
Garbled Circuits via Structured Encryption

Seny Kamara Lei Wei 1

Microsoft Research UNC-Chapel Hill

Abstract. The garbled circuit technique transforms a circuit in such
a way that it can be evaluated on encrypted inputs. Garbled circuits
were originally introduced by Yao (FOCS ’86) for the purpose of secure
two-party computation but have since found many applications.
In this work, we consider the problem of designing special-purpose gar-
bled circuits, which are garbled circuits that handle only a specific class
of functionalities. Special-purpose constructions are usually smaller than
general-purpose ones and lead to more efficient two-party protocols.
We propose a design framework for constructing special-purpose garbled
circuits based on structured encryption schemes, which are encryption
schemes that encrypt data structures in such a way that they can be
queried through the use of a token. Using our framework, we show how
to design more efficient garbled circuits for several graph-based func-
tionalities (with applications to online social network analysis), Boolean
circuits, deterministic finite automata, and branching programs.

1 Introduction

Yao’s garbled circuit technique transforms circuits in such a way that they can
be evaluated on encrypted inputs. While garbled circuits were originally intro-
duced for the purpose of two-party secure function evaluation (SFE) [19], they
have since found many applications, some of which include the design of ho-
momorphic encryption schemes, one-time programs, circular-secure encryption,
non-interactive verifiable computation, functional encryption, and single-server-
aided SFE.

At a high level, the garbled circuit technique consists of: (1) a garbling proce-
dure that transforms a circuit C that computes a function f , and a set of inputs
x = (x1, . . . , xn) into a garbled circuit C̃ and an encoded input x̃ = (x̃1, . . . , x̃n);

(2) an evaluation procedure that computes a garbled output ỹ given C̃ and x̃;
and (3) a decoding procedure that, given ỹ and a set of decoding keys dk re-
turns f(x). The main security property provided by garbled circuits is input

privacy, which guarantees that, given (C̃, x̃,dk), no information about x is re-
vealed by the garbled circuit evaluation beyond what can be inferred from f(x).
As shown by Yao, combining garbled circuits with oblivious transfer results in
constant-round two-party SFE secure against semi-honest adversaries.

The importance of the garbled circuit technique in cryptography can be at-
tributed to several factors, including its security properties, its relative efficiency
and, most importantly, its generality. In fact, like fully-homomorphic encryption,
garbled circuits are one of the few general-purpose primitives in cryptography.

1Work done while at Microsoft Research.

While generality is crucial for establishing completeness theorems and for un-
derstanding the power of cryptographic techniques, it is well-known that it often
comes at the price of efficiency. In fact, it is common for special-purpose con-
structions (i.e., constructions that handle only a a sub-class of functionalities)
to be more efficient than general-purpose constructions.

Our contributions. In this work, we consider the problem of designing special-
purpose garbling schemes. Given the importance of garbled circuits and the effi-
ciency improvements enjoyed by special-purpose constructions, this is a natural
and well-motivated problem. We make the following contributions.

We introduce a general framework for designing special-purpose garbling
schemes. Our framework is based on a connection between garbled circuits and
the notion of structured encryption [8] which is a generalization of index-based
searchable symmetric encryption (SSE) [18,10,7,9]. Roughly speaking, a struc-
tured encryption scheme encrypts a data structure in such a way that it can
be queried through the use of a query-specific token that does not reveal in-
formation about the query. Our approach essentially reduces the problem of
designing special-purpose garbled circuits to the problem of designing struc-
tured encryption schemes. Consequently, improvements in either the efficiency
or functionality of structured encryption can lead to similar improvements in
the design of special-purpose two-party protocols in the semi-honest model and
other cryptographic primitives that rely on input-private garbled circuits.

