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ABSTRACT
Security concerns on embedded devices like cellular phones make
Java an extremely attractive technology for providing third-party
and user-downloadable functionality. However, garbage collectors
have typically required several times the maximum live data set size
(which is the minimum possible heap size) in order to run well. In
addition, the size of the virtual machine (ROM) image and the size
of the collector’s data structures (metadata) have not been a concern
for server- or workstation-oriented collectors.

We have implemented two different collectors specifically de-
signed to operate well on small embedded devices. We have also
developed a number of algorithmic improvements and compression
techniques that allow us to eliminate almost all of the per-object
overhead that the virtual machine and the garbage collector require.
We describe these optimizations and present measurements of the
Java embedded benchmarks (EEMBC) of our implementations on
both an IA32 laptop and an ARM-based PDA.

For applications with low to moderate allocation rates, our op-
timized collector running on the ARM is able to achieve 85% of
peak performance with only 1.05 to 1.3 times the absolute mini-
mum heap size. For applications with high allocation rates, the col-
lector achieves 85% of peak performance with 1.75 to 2.5 times the
minimum heap size. The collector code takes up 40 KB of ROM,
and collector metadata overhead has been almost completely elim-
inated, consuming only 0.4% of the heap.

General Terms
Experimentation, Languages, Measurement, Performance

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations—Object representation;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Dynamic storage management; D.3.4 [Programming Lan-
guages]: Processors—Memory management (garbage collection);
D.4.7 [Operating Systems]: Organization and Design—Real-time
systems and embedded systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright  2004 ACM 1-58113-860-1/04/0009 $5.00.

1. INTRODUCTION
Embedded devices have long since become the most widely de-

ployed computing platforms in the world, and the trend is contin-
uing to accelerate. For such devices, including motes [17], smart
cards, cellular phones, and handheld organizers [37], the flexibility
to dynamically download new functionality is increasingly impor-
tant. Often the downloaded software is not under the control of the
maker of or service provider for the device.

Therefore, a premium is placed on reliability of the downloaded
code — while we are regrettably accustomed to crashes on the
part of personal computer operating systems, consumers are much
less accepting when “necessary” devices like cellular phones cease
to function. As a result, the Java computing platform is becom-
ing steadily more attractive for embedded devices due to its safety
properties, since arbitrary downloaded software can not compro-
mise the operating system or other applications. A key contributor
to these safety properties is garbage collection [16, 28, 26].

While some applications have real-time requirements, there are
many which do not. Furthermore, the additional complexity, space,
and time overheads necessarily associated with real-time collectors
are in direct conflict with many of the other requirements imposed
by memory-constrained embedded systems.

The requirements on garbage collectors in such embedded envi-
ronments are:

Code Size. It is imperative that the virtual machine consume as
little code space as possible. As a result, many typical meth-
ods for improving collector performance are inappropriate
because of the resulting complexity and concommitant in-
crease in code size.

Memory Overhead. The overhead due to collector meta-data and
memory fragmentation should be kept to an absolute mini-
mum. As a result, semi-space copying collectors [20, 12] are
not an option.

Compaction. Since many embedded applications run continuously
for extended periods of time, the collectormustbe able to
perform memory compaction, both to avoid arbitrary space
consumption due to fragmentation, and to enable the virtual
machine to release memory resources to the operating system
as needed.

Reliability. System failure is not acceptable. This places a pre-
mium on both simplicity and on strong enforcement of in-
variants within the collector.

Smooth Performance. The likelihood that the application will run
in a very constricted memory space is much higher than in
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PC- or server-based virtual machines. Therefore, the collec-
tor’s performance should degrade gracefully as memory is
reduced.

Speed. Within the limits of the preceding requirements, the collec-
tor should be as fast as possible. Trading a small amount of
space for a large improvement in time is acceptable for some,
but not all, applications.

In this paper we discuss our experience in the construction of
(non-real-time) garbage collectors for IBM’s Java 2 Micro Edition
(J2ME) virtual machine for the IBM WebSphere Micro Environ-
ment [24]. We have implemented several variants of two “micro-
collectors” and several different object models for J2ME in order to
explore the design space of collectors that meet the above require-
ments

While some implementation details are specific to our virtual
machine architecture, the techniques we present are applicable to
most virtual machines. Some of the object model optimizations are
specific to Java, but many are applicable to other garbage-collected
languages.

1.1 Problems with Traditional Techniques
The tight memory requirements place a number of restrictions

on the system which will be counter-intuitive to those working on
desktop or server virtual machines. These issues arise both in the
allocation strategy and in the garbage collection methodology.

First of all, inlining the allocation sequence is only done if the
inlined code is (statically) shorter than the save/call/restore code
sequence, since inlining would otherwise lead to significant code
expansion.

Secondly, many popular free space organization schemes are un-
acceptable due to their high rate of fragmentation. Examples in-
clude binary buddy [18, 27] and systems that compose all objects
out of a single small block size. The latter eliminate all external
fragmentation at the expense of greatly increased internal fragmen-
tation as well as increased access times, especially for array ele-
ments [30, 33].

In our J2ME environment, we do not make use of generational
collection [35], since despite its advantages, it consumes space for
(1) the nursery, (2) write barriers in compiled code, (3) the root
set for the nursery (implemented as a remembered set, a sequential
store buffer, or with card-marking), and (4) additional code in the
JVM image required by the increased complexity of the collector.

