
Quantum Information Processing (2021) 20:305
https://doi.org/10.1007/s11128-021-03226-6

Garden optimization problems for benchmarking quantum
annealers

Carlos D. Gonzalez Calaza1 · Dennis Willsch1 · Kristel Michielsen1,2

Received: 28 January 2021 / Accepted: 16 August 2021 / Published online: 13 September 2021
© The Author(s) 2021

Abstract
We benchmark the 5000+ qubit system Advantage coupled with the Hybrid Solver
Service 2 released by D-Wave Systems Inc. in September 2020 by using a new class
of optimization problems called garden optimization problems known in companion
planting. These problems are scalable to an arbitrarily large number of variables and
intuitively find application in real-world scenarios.We derive their QUBO formulation
and illustrate their relation to the quadratic assignment problem. We demonstrate that
the Advantage system and the new hybrid solver can solve larger problems in less
time than their predecessors. However, we also show that the solvers based on the
2000+ qubit system DW2000Q sometimes produce more favourable results if they
can solve the problems.

Keywords Quantum computation · Quantum annealing · Optimization · Quadratic
assignment problem · Companion planting

1 Introduction

The quantumprocessing units (QPUs) of quantumannealers [1–3] have doubled in size
almost every two years. In September 2020, D-Wave Systems Inc. has made available
the Advantage system [4], having a 5000+ QPU featuring a Pegasus topology with
increased connectivity compared to the one of its predecessor, a 2000+ qubit QPUwith
a Chimera topology in the DW2000Q system [5]. As the complexity of commercially
available quantum annealers increases, so does the need for methods to systematically
benchmark these systems, using problems which do not become obsolete as quantum

B Carlos D. Gonzalez Calaza
c.gonzalez.calaza@fz-juelich.de

1 Jülich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich,
D-52425 Jülich, Germany

2 RWTH Aachen University, D-52056 Aachen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-021-03226-6&domain=pdf
http://orcid.org/0000-0001-8467-8633

305 Page 2 of 22 C. D. G. Calaza et al.

Fig. 1 Example of a t × t companions matrix C for t = 18 different plant species. The values C j j ′ of
the companions matrix represent friendly (-1, green), neutral (0, yellow), or antagonistic (1, red) relations
between different plant species (see Eq. (2))

annealers grow in size. Therefore, we need problems which are flexibly scalable to an
arbitrarily large number of qubits.

In this paper, we use one such class of scalable problems called garden optimization
problems to benchmark theAdvantage systemagainst theDW2000Q system, aswell
as the recently released Hybrid Solver Service hybrid_binary_quadratic_
model_version2 (HSSv2) against its former version hybrid_binary_
quadratic_model_version1 (HSSv1) and other classical software solvers.

An input problem for a quantum annealer is typically formulated in terms of a
quadratic unconstrained binary optimization (QUBO) problem. In this paper, we intro-
duce the QUBO formulation of the garden optimization problem. For this problem, the
objective is to find an optimal placement of vegetable plants in a garden, respecting that
some plant species have friendly, neutral, or antagonistic relations with other species
(see Fig. 1), a technique known as companion planting. For instance, tomato and
lettuce have a friendly relationship and could be placed next to each other, whereas
tomato and cucumber have an antagonistic relationship and should be placed apart
from each other.

We argue that the garden optimization problem iswell suited to benchmark quantum
annealers since it is scalable to an arbitrary number of variables. Furthermore, it
represents a problem that finds application in real-world scenarios. Mathematically,
the garden optimization problem is closely related to the quadratic assignment problem

123

Garden optimization problems for benchmarking quantum annealers Page 3 of 22 305

(QAP) [6,7] as well as the constraint satisfaction problem (CSP) [8]. Such problems
have a natural representation in terms of a QUBO problem [9].