While our main contributions are conceptual, we demonstrate the utility of
our approach by constructing special-purpose garbling schemes for several useful
functionalities. For example, using our framework with the structured encryption
schemes of [8], we get special-purpose garbling schemes (and therefore two-party
protocols) for several graph-based functionalities that have applications to online
social networks. In addition, in the full version of this work we use our framework
to construct garbling schemes for other functionalities like branching programs
(BP), deterministic finite automata (DFA) and even Boolean circuits. In all
cases, the garbled circuits resulting from our approach are more efficient (i.e.,
either smaller or with faster evaluation) than the garbled circuits that would
result from applying Yao’s general-purpose construction.

The main building block we need to handle DFAs, BPs and Boolean circuits is
a matrix encryption scheme that supports lookups, i.e., a structured encryption
scheme that encrypts matrices in such a way that a location (i, j) can be queried
using a token. While such a scheme is described in [8], that particular construc-
tion is not appropriate for our purposes. The problem is that the scheme from [8]
is only 1-dimensional in the sense that it generates a single token for a location
(i, j) in the matrix. For our purposes, however, we need a 2-dimensional scheme
that generates two independent tokens, i.e., one for i and one for j that can be
combined to lookup location (i, j). We show how to construct such a scheme
based on the 1-dimensional construction of [8] and pseudo-random synthesizers
[17].

1.1 Background on Structured Encryption

Several variants of structured encryption were described in [8] but for our pur-
poses we need the structure-only variant which only encrypts data structures
as opposed to the standard variant which also encrypts messages. A struc-
tured encryption scheme is a tuple of four polynomial-time algorithms SE =
(Gen,Enc,Token,Querye) such that Gen is a probabilistic algorithm that takes
as input a security parameter k and outputs a private key K. Let T be an
abstract data type that maps queries q from a query space Q to an answer a
from a response space R. Enc is a probabilistic algorithm that takes as input
a key K, a data structure δ ∈ T and outputs an encrypted data structure γ.
Token is a (possibly probabilistic) algorithm that takes as input a private key K
and a query q ∈ Q and outputs a token τ . Querye is a deterministic algorithm
that takes as input an encrypted data structure γ and a token τ and outputs
an answer a ∈ R. Informally, a structured encryption scheme is secure against
chosen-query attacks (CQA1) if no useful information about q and δ can be
recovered from γ and τ beyond what can be deduced from a. We say that a
structured encryption scheme is secure against adaptive chosen-query attacks
(CQA2) if this holds even when queries are made adaptively (i.e., as a function
of the encrypted data structure γ and the results of previous queries and tokens).

As a concrete example, consider a graph encryption scheme Graph = (Gen,Enc,
Token,Neighe) that supports neighbor queries (we refer the reader to [8] for a
concrete construction). With such a scheme one can encrypt the edges E of a
graph G = (V,E) by computing γ ← Enc(K,E). A token for a vertex v ∈ V
can be created as τ ← Token(K, v) and the neighbors of v, denoted Γ (v), can
be recovered by computing Neighe(γ, τ).

Associative structured encryption. For our purposes, we need associative struc-
tured encryption schemes which allow one to associate arbitrary strings to each
output. So, with respect to our previous example, an associative graph encryp-
tion scheme supporting neighbor queries would: (1) allow the encryptor to as-
sociate arbitrary strings to each vertex of the graph during the encryption step;
and (2) reveal these strings whenever the associated vertex is in Γ (v). More
precisely, in addition to the secret key sk and the edges E, the Enc algorithm
would also take as input a set of strings (sv1 , . . . , sv|V |), where svi is associated
with vertex vi. Then, the algorithm Neighe would return, in addition to Γ (v),
the set {sw}w∈Γ (v).

Due to space restrictions, we refer the reader to [8] for formal definitions of
(associative) structured encryption and of the relevant security definitions.

1.2 Overview of our Framework

At a high level, our framework consists of two steps. In the first step, the function
f is represented as a structured circuit which is a circuit-like computational
model where each gate g can query a data structure δ and where the input

and output wires of g carry queries for the structures of g and g’s descendent,
respectively. Our notion of structured circuits is reminiscent of Naor and Nissim’s
circuits with lookup tables [16] though, in our setting, the contents of the data
structure cannot be set during computation. In the second step, at a very high
level, the structured circuit is garbled by encrypting each data structure δ with
an appropriate structured encryption scheme. These encrypted structures are
viewed as the garbled gates and the tokens used to query them are viewed as
the encoded wire values.