Other unfamiliar issues that arise in the embedded domain are
the use of physical rather than virtually addressed memory, which
makes a number of implementation techniques impossible; various
types of segmented memory architectures, either due to the small
architected word size of the processor, or to blocked allocation of
non-virtual memory by the operating system; differing levels of
memory performance (SRAM, DRAM, flash, etc.); and the require-
ment to reduce power consumption.

1.2 Organization
We present new techniques developed for garbage collection in

memory constrained environments, describe our implementations,
and quantitatively evaluate and compare them along the dimensions
of code size, memory overhead, and speed, as well as measuring the
relevant quantities which determine their performance.

2. THE MARK-COMPACT COLLECTOR
Embedded systems have tight memory requirements and appli-

cations are often long-running. Therefore, it is absolutely essential

to be able to place a tight bound on memory loss due to fragmen-
tation. This can not be done without compaction (or some other
technique which moves objects).

Our mark-compact collector is based on Saunders’ original mark-
compact algorithm [32, 26]. It allocates linearly until the heap is
exhausted and then compacts by sliding objects “to the left” (to-
wards low memory). It therefore tends to preserve (or even im-
prove) locality, and fragmentation is eliminated completely on ev-
ery collection.

As in a semi-space copying collector, allocation is very fast: a
simple bump pointer and range check. This allocation sequence
has the advantage that it is short enough to consider inlining, al-
though in our JVM we use a hand-coded, but out-of-line, allocation
sequence.

However, note that on platforms that present a segmented, non-
virtual memory interface (such as PalmOS [37]), fragmentation at
the end of segments becomes an issue that must be addressed.

2.1 Compaction and Its Optimizations
The sliding compaction algorithm requires 4 phases:

1. Mark: Traverse the object graph beginning at the roots, mark-
ing each object encountered as live.

2. Sweep: Scan memory sequentially, looking for dead objects
and coalescing them into contiguous free chunks. Compute
the new address for each object and store a forwarding pointer
in the object (see Section 2.2).

3. Forward: Change all object pointers to point to the for-
warded value as determined by the Sweep phase.

4. Compact: From left to right, move objects to their new lo-
cations.

Typically, the Sweep phase is the most expensive since it needs
to scan all of memory, while the other phases are proportional to
the live data. The Mark and Forward phases are typically similar
in cost, since they both essentially traverse the live objects and ex-
amine each field. The Compact phase is the fastest since it does
not look inside objects, but just copies them a word at a time. Al-
though the Forward and Compact phases scan the heap linearly,
their costs are proportional to only the live objects since the previ-
ous Sweep phase has coalesced adjacent dead objects into contigu-
ous free chunks.

It is in fact fairly straightforward to reduce by one the number
of collection phases, a result which so far we have not been able to
find in the published literature. We therefore present it here.

We observe that during the sweep phase, when we encounter an
object, the forwarded addresses of objects to its left have already
been computed. Therefore, we examine each pointer in the object
in turn, and if it points to the left, we replace the pointer with the
forwarded version stored with the destination object. If it points to
the right, we leave it unchanged.

We can then omit the Forward phase entirely. The Compact
phase is extended so that before moving an object (by sliding it
to the left) we examine each pointer in turn, and if it points to the
right, we know that (a) it was not forwarded in the previous pass,
and (b) that the forwarding pointer is still available. Therefore, we
forward exactly those pointers.

The result is an algorithm that traverses the heap 3 times instead
of 4, which would seem to result in a lower load on the memory
subsystem. However, we have found in practice that it makes al-
most no difference, and in fact tends to slightly slow down some
programs. The reason is that there are now two passes that examine
pointers in each object for forwarding. To do this they must look
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Figure 1: Implementation of compressed forwarding pointers
using the relocation base table (RBT).

at the target of the pointer, which results in a random access pat-
tern. Thus it appears that two sequential passes over live memory
cost about the same as one pass with random access. The reason
is that we are looking through the pointers in each object an extra
time, and this is an expensive operation. By having a separate For-
ward phase, although we scan the live objects an additional time,
we avoid scanning the pointers in the object a second time. Since
there are fewer objects than pointers, the extra phase wins.

Therefore, we will not further consider this optimization, al-
though it may give important performance benefits in systems with
different languages, memory technologies, etc.

2.2 Forwarding Pointer Elimination
The compaction algorithm requires an extra forwarding pointer

at the beginning of every object since, unlike a copying collector,
the forwarding pointer cannot overlay any data or header fields.
Due to the memory-constrained nature of embedded devices, we
wish to avoid paying this space cost, without requiring any extra
passes over the heap.

2.2.1 Encoded Class Indices
Every Java object contains a class pointer, which is used to find

the table of virtual functions of the class, to perform class tests
and cast operations, and to support various run-time system opera-
tions. The representation of a Java object with a fowarding pointer
is shown in Figure 1(a).

We eliminate separate forwarding pointers by encoding the class
pointer during the compaction phase, and then using the space made
available in the class pointer word to store a compressed forward-
ing pointer. Instead of a class pointer we use a 14-bit class index,
and obtain the class pointer by looking up the index in a table. To
avoid the need for a large class index table (which would consume
64KB) we divide the class table into 1KB pages (each containing
256 class pointers). Theclass page table(CPT) contains pointers
to the class pages. The CPT only requires 64 entries or 256 bytes.
The loss of space due to internal fragmentation in the last class page
is at most 1KB, and only 512 bytes on average.

The 14-bit class index is sub-divided into a 6-bit class page table
index and an 8-bit class page offset. To reduce the overhead of CPT
lookups, we use a single-element cache of the last lookup value.

