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GAPS BETWEEN ZEROS OF THE RIEMANN ZETA-FUNCTION

H. M. BUI AND M. B. MILINOVICH

Abstract. We prove that there exist infinitely many consecutive zeros of the Riemann zeta-
function on the critical line whose gaps are greater than 3.18 times the average spacing.
Using a modification of our method, we also show that there are even larger gaps between
the multiple zeros of the zeta function on the critical line (if such zeros exist).

1. Introduction

Let ζ(s) denote the Riemann zeta-function. In this paper, we investigate the vertical distri-
bution of the nontrivial zeros of ζ(s), for the most part restricting our attention to the zeros
located on the critical line Re(s) = 1/2. In particular, we show that there are gaps between
consecutive zeros on the critical line that are much larger than the average spacing. We also
show that there are even larger gaps between the multiple zeros of ζ(s) (if such zeros exist).

1.1. Gaps between zeros of the zeta-function. Let 0 < γ1 ≤ γ2 ≤ . . . ≤ γn ≤ . . . denote
the ordinates of the nontrivial zeros of the Riemann zeta-function in the upper half-plane, and
let tn denote the imaginary part of the nth zero of ζ(s) on the critical line above the real axis.
Here, if a zero of the zeta function has multiplicity m, then its ordinate is repeated m times
in either sequence {tn} or {γn}. The Riemann Hypothesis (RH) states that all the nontrivial
zeros of the zeta function are on the critical line and so we expect that γn = tn for all n ≥ 1.
Our main result applies to the sequence {tn} and is unconditional, but if we assume RH then
of course this result applies to the sequence {γn}, as well.

It is known that, for T ≥ 10,

N(T ) :=
∑

0<γn≤T
1 =

TL

2π
− T

2π
+O(L ),

where, here and throughout this paper, we set

L := log
T

2π
.

Therefore the average size of
γn+1 − γn
2π/ log γn

is 1 as n→∞, and so defining

λ := lim sup
n→∞

γn+1 − γn
2π/ log γn

and Λ := lim sup
n→∞

tn+1 − tn
2π/ log tn

,

it follows that Λ ≥ λ ≥ 1. Our first result proves that there are gaps between successive
ordinates of zeros of ζ(s) on the critical line that are much larger than the average spacing.

Theorem 1.1. We have Λ > 3.18. Consequently, assuming RH, we have λ > 3.18.
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It is widely believed that the zeros of ζ(s) are all simple, though this remains an open
problem. Modifying our proof of Theorem 1.1, we prove the existence of even larger gaps
between multiple zeros of the zeta-function on the critical line (if such zeros exist). We let t?n
denote the imaginary part of the nth multiple zero of ζ(s) on the critical line above the real
axis. If there are infinitely many multiple zeros of ζ(s), we set

Λ? := lim sup
n→∞

t?n+1 − t?n
2π/ log t?n

and otherwise we set Λ? = ∞. Note that Λ? ≥ Λ and that the value of Λ? is unaffected
by whether or not we choose to count the sequence {t?n} with multiplicity. Trivially, we
have Λ? ≥ 2 since there are at most N(T )/2 multiple zeros in the strip 0 < Im(s) ≤ T.
More generally, let N s(T ) denote the number of simple zeros of ζ(s) on the critical line with
imaginary part in the interval (0, T ]. Then if

N s(T ) ≥
(
C + o(1)

)
N(T )

as T →∞, it follows that there are at most (1−C+o(1))N(T )/2 multiple zeros on the critical
line up to height T and thus Λ? ≥ 2/(1 − C). Since Conrey [12] has shown that C = 2/5 is
admissible, we know that Λ? ≥ 10/3. We prove the following stronger lower bound for Λ?.

Theorem 1.2. We have Λ? > 4.05.

We remark that Conrey’s result can be slightly improved [8], but this improvement only
implies that Λ? > 3.366. Theorem 1.2 can be improved conditionally. For instance, the result
of Bui and Heath-Brown [10] on the proportion of simple zeros of ζ(s) implies that Λ? ≥ 27/4
assuming RH.

1.2. Previous results and conjectures. The study of the gaps between the zeros of the
Riemann zeta-function is an old problem that has received a great deal of attention. We briefly
discuss some of the previous results and conjectures to place Theorem 1.1 in context.

In 1946, Selberg [30] remarked that he could prove Λ > 1. More recently, Bredberg [5]
proved the quantitative estimate Λ > 2.76. Bredberg’s proof, and our approach in the present
paper, are variations of a method of Hall [21] (see also [19, 20]) who had previously shown
that Λ > 2.63. We discuss Hall’s method in §2, in particular pointing out the novelties in
our approach to proving Theorems 1.1 and 1.2. We remark that Hall’s method has also been
adapted to study gaps between zeros of zeta and L-functions other than ζ(s), see [2, 5, 9, 32].

A different method of Mueller [26] has been used in a number of papers to prove lower
bounds for λ conditional upon RH and its generalizations, see [7, 11, 14, 15, 17, 25, 27, 28].
Our result in Theorem 1.1 that λ > 3.18 assuming RH supersedes all of these previous results.
Prior to this paper, the strongest known bounds using Mueller’s method was that λ > 2.9
assuming RH and that λ > 3.072 assuming the Generalized Riemann Hypothesis for Dirichlet
L-functions. These results were established in [6] and [17], respectively.

It is believed that Λ? = Λ = λ = ∞. This conjecture is stated by Montgomery [24] in
his original paper on the pair correlation of the zeros of ζ(s). Montgomery arrives at this
conjecture from the stronger hypothesis that, appropriately normalized, statistics of the non-
trivial zeros of the zeta-function should asymptotically behave like the statistics of eigenvalues
of large random matrices from the Gaussian Unitary Ensemble (GUE). Indeed this GUE hy-
pothesis suggests that the gaps γn+1 − γn should get as large as 1/

√
log γn. In this direction,
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Ben Arous and Bourgade [3, Section 1.3] have proposed the more precise conjecture that

lim sup
n→∞

(γn+1 − γn)

√
log γn

32
= 1.