Note that the functionality and security properties needed to construct a
garbled gate are precisely what is provided by associative structured encryption
schemes. Indeed, a garbled gate must: (1) privately store the encodings for its
outgoing wires; (2) reveal those encodings when presented with encodings for
its input wires (according to the operation implemented by the gate); and (3)
not reveal anything about a wire value given only its encoding. Similarly, an
associative structured encryption scheme encrypts a data structure in such a
way that: (1) arbitrary strings can be stored in the encrypted structure and
associated with any answer; (2) these strings are only revealed when presented
with an appropriate query token; and (3) no information is revealed about the
query from the token.

2 Related Work

Garbled circuits. Garbled circuits were introduced by Yao in his seminal work
on SFE [19]. Since, they have found many additional applications as discussed in
Section 1. Due to their wide applicability, several garbling techniques have been
introduced over the years. Recently, Applebaum, Ishai and Kushilevitz proposed
the first garbling scheme for arithmetic circuits [1].

Formalizations of garbled circuits have been proposed in the past. The most
notable is the notion of randomized encodings (RE), which was introduced by
Ishai and Kushilevitz [12,13]. While REs have found many applications in cryp-
tography and even in complexity theory, the RE abstraction is not appropriate
for certain applications. Recently, Bellare, Hoang and Rogaway [4,3] provided a
formal treatment of garbled circuits. The formalization we use here is similar to
that of [4,3] but does not capture function privacy (which, intuitively, guarantees
that a garbled circuit does not reveal information about its functionality) since
we are mostly concerned here with applications to two-party computation (as
opposed to private function evaluation).

Special-purpose garbled circuits. In addition to the general-purpose constructions
described above, several works in the past have proposed two-party protocols for
various classes of functions that (sometimes implicitly) relied on special-purpose
garbled circuits. Some examples are [14,6,2], which construct efficient two-party
protocols for evaluating ordered binary decision diagrams (OBDDS); and [15]
which gives an efficient protocol for evaluating DFAs. All these protocols can be
viewed as a combination of a special-purpose garbling scheme with OT, just as

Yao’s general-purpose two-party protocol is a combination of a general-purpose
garbling scheme with OT.

Structured encryption. Structured encryption was introduced in [8] as a general-
ization of the notion of a secure index considered by Song, Wagner and Perrig in
[18] and Goh in [10] for the purpose of building searchable symmetric encryption
(SSE) schemes. SSE was first considered explicitly in [18].

3 Preliminaries

We use oracles in some of our definitions for conciseness. In each case, these
oracles only allow the adversary to make a single query. To stress this, we will
often say that an oracle is a single-query oracle.

An abstract data type is a collection of objects together with a set of opera-
tions defined on those objects. We recall the formalization of an abstract data
type given in [8]. Formally, a data type T is defined by a universe U = {Uk}k∈N
and an operation Query : U × Q → R, where Q = {Qk}k∈N is the operation’s
query space and R = {Rk}k∈N is its response space. The universe, query and
response spaces are ensembles of finite sets indexed by the security parameter
k. We assume that the universe is a totally ordered set and that the response
space includes special elements ⊥ and ε denoting failure and the empty string,
respectively. Given a data structure δ we sometimes write T (δ) to refer to its
type.

4 Syntactic and Security Definitions

A garbling scheme Garb consists of four algorithms (Grb,Enc,Eval,Dec). The
algorithm Grb is used to garble a circuit and to generate a secret key sk and a
set of decoding keys dk. The algorithm Enc is used with the secret key to encode
inputs, and the Eval algorithm is used to evaluate a garbled circuit on a set of
encoded inputs. Evaluation results in an encoded output which can be decoded
into the real output using the decoding algorithm Dec and an appropriate subset
of the decoding keys.

