whether the specific expression patterns of these TEs re-

sults from their insertion into the UTRs of stage-specific

genes or if cis-acting elements contained within their

long terminal repeats contribute regulatory information,

as reported in some animals and plants [99, 100]. It is

interesting to note that in F. oxysporum f. sp. lycopersici,

DNA transposons of the MITE (Miniature Inverted-

repeat Transposable Element) family are present in the

promoters of many effector genes, including the SIX (Se-

creted In Xylem) genes, but promoter deletion experi-

ments showed that MITEs do not directly regulate the

expression of these genes [101].

Analysis of the telomere structure of C. higginsianum

showed that all 24 subtelomeric regions are character-

ized by long, highly conserved repeats belonging to one

of three families (DTX-chim_G199, DHX-chim_G203,

DHX_G198) that share large tracts of homologous se-

quence. They occur as single, full-length copies showing

the same orientation relative to the terminal telomere

repeats, and they separate the telomeres from
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chromosome-unique sequences. All three families con-

tain predicted helicase C and DEAD box domains char-

acteristic of RecQ helicases, which are required for

genome maintenance in many organisms [102] and were

also identified in the subtelomeres of Magnaporthe ory-

zae, Z. tritici, Saccharomyces cerevisiae and Ustilago

maydis [92, 103–105]. However, other motifs character-

istic of RecQ helicases, namely zinc-binding and RQC

DNA-binding domains, were not detectable. DTX-

chim_G199, which is located at seven subtelomeres in C.

higginsianum, additionally contains HTH and DDE mo-

tifs, both typical of transposases, and it probably arose

from DHX-G198 by the insertion of a DNA-TIR trans-

poson (Fig. 5). On the other hand, DHX-chim-G203,

present at four subtelomeres, was derived from DHX-

G198 by the insertion of a chromodomain-containing

LTR-Gypsy retrotransposon. LTR-Gypsy elements were

likewise detected in the subtelomeres of F. graminearum

[83], while non-LTR retrotransposons were found to be

associated with telomeres in Z. tritici [92] and perennial

rye grass-infecting isolates of M. oryzae, where they were

termed ‘MoTeRs’ [106]. MoTeRs promote extreme telo-

mere variability in M. oryzae, but unlike the retrotrans-

poson present in DHX-chim-G203, they insert

exclusively into the terminal telomere repeat tract.

A genome-wide survey revealed the presence of six seg-

mental duplications (SDs) in C. higginsianum, two of

which involved the duplication of putative pathogenicity

factors that are transcribed during infection. Notably, four

SDs are situated near chromosome ends and are bordered

by the conserved subtelomeric repeats. The presence of

these large, highly similar repeats at C. higginsianum sub-

telomeres may predispose the adjacent genomic regions to

undergo segmental duplication through non-allelic hom-

ologous recombination. The intra-chromosomal SD6 may

also have resulted from homology-based recombination

involving an interstitial fragment of DHX-chim-G203,

causing a sequence inversion. However, two SDs were nei-

ther located near telomeres nor associated with flanking

repetitive sequences, suggesting they may instead have

arisen through the repair of double-strand DNA breaks by

non-homologous end-joining. Recent work on V. dahliae,

a phytopathogenic fungus that is phylogenetically close to

Colletotrichum, has highlighted the importance of SDs in

generating hyper-variable, lineage-specific genomic re-

gions that are enriched with virulence-related genes [107].

These authors also proposed that the duplication of gen-

omic regions via mitotic crossing-over provides an im-

portant source of genetic diversity in asexual pathogens

such as V. dahliae that do not undergo meiotic recombin-

ation [108]. Likewise, sexual reproduction was never

observed in C. higginsianum [13]. Thus, segmental dupli-

cation mediated by recombination between the subtelo-

meric repeats could provide a mechanism to amplify and

diversify genes, and thereby accelerate host adaptation, in

this asexual pathogen.

In the previous C. higginsianum gene annotation, the

number of predicted SMKGs (103) was over-estimated,

while the number of SM gene clusters (47) was under-

estimated due to their fragmentation between contigs

[13]. The more accurate annotation presented here con-

firms that C. higginsianum encodes one of the largest

repertoires of SMKGs (89) and SM gene clusters (77) of

any sequenced ascomycete [88, 109–112], suggesting a

large capacity to produce diverse metabolites. Interest-

ingly, we detected a statistically significant association of

SM cluster genes with 10 families of retrotransposons

and DNA transposons. Previously, we also found that

71% of SM clusters in C. graminicola co-localize with

TEs [13], and TEs are similarly enriched in regions

flanking the secondary metabolism genes of Epichloe fes-

tucae and several Dothidiomycete species [113, 114].

Proximity to TEs potentially exposes genes to higher

rates of repeat-induced point mutation, and therefore

accelerated evolution [114, 115]. Moreover, TE copies

belonging to the same or highly similar families provide

sites for ectopic recombination [116], which may result

in deletions [113] or the creation of new clusters with

new combinations of genes, thereby increasing chemoty-

pic diversity [117].

A striking feature of secondary metabolism in C. higgin-

sianum is that the majority (60%) of expressed SM gene

clusters are only transcribed during plant infection, notably

in penetrating appressoria and/or the biotrophic phase, and

not in vitro. The putative products of these infection-

specific SM clusters are unknown and phylogenetic ana-

lyses identified only two clusters in which the key gene be-

longs to a clade with a characterized end-product, namely

ChPKS26 (3-methylorcinaldehyde) and ChPKS12 (cercos-

porin). The plant-derived signal(s) that presumably trigger

the co-ordinated expression of these clusters, and the

mechanisms underlying their tight regulation, remain un-

known. The pChPKS38::RFP reporter strain described here

will provide a ‘biosensor’ to search for such plant signals

and to identify fungal genes required for their perception

and transduction. In Aspergillus fumigatus, mammalian in-

fection is associated with the co-ordinated expression of

SM gene clusters located near telomeres [118]. However, in

C. higginsianum, although 15 clusters are located less than

200 kb from a telomere, only 3 of these are induced at any

stage of plant infection. Accumulating evidence points to

the critical role of chromatin status in regulating the ex-

pression of SM gene clusters in filamentous fungi [119–

122]. The genome-wide analysis of post-translational his-

tone modifications such as methylation and acetylation, as

well as DNA base modifications, will be greatly facilitated

by the availability of a high-quality genome assembly for C.

higginsianum.
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Conclusions
Our study demonstrates that access to a complete genome

assembly is invaluable for the analysis of genomic features

such as transposable elements, telomeres, structural rear-

rangements and large gene clusters. We show that the

mini-chromosomes of C. higginsianum differ markedly

from the core genome in their gene and repeat content

and resemble the conditionally dispensable chromosomes

of some other plant pathogenic fungi. Analysis of the TE

landscape in C. higginsianum provided new insights into

the potential role of TEs in gene and genome evolution in

this fungus. Thus, repeat-mediated segmental duplication

was identified as a possible mechanism for generating

genetic diversity in this fungus. Moreover, the co-

localization of particular families of retrotransposons and

DNA transposons with SM gene clusters and effector

genes raises the possibility that TEs accelerate the evolu-

tion of these pathogenicity-related genes, for example by

introducing mutations or generating new gene combina-

tions through ectopic recombination. The comprehensive

inventory of SM gene clusters described here reveals a

large potential for discovering novel bioactive molecules

from C. higginsianum and will expedite identification of

the corresponding biosynthetic pathways. Finally, the

high-quality genome assembly provides a reference for

comparison with additional C. higginsianum isolates and

other members of the genus, and will facilitate future

functional genomics in this important model pathogen.
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