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Abstract. Yao’s Garbled Circuit (GC) technique is a powerful crypto-
graphic tool which allows to “encrypt” a circuit C by another circuit Ĉ
in a way that hides all information except for the final output. Yao’s orig-
inal construction incurs a constant overhead in both computation and
communication per gate of the circuit C (proportional to the complexity
of symmetric encryption). Kolesnikov and Schneider (ICALP 2008) in-
troduced an optimized variant that garbles XOR gates “for free” in a way
that involves no cryptographic operations and no communication. This
variant has become very popular and has lead to notable performance
improvements.

The security of the free-XOR optimization was originally proven in
the random oracle model. Despite some partial progress (Choi et al.,
TCC 2012), the question of replacing the random oracle with a standard
cryptographic assumption has remained open.

We resolve this question by showing that the free-XOR approach can
be realized in the standard model under the learning parity with noise
(LPN) assumption. Our result is obtained in two steps:
– We show that the random oracle can be replaced with a symmetric

encryption which remains secure under a combined form of related-
key (RK) and key-dependent message (KDM) attacks; and

– We show that such a symmetric encryption can be constructed based
on the LPN assumption.

As an additional contribution, we prove that the combination of RK and
KDM security is non-trivial: There exists an encryption scheme which
achieves both RK security and KDM security but breaks completely at
the presence of combined RK-KDM attacks.

1 Introduction

Yao’s garbled circuit (GC) construction [42] is an efficient transformation which
maps any boolean circuit C : {0, 1}n → {0, 1}m together with secret randomness
into a “garbled circuit” Ĉ along with n pairs of short k-bit keys (W 0

i ,W
1
i ) such

that, for any (unknown) input x, the garbled circuit Ĉ together with the n keys
Wx = (W x1

1 , . . . ,W xn
n ) reveal C(x) but give no additional information about
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x. Yao’s celebrated result shows that such a transformation can be based on
the existence of any pseudorandom generator [12,41], or equivalently a one-way
function [20].

The GC construction was originally motivated by the problem of secure mul-
tiparty computation [41,19]. Along the years, the GC construction has found a
diverse range of other applications to problems such as computing on encrypted
data, parallel cryptography, verifiable computation, software protection, func-
tional encryption, and key-dependent message security (see [5] for references).
Despite its theoretical importance, GC was typically considered to be impractical
due to a large computational and communication overhead which is proportional
to the circuit size. This belief was recently challenged by a fruitful line of works
that optimizes the concrete efficiency of GC-based protocols up to a level that
suits large-scale practical applications [36,33,30,29,38,37,21,22,40,23,28].

Among other things, all current implementations of GCs (e.g., [38,21,32,40,22])
employ the so-called free-XOR optimization of Kolesnikov and Schneider [27].
While in Yao’s original construction every gate of the circuit C has a computa-
tional cost of few cryptographic operations (e.g., three or four applications of a
symmetric primitive) and a communication cost of few ciphertexts, Kolesnikov
and Schneider showed how to completely eliminate the communication and com-
putational overhead of XOR-gates. Although this leads “only” to an efficiency
improvement by a constant factor, the effect on the practical performance turns
to be significant, especially for large or medium size circuits as demonstrated
in [27,26,38].

As in many cases, this efficiency gain has a cost in terms of the underlying
cryptographic assumptions. Unlike Yao’s GC which can be based on the existence
of standard symmetric-key cryptography, the free-XOR optimization relies on a
hash function H which is modeled as a random oracle [9]. Due to the known
limitations of the random oracle model [15], it is natural to ask:

Is it possible to realize the free-XOR optimization in the standard model?

This question was raised in the original work of Kolesnikov and Schneider [27]
and was further studied in [3,16]. In [27] it was conjectured that the full power
of the random oracle is not really needed, and that the function H can be
instantiated with a correlation-robust hash function [24], a strong (yet seemingly
realizable) version of a hash function which remains pseudorandom even when
it is applied to linearly related inputs. Choi et al. [16] showed that the picture is
actually more complex: correlation robustness alone does not suffice for security
(as demonstrated by an explicit counter-example in the random-oracle model).
Instead, one has to employ a stronger form of hash function which, in addition
to being correlation-robust, also satisfies some form of circular security [14,10].
While the existence of circular correlation-robust hash functions (a new primitive
introduced by Choi et al. [16]) seems to be a reasonable assumption (significantly
weaker than the existence of a random oracle), it is still unknown how to realize
it based on a standard cryptographic assumption. This leaves open the problem
of implementing the free-XOR approach in the standard model.
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1.1 Our Contribution

We resolve the above feasibility question by showing that the free-XOR ap-
proach can be realized in the standard model under the learning parity with
noise (LPN) assumption [18,11]. This assumption, which can also be formulated
as the intractability of decoding a random linear code, is widely studied by the
coding and learning communities and was extensively employed in cryptographic
constructions during the last two decades.

Specifically, we make the following contributions:

1. We introduce a new combined form of Related Key (RK) and Key Dependent
Message (KDM) attacks. Roughly speaking, in such an attack the adversary
is allowed to see ciphertexts of the form Encφ(K)(ψ(K)) where K is the
secret key and the functions φ and ψ are chosen by the adversary from
some predefined function families. This notion of security, referred to as
RK-KDM security, generalizes the previous definitions of semantic security
under related key attacks [3] and key-dependent message attacks [14,10]. In
fact, as shown in Section 5, the RK-KDM security is strictly stronger than
both RK-security and KDM-security.