We find that the scalability of the garden optimization problem provides the option
to benchmark hardware samplers using smaller problem instances as well as hybrid
and software solvers by generating larger problem instances. A comparison between
D-Wave’sDW2000Q and its successor systemAdvantage using garden optimization
problems of up to 100 variables reveals that while there were no significant perfor-
mance differences solving smaller problems, Advantage is capable of embedding
and solving much larger problems than DW2000Q (see also the results in Ref. [10]).
Additionally, we compare the performance of D-Wave’s hybrid solvers and some soft-
ware solvers using problems of up to 12000 variables. We find that HSSv1 returns
better results than its successor HSSv2 within the same execution time, but is unable
to process the biggest problem instances, and QBSolv requires much longer execu-
tion times than both hybrid solvers but can return better results than HSSv2 for the
biggest problems.

The remainder of this paper is structured as follows: In Sect. 2, we introduce the
garden optimization problem and formulate it as a QUBO problem suitable as input
to quantum annealers. In Sect. 3, we describe the hardware samplers and hybrid and
software solvers that are benchmarked in this paper. Section 4 contains the results of
our benchmark study. In Sect. 5, we give the conclusions.

2 The garden optimization problem

The goal of the garden optimization problem is to find an optimal placement of n
plants into n garden pots (one plant per pot). Each plant belongs to a certain species,
and as a matter of fact, some species like to be placed next to each other, whereas
others do not. An example of such friendly and unfriendly relationships is shown in
Fig. 1. An optimal placement of the n plants is thus a placement that maximizes the
number of friendly relationships between adjacent pots.

Additionally, we require that each placement respects the following three con-
straints:

(1) “Fill all pots”: Each of the n pots shall be filled with exactly one plant.
(2) “Place all plants”: All of the n plants shall be placed in the garden.
(3) “Always look on the bright side of life”: To add an additional degree of complexity,

we require that large plant species shall not shadow smaller plants.

In this section, we first describe the mathematical formulation of each of these
constraints and the associated cost function that measures an optimal placement and
then rewrite the resulting optimization problem as a QUBO problem.

2.1 Formulation of the cost function

Each of the n pots in the vegetable garden is represented by an integer i = 0, . . . , n−1.
Most generally, the topology of a vegetable garden is defined as an undirected, planar
graph G = (V , E), where V = {Vi } are the n nodes representing the pots where

123

305 Page 4 of 22 C. D. G. Calaza et al.

plants should be placed, and E = {Ei,i ′ } are the edges of the graph representing pairs
of adjacent pots. In what follows, we only need the adjacency matrix J of G, given by

Jii ′ =
{
1 if i < i ′ and pot i and i ′ are adjacent
0 otherwise

. (1)

A straightforward way to state the problem would be to also enumerate each of the
n plants by n integers and then find an assignment of n plants to n pots. This would
lead to a quadratic assignment problem with n2 variables (see Sect. 2.3). However, as
the number of qubits on current quantum annealers is limited, we exploit the fact that
for the garden optimization problem, plants can be considered equivalent if they are
of the same species. If t represents the total number of species (or plant types), this
step reduces the number of variables from n2 to n × t .

Therefore, we enumerate the available plant species by an integer j = 0, . . . , t−1.
The relationship between plant species is encoded in the companions matrix C j j ′ ,
given by

C j j ′ =

⎧⎪⎨
⎪⎩

−1 friendly relationship

0 neutral relationship

+1 antagonistic relationship

. (2)

An example of this matrix for t = 18 plant types is shown in Fig. 1.
Given the pots i = 0, . . . , n − 1 and the plant types j = 0, . . . , t − 1, we define

n × t Boolean problem variables xi j ∈ {0, 1}, with the interpretation that

xi j = 1 ⇔ plant of type j is to be placed in pot i . (3)