Unconditionally, Littlewood has shown that γn+1 − γn = O(1/ log log log γn) as n → ∞
while Goldston and Gonek [18], sharpening another result of Littlewood, proved that

lim sup
n→∞

(γn+1 − γn) log log γn ≤ π

assuming RH. These results appear to be the best known upper bounds for gaps between
consecutive zeros of the zeta-function.

2. Inequalities, mean value estimates, and numerical calculations

Modifying an argument of Hall [21], using classical Wirtinger type inequalities, we reduce
the problem of detecting large gaps between zeros of the Riemann zeta-function on the critical
line to estimating certain mean-values of ζ(s) and its derivatives.

2.1. Wirtinger type inequalities.

Theorem 2.1. Let f and f ′ be complex-valued continuous functions on the interval [a, b].

(i) If f(a) = f(b) = 0, then∫ b

a
|f(t)|2 dt ≤

(b− a
π

)2 ∫ b

a
|f ′(t)|2 dt.

(ii) If f(a) = f(b) and

∫ b

a
f(t) dt = 0, then∫ b

a
|f(t)|2 dt ≤

(b− a
2π

)2 ∫ b

a
|f ′(t)|2 dt.

Proofs of (i) and (ii) can be found in [22], Theorems 257 and 258, where it is shown that these
inequalities hold for functions from [a, b] 7→ R. The theorems can be extended to complex-
valued functions in a straightforward manner by applying the inequalities for real-valued
functions to the real and imaginary parts of f separately and then adding. The inequality
(i) is sometimes referred to as Wirtinger’s inequality in the literature. It is not clear how
old these inequalities are or who first proved them. For instance, a proof of (i) was given by
Scheeffer [29] in 1885 and a proof of (ii) was given by Almansi [1] in 1905.

2.2. Reduction of Theorem 1.1 to mean value estimates. Suppose, for the sake of
contradiction, that

Λ ≤ κ. (1)

Let M(s) be a Dirichlet polynomial (chosen to “amplify” the zeta-function on the critical line)
and let

F (t, v, κ,M) := eivtL ζ
(
1
2 + it

)
ζ
(
1
2 + it+ i

κπ

L

)
M
(
1
2 + it

)
,

where v ∈ R is a bounded real number to be chosen later. The factor eivtL makes F (t, v, κ,M)
mimic a real-valued function when T ≤ t ≤ 2T for a certain choice of v (depending on M).
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In order to simplify a later calculation, we have chosen to use the linear function tL
2 in the

exponent in place of factor

θ(t) = Im

(
log Γ

(1

4
+
it

2

))
− (log π)t

2

which appears in the definition of the Hardy Z-function, Z(t) = eiθ(t)ζ(12 + it), used in [5, 21].

Denote the zeros of F in the interval [T, 2T ] by t̃1 ≤ t̃2 ≤ . . . ≤ t̃N . In view of our
assumption (1), we have

t̃n+1 − t̃n ≤
(
1 + o(1)

)κπ
L

for 1 ≤ n ≤ N − 1 as T →∞ and so inequality (i) in Theorem 2.1 implies that∫ t̃n+1

t̃n

|F (t, v, κ,M)|2 dt ≤
( t̃n+1 − t̃n

π

)2 ∫ t̃n+1

t̃n

|F ′(t, v, κ,M)|2 dt

≤
(
1 + o(1)

) κ2
L 2

∫ t̃n+1

t̃n

|F ′(t, v, κ,M)|2 dt.

Summing over n, we derive that∫ t̃N

t̃1

|F (t, v, κ,M)|2 dt ≤
(
1 + o(1)

) κ2
L 2

∫ t̃N

t̃1

|F ′(t, v, κ,M)|2 dt.

Now, by (1), we see that t̃1 − T and 2T − t̃N are � 1. Moreover, our choice of M(s) will

ensure that these integrals are � T and |F (k)(t, v, κ,M)|2 �k,ε (|t| + 1)1−ε for ε > 0, so it
follows that ∫ 2T

T
|F (t, v, κ,M)|2 dt ≤

(
1 + o(1)

) κ2
L 2

∫ 2T

T
|F ′(t, v, κ,M)|2 dt.

Therefore, if

h1(v, κ,M) := lim sup
T→∞

L 2

κ2

∫ 2T
T |F (t, v, κ,M)|2 dt∫ 2T
T |F ′(t, v, κ,M)|2 dt

> 1,

then we have contradicted (1) and we may conclude that Λ > κ.

2.3. Reduction of Theorem 1.2 to mean value estimates. We first note that if a and b
are multiple zeros of F , then∫ b

a
F ′(t, v, κ,M) dt = 0 and F ′(a, v, κ,M) = 0 = F ′(b, v, κ,M).

Therefore, inequality (ii) in Theorem 2.1 implies that∫ b

a
|F ′(t, v, κ,M)|2 dt ≤

(
b− a
2π

)2 ∫ b

a
|F ′′(t, v, κ,M)|2 dt.

Now suppose that Λ? ≤ κ. Summing over the multiple zeros of F in [T, 2T ] and arguing as in
§2.2, it follows that we derive a contradiction if

h2(v, κ,M) := lim sup
T→∞

4L 2

κ2

∫ 2T
T |F

′(t, v, κ,M)|2 dt∫ 2T
T |F ′′(t, v, κ,M)|2 dt

> 1,
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in which case we can conclude that Λ? > κ. Comparing with h1(v, κ,M), we see that
h2(v, κ,M) has an extra factor of 4 in the numerator but the ratio of integrals ends up being
smaller. Nevertheless, we are able to derive a stronger lower bound for Λ? than for Λ.