Definition 1 (Garbling scheme). A garbling scheme Garb = (Grb,Enc,Eval,Dec)
consists of four polynomial-time algorithms that work as follows:

– (C̃,dk, sk) ← Grb(1k,C) : is a probabilistic algorithm that takes as input a

circuit C with n inputs and ` outputs and returns a garbled circuit C̃, a set
of decoding keys dk = (dk1, . . . ,dk`) and a secret key sk.

– x̃ := Enc(sk, x) : is a deterministic algorithm that takes as input a se-
cret key sk, an input x and returns an encoded input x̃. We sometimes
write x̃ := Enc(sk,x) to denote the algorithm that takes multiple inputs
x = (x1, . . . , xn), runs Enc(sk, ·) on each xi and returns the garbled inputs
x̃1 through x̃n.

– ỹ := Eval(C̃, x̃) : is a deterministic algorithm that takes as input a garbled

circuit C̃ and encoded inputs x̃ and returns encoded outputs ỹ.
– {⊥, yi} := Dec(dki, ỹi) : is a deterministic algorithm that takes as input a

decoding key dki and an encoded output ỹi and returns either the failure
symbol ⊥ or an output yi. We sometimes write {⊥,y} := Dec(dk, ỹ) to
denote the algorithm that takes multiple garbled outputs ỹ = (ỹ1, . . . , ỹ`),
runs Dec(dki, ·) on each ỹi and returns the outputs y1 through y`.

We say that Garb is correct if for all k ∈ N, for all polynomial-size circuits C,
for all inputs x for in the domain of C, for all (C̃,dk, sk) output by Grb(1k,C),

for x̃ := Enc(sk,x) and ỹ := Eval
(
C̃, x̃

)
and for all i ∈ [`], Dec

(
dki, ỹi

)
= yi.

Non-adaptive input privacy. Most applications of garbled circuits rely on a sim-
ple notion of security that guarantees that a garbled circuit C̃ together with
encoded inputs x̃ and the decoding keys dk reveal at most f(x). The follow-
ing simulation-based definition guarantees that the garbled circuit, the encoded
inputs and the decoding keys are all simulatable given the result of the computa-
tion. Intuitively, this implies that for some set of inputs x, an efficient adversary
that holds (C̃, x̃,dk) will not learn anything beyond f(x).

Definition 2 (Sim1-security). A garbling scheme Garb = (Grb,Enc,Eval,Dec)
is Sim1-secure with respect to a circuit C if, for all polynomial-size adversaries
A, there exists a polynomial-size simulator S such that the following distributions
are computationally indistinguishable:{〈

C̃, x̃,dk
〉

: (C̃,dk, sk)← Grb
(
1k,C

)
; x← A(1k); x̃← Enc(sk,x)

}
,

{〈
C̃, x̃,dk

〉
: x← A(1k); (C̃, x̃,dk)← S

(
C, f(x)

)}
.

Adaptive input privacy. While non-adaptive privacy is sufficient for some ap-
plications (e.g., secure two-party computation in the semi-honest model) there
are other useful applications for which it falls short. This typically occurs in
situations where the adversary can choose its inputs as a function of the garbled
circuit (for example in one-time programs [11]). The following simulation-based
definition of adaptive input privacy guarantees that the garbled circuit, the en-
coded input and the decoding keys are all simulatable given only the circuit and
the result of the computation. Like the non-adaptive definition, this holds for
adversarially-chosen inputs; but, unlike the non-adaptive definition, the inputs
can be chosen as a function of the garbled circuit.

Definition 3 (Sim2-security). A garbling scheme Garb = (Grb,Enc,Eval,Dec)
is Sim2-secure with respect to a circuit C if, for all polynomial-size adversaries
A, there exists a polynomial-size stateful simulator S = (S1,S2) such that the
following distributions are computationally indistinguishable:{〈

C̃, x̃,dk, stA
〉

: (C̃,dk, sk)← Grb
(
1k,C

)
; stA ← AEnc(sk,·)(C̃,dk)

}
,

{〈
C̃, x̃,dk, stA

〉
: (C̃,dk)← S1(C); stA ← AOsimS2 (·)(C̃,dk)

}
,

where OsimS2 is a single-query oracle that takes as input x and returns x̃ ←
S2(C, f(x)).