2. We prove that the free-XOR construction is secure when instantiated with
a semantically-secure symmetric encryption scheme whose security is pre-
served under linear RK-KDM attacks. (Essentially, φ(K) = K ⊕ Δ1 and
ψ(K) = K ⊕Δ2 for any fixed shift vectors Δ1 and Δ2.)

3. We show that the LPN-based symmetric encryption of [17] and its gener-
alization [2] satisfies RK-KDM security with respect to linear functions. In
fact, our proof provides a general template for proving RK-KDM security
based on pseudorandomness and joint key/message homomorphism. This is
similar to previous results along these lines [13,2,6,3].

Altogether our proofs turn to be quite simple (which we consider as a virtue),
short and modular. This is due to the following choices:

Encryption vs. Hashing. The key point in which we deviate from [27,16] is the
use of (randomized) symmetric encryption, as opposed to deterministic hash
function (or some other pseudorandom primitive). Indeed, the GC construction
essentially employs the hash function only as a “computational one-time pad”,
namely, as a mean to achieve secrecy. Therefore, in terms of functionality it
seems best (i.e., more general) to abstract the underlying primitive as an en-
cryption scheme. While this is true in general for the standard GC (cf. [30,4]
and the recent discussion in [7]), this distinction becomes even more important
in the context of the free-XOR variant. In this case, the underlying primitive
should satisfy stronger notions of security (RKA and KDM), and this turns to
be much easier for randomized encryption than for pseudorandom objects such
as hash functions. (See also [3].) As a secondary gain, the new security definition
that arises for symmetric encryption (RKA-KDM semantic security) is natural
and compatible with existing well-studied notions. In contrast, the analog defini-
tion of RKA-KDM security for hash functions (circular correlation-robustness)
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appears less natural as there is no obvious interpretation for the concepts of
message and key.

GC as Randomized Encoding. It is important to distinguish between the garbled
circuit transformation (i.e., the mapping from C to Ĉ) and the secure function
evaluation protocol which is based on it. The distinction between the two, which
is sometimes blurred, can be formulated via the notion of randomized encoding
of functions [25] as done in [4]. Our proofs follow this abstraction, and show that
the free-XOR technique yields computationally private randomized encoding. At
this point one can invoke, for example, the general theorem of [4] to derive a
secure MPC protocol. Similarly, all other applications (cf. [1]) of randomized
encoding can be obtained directly by invoking the reduction from RE to the
desired task. This is the first modular treatment of the free XOR variant.

1.2 Discussion

The main goal of this work is to provide a solid theoretical justification for the
free-XOR heuristic. This is part of an ongoing effort of the theory community
to explain the security of “real world” protocols. Several such examples arise
when trying to import random-oracle based protocols to the standard model. In
this context, [15] suggested a two-step methodology: (1) “identify useful special-
purpose properties of the random oracle” and (2) show that these properties
“can be also provided by a fully specified function (or function ensemble)”. In
the context of the free-XOR optimization, the first step was essentially taken
by [16] who identified the extra need of “circular security”, while the current
paper completes the second step which involves, in addition, some fine-tuning of
step 1.

It should be emphasized that we do not suggest to replace the hash function
with an LPN-based scheme in practical implementations (though we do not rule
out such a possibility either). Still, we believe that the results of this work are
useful even if one decides, due to efficiency considerations, to use a heuristic
implementation. Specifically, viewing the primitive as an RKA-KDM secure en-
cryption scheme allows to rely on other heuristic solutions such as block ciphers,
for which RKA and KDM security are well studied.

Other Related Works. The notions of key-dependent message security (aka circu-
lar security) and related-key attacks were introduced by [14,10] and [8]. Both no-
tions were extensively studied (separately) during the last decade. Most relevant
to this paper is our joint work with Harnik and Ishai [3]. This work introduces
the notion of semantic security under related-key attacks, describes several con-
structions, and shows that protocols employing correlation-robust hash functions
and their relatives (e.g., [35,24]), can be securely instantiated with RKA-secure
encryption schemes. In addition, [3] suggested to apply a similar modification to
the free-XOR variant, which was believed to be secure when instantiated with
correlation-robust hash functions [27]. As mentioned, the latter claim was found
to be inaccurate, and therefore the results of [3] cannot be used in the context of
the free-XOR approach. (The other applications mentioned in [3] remain valid.)
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Organization. Following some preliminaries (Section 2), in Section 3 we define
semantic security under RK-KDM attacks and describe an LPN-based imple-
mentation. Section 4 is devoted to the garbled circuit construction, including
definitions (in terms of randomized encoding), a description of Yao’s original
construction and the free-XOR variant, and a proof of security that reduces the
privacy of the free-XOR GC to the RK-KDM security of the underlying encryp-
tion. In Section 5, we describe an encryption scheme which is KDM secure and
RKA secure but not RK-KDM secure, separating the latter notion from the
formers. Finally, we end with a short conclusion in Section 6.

2 Preliminaries

We let ◦ denote string concatenation. Strings are often treated as vectors or ma-
trices over the binary field F2, accordingly string addition is interpreted simply
as bit-wise exclusive-or. When adding together two matrices An×k and BN×k
where n < N we assume that the last N −n missing rows of A are padded with
zeroes. The same convention holds with respect to vectors (i.e., when k = 1).