Each class object must also contain its 14-bit class index (stored
in a half-word). So the total overhead is 1.5 words per class plus
256 bytes plus 0-1020 bytes lost to internal fragmentation.

Class pointers are converted into class indices during the For-

ward phase, and are converted back into class pointers during the
Compact phase.

2.2.2 Encoded Relocation Addresses
The reason that traditional compaction [32] requires an extra

word per object is that a relocation address is computed for each
object. Since we have freed space in the header word by encoding
the class pointer with an index, we have a sub-word available to
represent the relocation address. However, that relocation address
must be encoded as well, since we do not have enough space for a
full-width relocation pointer.

We observe that sliding compaction has the property that the re-
location addresses of successive objects in memory increase mono-
tonically. Therefore, for any region of memory of sizes, as long as
objects do not increase in size during relocation, the relocation ad-
dress can be represented as the relocation address of the first object
in the region plus an offset in the range[0, s).

There are two potential sources of object expansion: one is the
potential change in object size due to optimizations in object repre-
sentation. These optimizations and the manner in which they avoid
such expansion are described in Section 4. The other source of ex-
pansion is alignment requirements: an arbitrary number of objects
may have been correctly aligned with no padding necessary at their
original addresses, whereas their target addresses are misaligned.
This can lead to a relocated region actually growing in size.

However, there is always a schedule of relocations that elimi-
nates such mis-alignment. In particular, it is sufficient to align the
first object in the page to the same alignment that it had in its orig-
inal location. This is always possible, since if there is no space left
to align it, we must be able to place it in exactly the same relative
position. Preserving the alignment of the first object guarantees
that there will be no subsequent growth within the memory region
due to alignment changes.

Therefore, we divide memory into 128KB pages, and have are-
location base table(RBT) which contains the relocation address of
the first live object in each 128KB page. We then use 15 bits in the
header word (now available due to class pointer encoding) for the
relocation offset (15 bits encode 32KW or 128KB of shift). The
RBT is allocated at startup time based on the maximum heap size.
For example, on a system with 16MB of memory, the RBT con-
tains 128 entries, which consume 512 bytes. This is the only space
overhead for relocation.

To determine the relocation address of an object, its (shifted)
original address is used as an index into the RBT, from which the
relocation base address is loaded. The relocation address is then the
sum of the base plus the offset. The result is shown in Figure 1(b).

As with the CPT, we use a one-element cache of RBT transla-
tions to reduce the number of RBT lookups.

2.2.3 Our Implementation
In our systems, the class pointers are always in low memory.

Therefore we do not actually compress the class pointers; we sim-
ply “steal” the high 8 bits for the relocation base table (RBT) offset.
Therefore each RBT entry corresponds to 1 KB of memory (since it
is used to represent a word offset), resulting in an RBT table space
overhead of about 0.04%.

2.3 Mark-Coalesce-Compact
A variant of the mark-compact collector described so far is one

that avoids compaction by skipping compaction entirely if it dis-
covers enough contiguous free space. Compaction is only per-
formed when a large allocation request can not be satisfied with
contiguous memory, or if excessive fragmentation is discovered.
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This technique has been used in a number of collectors. While
it seems like it could provide large speedups, since it eliminates
half of the collection phases, it eliminates the two fastest phases,
so the performance impact is not as dramatic as might be expected.
Nevertheless, it provides a potential improvement while introduc-
ing minimal additional complexity and code expansion, and may
therefore be worthwhile.

2.3.1 Synchronization Issues
In fact, both the mark-compact and the mark-coalesce-compact

collectors normally allocate into small thread-local chunks of mem-
ory. Otherwise, synchronization overhead would dominate the cost
of allocation — causing roughly a 15% reduction in application
throughput.

To eliminate this, the hand-coded assembly language allocation
sequence attempts to allocate in the thread local area (typically 1-4
kilobytes, depending on object size demographics and the level of
multiprogramming). If a large object is requested, or if the thread
local area is full, a call is made to the synchronized allocator.

These synchronization issues have a significant impact on collec-
tor design. In particular, it means that the mark-coalesce-compact
collector can not directly re-use all of the recovered space that it
finds, but only contiguous free chunks sufficiently large to amortize
the synchronization cost. We are currently experimenting with the
tradeoffs in chunk size requirements versus collection frequency.

We are also investigating the creation of thread-local chains of
small objects – but that inevitably leads to a collector architecture
more like the one described in the next section. However, such
an optimization may be particularly important in very tight heaps,
since the smaller the heap the smaller the average contiguous free
region.

3. PAGED MARK-SWEEP-DEFRAGMENT
The PMSD collector is a whole-heap, mark-sweep collector with

optional defragmentation. The heap is divided into 1KB pages.
Each page either holds meta-data that describes other pages or else
holds application data. In our configuration, 1.5% of the heap is
dedicated to meta-data. Pages that hold application data are cate-
gorized as holding small data (objects less than 512 bytes) or large
data. Each small-data page has an associated size class (chosen
from one of 25 sizes ranging from 16 bytes to 512 bytes). The page
is sub-divided into blocks of the associated size [31]. A small ob-
ject is allocated into the smallest free block that will accommodate
it. Large objects consume multiple contiguous pages. The type and
state of each page is stored in its corresponding address-indexed
meta-data structure.