2.4. Remarks. We now point out some of the novelties of our approach. Hall [21] essentially
chooses M(s) = 1 and v = 2 while Bredberg [5] chooses M(s) =

∑
h≤y 1/hs with y = T ϑ and

ϑ < 1/11. We improve upon their results and these choices in a number of ways:

(I) We choose a more general amplifier of the form

M(s) := M(s, P ) =
∑
h≤y

dr(h)P [h]

hs
, (2)

where y = T ϑ, 0 < ϑ < 1/4, r ∈ N, dr(h) are the coefficients the Dirichlet series of
ζ(s)r, and

P [h] := P
( log y/h

log y

)
for 1 ≤ h ≤ y where P (x) =

∑
j≥0 bjx

j is a certain polynomial. By convention, we set

P [h] = 0 for h ≥ y. Note that with this definition we have

P [h] =
∑
j≥0

bjj!

(log y)j
1

2πi

∫
(1)

(y
h

)s ds

sj+1
(3)

for h ∈ N (and y 6= h if j = 0) where here, and throughout the article, the notation∫
(c) means

∫ c+i∞
c−i∞ . This general amplifier has been used previously in theory of the

Riemann zeta-function, for instance in studying gaps between zeros [11, 27] and in
establishing lower bounds for moments on the critical line [13, 31].

(II) In addition to choosing a more general amplifier, we also take the advantage of a longer
admissible Dirichlet polynomial in the twisted fourth moment of the zeta function as
a consequence of the recent work of Bettin, Bui, Li, and Radziwi l l [4]. That paper
evaluates the integral from T to 2T of mean fourth power of the zeta-function on the
critical line times the mean square of a Dirichlet polynomial of length T ϑ for ϑ < 1/4.
Bredberg used a result of Hughes and Young [23] that is valid for ϑ < 1/11.

(III) Another novel aspect of our work is that we express our mean value estimates in a
more concise and much simpler form. Bredberg’s asymptotic formulae took five pages
to display while ours are derived from one multiple integral formula (Theorem 2.2).
Among other things, this helps facilitate numerical calculations.

(IV) Finally, our proof of Theorem 1.2 seems to be the first approach that uses inequality
(ii) in Theorem 2.1 to study the zeros of ζ(s).

2.5. A smoothing argument. To use the result on the twisted fourth moment of the Rie-
mann zeta-function from [4] directly (see Theorem 5.1), we introduce a smooth function w(t)

with support in the interval [1, 2] and satisfying w(j)(t)�j,ε T
ε for any j ≥ 0 and ε > 0. For

r ∈ N, we also define the constant Ar via the well known asymptotic formula∑
n≤x

dr(n)2

n
∼ Ar(log x)r

2

(r2)!
,
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as x→∞, so

Ar =
∏

p prime

((
1− 1

p

)r2 ∞∑
`=0

dr(p
`)2

p`

)
.

The smoothed mean values of |F (t, v, κ,M)|2, |F ′(t, v, κ,M)|2, and |F ′′(t, v, κ,M)|2 are given
by the following theorem.

Theorem 2.2. Suppose that ϑ < 1/4. Then, for T large, we have∫ ∞
−∞
|F (j)(t, v, κ,M)|2w

( t
T

)
dt =

cj(v, κ)Ar+2(log y)r
2+4rL 4+2j

2(r2 − 1)!((r − 1)!)4
ŵ(0)T +O(TL (r+2)2+2j−1)

for j = 0, 1, 2, where

cj(v, κ) =

∫
[0,1]9

x+x1+x2≤1
x+x3+x4≤1

eiϑκπ
(
x2−x4−(x3−x4)t3+(x1−x2)t4

)
−iκπ

(
(1−ϑ(x1+x3))t1−(1−ϑ(x2+x4))t2

)
(t3−t4)

(
1− ϑ(x1 + x3)

)(
1− ϑ(x2 + x4)

)(
ϑ(x1 − x2) +

(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)
(
ϑ(x3 − x4) +

(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)
xr

2−1(x1x2x3x4)
r−1(

v − ϑ(x+ x1 + x2 + x3 + x4)−
(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)2j
P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx dt1 dt2 dt3 dt4.

2.6. Numerical calculations. It is a standard exercise to deduce from Theorem 2.2 the
unsmoothed mean-values∫ 2T

T
|F (j)(t, v, κ,M)|2 dt =

cj(v, κ)Ar+2(log y)r
2+4rL 4+2j

2(r2 − 1)!((r − 1)!)4
T +O(TL (r+2)2+2j−1).

Hence, we deduce from the analysis in §2.2 and §2.3 that

h1(v, κ,M) =
c0(v, κ)

κ2c1(v, κ)
and h2(v, κ,M) =

4c1(v, κ)

κ2c2(v, κ)
.

A numerical calculation with the values

ϑ = 1
4 , r = 1, v = 1.26, and P (x) = 1− 5.8x+ 6.4x2

yields

h1(1.26, 3.18,M) > 1.0002,

while the values

ϑ = 1
4 , r = 1, v = 1.25, and P (x) = 1− 5.2x+ 5.5x2

numerically give

h2(1.25, 4.05,M) > 1.0048.

This implies that Λ > 3.18 and Λ? > 4.05 and therefore Theorem 1.1 and Theorem 1.2 follow
from Theorem 2.2.
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3. A shifted mean value result

Rather than working directly with the mean squares of F (t, v, κ,M), F ′(t, v, κ,M) and
F ′′(t, v, κ,M), we instead consider the shifted mean value

Iα,β(M) =

∫ ∞
−∞

ζ(12 + α1 + it)ζ(12 + α2 + it)ζ(12 + β1 − it)ζ(12 + β2 − it)

M(12 + α3 + it)M(12 + β3 − it)w
( t
T

)
dt, (4)

where the shifts αj , βj � L −1 and the Dirichlet polynomial M(s) is defined in (2). Our main
goal in the rest of the paper is to prove the following lemma.