2.1 Randomized Functions

We extensively use the abstraction of randomized functions which can be seen
as a special case of Maurer’s Random Systems [34]. A randomized function is a
two argument function f : X × R → Y whose first input x is referred to as the
deterministic input and the second input is referred to as the random input. For
every deterministic input x, we think of f(x) as the random variable induced by

sampling r
R← R and computing f(x; r) ∈ Y . When a (randomized) algorithm A

gets an oracle access to a randomized function f , we assume that A has control
only on the deterministic input; namely, if A queries f with x, it gets as a result
a fresh sample from f(x). Note that Af itself defines a randomized function. We
say that {fs}s∈{0,1}∗ is a collection of randomized functions if fs is a randomized
function for every key s. By default, all the collections are efficiently computable
in the sense that fs(x) can be sampled in time poly(|s|+ |x|).

Indistinguishability. A pair of randomized functions f, g is equivalent f ≡ g if
for every input x the random variables f(x) and g(x) are identically distributed.
A pair f = {fs} and g = {gs} of collections of randomized functions is compu-

tationally indistinguishable, denoted by f
c≡ g, if for every efficient adversary A

it holds that
∣
∣
∣
∣
∣

Pr
s

R←{0,1}k
[Afs(1k) = 1]− Pr

s
R←{0,1}k

[Ags(1k) = 1]

∣
∣
∣
∣
∣
< neg(k).

We extend the above definition to the case of collections f = {f1κ} and g = {g1κ}
which contain a single randomized function for every input length κ. In this
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case, we augment f (resp., g) by letting fs = f1|s| (resp., gs = g1|s|) and use the
previous definition.1

Let {fs} , {gs} and {hs} be collections of randomized functions. We will need
the following standard facts (cf. [34]).

Fact 1. If for every k ∈ N, Pr
s

R←{0,1}k [fs ≡ gs] > 1 − ε(k) for some negligible

function ε, then {fs} c≡ {gs}.

Fact 2. If {fs} c≡ {gs} and A is an efficient function then
{

Afs
}

s

c≡ {Ags}s.

Fact 3. If {fs} c≡ {gs} and {gs} c≡ {hs} then {fs} c≡ {hs}.

3 RK-KDM Security

A pair of efficient probabilistic algorithms (Enc,Dec) is a symmetric encryption
scheme over the message-space {0, 1}∗ and key-space {0, 1}k (where k serves as
the security parameter) if for every message M ∈ {0, 1}∗

Pr
s

R←{0,1}k
[Decs(Encs(M)) =M ] = 1.

We also assume (WLOG) length-regularity, i.e., that messages of equal length
M,M ′ are always encrypted by ciphertexts of equal length |Encs(M)| =
|Encs(M ′)|.

Our security definitions are parameterized by a family of key-derivation and
key-dependent-message functions (which are also indexed by the security param-
eter k)

ΦRKA =
{

φ : {0, 1}k → {0, 1}k} , ΨKDM =
{

ψ : {0, 1}k → {0, 1}∗} .

These families determine the legal relations between the related-keys, and the
key-related messages. RK-KDM Security is defined via the following pair of
real/fake oracles Reals and Fakes which are indexed by a key s ∈ {0, 1}k. For
a query (φ ∈ ΦRKA, ψ ∈ ΨKDM), the oracle Reals returns a sample from the
distribution Encφ(s)(ψ(s)), whereas, the oracle Fakes returns a sample from the

distribution Encφ(s)(0
|ψ(s)|).

Definition 1 (RK-KDM-secure encryption). A symmetric encryption
scheme (Enc,Dec) is semantically-secure under Related-Key and Key-Dependent
Message Attacks (in short, RK-KDM-secure) with respect to ΦRKA, ΨKDM if Reals
c≡ Fakes where s

R← {0, 1}k.

1 More generally, one can define computational indistinguishability with respect to
a pair of key sampling algorithm KeyGenf (1

κ) and KeyGeng(1
κ) which induce, for

every security parameter κ, a probability distribution over the ensembles f and g.
However, for this paper the simpler definition suffices.
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Remarks:

– Relation to previous definitions. We note that the above definition gen-
eralizes semantic security under related-key attacks [3] and semantic secu-
rity under key-dependent message attacks [10]. Indeed, the former notion
is obtained by restricting ΨKDM to contain only constant functions, and the
latter is obtained by letting ΦRKA contain only the identity function. If both
restrictions are applied simultaneously, the definition becomes identical to
standard semantic security under Chosen-Plaintext Attacks. On the other
hand, as we show in Section 5, a scheme may satisfy both RKA security and
KDM security without achieving the combined form of RKA-KDM security.

– Non-Adaptivity. Definition 1 allows the adversary to choose its queries in a
fully adaptive way. One may define a seemingly weaker non-adaptive variant
in which the adversary has to specify all its queries at the beginning of the
game. We note that this weaker variant suffices for the free-XOR application.

– LIN RK-KDM security. We will be interested in linear functions over F2.
Namely, both ΦRKA and ΨKDM contain functions of the form s �→ s +Δ for
every Δ ∈ F

k
2 . To be compatible with standard semantic security, we require

that ΨKDM also contains all fixed functions. Using a compact notation, we
can describe each function in ΨKDM by a message M and a bit σ and let
gM,σ : s �→ (M +(σ · s)). If the length of M is larger than k, we assume that
(σ · s) is padded with zeroes at the end. Hence, the adversary may ask for
an encryption of the shifted key concatenated with some fixed message. We
refer to this notion as LIN RK-KDM security.2

3.1 LPN-Based Construction

The learning parity with noise problem is parameterized by positive integers k,
t, and noise parameter 0 < ε < 1

2 . The input to the problem is a random matrix

A
R← F

t×k
2 and a vector y = As + e ∈ F

t
2 where s

R← F
k
2 and e

R← Bertε is an
“error” vector of t independent Bernoulli random variable which take the value
1 with probability ε. The goal is to recover the secret vector s. This can be
considered to be a “decoding game” where A generates a random linear code
and the goal is to recover a random information word s given a noisy codeword
y. For polynomially bounded integer function t = t(k) and a parameter ε, we say
that the problem LPNt,ε is hard, if there is no efficient adversary that can solve
it with more than negligible success probability. We say that LPNε is hard if
LPNt,ε is hard for every polynomial t(·). We describe the symmetric encryption
scheme of [2] which is a variant of the scheme of [17].