5 Garbling Schemes via Structured Encryption

The first step in our framework is to describe the functionality f as a structured
circuit which, roughly speaking, is a circuit with gates that can query data
structures that support a given set of operations. Given a structured circuit
representation of f we then garble it using an appropriate set of structured
encryption schemes.

Structured circuits. An n input and m output structured circuit C over a basis
B = {T1, . . . ,Tβ} is a directed acyclic graph with n input wires and m output
wires such that each gate g has access to a data structure of type T ∈ B which
supports an operation Query : U × Q1 × · · · × Qν → R. We say that g is a
(T , ν)-gate if: (1) it has access to a structure δ of type T ; and (2) it has ν input
wires that carry queries (q1, . . . , qν) ∈ Q1 × · · · × Qν and an output wire that
carries answers in R. We require that if g1’s output wire is g2’s ith input wire,
then R1 = Q2,i where R1 refers to the response space of g1 and Q2,i denotes
the ith query space of g2.

Throughout, we assume a topological ordering on C and denote its ith gate
by gi. For notational convenience, we sometimes write T (g), Q(g), R(g) to refer
to a gate g’s type, query space and answer space, respectively.

A structured circuit C is evaluated on input (q1, . . . , qn) from the input wires
to the output wires. When the inputs to the incoming wires of a gate g have been
obtained, the output wire of g is set to a := Query(δ, q1, . . . , qν). The output of
the circuit are the values obtained on the output wires of the circuit.

5.1 Our Framework

We now describe our approach to designing special-purpose garbled circuits. Let
C be a structured circuit over the basis B and let {SE1, . . . ,SEβ} be a set of
structured encryption schemes for each abstract data type in B. Our approach
is described in detail in Fig. 1 and, at a high level, works as follows.

If g has access to a data structure δ of type T (e.g., a graph or a matrix) then
δ is encrypted using a structured encryption scheme for type T . The resulting
encrypted structure γ is the garbled gate and the tokens for queries q are used
as encodings for the wires. To allow for the connection of gates to one another,
the underlying structured encryption schemes must be associative.

Intuitively, the input privacy of the resulting garbled (structured) circuit is
guaranteed by the security of the structured encryption scheme. This approach
results in garbled circuits that have the same size as the structured circuit for f .
For certain functions, the structured circuit representation can be much smaller
than the boolean circuit representation (we discuss this further in Section 6).

Let B = {T1, . . . ,Tβ} be a basis and (SE1, . . . , SEβ) be associative struc-
tured encryption schemes for the types in B. Construct a garbling scheme
Garb = (Grb,Enc,Eval,Dec) for the class of n input and m output structured
circuits over B as follows:

– Grb(1k,C):
1. (output gates) let out = (o1, . . . , om) be the set of output gates

and for each oi,
(a) generate a key Ki ← SET (oi).Gen(1k)

(b) for all a ∈ R(oi), sample λi,a
$← {0, 1}k

(c) compute γi ← SET (oi).EncKi(δ,λ), where δ is the structure of
oi and λ = {λi,a}a∈R(oi)

(d) set dki to be a lookup table that maps λi,a to a.
2. (non-output gates) let out = (g1, . . . , g`) be the set of non-

output gates and for each gi,
(a) generate a key Ki ← SET (gi).Gen(1k)
(b) let d be the descendant of gi and let Kd be the key generated

for it
(c) for all q ∈ Q(d), compute τq := SET (d).TokenKd(q)
(d) compute γi ← SET (gi).EncKi(δ, τ), where τ =

(τ1, . . . , τ|Q(d)|).

3. let C̃ = (γ1, . . . , γ|C|), where γj is the garbling of the jth gate in C
4. if in = (g?1 , . . . , g

?
n) are the inputs gates, let sk = (K?