The cost of placing plants in two connected pots i and i ′ is thus given by∑
j j ′ xi jC j j ′xi ′ j ′ . Since only one plant shall be placed in each pot (which is to be

ensured by constraint (1)), the value of this cost term is ideally equal to −1. Shifting
this optimal value to zero by adding +1 and summing over all adjacent pots for which
Jii ′ = 1, we arrive at the cost function of the garden optimization problem

cost({xi j }) =
n−1∑
i,i ′=0

Jii ′

⎛
⎝1 +

t−1∑
j, j ′=0

xi jC j j ′xi ′ j ′

⎞
⎠ . (4)

Note that the cost function has been constructed in such a way that it has a lower
bound zero. The special value cost({xi j }) = 0 implies that the placement {xi j } is
optimal, in the sense that all neighbouring plants have a friendly relationship. In this
case, we can tell solely from the solution energy that an optimal solution exists and
has been found. This is a desirable property for an optimization problem since for a
general optimization problem, it is typically not possible to tell whether a solution
represents the global optimum or not.

123

Garden optimization problems for benchmarking quantum annealers Page 5 of 22 305

However, if no completely friendly arrangement of plants exists for a given problem
instance, then the minimum value of the cost function will be larger than zero. In this
case, it will not be possible to verify by means of the solution energy that the ground
state has been found. Still, the value of the solution energy will give an indication as
to how many neutral (weight +1) or antagonistic (weight +2) neighbourships exist in
the produced arrangement of plants.

We remark that this property will continue to hold also after the constraints are
included. The reason for this is that, by construction, all constraints will have a positive
contribution to the solution energy if they are violated, and no contribution if and only
if they are satisfied (cf. Eq. (12)). Thus, after checking the constraints for a given
placement {xi j }, we can interpret the value of the solution energy in the same way as
the value of the cost function Eq. (4). The mathematical formulation of the constraints
is the topic of the following section.

2.2 Formulation of the constraints

Given the problem variables xi j ∈ {0, 1} with the interpretation formulated in Eq. (3),
we can mathematically state the constraints (1)–(3) as follows:

(1) “Fill all pots”:

∀i :
t−1∑
j=0

xi j = 1. (5)

(2) “Place all plants”:

∀ j :
n−1∑
i=0

xi j = c j , (6)

where c j denotes the total number of plants of type j . Note that by definition, we
have

∑
j c j = n.

(3) “Always look on the bright side of life”: For this constraint, we assign to each plant
type j a size s j ∈ {0, 1}, where s j = 0 (s j = 1) means that plant type j is a large
(small) species. Furthermore, for the sake of concreteness, we fix the topology of
the garden to be rectangular such that i%2 = 0 (i%2 = 1) represents an even (odd)
row in the garden. (We use the symbol % to denote the integer modulo operation.)
The constraint shall then be fulfilled by placing large plants in even rows and small
plants in odd rows, i.e.

∀i, j : (i%2 − s j)
2xi j = 0. (7)

This means that if plant type j is placed in pot i (i.e. xi j = 1), then we require
i%2 = s j .

123

305 Page 6 of 22 C. D. G. Calaza et al.

2.3 Relation to the quadratic assignment problem

The garden optimization problem characterized by Eqs. (4)–(7) is closely related
to the well-known quadratic assignment problem (QAP), which is originally due to
Koopmans and Beckmann [6] (see [7] for a brief historical survey). The QAP can be
formulated as

minimize
∑
i jkp

fi j dkpxik x jp, (8)

subject to ∀i :
∑
j

xi j = 1, (9)

∀ j :
∑
i

xi j = 1, (10)

where all indices i, j, k, p range from 0 to n−1, the problem variables are xi j ∈ {0, 1},
and (fi j) and (dkp) are matrices characterizing the problem instance. The QAP is a
difficult combinatorial optimization problem that has been shown to be NP-hard [11]
and can typically not be solved in reasonable time for general instances with n > 30
[7].