Lemma 3.1. Suppose ϑ < 1/4. Then we have

Iα,β(M) =
c(α, β)Ar+2(log y)r

2+4rL 4

2(r2 − 1)!((r − 1)!)4
ŵ(0)T +O(TL (r+2)2−1),

where c(α, β) is given by∫
[0,1]9

x+x1+x2≤1
x+x3+x4≤1

y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)−β1x1−β2x2−α1x3−α2x4−(α2−α1)(x3−x4)t3−(β2−β1)(x1−x2)t4

(Ty−x1−x3)−(α1+β1)t1−(α2−α1)t1t3−(β2−β1)t1t4(Ty−x2−x4)−(α2+β2)t2+(α2−α1)t2t3+(β2−β1)t2t4(
1− ϑ(x1 + x3)

)(
1− ϑ(x2 + x4)

)(
ϑ(x1 − x2) +

(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)
(
ϑ(x3 − x4) +

(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)
xr

2−1(x1x2x3x4)
r−1

P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx dt1 dt2 dt3 dt4 (5)

uniformly for αj , βj � L −1.

We prove this lemma in §5. We conclude this section by proving that Theorem 2.2 follows
from Lemma 3.1. When j = 0, we have

|F (t, v, κ,M)| =
∣∣∣ζ(12 + it

)
ζ
(
1
2 + it+ i

κπ

L

)
M
(
1
2 + it

)∣∣∣
and hence

c0(v, κ) = c(α, β)

∣∣∣∣ α1=α3=β1=β3=0
α2=iκπ/L ,β2=−iκπ/L

.

In the case j = 1, we have

F ′(t, v, κ,M)

ieitvL
= vL ζ

(
1
2 + it

)
ζ
(
1
2 + it+ i

κπ

L

)
M
(
1
2 + it

)
+
( d

dα1
+

d

dα2
+

d

dα3

)
ζ
(
1
2 + α1 + it

)
ζ
(
1
2 + α2 + it+ i

κπ

L

)
M
(
1
2 + α3 + it

)∣∣∣∣
α=0

= LQ

(
1

L

( d

dα1
+

d

dα2
+

d

dα3

))
ζ
(
1
2 + α1 + it

)
ζ
(
1
2 + α2 + it+ i

κπ

L

)
M
(
1
2 + α3 + it

)∣∣∣∣
α=0

,

where

Q(x) = v + x.



8 H. M. BUI AND M. B. MILINOVICH

Hence∫ ∞
−∞
|F ′(t, v, κ,M)|2w

( t
T

)
dt (6)

= L 2Q

(
1

L

( d

dα1
+

d

dα2
+

d

dα3

))
Q

(
1

L

( d

dβ1
+

d

dβ2
+

d

dβ3

))
Iα,β(M)

∣∣∣∣ α1=α3=β1=β3=0
α2=iκπ/L ,β2=−iκπ/L

.

Similarly, we have∫ ∞
−∞
|F ′′(t, v, κ,M)|2w

( t
T

)
dt (7)

= L 4Q

(
1

L

( d

dα1
+

d

dα2
+

d

dα3

))2

Q

(
1

L

( d

dβ1
+

d

dβ2
+

d

dβ3

))2

Iα,β(M)

∣∣∣∣ α1=α3=β1=β3=0
α2=iκπ/L ,β2=−iκπ/L

.

We obtain the constants c1(v, κ) and c2(v, κ) by applying the above differential operators
to c(α, β). Since I(α, β) and c(α, β) are holomorphic with respect to each variable αj and βj
in a small disc centered at 0, the derivatives appearing in (6) and (7) can be expressed using
Cauchy’s integral formula as integrals of radii � L −1 around the points α1 = α3 = β1 = β3 =
0, α2 = iκπ/L , β2 = −iκπ/L . Since the asymptotic formula in Lemma 3.1 holds uniformly
on these contours, each derivative adds a factor that is O(L ) to the error term that holds for
I(α, β). Therefore we can use Lemma 3.1 and (6) to prove Theorem 2.2 in the case j = 1 with

an error of O(TL (r+2)2+1), and similarly use Lemma 3.1 and (7) to prove Theorem 2.2 in the

case j = 2 with an error of O(TL (r+2)2+3).
To see that applying the above differential operators to c(α, β) does indeed give the constants

c1(v, κ) and c2(v, κ), note that

Q

(
1

L

( d

dα1
+

d

dα2
+

d

dα3

))j
Xα1

1 Xα2
2 Xα3

3 = Q
( logX1 + logX2 + logX3

L

)j
Xα1

1 Xα2
2 Xα3

3 .

Using this expression and (5), we have

Q

(
1

L

( d

dα1
+

d

dα2
+

d

dα3

))j
Q

(
1

L

( d

dβ1
+

d

dβ2
+

d

dβ3

))j
c(α, β)

=

∫
[0,1]9

x+x1+x2≤1
x+x3+x4≤1

y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)−β1x1−β2x2−α1x3−α2x4−(α2−α1)(x3−x4)t3−(β2−β1)(x1−x2)t4

(Ty−x1−x3)−(α1+β1)t1−(α2−α1)t1t3−(β2−β1t1)t4(Ty−x2−x4)−(α2+β2)t2+(α2−α1)t2t3+(β2−β1)t2t4(
1− ϑ(x1 + x3)

)(
1− ϑ(x2 + x4)

)(
ϑ(x1 − x2) +

(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)
(
ϑ(x3 − x4) +

(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)
xr

2−1(x1x2x3x4)
r−1

Q
(
− ϑ(x+ x1 + x2 + x3 + x4)−

(
1− ϑ(x1 + x3)

)
t1 −

(
1− ϑ(x2 + x4)

)
t2

)2j
P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx dt1 dt2 dt3 dt4.