1 , . . . ,K
?
n) be

the keys generated for these gates
5. let dk = (dk1, . . . , dkm),

6. output (C̃,dk, sk)
– Enc(sk, x): compute τ ← SET (x).TokenK(x)(x) and output x̃ = τ .

– Eval(C̃, x̃): evaluate C̃ from the input wires to the output wires
as follows: when the tokens τ1 and τ2 of the incoming wires to a
garbled gate γ have been obtained, set the output wire of γ to
τ3 ← SET (γ).Querye(γ, τ1, τ2). After processing all gates, output ỹ =
(λo1 , . . . , λom), where λoi is the value obtained on the output wire of
the ith output gate oi.

– Dec(x̃,dki, ỹi): parse ỹi as λi and output yi := dki[λi].

Fig. 1. A framework for designing special-purpose garbled circuits.

Non-adaptive input privacy. We show that if the underlying structured encryp-
tion schemes are Cqa1-secure, then our construction results in a garbling scheme
that provides non-adaptive input privacy. Due to space restrictions, the proof is
deferred to the full version of this work.

Theorem 1. If (SE1, . . . ,SEβ) are Cqa1-secure, then the scheme described in
Fig.1 is Sim1-secure.

Adaptive input privacy. In the full version of this work, we also show that if
the underlying schemes are Cqa2-secure, then the resulting garbling scheme
provides the stronger notion of adaptive input privacy.

Theorem 2. If (SE1, . . . ,SEβ) are Cqa2-secure, then the construction described
in Fig.1 is Sim2-secure.

A remark on Yao’s construction. We observe that Yao’s garbled circuit con-
struction can be viewed as an instantiation of our framework using 2× 2 matrix
encryption schemes that support lookup queries. Recall that in Yao’s construc-
tion, garbled circuits are constructed as follows. Each gate g in the circuit C
is replaced with a garbled gate g̃. Here, we assume without loss of generality
that g has two input wires wa and wb and one output wire wc. The bit values
conducted by each wire are replaced with a randomly chosen encoding. So the
0 and 1 bits on wire wa are encoded as ωa0 and ωa1 which are sampled uniformly
at random. The encodings for all the bits of wb and wc are generated similarly.
The garbled gate g̃ is constructed such that, given (ωa0 , ω

b
0) it returns ωcg(0,0),

given (ωa0 , ω
b
1) it returns ωcg(0,1), and so on. Notice that because the encodings

are chosen uniformly at random, they do not reveal any information about the
real wire values.

These garbled gates can be viewed as structured encryption schemes for
2 × 2 matrices that support lookups. To illustrate this, we briefly sketch how
each implies the other (we defer a more formal treatment to the full version of
this work). Given a Boolean gate g we can construct a garbled gate g̃ using any
associative 2-dimensional matrix encryption scheme for 2 × 2 matrices. The 0
and 1 labels for wa are tokens for the first and second row, respectively; and the
0 and 1 labels for wb are tokens for the first and second column, respectively.
The garbled gate g̃ is then the encryption of the matrix M defined as M [i, j] =
τ cg(i−1,j−1), where τ c0 and τ c1 are the tokens used as encodings for g’s output wire

(alternatively, for one of its descendent’s input wires). In the other direction, we
can construct an associative 2 × 2 matrix encryption scheme from any garbled
gate construction. It suffices to view the garbled gate as the encrypted matrix
(replacing the output wire encodings with the associated data) and the input
wire encodings as the tokens for lookup queries.

6 Concrete Constructions

In the previous Section, we showed how to construct special-purpose garbled
circuits for any function f that can be written as a structured circuit over a

basis B. This requires, however, that we have structured encryption schemes for
the data types in B. In [8], several structured encryption schemes were proposed
including a matrix encryption scheme that supports lookup queries, a graph
encryption scheme that supports adjacency queries (i.e., given two nodes, test
whether they are adjacent), a graph encryption scheme that supports neighbor
queries (i.e., given a node, return all of its neighbors) and a web-graph encryption
scheme that supports focused subgraph queries. All the schemes in [8] were shown
Cqa2-secure so, using our framework, we get adaptively-secure special-purpose
garbling schemes for any structured circuit over the basis B consisting of the
data types mentioned above.