Comparing the garden optimization problem given by Eqs. (4)–(7) and the QAP
given by Eqs. (8)–(10), we see that the main differences are: (a) one dimension of the
problem variables has been reduced from n to t (cf. Eq. (3)) to reduce the number of
qubits required, resulting in themodified constraint Eq. (6); (b) theminimumof the cost
function Eq. (4) has been shifted to zero; and (c) the difficulty of the problem has been
slightly increased by the additional constraint Eq. (7), which can be straightforwardly
included in the problem’s QUBO formulation (see below).

For the QAP, there is a canonical way of obtaining its QUBO formulation (see, for
example, [9]). In the following sections, we pursue and extend this approach to obtain
the QUBO formulation of the garden optimization problem.

2.4 QUBO formulation of the problem

A QUBO problem is defined as the minimization of

E({yk}) =
∑
k≤k′

yk Qkk′ yk′ (11)

where yk ∈ {0, 1} are the binary problem variables, Qkk′ is referred to as the QUBO
matrix, a real-valued upper-triangular matrix encoding the problem constraints and the
objective function, and E({yk}) is the energy to beminimized by finding an appropriate
assignment of the variables yk .

In order to map the problem variables xi j onto the QUBO variables yk , we use the
following unary encoding scheme: We have one variable yk ∈ {0, 1} for each node
and species combination, so that n× t gives the total number of variables required for
this problem. The index k has to uniquely identify the node Vi and the species j , so

123

Garden optimization problems for benchmarking quantum annealers Page 7 of 22 305

we compute it from (i, j) via k = ti + j and convert it back to (i, j) using integer
division i = k//t and the integer modulo operation j = k%t . The value yk = 1
shall represent the statement “on node Vi there is a plant of species j” (cf. Eq. (3)).
Conversely, yk = 0 means “on node Vi there is no plant of species j”. Of course, in a
good solution we would expect n of the yk to be one and tn − n to be zero.

The garden optimization problem given by Eqs. (4)–(7) now needs to be expressed
as a QUBO problem, i.e. a minimization of Eq. (11). To do this, we need to remove
the constraints given by Eqs. (5)–(7) by combining them with the cost function Eq. (4)
into a single expression. This is achieved by adding the constraints as squared penalty
terms (whose minima correspond to fulfilling the constraints) to the cost function. The
penalty terms are multiplied by Lagrangian multipliers λ1, λ2, λ3 which control the
importance of each constraint relative to that of the cost function. The values of these
multipliers should be chosen to be large enough positive scalars so that the candidate
solutions respect the constraints, but not too big that these constraints dominate over
the objective function in their contribution to the final energy [9]. This way we ensure
that valid solutions are returned, while still being able to distinguish between good
and poor solutions. We experimented with different values and found that setting the
multipliers to λ1 = λ2 = 2 and λ3 = 1 achieves this goal.

Combining all this, the garden problem stated as a QUBO problem takes the fol-
lowing form:

min
xi j∈{0,1}

{ n−1∑
i,i ′=0

Jii ′

⎛
⎝1 +

t−1∑
j, j ′=0

xi jC j j ′xi ′ j ′

⎞
⎠

+λ1

n−1∑
i=0

⎛
⎝1 −

t−1∑
j=0

xi j

⎞
⎠

2

+λ2

t−1∑
j=0

(
c j −

n−1∑
i=0

xi j

)2

+λ3

n−1∑
i=0

t−1∑
j=0

(
i%2 − s j

)2
xi j

}

(12)

By multiplying out the squares, replacing all linear terms ∝ xi j by quadratic terms
∝ xi j xi j (since xi j = x2i j for Boolean variables), replacing xi j by yk and dropping
all constant terms, we obtain the final values of the QUBO matrix Qkk′ in Eq. (11).
Although the value of the dropped constant terms does not affect the minimum, it is
useful to add it to the final energies E({yk}) to maintain the property that the global
minimum of the optimization problem has value zero. The explicit construction of the
QUBO matrix for the garden optimization problem can be found in Appendix A and
in the example Jupyter Notebook available at Ref. [12].