2 A seemingly weaker definition of LIN RK-KDM security restricts the KDM family
to functions gM,σ : s �→ (M + (σ · s)). If M is longer than k where M and s are of
the same length. We note that a scheme that satisfies this notion can be trivially
converted into a scheme that satisfies our definition (which supports M longer than
s). This can be done by partitioning the long message M into t blocks M1, . . . ,Mt

of length k each, and concatenating the encryptions of these two blocks. A query of
the form (f ∈ ΦRKA, gM,σ) can then be emulated by a linear query (f ∈ ΦRKA, gM1,1)
and t− 1 fixed-message query (f ∈ ΦRKA, gMi,0).
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Parameters. Let 
 = 
(k) be a message-length parameter which is set to be an
arbitrary polynomial in the security parameter k. (Shorter messages are padded
with zeroes.) Let ε < 1

2 and 0 < δ < 1
2 be constants. We will use a family of

linear binary error-correcting codes with information words of length 
(k) and
block length t = t(n), that has an efficient decoding algorithmD that can correct
up to (ε + δ) · t errors. We let G = G� be the t × 
 binary generator matrix of
this family and we assume that it can be efficiently constructed (given 1k).

Construction 4 (LPN-construction). Let N = N(k) be an arbitrary polyno-
mial (which controls the tradeoff between the key-length and the time complexity
of the scheme). The private key of the scheme is a matrix S which is chosen
uniformly at random from F

k×N
2 .

– Encryption: To encrypt a message M ∈ F
�×N
2 , choose a random A

R← F
t×k
2

and a random noise matrix E
R← Bert×Nε . Output the ciphertext

(A,A · S + E +G ·M).

– Decryption: Given a ciphertext (A,Z) apply the decoding algorithm D to
each of the columns of the matrix Z −AS and output the result.

Observe that the decryption algorithm errs only when there exists a column in
E whose Hamming weight is larger than (ε + δ)m, which, by Chernoff Bound,
happens with negligible probability. (This error can be eliminated by rejecting
noise vectors whose relative Hamming weight exceeds (ε+δ).) The scheme is also
highly efficient. Encryption requires only cheap matrix operations and decryption
requires in addition to decode the code G. It is shown in [2] that for proper choice
of parameters both encryption and decryption can be done in quasilinear time
in the message length (for sufficiently long message).

Construction 4 was proven to be semantically secure based on the intractabil-
ity of the LPNε problem [2]. Security against KDM and RKA attacks with respect
to linear functions was further proven in [2] and [3]. We now generalize these
results and show that the scheme is LIN RK-KDM secure.

Theorem 5. Assuming that LPNε is hard, the above construction is LIN RK-
KDM secure.

3.2 Proof of Theorem 5

Through this section we keep the convention that S ∈ F
k×N
2 is a key, Δ ∈ F

k×N
2

is a key-shift vector, M ∈ F
�×N
2 is a message, b ∈ {0, 1} is a bit, and the pair

(A,Z) ∈ F
t×k
2 × F

t×N
2 is a potential ciphertext. In addition, we let Enc denote

the LPN encryption defined in Construction 4.

Recall that our goal is to prove that for a random key S
R← F

k×N
2 the ran-

domized functions

RealS : (Δ,M, b) �→ EncS+Δ(M + bS)

FakeS : (Δ,M, b) �→ EncS+Δ(0
�×N),

are indistinguishable. This will be proven via a sequence of hybrids.
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LetRS be a randomized function which ignores the key S and the given input,

and outputs a fresh uniformly chosen matrices A
R← F

t×k
2 and Z

R← F
t×N
2 . (If

RS is applied to the same input more than once it responds with independent
answers.)

The following lemma (which is implicit in [2]) shows that the LPN encryption
scheme is not only semantically secure but also pseudorandom in the following
sense:

Lemma 1. Assuming that LPNε is hard, {EncS} c≡ {RS}, where S R← F
k×N
2 .

We will need the following key observation:

Lemma 2. There exists an efficient oracle machine F (·) : (Δ,M, b) �→ (A,Z)
such that

RealS ≡ F EncS and FRS ≡ RS ,
for every S ∈ F

k×N
2 .

Proof. We define F as follows: Given a query (Δ,M, b) the machine F calls
the oracle with input M , gets back the answer (A′, Z ′), and outputs the pair
A = A′ + GH and Z = Z ′ + AΔ where G is the generating matrix used in
Construction 4 and H ∈ F

�×k
2 is the matrix

( b·Ik×k

0�−k×k

)

.