This leads to garbling schemes and (when combined with OT in the natural
way) special-purpose two-party protocols in the semi-honest model for several
graph-based functionalities. Note that in all these functionalities there is a set
of public vertices V , and one player holds a private set of edges E over V that
the second player wants to query in some way. This captures several real-life
scenarios, e.g., in online social network analysis where the identities of users is
public (e.g., Facebook, LinkedIn, Google+) but the relationships between users
(i.e., friendships, connections, relationships) is private. In particular, this leads
to two-party protocols for the following functionalities:

– (neighbor queries) fV (E, v) = (⊥, Γ (v)), where Γ (v) are the neighbor of v.
– (adjacency queries) fV (E, (v1, v2)) = (⊥,M [v1, v2]), where MG is the adja-

cency matrix of G = (V,E).
– (focused subgraph queries) fV ((E,D1, . . . , D|V |), w) = (⊥, Σ(w)), where D1

through D|V | are documents (e.g., user profiles) associated with the vertices
in V and Σ(w) = {vi ∈ V : w ∈ Di} ∪ {Γ (vi) ⊆ V : w ∈ Di}, i.e., the
vertices whose documents contain the keyword w and their neighbors.

We briefly note that in the context of online social networks, focused subgraph
queries (FSQ) allow P2 to make queries of the type “search for all users who are
friends with someone that likes product X”, which is particularly compelling for
marketing applications. In the context of healthcare (i.e., the vertices are patients
and the documents are their medical records), FSQs allow P2 to query for all
patients who are related to someone who has a particular disease or symptom.

In addition to the schemes mentioned above, we can use our framework to
design special-purpose garbling schemes (and therefore two-party protocols) for
functionalities not handled by the structured encryption schemes of [8]. This
includes Boolean circuits, DFAs and BPs. In fact, in the full version, we show that
all these functionalities can be handled using a 2-dimensional matrix encryption
scheme. Due to space restrictions, we only describe this new matrix encryption
construction and leave its application to Boolean circuits, DFAs and BPs—which
is straightforward—to the full version of this work.

While [8] show how to construct an associative matrix encryption scheme
that is Cqa2-secure, their particular construction is not appropriate for our
purpose. More precisely, their scheme is only one-dimensional, in the sense that
it only generates a single token for a lookup query (i, j). On the other, for our

purposes, we need a scheme that generates independent tokens for i and j that
can later be combined to do a lookup at location (i, j) on the encrypted matrix.

1-D Matrix encryption. At a high level, the scheme from [8] works as follows:
given an n × m matrix M a new matrix C is constructed such that each ele-
ment M [i, j] is stored in C at location (α, β) := PK1

(i, j) encrypted under key
Kα,β := FK2

(α, β), where P : {0, 1}k× [n]× [m]→ [n]× [m] is a pseudo-random
permutation 2 F : {0, 1}k × [n]× [m]→ {0, 1}`(k) is a pseudo-random function.
The encrypted matrix is C and a lookup token for location (i, j) consists of the
tuple (α, β, FK2(α, β)).

2-D Matrix encryption. We sketch here how to make the scheme from [8] two-
dimensional. Note that this approach only yields a Cqa1-secure scheme. This,
however, implies a Sim1-secure garbling scheme which is sufficient for important
applications like two-party computation.

Let `(k) be an upper bound on the length of the information stored in the
matrix (e.g., the associated data). We use a primitive introduced by Naor and
Reingold in [17] called a pseudo-random synthesizer, which can be built from
weak pseudo-random functions. A synthesizer Synth is an efficiently computable
function such that{〈

Synth(xi, yj)
〉
1≤i,j≤m : x

$← Xn; y
$← Xn

}
c
≈
{〈

r
〉

: r
$← Xn2

}
.