At the end of each garbage collection, contiguous free pages
are coalesced into contiguous block ranges. There are two block
range lists, one for holding singleton blocks and one for multi-block
ranges. During allocation, page requests that result from (small)
free block exhaustion are preferentially satisfied from the singleton
block list. For multi-page requests and failed single page requests,
a first-fit search from the multi-block list is used.

Whenever the free list of a size is exhausted, the dead (hence
free) blocks of a small object page of the same size are linked to-
gether. The batching allows most small object allocation to be fast.
If all small object pages of the request size are used, a completely
fresh page is requested. To avoid expensive atomic operations on
the free list, each thread has its own free lists, which are created
dynamically in response to application demand.

Each garbage collection begins with a mark phase where traver-
sal of all reachable objects from the roots causes the mark bits of
live objects to be set. The sweep phase then clears the mark bits

of live objects and designates blocks containing unmarked objects
as dead blocks. In this phase, the overall fragmentation of the sys-
tem is computed. If the fragmentation exceeds 25% or if the current
allocation request is unsatisfiable due to fragmentation, defragmen-
tation is triggered.

There are five sources of fragmentation in this scheme [1]. If a
small object’s size does not exactly match an existing size class, the
next larger size class is chosen. This resulting per-object wastage
is calledblock-internal fragmentation. Since the page size 1KB
may not be a precise multiple of a size class, the end of each small-
object page may be wasted. This is calledpage-internalfragmenta-
tion. Perhaps the most important source of fragmentation isblock-
externalfragmentation which results from partially used pages of
small objects.

Consider a program that allocates enough objects of the same
size to fill 10 pages of memory. If every other objects dies and the
program then ceases to allocate objects of that size class, then half
of the blocks in those pages will be wasted.

Page-externalfragmentation can result from the allocation of
multi-page objects that leave multi-page holes. If there is a multi-
page request is smaller than the sum of the holes but larger than a
single hole, then the request will fail even though there are suffi-
cient pages.

Finally, since using even a single block of a page forces the page
to be dedicated to a particular size class, up to almost one page per
size class can be wasted if that size class is only lightly used. In
the worst case, thesize-externalfragmentation is the product of the
page size and the number of size classes.

Page-internal fragmentation is eliminated by moving small ob-
jects from mostly empty pages to same-sized pages that are mostly
full pages [7]. Since there is no overlap of live and dead data, the
forwarding pointer can be written in the class pointer slot with-
out any compression. In some cases, page-level defragmentation is
necessary to combat page-external fragmentatoin. Currently, pages
holding small objects can be relocated to empty pages by a block-
copy but there is no multi-page defragmentation support. This tem-
porary shortcoming puts PMSD at a disadvantage for applications
that make heavy use of large arrays.

Because our size classes are statically chosen, the size-external
fragmentation can be severe for very small heaps. One solution
is to choose size classes dynamically. At runtime, neighboring size
classes are coalesced if the smaller size class is not heavily utilized.
In this way, the slight increase in page-internal fragmentation can
be more than offset by the decrease in size-external fragmentation.
Fewer size classes can also combat page-internal fragmentation.
On the other hand, the same adaptive technique can create more
size classes to densely cover size ranges where objects are prolific.
In this case, more size classes will decrease block-internal frag-
mentation.

4. SINGLE WORD OBJECT HEADER
Typical Java run-time environments use 3-word object headers:

one word for the class pointer, one word containing a thin lock [4],
and one word containing a hash code and garbage collector infor-
mation. Furthermore, mark-compact collectors previously required
an additional word to hold the forwarding pointer, which is only
used during garbage collection, as shown in Figure 2(a).

However, in an embedded environment, this profligate use of
space is not acceptable.

In Section 2.2, we showed how to eliminate the extra word for
the forwarding pointer, resulting in the object model of Figure 2(b),
which is also that used by the paged mark-sweep collector.

Bacon, Fink, and Grove [3] showed how the object header (with-
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Figure 2: Object models, requiring from 4 down to 1 word per
object.

out a forwarding pointer) can be compacted into a single word, at
the cost of requiring a mask operation on the class pointer, or into
two words at virtually no cost.

The optimizations can be briefly summarized as follows: the thin
lock is removed from the object header and instead is treated as an
optional field that is implicitly declared by the firstsynchronized
method orsynchronized(this) block that appears in the class hier-
archy. The result is shown in Figure 2(c).

Since most objects are not synchronized, and virtually all objects
that are synchronized have synchronized methods, this gives virtu-
ally the same performance as a dedicated thin lock in all objects,
and yet only requires space in a very small number. A special case
is instances ofObject, which are provided with a thin lock since
one of the only uses for such instances is to serve as a lock for
synchronized blocks.

4.1 The Mash Table
In a collector that does not perform compaction, objects never

move and the hash code can simply be implemented as a function
of the object’s address. However, compaction is a requirement for
embedded systems.

Previous work [3] showed that the space for the hash code could
be reduced to only two bits, by using the address of an unmoved
object as its hash code. When an object whose hash code has been
taken is moved, its original address is appended to the object and
the hash function makes use of this value instead.

As a result, the extra state for each object is normally only 2 bits
for the hash code and a few bits for the garbage collector state. If
the collector state bits are sufficiently few, then class objects can be
aligned on (for instance) 16-byte boundaries, providing 4 unused
low bits in which to store object state. Then, to use a class pointer,
the low bits must be masked out with anand immediateinstruction.
The result is shown in Figure 2(d).