Theorem 2.2 now follows by setting α1 = α3 = β1 = β3 = 0, α2 = iκπ/L , β2 = −iκπ/L and
simplifying.
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4. Two additional lemmas

Lemma 4.1. Let j ≥ 0, n ≥ 1 and r ≥ 1 be integers. Let y > 0, and let

Kj(α, β) =
1

2πi

∫
(L −1)

(y
n

)u
ζr(1 + α+ u)ζr(1 + β + u)

du

uj+1
(8)

with y 6= n if j = 0. Then we have

Kj(α, β) =
(log y/n)j+2r

((r − 1)!)2j!

∫ ∫
x1+x2≤1
0≤x1,x2≤1

(y
n

)−αx1−βx2
(x1x2)

r−1(1− x1 − x2)j dx1 dx2

+O
(
(log y)j+2r−1)

uniformly for α, β � (log y)−1.

Proof. By a standard application of the residue theorem, we can replace the contour in the
integral on the right-hand side of (8) by a small circle with radius � (log y)−1 around the
origin plus an error term of size O(1). This integral is trivially bounded by O

(
log y)j+2r

)
.

Since

ζ(1 + s) =
1

s
+O(1)

for s near zero, taking the first terms in the Laurent series of ζ(1 + α + u) and ζ(1 + β + u)
gives

Kj(α, β) =
1

2πi

∮
qu

1

(α+ u)r(β + u)r
du

uj+1
+O

(
(log y)j+2r−1),

where q = y/n. We apply the identity

1

(α+ u)r
=

1

(r − 1)!

∫ 1

1/q
aα+u−1

(
log

1

a

)r−1
da+ q−α−u

r−1∑
k=0

(log q)k

k!(α+ u)r−k
, (9)

which is valid for all α, u ∈ C and q > 0, to the above integral, writing it as the sum of (r+ 1)
terms. The last r terms can easily be seen to vanish. Hence

Kj(α, β) =
1

(r − 1)!

∫ 1

1/q
aα−1

(
log

1

a

)r−1 1

2πi

∮
(qa)u

1

(β + u)r
du

uj+1
da+O

(
(log y)j+2r−1).

We use (9) again but with the lower boundary of integration at 1/qa. Again we write the
innermost integral as the sum of (r + 1) terms where the last r terms vanish. In this way, we
derive that

Kj(α, β) =
1

((r − 1)!)2

∫ 1

1/q

∫ 1

1/qa
aα−1bβ−1

(
log

1

a

)r−1(
log

1

b

)r−1 1

2πi

∮
(qab)u

du

uj+1
dbda

+O
(
(log y)j+2r−1)

=
1

((r − 1)!)2j!

∫ 1

1/q

∫ 1

1/qa
aα−1bβ−1

(
log

1

a

)r−1(
log

1

b

)r−1
(log qab)j dbda

+O
(
(log y)j+2r−1).

Making the variable changes a 7→ q−x1 and b 7→ q−x2 , we obtain the lemma. �
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Lemma 4.2. Suppose f is a smooth function. Then we have∑
n≤y

dr(n)

n1+α
f
( log y/n

log y

)
=

(log y)r

(r − 1)!

∫ 1

0
y−αxxr−1f(1− x) dx+O

(
(log y)r−1

)
.

Proof. This is a standard exercise in partial summation using the formula∑
n≤y

dr(n) =
y (log y)r−1

(r − 1)!
+O

(
(log y)r−2

)
,

as y →∞. See Corollary 4.5 in [8]. �

5. Proof of Lemma 3.1

5.1. Reduction to a contour integral. We first state the twisted fourth moment of the
Riemann zeta-function from [4].

Theorem 5.1 (Bettin, Bui, Li and Radziwi l l). Let G(s) be an even entire function of rapid
decay in any fixed strip |Re(s)| ≤ C satisfying G(0) = 1, and let

V (x) =
1

2πi

∫
(1)
G(s)(2π)−2sx−s

ds

s
. (10)

Then, for T large, we have∑
h,k≤y

ahak√
hk

∫ ∞
−∞

ζ(12 + α1 + it)ζ(12 + α2 + it)ζ(12 + β1 − it)ζ(12 + β2 − it)
(h
k

)−it
w
( t
T

)
dt

=
∑
h,k≤y

ahak√
hk

∫ ∞
−∞

w
( t
T

){
Zα1,α2,β1,β2,h,k(t) +

( t

2π

)−(α1+β1)
Z−β1,α2,−α1,β2,h,k(t)

+
( t

2π

)−(α1+β2)
Z−β2,α2,β1,−α1,h,k(t) +

( t

2π

)−(α2+β1)
Zα1,−β1,−α2,β2,h,k(t)

+
( t

2π

)−(α2+β2)
Zα1,−β2,β1,−α2,h,k(t) +

( t

2π

)−(α1+α2+β1+β2)
Z−β1,−β2,−α1,−α2,h,k(t)

}
dt

+Oε(T
1/2+2ϑ+ε + T 3/4+ϑ+ε)

uniformly for α1, α2, β1, β2 � L −1, where ε > 0 and

Zα,β,γ,δ,h,k(t) =
∑

hm1m2=kn1n2

1

m
1/2+α
1 m

1/2+β
2 n

1/2+γ
1 n

1/2+δ
2

V
(m1m2n1n2

t2

)
.

Remark 5.1. To simplify later calculations, it is convenient to prescribe certain conditions
on the function G(s). To be precise, we assume that G(s) vanishes at s = −(αi + βj)/2 for
1 ≤ i, j ≤ 2.