123

305 Page 8 of 22 C. D. G. Calaza et al.

3 Quantum annealing

There are two main paradigms in quantum computing: gate-based quantum comput-
ing [13–16] (QC) and quantum annealing [1,2,17–19] (QA). They are substantially
different in their mode of operation as well as in the current system sizes and the range
of problems that they can solve. In theory, gate-based QC can tackle a much wider
range of problems due to its universal nature, but current implementations [20,21]
are too small to outperform classical computers in real-life applications. On the other
hand, QA excels at solving optimization problems such as the QUBO problem given
by Eq. (11). There are commercial QA devices available, like the ones offered by
D-Wave Systems Inc. [5,22], which have been shown to be able to solve reasonably
sized problems [10,23–25]. Here, we will focus exclusively on QA.

A quantum annealer operates according to the adiabatic theorem [26]. This theorem
states that given a simple initial Hamiltonian with a known ground state and a problem
Hamiltonianwhose unknownground state encodes the solution to the problem (e.g. our
garden optimization QUBO problem Hamiltonian), by evolving the system according
to the Schrödinger equation sufficiently slowly, we can ensure that the system stays in
its ground state throughout the evolution from initial to problem Hamiltonian, leaving
the system in the desired ground state which solves the problem [18,19]. On D-Wave
quantum annealers, the parameter which controls the duration of this evolution process
is the annealing time (AT). This parameter defaults to 20μs but can be set by the user
to any value between 1μs and 2000μs [5].

A prerequisite for solving a problem on a QA device is that it is formulated in terms
of the Ising model [18] or a QUBO problem such as Eq. (11). Given that a formulation
of the garden optimization problem in terms of a QUBO problem was provided in
the previous section, we limit our discussion to this model. Beyond practical consid-
erations on a per-problem basis like the possibility to perform simplifications when
stating the problem using one model or the other, these two models are equivalent
up to a trivial transformation of the domain of the binary variables from {−1,+1} to
{0, 1} or backwards.

Here, we solve a set of garden optimization problems of increasing number of
variables using a suite of QPUs as well as hybrid and classical software solvers offered
byD-Wave Systems. In the following two sections, we review the samplers and solvers
that we used for the benchmarks reported in this paper.

3.1 D-Wave QPUs

D-Wave has offered access to a 2000+ qubit quantum annealer called DW2000Q since
January2017.Connecting the over 2000qubits, this system features over 6000 couplers
arranged in a Chimera graph of size 16, also known as C16 [3]. In September 2020,
a new system called Advantage was released, which features over 5000 qubits and
over 35000 couplers arranged in a Pegasus topology of size 16 (P16) [5]. Besides
the significant increase in the number of qubits, the most noteworthy improvement of
the new generation was the qubit connectivity increasing from 6 to 15, which should
allow the user to solve problems with more variables and denser connectivity [4]. The

123

Garden optimization problems for benchmarking quantum annealers Page 9 of 22 305

(a) (b)

Fig. 2 Graphs of Chimera and Pegasus topologies, where nodes and edges represent qubits and couplers,
respectively. a Chimera graph of size 3 (C3). b Pegasus graph of size 4 (P4) where nodes are shown as
white circles and edges as dashed lines, with a C3 graph embedded in it, where nodes are shown as blue
circles and edges as solid lines (Color figure online)

characteristic form of the Chimera and the Pegasus graph is shown in Fig. 2a and b,
respectively.

A critical step in programming a quantum annealer is the embedding of the problem
onto the working graph of the chip [27]. Typically, a small portion of the qubits and
couplers in the chip are deactivated due tomalfunction, sowe define theworking graph
as the subset of the full-yield graph of the chip (described by the topology and size
parameter, e.g. C16) which excludes the malfunctioning qubits and couplers. Finding
an embedding onto the working graph of the chip (which allows us to run the problem
on the quantum annealer) is generally a challenging problem in itself [27,28]. It often
relies on heuristic methods and requires several tries until a satisfactory embedding is
found.