However, this technique of hash code compression suffers from
two signficant disadvantages: (1) it consumes bits in the header
word of each object, even though hash codes are rarely used; even
worse, those bits are modified during execution and during garbage
collection, which tends to complicate the implementation. (2) It
causes objects to change size during their lifetime, which signifi-
cantly complicates garbage collection. In the mark-compact col-
lector, the forwarding pointer compression technique relies on the
property that live objects in a range of memory will be compacted
into an equally sized or smaller range of memory. If objects can
increase in size when they are moved, this is no longer true. In the

Benchmark Classes Function

Chess 92 Machine chess player
Crypto 75 Encrypt/decrypt (multiple algorithms)
kXML 75 XML parsing, DOM tree manipulation
Parallel 71 Parallel merge sort, matrix multiply
PNG 70 PNG image decoding
RegExp 80 Regular expression search

Table 1: Programs in the Embedded Microprocessor Bench-
mark Consortium (EEMBC) Java GrinderBench suite.

paged mark-sweep collector, defragmentation is efficient because it
is performed within a size class. If objects grow when moved, they
may change size classes.

Therefore, rather than storing hash codes of moved objects at the
end of the object, we store them in a structure we call themash
table. The mash table is a hash table of hash codes.

The mash table works as follows: when an object’s Javahash-
Code() method is called, we compute a hash value based on its
current address in storage. This is its hash index into the mash ta-
ble. To avoid confusion, we call this the object’smashcode. If we
find an entry whose key is the current address of the object, we re-
turn the corresponding value in the mashtable as its hash code. If
we do not find an entry for the object in the mashtable, we insert
a key/value pair where both the key and the value are the object’s
current address.

At garbage collection time, objects may move or die. Thus we
must in essence perform garbage collection of the mashtable: refer-
ences to dead objects are removed, and references to moved objects
have their key field updated to the new address and are relocated
in the mashtable based on the new mashcode. This is done after
marking and forwarding have been performed, but before actual
relocation of objects.

The mashtable therefore allows us to removeall extra state from
the object header, leaving only the garbage collector bits, as shown
in Figure 2(e).

The only complication with the mashtable is that we must pre-
vent errors due to concurrent access to the mashtable by multiple
threads. On a uniprocessor, if the virtual machine only switches
between Java threads at “safe points”, then this is achieved by not
having safe points in the mashtable code.

On a multiprocessor or in the absence of safe points, we can take
advantage of the fact that obtaining the hash code is an idempo-
tent operation (the hashcode of an object never changes, and its
mashcode only changes during garbage collection, which is syn-
chronized already). Therefore we can have a small per-processor
or per-thread cache of hashcode values, which allows us to reduce
the frequency of synchronization with the global mashtable to ac-
ceptable levels.

In our current implementation we have implemented the mash-
table in C++ as a separate structure. However, in order to be robust
in the face of pathological cases it is necessary to be able to resize
the mashtable and collect unused mashtable entries. Trying to do
this in a separate region of memory is complex, error-prone, and
inefficient. Therefore, in the next generation we plan to implement
the mashtable in Java as a collection ofprivate helper methods
of java.lang.Object. This will include a helper method that can
obtain the physical address of an object, and a helper method that
is called by the system at the end of garbage collection to rehash
the moved objects.
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Config Mfr. Make Model CPU Clock L1 L2 RAM OS Version

IA32 IBM Thinkpad T23 Pentium III-M 1.2 GHz 32KB 512KB 1GB Windows 2000 5.00.2195
ARM Sharp Zaurus SL-6000 XScale PXA-255 400 MHz 32KB — 64MB Embedix (Linux) 2.4.18

Table 2: Measurement Platforms

Allocation Allocated (MB) Maximum Live (KB)
Benchmark Objects Obj/s MB/s 4 3 2 1 4 3 2 1

Chess 5,736,819 99,418 2.08 163.7 141.8 119.9 98.0 39 37 35 32
Crypto 674,218 18,894 1.12 48.1 45.4 42.8 40.2 71 70 69 68
kXML 6,200,624 115,074 3.41 231.1 207.4 183.7 160.0 286 261 241 224
Parallel 1,375,140 37,139 1.20 54.8 49.6 44.4 39.2 263 248 228 211
PNG 942,306 26,993 2.28 86.7 83.1 79.5 75.9 106 101 97 96
RegExp 120,032 2,604 0.14 7.3 6.8 6.4 5.9 45 41 35 31

Table 3: Effect of header compression on heap consumption for header sizes from 4 to 1 words. Effect on both total allocated data
as well as on maximum live heap size are shown.

4.2 Elimination of Header Masking
The single-word object models of Figures 2(d) and (e) only con-

tain a class pointer and a few state bits. Thus when the system
makes use of the class pointer (for virtual method dispatch or dy-
namic type tests), it must first mask off the low bits of the header
word which are not part of the class pointer. This both slows down
the code and increases the code size, due to the extra instruction.

However, after eliminating the hash code the only remaining ob-
ject state bits are 1-3 bits for the garbage collector. As long as we
perform stop-the-world garbage collection (as with both of our im-
plemented collectors), the collection state bits are only used during
the collection itself, and not during normal execution. Therefore,
they are zero during normal execution, and the masking operation
can be eliminated!

5. MEASUREMENTS
We have implemented two basic collectors with a number of

variants in terms of per-object space overhead and the associated
run-time support. In this section we present an evaluation of our
collectors using the Embedded Microprocessor Benchmark Con-
sortium (EEMBC) Java GrinderBench benchmarks [19]. These
benchmarks are summarized in Table 1.