Let ϑ < 1/4. Recalling the definition of Iα,β(M) in (4), we write

Iα,β(M) = I1 + I2 + I3 + I4 + I5 + I6 +Oε(T
1−ε)

corresponding to the decomposition in Theorem 5.1. We first estimate I1 using Lemmas 4.1
and 4.2, and then indicate what changes need to be made in our argument to estimate the
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integrals I2, . . . , I6. Observe that

I1 =
∑
h,k≤y

dr(h)dr(k)P [h]P [k]

h1/2+α3k1/2+β3

∑
hm1m2=kn1n2

1

m
1/2+α1

1 m
1/2+α2

2 n
1/2+β1
1 n

1/2+β2
2∫ ∞

−∞
w
( t
T

)
V
(m1m2n1n2

t2

)
dt.

In view of (3) and (10), we have

I1 =
∑
i,j

bibji!j!

(log y)i+j

( 1

2πi

)3 ∫ ∞
−∞

∫
(1)

∫
(1)

∫
(1)
w
( t
T

)
G(s)

( t

2π

)2s
yu+v (11)

∑
hm1m2=kn1n2

dr(h)dr(k)

h1/2+α3+uk1/2+β3+vm
1/2+α1+s
1 m

1/2+α2+s
2 n

1/2+β1+s
1 n

1/2+β2+s
2

du

ui+1

dv

vj+1

ds

s
dt.

Since the sum in the integrand is multiplicative, we can express it as an Euler product and
then factor out the poles in terms of ζ(s). In particular, this sum equals∑
hm1m2=kn1n2

dr(h)dr(k)

h1/2+α3+uk1/2+β3+vm
1/2+α1+s
1 m

1/2+α2+s
2 n

1/2+β1+s
1 n

1/2+β2+s
2

= A(α, β, u, v, s)ζ(1 + α1 + β1 + 2s)ζ(1 + α1 + β2 + 2s)ζ(1 + α2 + β1 + 2s) (12)

ζ(1 + α2 + β2 + 2s)ζr
2
(1 + α3 + β3 + u+ v)ζr(1 + α3 + β1 + u+ s)

ζr(1 + α3 + β2 + u+ s)ζr(1 + β3 + α1 + v + s)ζr(1 + β3 + α2 + v + s),

where A(α, β, u, v, s) is an arithmetical factor (Euler product) converging absolutely in a
product of half-planes containing the origin.

We first move the u and v contours in (11) to Re(u) = Re(v) = δ, and then move the
s contour to Re(s) = −δ/2, where δ > 0 is some fixed constant such that the arithmetical
factor A(α, β, u, v, s) converges absolutely. In doing so, we cross a pole at s = 0 and no other
singularities of the integrand. Note that the poles at s = −(αi+βj)/2, 1 ≤ i, j ≤ 2, of the zeta
functions are cancelled by the zeros of G(s) and so the integrand is analytic at these points.
On the new line of integration we bound the integral by absolute values, giving a contribution
of

�ε T
1+εy2δT−δ �ε T

1−ε.

Hence

I1 = ŵ(0)Tζ(1 + α1 + β1)ζ(1 + α1 + β2)ζ(1 + α2 + β1)ζ(1 + α2 + β2) (13)∑
i,j

bibji!j!

(log y)i+j
Ji,j +Oε(T

1−ε),

where

Ji,j =
( 1

2πi

)2 ∫
(1)

∫
(1)
yu+vA(α, β, u, v, 0)ζr

2
(1 + α3 + β3 + u+ v)ζr(1 + α3 + β1 + u)

ζr(1 + α3 + β2 + u)ζr(1 + β3 + α1 + v)ζr(1 + β3 + α2 + v)
du

ui+1

dv

vj+1
.



12 H. M. BUI AND M. B. MILINOVICH

Expressing ζr
2
(1 + α3 + β3 + u + v) as an absolutely convergent Dirichlet series and then

changing the order of summation and integration, we obtain

Ji,j =
∑
n≤y

dr2(n)

n1+α3+β3

( 1

2πi

)2 ∫
(1)

∫
(1)

(y
n

)u+v
A(α, β, u, v, 0)ζr(1 + α3 + β1 + u)

ζr(1 + α3 + β2 + u)ζr(1 + β3 + α1 + v)ζr(1 + β3 + α2 + v)
du

ui+1

dv

vj+1
. (14)

Note that here we are able to restrict the sum over n to n ≤ y by moving the u-integral
and the v-integral far to the right. We now move the contours of integration to Re(u) =

Re(v) � L −1. Bounding the integrals trivially shows that Ji,j � L i+j+r2+4r. Hence from
the Taylor series A(α, β, u, v, 0) = A(0, 0, 0, 0, 0) + O(L −1) + O(|u| + |v|), we can replace

A(α, β, u, v, 0) by A(0, 0, 0, 0, 0) in Ji,j with an error of size O(L i+j+r2+4r−1). We next show
that A(0, 0, 0, 0, 0) = Ar+2. Letting αj = βj = 0 for j = 1, 2, 3 and u = v = s in (12), we have

A(0, 0, s, s, s) = ζ(1 + 2s)−(r+2)2
∑

hm1m2=kn1n2

dr(h)dr(k)

(hkm1m2n1n2)1/2+s

= ζ(1 + 2s)−(r+2)2
∑
h=k

dr+2(h)dr+2(k)

(hk)1/2+s

= ζ(1 + 2s)−(r+2)2
∏
p

∑
n≥0

dr+2(p
n)2

pn(1+2s)
.

Hence A(0, 0, 0, 0, 0) = Ar+2. The u and v variables in (14) are now separated so that

Ji,j = Ar+2

∑
n≤y

dr2(n)

n1+α3+β3
Ki(α3 + β1, α3 + β2)Kj(β3 + α1, β3 + α2) +O(L i+j+r2+4r−1),

where the function Kj(α, β) is defined in Lemma 4.1. This lemma implies that

Ji,j =
Ar+2(log y)i+j+4r

((r − 1)!)4i!j!