Fix a key S and a query (Δ,M, b), we will show that F EncS (Δ,M, b) is
distributed identically to RealS(Δ,M, b). Let (A′, Z ′) be a fresh sample from
EncS(M). Clearly, A = A′+GH is uniform in F

t×k
2 since A′ is uniform. In addi-

tion, since Z ′ = A′ · S +E +G ·M where E
R← Bert×Nε , and since A′ = A+GH

we can write Z as

(A+GH) · S + E +G ·M +AΔ = A · (S +Δ) + E +G · (M +HS)

= A · (S +Δ) + E +G · (M + bS),

where the first equality is due to linearity, and the second equality follows from
the definition ofH . It follows that (A,Z) is a fresh sample from EncS+Δ(M+bS).

To prove that FRS ≡ RS , it suffices to show that for any fixed query (Δ,M, b)
the transformation from (A′, Z ′) to (A,Z) is an affine invertible mapping. This
follows immediately from the definition of F . 	


We conclude that for S
R← F

k×N
2 ,

RealS ≡ F EncS c≡ FRS ≡ RS . (1)

Indeed, the first and third transitions are due to Lemma 2, and the second
transition is due to Lemma 1 and Fact 2.

To complete the argument we need two additional definitions. First we define
an oracle machine which given an oracle O and an input (Δ,M, b) outputs a
sample from FO(Δ, 0�×N , 0); namely, it replaces M, b with zeroes and proceeds
as FO. By abuse of notation, we refer to this oracle as F (·, 0�×N , 0). Similarly,
we let RealS(·, 0�×N , 0) denote the randomized function which maps (Δ,M, b)
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to RealS(Δ, 0
�×N , 0). Note that the latter is just an equivalent formulation of

FakeS . Moreover, we can write:

RS ≡ F (·, 0�×N , 0)RS
c≡ F (·, 0�×N , 0)EncS(0�×N )

≡ RealS(·, 0�×N , 0) ≡ FakeS , (2)

where the first and third transitions are due to Lemma 2, and the second tran-
sition is due to Lemma 1 and Fact 2. By combining Eq. 1 and Eq. 2 with Fact 3
we get that RealS

c≡ FakeS , and Theorem 5 follows. 	

Remark 1 (Abstraction). The proof of Theorem 5 provides a general template
for proving RKA-KDM security. Specifically, the properties needed are pseudo-
randomness (in the sense of Lemma 1) and key/message homomorphism (in the
sense of Lemma 2). Indeed, observe that, apart from the proofs of Lemmas 1
and 2, the overall proof can be written in a fully generic form with no specific
references to the LPN construction.

4 Yao’s Garbled Circuit

4.1 Definition

Let f = {fn}n∈N be a polynomial-time computable function. In an abstract

level, Yao’s garbled circuit technique [42] constructs a randomized function f̂ =

{f̂n}n∈N which “encodes” f in the sense that for every x the distribution f̂(x)
reveals the value of f(x) but no other additional information. We formalize this
via the notion of computationally private randomized encoding from [4], while
adopting the original definition from a non-uniform adversarial setting to the
uniform setting (i.e., adversaries are modeled by probabilistic polynomial-time
Turing machines).

Definition 2 (Computational randomized encoding). Let f={fn : {0, 1}n
→ {0, 1}�(n)}n∈N be an efficiently computable function and let f̂ = {f̂n : {0, 1}n×
{0, 1}m(n) → {0, 1}s(n)}n∈N be an efficiently computable randomized function.

We say that f̂ is a computational randomized encoding of f (or encoding for
short), if there exist an efficient recovery algorithm Rec and an efficient proba-
bilistic simulator algorithm Sim that satisfy the following:

– Perfect correctness. For any n and any input x ∈ {0, 1}n,

Pr[Rec(1n, f̂n(x)) �= fn(x)] = 0.

– Computational privacy. The randomized function f̂n(·) is computation-
ally indistinguishable from the randomized function Sim(1n, fn(·)).

Remark 2. The above definition uses n both as an input length parameter and as
a cryptographic “security parameter” quantifying computational privacy. When
describing our construction, it will be convenient to use a separate parameter
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k for the latter, where computational privacy will be guaranteed as long as
k ≥ nε for some constant ε > 0. Furthermore, while it is convenient to define
randomized encoding for a single function f , Yao’s construction (as well as the
free-XOR variant) actually provides a compiler that given a circuit C outputs

the encoding f̂ , the recovery algorithm Rec and the simulator Sim, represented
as circuits. (See [5] for formal definition.) In this sense the encoding is fully
constructive.

4.2 Yao’s Construction and the Free XOR Variant

Let f = {fn : {0, 1}n → {0, 1}�(n)}n∈N be a polynomial-time computable func-
tion computed by the uniform circuit family {Cn}n∈N. In the following we de-
scribe Yao’s construction and its free-XOR variant. Our notation and terminol-
ogy borrow from previous presentations of Yao’s construction in [39,36,31,4].

Double-keyed Encryption. Let k = k(n) be a security parameter (by default,
k = nε for some constant ε > 0). We will employ a symmetric encryption
scheme (E2, D2) which is keyed by a pair of k-bit keys K1,K2. Intuitively, this
corresponds to a double-locked chest in the sense that decryption is possible only
if one knows both keys. There are several ways to implement such an encryption
scheme based on standard single-key symmetric encryption (Enc,Dec) and, for
simplicity, we choose to use

E2
K1,K2

(M) := (EncK1(R),EncK2(R +M)),

D2
K1,K2(C1, C2) := DecK1(C1) + DecK2(C2) (3)

where R is a random string of length |M |. Other choices are also applicable
under the LPN assumption.