Let P and Q be two pseudo-random permuations and let F be a pseudo-random
function. In the new scheme the element M [i, j] is stored at location (α, β) :=
(PK1(i), QK2(j)) in C and XORed with the padKi,j := Synth(FK3(0‖α), FK3(1‖β)).
Lookup tokens for location (i, j) are simply (α, FK3

(0‖α)) and (β, FK3
(1‖β)). It

is easy to show that this scheme is Cqa1-secure (we defer a proof to the full
version) so by, Theorem 1, it can be used to construct a Sim1-secure garbling
schemes. If Sim2-security is needed one can use the transformation of [3].

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits.
In Symposium on Foundations of Computer Science (FOCS ’11), pages 120–129.
IEEE Computer Society, 2011.

2. M. Barni, P. Failla, V. Kolesnikov, R. Lazzeretti, A.-R. Sadeghi, and T. Schneider.
Secure evaluation of private linear branching programs with medical applications.
In European Symposium on Research in Computer Security (ESORICS ’09), pages
424–439, 2009.

3. M. Bellare, V. T. Hoang, and P. Rogaway. Adaptively secure garbling with appli-
cations to one-time programs and secure outsourcing. In Advances in Cryptology
- ASIACRYPT ’12, 2012.

2Note that pseudo-random permutations over small domains can be constructed
using techniques from [5].

4. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
ACM Conference on Computer and Communications Security (CCS ’12), pages
784–796, 2012.

5. J. Black and P. Rogaway. Ciphers with arbitrary finite domains. In B. Preneel,
editor, The Cryptographers’ Track at the RSA Conference (CT-RSA ’02), volume
2271 of Lecture Notes in Computer Science, pages 114–130. Springer-Verlag, 2002.

6. J. Brickell, D. Porter, V. Shmatikov, and E. Witchel. Privacy-preserving remote
diagnostics. In ACM Conference on Computer and Communications Security (CCS
’07), pages 498–507. ACM, 2007.

7. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In Applied Cryptography and Network Security (ACNS ’05), vol-
ume 3531 of Lecture Notes in Computer Science, pages 442–455. Springer, 2005.

8. M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
Advances in Cryptology - ASIACRYPT ’10, volume 6477 of Lecture Notes in Com-
puter Science, pages 577–594. Springer, 2010.

9. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In ACM Conference on
Computer and Communications Security (CCS ’06), pages 79–88. ACM, 2006.

10. E-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography
Archive, 2003. See http://eprint.iacr.org/2003/216.

11. S. Goldwasser, Y. Kalai, and G. Rothblum. One-time programs. In Advances in
Cryptology - CRYPTO 2008, pages 39–56. Springer-Verlag, 2008.

12. Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation
with applications to round-efficient secure computation. In IEEE Symposium on
Foundations of Computer Science (FOCS ’00), pages 294–304. IEEE Press, 2000.

13. Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect
randomizing polynomials. In International Colloquium on Automata, Languages
and Programming (ICALP ’02), pages 244–256. Springer, 2002.

14. L. Kruger, S. Jha, E.-J. Goh, and D. Boneh. Secure function evaluation with
ordered binary decision diagrams. In ACM Conference on Computer and Commu-
nications Security (CCS ’06), pages 410–420. ACM, 2006.

15. P. Mohassel, S. Niksefat, S. Sadeghian, and B. Sadeghiyan. An efficient protocol
for oblivious dfa evaluation and applications. In RSA Conference - Cryptographer’s
Track (CT-RSA ’12), 2012.

16. M. Naor and K. Nissim. Communication preserving protocols for secure function
evaluation. In Symposium on Theory of Computing (STOC ’01), pages 590–599.
ACM, 2001.

17. M. Naor and O. Reingold. Synthesizers and their application to the parallel con-
struction of pseudo-random functions. In Symposium on Foundations of Computer
Science (FOCS ’95), pages 170–. IEEE Computer Society, 1995.

18. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted
data. In IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE
Computer Society, 2000.

19. A. Yao. How to generate and exchange secrets. In IEEE Symposium on Foundations
of Computer Science (FOCS ’86), pages 162–167. IEEE Computer Society, 1986.

http://eprint.iacr.org/2003/216