∫ ∫ ∫ ∫
x1+x2,x3+x4≤1
0≤x1,x2,x3,x4≤1

(x1x2x3x4)
r−1(1− x1 − x2)i(1− x3 − x4)j

∑
n≤y

dr2(n)

n1+α3+β3

(y
n

)−(α3+β1)x1−(α3+β2)x2−(β3+α1)x3−(β3+α2)x4( log y/n

log y

)i+j+4r

dx1 dx2 dx3 dx4 +O(L i+j+r2+4r−1).
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Using Lemma 4.2, we deduce that

Ji,j =
Ar+2(log y)i+j+r

2+4r

(r2 − 1)!((r − 1)!)4i!j!

∫ 1

0

∫ ∫ ∫ ∫
x1+x2,x3+x4≤1
0≤x1,x2,x3,x4≤1

y−(α3+β3)x−
(
(α3+β1)x1+(α3+β2)x2+(β3+α1)x3+(β3+α2)x4

)
(1−x)xr

2−1(1− x)i+j+4r

(x1x2x3x4)
r−1(1− x1 − x2)i(1− x3 − x4)j dx1 dx2 dx3 dx4 dx

+O(L i+j+r2+4r−1)

=
Ar+2(log y)i+j+r

2+4r

(r2 − 1)!((r − 1)!)4i!j!

∫ ∫ ∫ ∫ ∫
x+x1+x2,x+x3+x4≤1
0≤x,x1,x2,x3,x4≤1

y−(α3+β3)x−(α3+β1)x1−(α3+β2)x2−(β3+α1)x3−(β3+α2)x4xr
2−1(x1x2x3x4)

r−1

(1− x− x1 − x2)i(1− x− x3 − x4)j dx1 dx2 dx3 dx4 dx+O(L i+j+r2+4r−1).

Inserting this expression back into (13), we conclude that

I1 =
Ar+2(log y)r

2+4rŵ(0)

(r2 − 1)!((r − 1)!)4
ζ(1 + α1 + β1)ζ(1 + α1 + β2)ζ(1 + α2 + β1)ζ(1 + α2 + β2)∫ ∫ ∫ ∫ ∫

x+x1+x2,x+x3+x4≤1
0≤x,x1,x2,x3,x4≤1

y−(α3+β3)x−(α3+β1)x1−(α3+β2)x2−(β3+α1)x3−(β3+α2)x4

xr
2−1(x1x2x3x4)

r−1P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx

+O(L r2+4r−1).

5.2. Deduction of Lemma 3.1. Note that I2 is essentially obtained by multiplying I1 with
T−(α1+β1) and changing the shifts α1 ←→ −β1, I3 is obtained by multiplying I1 with T−(α1+β2)

and changing the shifts α1 ←→ −β2, I4 is obtained by multiplying I1 with T−(α2+β1) and
changing the shifts α2 ←→ −β1, I5 is obtained by multiplying I1 with T−(α2+β2) and changing
the shifts α2 ←→ −β2, and I6 is obtained by multiplying I1 with T−(α1+α2+β1+β2) and changing
the shifts α1 ←→ −β1 and α2 ←→ −β2. Hence

Iα,β(M) =
Ar+2(log y)r

2+4rŵ(0)

(r2 − 1)!((r − 1)!)4

∫ ∫ ∫ ∫ ∫
x+x1+x2,x+x3+x4≤1
0≤x,x1,x2,x3,x4≤1

y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)

U(x)xr
2−1(x1x2x3x4)

r−1P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx

+O(L r2+4r−1),
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where

U(x) =
y−β1x1−β2x2−α1x3−α2x4

(α1 + β1)(α1 + β2)(α2 + β1)(α2 + β2)
− T−(α1+β1)yα1x1−β2x2+β1x3−α2x4

(α1 + β1)(−β1 + β2)(α2 − α1)(α2 + β2)

− T−(α1+β2)y−β1x1+α1x2+β2x3−α2x4

(−β2 + β1)(α1 + β2)(α2 + β1)(α2 − α1)
− T−(α2+β1)yα2x1−β2x2−α1x3+β1x4

(α1 − α2)(α1 + β2)(α2 + β1)(−β1 + β2)

− T−(α2+β2)y−β1x1+α2x2−α1x3+β2x4

(α1 + β1)(α1 − α2)(−β2 + β1)(α2 + β2)
+
T−(α1+α2+β1+β2)yα1x1+α2x2+β1x3+β2x4

(α1 + β1)(β1 + α2)(β2 + α1)(α2 + β2)
.

We write

y−β1x1−β2x2−α1x3−α2x4

(α1 + β1)(α1 + β2)(α2 + β1)(α2 + β2)
=

y−β1x1−β2x2−α1x3−α2x4

(α1 + β1)(−β1 + β2)(α2 − α1)(α2 + β2)

− y−β1x1−β2x2−α1x3−α2x4

(−β1 + β2)(α1 + β2)(α2 + β1)(α2 − α1)

and

T−(α1+α2+β1+β2)yα1x1+α2x2+β1x3+β2x4

(α1 + β1)(α1 + β2)(α2 + β1)(α2 + β2)
=

T−(α1+α2+β1+β2)yα1x1+α2x2+β1x3+β2x4

(α1 + β1)(−β1 + β2)(α2 − α1)(α2 + β2)

− T−(α1+α2+β1+β2)yα1x1+α2x2+β1x3+β2x4

(−β1 + β2)(α1 + β2)(α2 + β1)(α2 − α1)
.