We have measured the collectors on two platforms: a Pentium-
based IBM Thinkpad and an ARM-based Sharp Zaurus. We refer
to these configurations throughout the text as the IA32 and ARM
configurations, respectively. Details of the measurement configu-
rations are shown in Table 2.

Both configurations use a bytecode interpreter with a light-weight
JIT compiler that compiles frequently executed methods. The JIT
compiler performs a moderate amount of optimization, since more
optimization requires both more RAM at run-time and more ROM
for the optimizing compiler. Infrequently executed methods are in-
terpreted to conserve space and reduce JIT overhead.

5.1 Collector-Independent Measures
We begin by evaluating the effect of the space optimizations

on collector-independent characteristics. These are shown in Ta-
ble 3. The first three columns give a general picture of the alloca-
tion behavior of each of the benchmarks: the total number of ob-
jects allocated, and the allocation rate in both objects/second and
megabytes/second (the latter two figures are for our most efficient
collector — mark-compact with single word headers — run with

a heap twice the size of maximum live memory on the ARM). For
each per-object overhead, from the original four words down to a
single word, we show the effect on both total allocated bytes and
on the maximum live data size.

The first thing to notice is that reducing the header size can have
a dramatic effect on the total bytes allocated (a 40% reduction for
Chess and a 30% reduction forkXML).

However, the effect on maximum live memory is considerably
less (18% and 21% respectively). This indicates that the average
size of long-lived objects is larger than the average size of all allo-
cated objects, which is not surprising.

Furthermore, there is enormous variation in the allocation rates:
kXML allocates over 50 times as much data asRegExp. There
is also considerable variation in the maximum live memory:kXML
has a maximum live memory size almost 7 times larger thanChess.

However, there is no correlation between allocation rate and max-
imum live memory:Chess has the smallest maximum live mem-
ory but allocates only slightly slower thankXML. This issue is ac-
tually quite important when deciding how to evaluate the perfor-
mance of collectors with respect to different benchmarks, since one
can normalize to either maximum live memory or to allocation rate,
and a compelling case can be made for both measures.

5.2 Overall Performance
We measured several variants of the two collectors described in

this paper: the mark-compact (MC) collector and the paged mark-
sweep-defragment (PMSD) collector. The initial per-object over-
head in the MC collector was 4 words: a 3-word header plus an
additional word for the forwarding pointer. We implemented for-
warding pointer compression, thin lock removal, and the mash ta-
ble, which allowed us to reduce the per-object overhead for each
collector to only 1 word.

Due to details of the IBM J2ME implementation, there were ex-
tra read-only state bits kept in the object header which we did not
have time to remove; therefore, in configurations using the one-
word header, every access to the class pointer includes an additional
AND instruction to mask the low bits. This slows down virtual func-
tion dispatch, class tests, and down-casting. However, this penalty
is offset by the fact that the one-word header also has a simpler
allocation sequence, sonew operations are faster.

The software configurations are named MC.4 through MC.1 for
the mark-compact collector with the corresponding header sizes,
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Figure 3: End-to-end execution time (ARM). Speed is relative to the best collector (mark-compact with 1-word headers, or MC.1) at
a heap size of two times the maximum live data.
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Figure 4: End-to-end execution time (IA32). Speed is relative to the best collector (mark-compact with 1-word headers, or MC.1) at
a heap size of two times the maximum live data.
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Figure 5: Chess benchmark: Performance details on the ARM. Mutator speed (left) and number of garbage collections (right).

and PMSD.3 through PMSD.1 for the paged mark-sweep-defrag-
ment collector. The collectors are measured at heap sizes from 1 to
5 times their maximum live memory (which is also the minimum
heap size in which they can run). For brevity, when we say “heap
size 2” we mean “heap size of 2 times the maximum live data size
for this application”.

We begin by examining the effect of garbage collection on ab-
solute, end-to-end performance, as shown in Figures 3 (for ARM)
and 4 (for IA32). Our discussion will focus on the ARM measure-
ments, since they are much more relevant for embedded systems.
On IA32, the entire heap often fits into the L2 cache.

The figures are normalized with respect to the performance of
the mark-compact collector with a 1-word header (MC.1) run with
heap size 2. We have chosen this configuration as our baseline
because MC.1 generally gives the best performance, and heap size
2 is large enough to get past the “knee” in the performance curve.
Furthermore, due to the constrained nature of embedded devices
we do not generally want to use more than twice the necessary
memory.

In general, the mark-compact (MC) collector consistently out-
performs the paged mark-sweep-defragment (PMSD) collector, in
both speed and in its ability to run in very small heaps (below heap
size 2). The speed differential is even larger on the ARM than
on the IA32 configuration. We will examine the reasons for these
differences in detail below.

The benchmarks can be characterized in 3 groups: high, medium,
and low collector loads.

The high-load benchmarks arekXML andChess. Both allocate
at a high rate, both in terms of MB/second and objects/second, and
both allocate a large amount of total data. However, whilekXML
has the largest maximum live heap size (224 KB with 1-word head-
ers),Chess has the secondsmallestmaximum live heap size (only
32 KB).

This leads to an interesting question: should we base perfor-
mance measurements of applications on their maximum live data
size, or on their allocation rate? WhileChess appears to be the
worst-performing benchmark in Figure 3, it must be noted that at
heap size 5, the absolute heap size is only 160 KB, which would
correspond to heap size 0.7 forkXML – it could not even run!