The Original Construction. For each wire i of the circuit Cn we assign a pair of
keys: a 0-key W 0

i ∈ {0, 1}k that represents the value 0 and a 1-keyW 1
i ∈ {0, 1}k

that represents the value 1. For each of these pairs we randomly “color” one

key black and the other key white. This is done by choosing ri
R← {0, 1} and by

letting ri + b be the color of W b
i . Fix some input x for fn, and let bi = bi(x) be

the value of the i-th wire induced by x. We refer to the key W bi
i as the active

key of the i-th wire.
The idea is to let the encoding f̂n(x; (W, r)) reveal only the value of the active

keys W bi
i and their colors ci. This is done by traversing the circuit from inputs

to outputs: first the encoding reveals the active keys of the inputs; in addition,
for each gate, the encoding provides a mechanism that translates the active keys
of the input wires into the active keys of the output wires. Specifically, for each
Binary gate g(·, ·) (e.g., AND) the encoding outputs an encryption tables (or
“gate labels”) in which the keys of the outgoing wire W 0

� ,W
1
� are encrypted

under the keys of the incoming wires i, j. Hence, one can propagate the values
of W bi

i from the inputs to the outputs. It is crucial to observe that the values
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of the active keys W bi
i and their colors ci reveal nothing on their semantics bi.

Only for the output wires, we reveal the coloring ri, which makes it possible to
recover the value of the i-th output wire bi.

Free XOR-gates. The “free-XOR” optimization modifies the above construction
by making sure that the key W 0

� and coloring r� of a wire which outgoes a XOR
gate is just the sum of the keys and coloring of the incoming wires i and j,
namely,

W 0
� =W 0

i +W 0
j , r� = ri + rj .

In addition, all key pairs W 0
� ,W

1
� have a fixed global (secret) difference s =

W 0
� +W 1

� . As a result, for every pair of values (α, β) ∈ {0, 1}2 for the input
wires of a XOR gate, we have that

Wα+β
� =Wα

i +W β
j .

Hence, one can derive the colored active key (W
b�(x)
� , r� + b�(x)) of the output

wire by XOR-ing the colored active keys (W
bi(x)
i , ri+ bi(x)), (W

bj(x)
j , rj + bj(x))

of the input wires, and so gate labels are not needed. XOR gates have, therefore,
no effect on the communication complexity of the encoding, and only a minor
effect on the computational complexity. A formal description of the encoding is
given in Figure 1.

Our main result shows that, assuming LIN RK-KDM security, the free XOR
variant gives rise to a valid computational encoding:

Theorem 6 (Main). If the underlying symmetric encryption scheme (Enc,Dec)

is LIN RK-KDM secure, then the randomized function f̂ , as defined in Figure 1,
is a randomized encoding of the function f .

The proof of the theorem is deferred to Section 4.3 (correctness) and 4.4 (pri-
vacy).

4.3 Correctness

The following lemma shows that the encoding is correct.

Lemma 3 (Correctness). There exists an efficient recovery algorithm Rec
such that for every x ∈ {0, 1}n it holds that

Pr[Rec(1n, f̂n(x; (r,W ))) �= fn(x)] = 0.

Proof. Let α = f̂n(x; (r,W )) for some x ∈ {0, 1}n and (r,W ) ∈ {0, 1}μ(n). It
suffices to show that, given α, it is possible to recover the active key W bi

i of
every wire i together with its color ci = (bi(x) + ri). Indeed, once these values
are known we can easily recover all the outputs of fn(x): For every output wire
j, we recover bj by XOR-ing cj with the mask rj which is given explicitly as
part of α.
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The Encoding f̂n

Input: x ∈ {0, 1}n.
Randomness: Choose a random global shift vector s

R← {0, 1}k.
For a wire � that is not an output of a XOR gate let

r�
R← {0, 1}, W 0

�
R← {0, 1}k, W 1

� := W 0
� + s.

For a wire � that is an output of a XOR gate with inputs i, j let

r� := ri + rj , W 0
� := W 0

i +W 0
j , W 1

� := W 0
i + s.

Outputs: The encoding consists of the following outputs:

1. For an input wire i, labeled by a literal χ (either some variable xu or its

negation) output W
χ(x)
i ◦ (χ(x) + ri). If i is an output wire i, output the

mask of this wire ri.
2. For a non-XOR gate t that computes some binary function g : {0, 1}2 → {0, 1}

with input wires i, j and output wirea y. We associate with this gate 4 ordered
outputs (“gate labels”). For every (ai, aj) ∈ {0, 1}2 we output:

Q
ai,aj
t := E2

W
ai+ri
i ,W

aj+rj
j

(
W

g(ai+ri,aj+rj)
y ◦ (g(ai + ri, aj + rj) + ry)

)
,

(4)

where ◦ denotes concatenation, and E2 is a double-encryption algorithm
whose randomness is omitted for simplicity.

a If the fan-out is larger than 1, all outgoing wires are treated as a single wire,
i.e., with the same key and the same color.

Fig. 1. The encoding f̂n(x; (W,r, s)) of the function fn(x). We assume that wires and
gates of the circuit that computes fn are numbered according to some topological
order. The double-encryption algorithm E2

K1,K2
(M) is defined based on a standard

encryption (Enc,Dec) as in Eq. 3.
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The active keys and their colors are computed by scanning the circuit from
bottom to top as follows. For an input wire i the desired value, W bi

i ◦ ci, is given
as part of α. Next, consider a wire y that goes out of a gate t, and assume that
we have already computed the desired values of the input wires i and j of this
gate. If t is a XOR gate then we let

W by
y =W bi+bj

y =W bi
i +W

bj
i , and cy = (bi+bj)+ry = (bi+bj)+(ri+rj) = ci+cj .