In the special case that the graph of the QUBO problem can be directly mapped
onto the working graph of the QPU, the embedding is a trivial step. However, most
problems on a real-life scale do not meet this requirement and the embedding step
becomes crucial. In order to overcome the limited connectivity of the QPU, the con-
cepts of logical and physical qubits are introduced. When a direct embedding exists,
the logical qubits (which represent the binary variables in the QUBO matrix) map
directly onto the physical qubits of the QPU. However, when such an embedding can-
not be found, logical qubits need to be represented on the QPU as “chains” of physical
qubits. A qubit chain is a group of physical qubits that are coupled together strongly
enough so that they behave as an effective, single logical qubit. This technique has the
advantage of increasing the connectivity of the logical qubit since each of the partici-
pating physical qubits has its own couplers. The drawback is that this “strong enough”
coupling strength has to be determined empirically on a per-embedding basis. If the
coupling is too weak, the chains break, which means that the logical qubits no longer
behave as single units. In such a case, post-processing techniques (as, for instance, a

123

305 Page 10 of 22 C. D. G. Calaza et al.

majority vote) can be applied to determine a value for the logical qubit. However, a
result obtained in this way can have a high energy in the original problem formulation.
On the other hand, if the chain coupling strength is set too high, the couplers involved
in keeping chains consistent will dominate over the couplers representing the original
problem interactions. This effectively produces a new problem that is more concerned
with keeping chains consistent, so that it no longer yields solutions to the original
problem.

A reasonable starting point for optimizing the chain strength for a given embedded
problem is the largest bias or coupling strength of the original QUBO problem. There-
fore, for an easier comparison across problems, we define the relative chain strength
as

RCS = ACS

max
kk′ |Qkk′ | , (13)

where RCS stands for relative chain strength, ACS is the (absolute) chain strength,
and Qkk′ is the QUBO matrix from Eq. (11).

Moreover, a problemwith denser connectivity requires longer chains, which in turn
demands stronger chain coupling strengths since longer chains have a higher chance
of breaking. Therefore, embeddings with fewer, shorter chains should be preferred.
The embedding issue stresses the importance of the increased connectivity between
the Chimera architecture on the DW2000Q and the Pegasus architecture on the new
D-Wave Advantage. The Pegasus architecture should allow for equally or more
compact embeddings than Chimera for any given problem. Also, the increased number
of qubits would allow us to run bigger problems that do not fit on the DW2000Q chip.

3.2 D-Wave hybrid solvers

In addition to hardware QPUs like DW2000Q and Advantage, D-Wave Systems
offers access to QUBO solvers following a hybrid approach. As we saw in the previous
section, the current QPUs have a limited number of qubits which might not be enough
to solve problems at a real-world scale. Hybrid solvers have been designed to overcome
this limitation by classically partitioning the problem into sub-problems that are small
enough to be solved on a QPU. The version 1 solver HSSv1 was released in February
2020, using DW2000Q as the hardware backend to solve the sub-problems and being
able to run problems of up to 10,000 variables. In September 2020, parallel to the
release of the Advantage QPU, the version 2 solver HSSv2 was released. The new
hybrid solver relied on Advantage instead and was able to solve sparsely connected
problems of up to one million variables or fully connected problems of up to 20,000
variables [29].

In order to perform a more comprehensive performance comparison of HSSv1 and
HSSv2, we have included in this study two purely classical QUBO solvers provided
by the D-Wave Ocean SDK: TabuSampler, an MST2 multistart search algorithm
[30], and QBSolv [31], a partitioning algorithm which solves the sub-problems using
TabuSampler as backend. We thus have two different hybrid classical/quantum

123

Garden optimization problems for benchmarking quantum annealers Page 11 of 22 305

partitioning solvers, a classical non-partitioning solver, and a classical partitioning
solver.