On the one hand, it hardly seems fair to penalize an applica-
tion for minimizing its maximum live heap size — to get a better
“score”, all a programmer would need to do would be to insert a
large unused static array. On the other hand, it is important to

know how well a program will run at its limits, since we expect
this mode of operation to occur more frequently on embedded de-
vices than otherwise. In the end, developers and evaluators must be
aware of the distinction and carefully consider their metrics.

The medium-load benchmarks arePNG andCrypto: they each
have similar (modest) allocation rates, maximum live memory, and
total allocated bytes. They achieve excellent performance: with
a heap size of only 1.3 (forPNG) and 1.25 (forCrypto), they
achieve over 85% of the performance at heap size 5. Both medium-
load programs perform about 1000 garbage collections at these
heap sizes. Because the heaps are small and the collector is effi-
cient, this does not impose a very large penalty on the application.

Finally, the low-load programs,Parallel andRegExp, have
almost no collector overhead: even with a relative heap size of only
1.05, they achieve over 90% of peak performance. ForRegExp,
this is easy to understand because it allocates very slowly — almost
ten times more slowly than the next slowest allocating benchmark
(Parallel). However,Parallel allocates at about the same
rate asCrypto, which is quite memory-sensitive below heap size
2.

Once again, the reason is the difference in absolute scale: the
maximum live heap size ofParallel is almost exactly 3 times
as large as that ofCrypto. Therefore, the graph forCrypto is
simply providing much higher resolution near the point of failure.
In particular, for programs with the same allocation rate, a collec-
tion will be triggered each time they allocate the difference between
their live heap size and the actual heap size. Assuming that the live
heap size is proportional to the maximum live heap size, this means
that the program with the larger live heap will appear to have better
performance near the asymptote, although in fact there is no differ-
ence.

5.3 Mark-Compact vs. Paged Mark-Sweep
The mark-compact collector consistently out-performs the paged-

mark-sweep collector and is able to run in much smaller heaps, as
can be seen in Figures 3 and 4. It is important to understand the
scope in which these results can be interpreted: only in our virtual
machine, only in embedded applications, or more broadly?

MC is a simpler collector along many different axes. Fundamen-
tally, it uses a much simpler heap organization, in which objects are
simply allocated one after another in the heap. As a result, there is
no fragmentation, almost no metadata, and the allocation operation
is simpler.
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Figure 6: Chess benchmark: Garbage collector phase times on the ARM. Mark-compact (left) and paged mark-sweep (right).

Furthermore, since there is no need for the collector to manage
multiple size classes and block metadata, the collector is simpler,
resulting in simpler and more compact code, and fewer invariants.
Finally, since objects are always allocated contiguously and com-
pacted in the same order, locality is generally better.

Figure 5 shows how some of these issues manifest in the Chess
benchmark. On the left, we have isolated the performance of the
application (“mutator”) by subtracting collector time. The graph
shows that most of the performance gap at large heap sizes is due
to the difference in mutator speed. This is due to a combination of
factors: the slower allocation sequence, the periodic “formatting”
operation when a new empty block is acquired for the free list of a
particular size class, and the poorer locality of the resulting data.

While we believe it is possible to eliminate the formatting op-
eration by combining it with work done by the collector which al-
ready traverses this portion of the heap, the other factors will re-
main. Thus PMSD will continue to suffer about a 4-8% perfor-
mance penalty, even at large heap sizes.

At small heap size, fragmentation is a significant problem for
PMSD. One important aspect of embedded programs that we ob-
serve is that the ratio between the size of the heap and the size of the
largest object does not scale linearly. In a 1 GB heap, it is common
for the largest object to be between 10 KB and 1 MB, for a ratio of
1000:1 up to 100000:1. However, for the EEMBC benchmarks, we
see ratios as small as 10:1.

As a result, the application is vastly more sensitive to external
fragmentation. The chance that there is a contiguous free chunk
of memory that is1/1000 or 1/100000 of the total heap size is
quite high, even when the total heap size is not that much larger
than the maximum live data size. However, the chance that there is
a contiguous free chunk that is1/10 of the heap size is generally
very low.

Our implementation of PMSD only moves large objects when it
can find some other contiguous free range for them (small object
defragmentation is used to maximize the availability of such free
ranges). This is partially responsible for PMSD’s inability to run in
small heaps. To solve this problem, PMSD would have to perform
sliding compaction for large objects (essentially turning it into a
PMSD/MC hybrid) or to make large objects (namely big arrays)
discontiguous in memory. This solution is calledarraylets[1], and
is quite effective at solving this problem — at the expense of slow-
ing down array operations. In the context of a highly optimizing JIT
compiler, this overhead can be greatly reduced, but with a simple
JIT on an embedded device this is less attractive.

The more fundamental problem is that in small heaps, there is
a tension between internal and external fragmentation. Since the
heap is small, there are not that many pages. Therefore it is desir-
able to have a relatively small number of size classes — but this
results in internal fragmentation (wasted space at the end of each
object). Increasing the number of size classes reduces internal frag-
mentation, but leads to under-utilization of the size classes (external
fragmentation).

The effect of this can be seen in the right-hand graph of Figure 5,
which shows the number of garbage collections performed. PMSD
approaches its vertical asymptote much more quickly due to space
lost to fragmentation — in effect, it is able to use a significantly
smaller proportion of the memory. The effect is particularly pro-
nounced in Chess, since the absolute heap size is so small (32 KB).