(15)

Notice that we can interchange the roles of x1 with x2, or of x3 with x4, in any term of
U(x) without affecting the value of Iα,β(M). Applying both changes to the last term on the

right-hand side of (15), we can replace U(x) with the expression

y−β1x1−β2x2−α1x3−α2x4

(−β1 + β2)(α2 − α1)

(
1− (Ty−x1−x3)−(α1+β1)

α1 + β1

)(
1− (Ty−x2−x4)−(α2+β2)

α2 + β2

)
−y
−β1x1−β2x2−α1x3−α2x4

(−β1 + β2)(α2 − α1)

(
1− (Ty−x2−x3)−(α1+β2)

α1 + β2

)(
1− (Ty−x1−x4)−(α2+β1)

α2 + β1

)
.

Using the integral formula

1− z−(α+β)

α+ β
= (log z)

∫ 1

0
z−(α+β)t dt, (16)

we find that

Iα,β(M) =
Ar+2(log y)r

2+4rL 2ŵ(0)

(r2 − 1)!((r − 1)!)4(−β1 + β2)(α2 − α1)

∫ ∫ ∫ ∫ ∫ ∫ ∫
x+x1+x2,x+x3+x4≤1
0≤x,x1,x2,x3,x4,t1,t2≤1

y−β1x1−β2x2−α1x3−α2x4

y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)(Ty−x1−x3)−(α1+β1)t1(Ty−x2−x4)−(α2+β2)t2(
1− ϑ(x1 + x3)

)(
1− ϑ(x2 + x4)

)
xr

2−1(x1x2x3x4)
r−1

P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx dt1 dt2

− Ar+2(log y)r
2+4rL 2

(r2 − 1)!((r − 1)!)4(−β1 + β2)(α2 − α1)

∫ ∫ ∫ ∫ ∫ ∫ ∫
x+x1+x2,x+x3+x4≤1
0≤x,x1,x2,x3,x4,t1,t2≤1

y−β1x1−β2x2−α1x3−α2x4

y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)(Ty−x2−x3)−(α1+β2)t1(Ty−x1−x4)−(α2+β1)t2
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1− ϑ(x2 + x3)

)(
1− ϑ(x1 + x4)

)
xr

2−1(x1x2x3x4)
r−1

P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx dt1 dt2 +O(L r2+4r−1).

Denote the two integrands by V1(x, x1, x2, x3, x4, t1, t2) and V2(x, x1, x2, x3, x4, t1, t2), respec-
tively. We note that Iα,β(M) is unchanged if we swap any of these pairs of variables x1 ←→ x2,

x3 ←→ x4, and t1 ←→ t2 in the integrands. Hence we can write

Iα,β(M) =
Ar+2(log y)r

2+4rL 2ŵ(0)

2(r2 − 1)!((r − 1)!)4(−β1 + β2)(α2 − α1)

∫ ∫ ∫ ∫ ∫ ∫ ∫
x+x1+x2,x+x3+x4≤1
0≤x,x1,x2,x3,x4,t1,t2≤1(

V1(x, x1, x2, x3, x4, t1, t2) + V1(x, x2, x1, x4, x3, t2, t1)− V2(x, x2, x1, x3, x4, t1, t2)

−V2(x, x1, x2, x4, x3, t2, t1)
)

dx1 dx2 dx3 dx4 dx dt1 dt2 +O(L r2+4r−1).

Thus

Iα,β(M) =
Ar+2(log y)r

2+4rL 2ŵ(0)

2(r2 − 1)!((r − 1)!)4

∫ ∫ ∫ ∫ ∫ ∫ ∫
x+x1+x2,x+x3+x4≤1
0≤x,x1,x2,x3,x4,t1,t2≤1

y−(α3+β3)x−α3(x1+x2)−β3(x3+x4)

W (x, t1, t2)
(
1− ϑ(x1 + x3)

)(
1− ϑ(x2 + x4)

)
xr

2−1(x1x2x3x4)
r−1 (17)

P (1− x− x1 − x2)P (1− x− x3 − x4) dx1 dx2 dx3 dx4 dx dt1 dt2 +O(L r2+4r−1),

where

W (x, t1, t2) =
1

(−β1 + β2)(α2 − α1)

(
y−β1x1−β2x2−α1x3−α2x4(Ty−x1−x3)−(α1+β1)t1(Ty−x2−x4)−(α2+β2)t2

+ y−β1x2−β2x1−α1x4−α2x3(Ty−x2−x4)−(α1+β1)t2(Ty−x1−x3)−(α2+β2)t1

− y−β1x2−β2x1−α1x3−α2x4(Ty−x1−x3)−(α1+β2)t1(Ty−x2−x4)−(α2+β1)t2

− y−β1x1−β2x2−α1x4−α2x3(Ty−x2−x4)−(α1+β2)t2(Ty−x1−x3)−(α2+β1)t1

)
.
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Using (16) again we see that

W (x, t1, t2) = y−β1x1−β2x2−α1x3−α2x4(Ty−x1−x3)−(α1+β1)t1(Ty−x2−x4)−(α2+β2)t2(
1−

(
yx3−x4(Ty−x1−x3)t1(Ty−x2−x4)−t2

)−(α2−α1)

α2 − α1

)
(

1−
(
yx1−x2(Ty−x1−x3)t1(Ty−x2−x4)−t2

)−(β2−β1)
β2 − β1

)
= L 2

(
ϑ(x1 − x2) + t1

(
1− ϑ(x1 + x3)

)
− t2

(
1− ϑ(x2 + x4)

))
(
ϑ(x3 − x4) + t1

(
1− ϑ(x1 + x3)

)
− t2

(
1− ϑ(x2 + x4)

))
y−β1x1−β2x2−α1x3−α2x4(Ty−x1−x3)−(α1+β1)t1(Ty−x2−x4)−(α2+β2)t2∫ 1

0

∫ 1

0

(
yx3−x4(Ty−x1−x3)t1(Ty−x2−x4)−t2

)−(α2−α1)t3

(
yx1−x2(Ty−x1−x3)t1(Ty−x2−x4)−t2

)−(β2−β1)t4 dt3 dt4.

Using this expression in (17), we obtain the lemma.
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