The hybrid solvers are proprietary software of D-Wave Systems Inc. for which no
information on their internal function is publicly available (see the official documen-
tation on Leap Hybrid solvers [32]). As they do not offer tunable parameters (except
for an optional timeout parameter), no parameter tuning was performed on any of the
solvers. In other words, we consider all solvers as out-of-the-box solutions in their
default mode of operation.

4 Results

In this section,wepresent the results obtained for the hardware samplers (Advantage
and DW2000Q), as well as for the hybrid and software solvers (HSSv1, HSSv2,
TabuSampler, and QBSolv) in two separate subsections. For the hardware sam-
plers, we created four problem instances and performed a chain strength scan for
several embeddings of each problem. Subsequently, we chose the most successful
embedding together with its optimal RCS value to perform an annealing time scan.
These scans were used for comparing the performance of the hardware samplers. For
the hybrid and software solvers, we created 324 problem instances which we sub-
mitted to each solver. The Python 3 code used to generate these problem instances is
available online as a Jupyter Notebook at Ref. [12]. Here, we present the energy of
the returned solutions as well as the execution times required to reach them.

4.1 Hardware samplers

For the D-Wave QPUs DW2000Q and Advantage (see Sect. 3.1), we define a suc-
cessful solution as one which fulfils all the constraints in Eqs. (5)–(7) regardless of the
quality of the placement of the plants in the garden (i.e. regardless of the contribution
of the cost function Eq. (4) to the solution energy).We remark that there is no tolerance
in the success of a solution, as we only count solutions as successful if they satisfy
all constraints. The success rate is then defined as the ratio of successful solutions to
the total number of samples produced. Defining the success rate in this way allows us
to assess the quality of the solutions provided by a batch of samples in this scenario,
where we do not know whether we have found the ground state of the problem unless
the energy of the sample is zero. An alternative metric which could be used to measure
the success of a given embedded problem is the energy of the best sample, i.e. the
lowest energy (as considered in Sect. 4.2 for comparing hybrid and classical solvers).
This metric has the advantage over the success rate of taking into account not only
the satisfaction of the constraints but also the quality of the placement of plants in the
garden. However, for the hardware samplers evaluated here, the lowest energy turned
out not to be a sensitive enough metric to tune the RCS and AT. The reason for this is
that among the valid solutions, the different samplers and embeddings often returned
identical lowest energy results (data not shown).

123

305 Page 12 of 22 C. D. G. Calaza et al.

Garden problems of different size were created to compare the performance of the
DW2000Q and Advantage systems at solving QUBO problems. Given the problem
size limitations of the studied systems, the problem suite consists of four problems of
16, 36, 64, and 100 variables. We ensure that the created problems are satisfiable by
setting n to an even number (here n ∈ {4, 6, 8, 10}) and sampling without replacement
n/2 times from each of both the sets of big plants ({ j : 0 <= j <= t−1 and s j = 0})
and small plants ({ j : 0 <= j <= t − 1 and s j = 1}) to obtain the list of plants to
place in the garden. Sampling without replacement generates problems where there
is at most one plant specimen of each species, so the number of variables in these
problems is equal to n2.

For each of these problems, 10 embeddings were generated for each of the working
graphs of DW2000Q (a subset of theC16 graph) and Advantage (a subset of the P16
graph) using the find_embedding function of the minorminermodule included
within the D-Wave Ocean SDK (see [5] for more information on the working graphs
and [33] for information on the embedding algorithm used). These embeddings were
successfully created for all problems except for the 100variable problemonDW2000Q,
since it was too big to fit on the DW2000Q chip. Therefore, for this problem, we only
report results obtained on Advantage.