Figure 6 shows the cost of the individual collector phases for
both MC and PMSD. These graphs show the real-world impact of
the difference in theoretical complexity between the sweep phase
and the other phases of collection: sweep isO(heap), while the
other phases areO(live), and therefore remain flat. As a result, the
sweep phase dominates collection time at large relative heap sizes;
at small relative heap sizes it is similar or even less than the time
required by the other phases. PMSD has 4 phases instead of 6, but
the phases are more expensive.

Some further tuning of PMSD, in particular reducing the defrag-
mentation level, should further improve the performance at large
heap sizes, allowing it to close the performance gap slightly.

6. RELATED WORK
Chen et al. [11] evaluate the power consumption properties of

different parts of memory in an embedded JVM, and discuss col-
lection strategies to minimize power consumption, particularly in
a banked memory system where banks can be powered on and off
individually.

In subsequent work, Chen et al. [10] use dynamic compression
techniques to reduce the memory requirements of the application.
They use two strategies: first, when heap space is exhausted, they
perform compression on infrequently accessed objects. Second,
they avoid allocating infrequently used fields of objects.

Such techniques are complementary to our approach, which em-
phasizes compaction of the object model and collector metadata,
and maximizing performance of the general-purpose collector.

In the period from the early 1960’s to the mid-1970’s, Lisp sys-
tems ran with similar amounts of real memory as are available in
today’s smaller embedded environments, and there is therefore con-
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siderable related work from this time period [31, 22, 14, 7, 8], well
summarized by Cohen [15].

However, significant amounts of this pioneering work was driven
by the desire to reduce paging. The semi-space copying collectors
were a response to this pressure [20, 12].

Garbage collection in many early Lisp systems was considerably
simplified by virtue of the fact that all memory consisted of CONS
cells. This assumption was also implicit in the design of Baker’s
Treadmill real-time collector [6].

Siebert [33] has advocated a similar approach to eliminating ex-
ternal fragmentation in systems with variable object sizes: there
is a single block size (32 or 64 bytes) and all objects larger than
that size are made up of multiple blocks which are not necessarily
contiguous. Arrays are represented as trees.

There are two major problems with this approach: the first is that
it simply trades external for internal fragmentation, which can eas-
ily reach 50%. Second, access to large objects becomes expensive
— in particular, array element access, normally an indexed load in-
struction, becomes a tree walk operation. Performance overheads
can therefore be very large.

A number of variations of memory management based on re-
gions [31] have been tried [9, 21, 34]. While automatically inferred
regions can reduce the load on the garbage collector, they can not
satisfactorily handle objects that have lifetimes that are not stack-
like. Explicit regions significantly complicate the programming
model, lead to brittle code, and expose more run-time errors. We
have shown that garbage collection can run in constrained memory
with good performance, obviating many of the reasons for using
regions.

Johnstone [25] has claimed that fragmentation is not a problem
in “real world” applications and that it is feasible to build non-
compacting collectors. However, his measurements are for unreal-
istically short-lived programs. Furthermore, as our measurements
have shown, fragmentation is a much bigger problem in the small
heaps typical of embedded devices, since the ratio of the size of the
largest object to the total size of the heap is much larger. In the
embedded space, all collectors must perform compaction.

Much of the work on real-time garbage collection overlaps in
its concerns with pure embedded collection, although the real-time
concerns often lead to reduced throughput and increased complex-
ity, both of which we have striven to avoid [2, 5, 13, 36, 23].

For real-time or embedded systems, it is very important to be
able to know the memory requirements of a given application. One
approach is to analyze the live memory requirements using a com-
bination of programmer annotation of pointer types and recursion
depths, and automatic analysis [29].

7. CONCLUSIONS
We have implemented and empirically assessed variants of two

garbage collectors specifically designed for the unique requirements
of small embedded devices. An important part of making these
collectors efficient was developing algorithmic improvements and
compression techniques that allow us to eliminate almost all of the
per-object overhead that the virtual machine and garbage collector
traditionally require.

For embedded applications, our mark-compact algorithm is uni-
formly superior to the paged mark-sweep algorithm: it is almost
uniformly faster, runs in significantly smaller heaps, and consumes
only half as much code space. While this is true for both the IA32-
based laptop and the ARM-based PDA device, the speed differen-
tial is significantly higher on the PDA, suggesting that the greater
inherent complexity of the paged mark-sweep algorithm is a poor
match to an embedded CPU, with its simpler instruction set ar-

chitecture, shallower pipelines, and reduced instruction-level par-
allelism.

Our techniques for object metadata compression require only a
single word of metadata per Java object, even for the mark-compact
algorithm which previously always required an extra word to allow
for object relocation during garbage collection. Smaller objects
mean a lower allocation rate, a smaller maximum live data set size,
and a larger effective cache size. These properties result in higher
performance and lower heap size requirements.

However, these benefits are not without cost: the more tightly
packed the object metadata, the less redundancy and the more com-
plex the invariants that must be maintained. As a result, there is a
noticable cost in reliability, testing, and maintenance requirements.
However, these costs are likely to be worth paying on virtual ma-
chines with a large installed base in memory-limited devices, such
as cellular phones, smart cards, and sensors.

For applications with low to moderate allocation rates, our op-
timized mark-compact collector is able to achieve 85% of peak
performance with only 1.05 to 1.3 times the absolute minimum
heap size. For applications with high allocation rates, the collec-
tor achieves 85% of peak performance with 1.75 to 2.5 times the
minimum heap size. The collector code requires only 40 KB of
ROM, and collector metadata overhead has been almost completely
eliminated, consuming only 0.4% of the heap.
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