It t is not a XOR gate then we use the colors ci, cj of the active keys of the
input wires to select the active label Q

ci,cj
t of the gate t (and ignore the other 3

inactive labels of this gate). Consider this label as in Equation (4); recall that
this cipher was “double-encrypted” under the key W ci−ri

i = W bi
i and the key

W
cj−rj
j =W

bj
j . Since we have already computed the values ci, cj,W

bi
i and W

bj
j ,

we can decrypt the label Q
ci,cj
t (by applying the decryption algorithm D2) and

recover the value

W g(bi,bj)
y ◦ (g(bi, bj) + ry) =W by

y ◦ (cy),

where g is the function that gate t, which satisfies, by definition, the equality
by = g(bi, bj). 	


4.4 Privacy

Computational privacy is slightly more subtle. The free-XOR optimization cor-
relates the key pairs via the global shift s. This introduces two form of depen-
dencies: (1) The four ciphertexts of every gate are encrypted under related keys ;
and (2) The keys (of the incoming wires) which are used to encrypt the gate-
labels are correlated with the content of the labels (i.e., the keys of the outgoing
wires). We show that if the underlying encryption (Enc,Dec) is RKA and KDM
secure with respect to linear functions, then the encoding is indeed private.

Lemma 4 (Privacy). There exists an efficient simulator Sim such that

f̂n(·) c≡ Sim(1n, fn(·)).

To prove the lemma we define an oracle-aided algorithm HO(x) such that (1)
when the oracle O is the real RK-KDM oracle (with respect to linear queries)

the distribution of HO(x) is identical to the distribution f̂n(x), and (2) when the
oracle O is the fake RK-KDM oracle, the distribution HO(x) can be efficiently
sampled based on the output fn(x), and therefore can be used as a simula-
tor Sim(1n, fn(x)). The indistinguishability of the two oracles implies that the
simulator’s output is computationally indistinguishable from the encoding’s dis-
tribution f̂n(x).

The Algorithm H(·)(x). Let k = k(n), x ∈ {0, 1}n be the input. We assume that

H is given an oracle access to a randomized function Os where s
R← {0, 1}k will
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play the role of the secret global shifts. We will assume that Os has the same
interface as Reals and Fakes, namely, given a pair of linear functions (φ, ψ) the
oracle outputs a ciphertext of (Enc,Dec). For every wire 
 we define the following
values:

1. If 
 is not an output of a XOR gate, choose a random active key W b�
�

R←
{0, 1}k and a random color bit c�

R← {0, 1}.
2. If the wire 
 is an output of a XOR gate, letW b�

� :=W bi
i +W

bj
j and c� = ci+cj

where i and j are the incoming wires.
3. If 
 is an input wire output W b�

� ◦ c�; if it is an output wire output r� =
c� − b�(x) (recall that x is known).

4. The inactive keyW b�+1
� is unknown, but it can be written as a linear function

of the master-key s, i.e., φ� : s �→ s+W b�
� .

For every (non-XOR) gate t with input wires i, j and output wire y we do the
following:

5. Output the active label

Q
ci,cj
t := E2

W
bi
i ,W

bj
j

(W by
y ◦ cy) (5)

6. Compute the inactive labels as follows. For every (α, β) �= (0, 0) choose

Rα,β
R← {0, 1}k+1 and define the linear function ψα,β which maps s to the

value
(

(W by
y + s · g(bi+α, bj + β) + by) ◦ (g(ci +α+ ri, cj + β+ rj) + ry)

)

+Rα,β ,

where g is the function that the gate computes, and bi = bi(x), ri = bi + ci,
bj = bj(x), rj = bj + cj and by = by(x), ry = by + cy. Now, output

Q
ci+1,cj
t :=

(

O(φi, ψ1,0),Enc
W

bj
j

(R1,0)
)

Q
ci+1,cj+1
t :=

(

O(φi, ψ1,1),O(φj , R1,1)
)

(6)

Q
ci,cj+1
t :=

(

Enc
W

bi
i

(R0,1),O(φj , ψ0,1)
)

,

where in the second equation, we let the string R1,1 represent the constant
function s �→ R1,1.

Claim 7. The randomized functions f̂n and HReals for s
R← {0, 1}k are identi-

cally distributed.

Proof. We prove a stronger claim: for every x ∈ {0, 1}n even if the encoding
and the hybrid HReals(x) output their internal coins (including the ones used
by the oracle Reals), the two experiments are identically distributed. First, it is
not hard to verify that the values s,W 0

� , r� and W 1
� = W 0

� + s are identically
distributed in both experiments. When these values are fixed, the active labels
are also identically distributed. Finally, by substituting φi, ψα,β in Eq. 6 it follows

that the inactive labels are also distributed exactly as in f̂(x). 	
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Let us move to the case where the oracle O is instantiated with the oracle Fakes
for s

R← {0, 1}k. By the RK-KDM security of the scheme (Enc,Dec) and Fact 2,
we get that

Claim 8. The randomized functions
{

HReals
}

s
and

{

HFakes
}

s
are computation-

ally indistinguishable.

Finally, we define the simulator which is just an equivalent description of
HFakes(x):

The Simulator Sim. Given z = fn(x), for some x ∈ {0, 1}n, the simulator mimics
the first three steps ofH which can be computed based on the value of the output
wires fn(x) (without knowing x itself). However, instead of virtually setting

inactive keys in the forth step, the simulator chooses a random shift vector s
R←

{0, 1}k and setsW 1+b�
� =W b�

� +s for every wire 
. Then, the simulator computes
the active labels exactly as in Eq. 5. Note that all these computations can be
done without knowing x (or bi(x)). To compute the inactive labels the simulator

mimics the distribution of HFakes(x): It chooses R1,0, R1,1, R0,1
R← {0, 1}k+1 and

computes

Q
ci+1,cj
t :=

(

Enc
W

bi+1

i

(0k+1),Enc
W

bj
j

(R1,0)
)

Q
ci+1,cj+1
t :=

(

Enc
W

bi+1

i

(0k+1),Enc
W

bj+1

j

(0k+1)
)

(7)

Q
ci,cj+1
t :=

(

Enc
W

bi
i

(R0,1),EncW bj+1

j

(0k+1)
)

.

Indeed, all these ciphertexts can be computed directly since the inactive keys
(and the global shift s) are known.

Claim 9. The randomized functions Sim(fn(·)) and HFakes(·) for s
R← {0, 1}k

are identically distributed.

Proof. Again, a stronger claim holds: for every x ∈ {0, 1}n even if the simulator
and the algorithm HFakes(·)(x) output their internal coins, the two experiments
are identically distributed. First, it is not hard to verify that the values s,W 0

� , r�
and W 1

� = W 0
� + s are identically distributed in both experiments. When these

values are fixed, the active labels are also identically distributed. Finally, the
inactive labels as defined by the simulator (Eq. 7) are computed exactly as they
are computed by HFakes(·)(x) (i.e., as defined in Eq. 6 when the oracle Fakes(·)
is being used). 	

The proof of Lemma 4 follows from Claims 7–9 and Facts 1 and 3.

5 Separating RK-KDM from RKA and KDM

Recall that LIN RKA security corresponds to RK-KDM security with ΦRKA taken
to be the class of linear functions (over the binary field) and ΨKDM contains



178 B. Applebaum

the identity function. Similarly, LIN KDM security corresponds to RK-KDM
security with ΨKDM taken to be the class of all linear (and fixed) functions, and
ΦRKA contains the identity function.

We describe a symmetric encryption scheme (Enc,Dec) which is semantically
security under linear related-key attacks and semantically-secure under linear
key-dependent message attacks but does not achieve linear RK-KDM security.
In fact, one can fully recover the secret key via a combined LIN RK-KDM attack.
Our counter-example will be based on a pair of symmetric encryption schemes
(RE,RD) and (KE,KD) as follows.

RKA-security+KDM-insecurity. We define the scheme (RE,RD) identically to
the LPN construction (Construction 4) except that if the prefix of a plaintextM
is equal to the key S, then the corresponding ciphertext will be M itself (unen-
crypted). It is not hard to prove that (RE,RD) is secure under linear related-key
attacks, but is completely insecure at the presence of linear key-dependent mes-
sage attacks. (See full version for a proof.)

KDM-security+RKA-insecurity. To define the scheme (KE,KD), we modify
the LPN construction (PE,PD) as follows. The key S ∈ {0, 1}κ is augmented
with an index i ∈ {1, . . . , κ}. A plaintext M will be encrypted by the triple
(PES(M), i, Si). In the full version we show that the scheme is LIN KDM se-
cure. In fact, it will be useful to prove KDM security with respect to a slightly
richer family of “extended linear functions” which contains functions of the form
ψM,T : S →M + TS for every M ∈ F

�
2 and matrix T ∈ F

�×κ
2 .3

On the other hand, one can fully recover the key S via an RKA by shifting
the index i through all possible indices in {1, . . . , κ}. Note that this attack is
oblivious to the messages encrypted; In particular, all the attacker needs is the
ability to obtain, for any choice of Δ, a ciphertext KE(S,i)+Δ(M) where the
messageM may be arbitrary and possibly unknown (e.g., chosen by the oracle).

Counter Example. Our counter-example is defined via the following double-
encryption:

EncS1,S2(M) := KES2(RES1(M)), DecS1,S2(C) := RDS1(KDS2(C)).

In the full version we will prove the following claim:

Claim 10. Under the LPN assumption, the scheme (Enc,Dec) satisfies the
followings:

1. Security under linear related-key attacks.
2. Security under linear key-dependent message attacks.
3. The secret key can be fully recovered via a LIN RK-KDM attack.

3 It is shown in [2] that the (non-modified) LPN encryption (PE,PD) satisfies this ex-
tended form of KDM security. To handle the single-bit leakage, we rely on additional
“leakage resilience” properties of LPN. See full version.
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The first and third items follow standard arguments. The proof of the second item
is based on the observation that, when the key S1 and the internal randomness
of RE are fixed, the encryption RES1(S1, S2) can be written as an (extended)
linear function of S2. Details are deferred to the full version.

6 Conclusion

We defined a new combined form of RKA-KDM security, proved that such an
encryption scheme can be realized based on the LPN assumption, and showed
that the free-XOR approach can be securely instantiated with it. Altogether, our
results enable a realization of the free-XOR optimization in the standard model
under a well-studied cryptographic assumption.

The new definition of RKA-KDM security further motivates the study of
security under related-key and key-dependent attacks. Specifically, in light of
our counter-example, it is is natural to ask whether LIN RKA-KDM security
can be constructed based on some combination of an RKA-secure scheme and
a KDM-secure scheme, or better yet, based on more general assumptions (e.g.,
CPA-secure encryption scheme). It will also be interesting to find additional
applications of RKA/KDM secure primitives.
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