In order to study the influence of the additional couplers introduced by the enlarged
connectivity of the Pegasus topology, the DW2000Q embeddings were mapped onto
the Advantage graph (see Fig. 2b for a visualization of how the Chimera graph can
be embedded onto the Pegasus graph, and by extension how a Chimera-embedded
problem can be mapped onto a Pegasus graph). By this process, we obtain 10 new
embeddings for each problem which could be used on the DW2000Q system in
addition to the two original sets of 10 embeddings. In what follows, we refer to
these Chimera embeddings used on the Advantage system as Advantage(Chimera)
embeddings. Since the Advantage(Chimera) embeddings were not created specifically
for Advantage, the compatibility of these embeddings with the working graph of
the Advantage chip was checked prior to executing the problems, so that they could
be replaced in the case that any of the involved qubits or couplers were not available.

4.1.1 Chain strength scan

The available sets of embeddings for the four problemswere submitted to the respective
systems 40 times with RCS values ranging from 0.05 to 2.00, increasing in steps of
0.05 (cf. Eq. (13)). These sets of 40 jobswere used to scan the success rate as a function
of the RCS for each embedding. The results of the RCS scan for all embeddings can be
found in Fig. 3. All jobs in each scan produced 104 samples for the 16 and 36 variable
problems, and 105 samples for the 64 and 100 variable problems. The number of
samples in the latter problems was increased to produce sufficient statistics given the
small success rates.

The results in Fig. 3 show that the success rate can be drastically improved by tuning
the RCS for a given embedding. As the problem size increases, so do the chain lengths,
leading to higher optimal RCS values required to stop the chains from breaking. This
effect is more clearly visible on DW2000Q, possibly due to properties of this par-
ticular system; otherwise, it would also be observable in the Advantage(Chimera)

123

Garden optimization problems for benchmarking quantum annealers Page 13 of 22 305

(a) (b)

(c) (d)

Fig. 3 Success rate as a function of the RCS (see Eq. (13)) for four garden problems with increasing number
of variables. For each problem size, 10 embeddings were generated for both C16 and P16 topologies and
executed with r samples. Full blue lines represent C16-embedded problems executed on DW2000Q, dashed
orange lines representC16-embedded problems executed on Advantage, and dotted green lines represent
P16-embedded problems executed on Advantage, shown everywhere with 95% confidence intervals. a
16-variable problem, with r = 104 samples. b 36-variable problem, with r = 104 samples. c 64-variable
problem, with r = 105 samples. d 100-variable problem, with r = 105 samples. Note that in d, only
Advantage results are shown here since no embedding could be found for the C16 graph (Color figure
online)

scans. For problems of up to 64 variables, for which Chimera embeddings were
found, the performances of the DW2000Q and Advantage systems are compara-
ble, whereas Advantage(Chimera) embeddings performed significantly worse. This
difference in performance cannot be attributed to the embedding quality. There-
fore, we conjecture that the additional unused couplers of the Pegasus architecture
in the Advantage(Chimera)-embedded problems when compared to the DW2000Q-
embedded problems play a role in lowering the success rate. For the 100 variable
problem, only Pegasus embeddings could be found, and although the success rates are
small, this indicates that the Advantage system is able to solve bigger problems due
to its increased qubit number and connectivity. We also note that for the 36 variable
problem, DW2000Q seems to outperform Advantage. This might be due to the fact
that Chimera and Pegasus embeddings for small problems have similar chain lengths
and the DW2000Q embeddings could have less unused couplers connected to qubits
involved in the embeddings.

123

305 Page 14 of 22 C. D. G. Calaza et al.

4.1.2 Annealing time scan

After performing the RCS scans presented in the previous section, we proceed to
tuning another crucial parameter, the AT. For every set of 10 embeddings used for
the RCS scan in Fig. (3), we pick the embedding which achieved the highest success
rate for each problem and embedding-type combination. For each picked embedding,
we determine its optimal RCS value, and we proceed by performing an AT scan
using the chosen embedding and RCS value combinations. It should be noted that
coincidentally, the best DW2000Q embedding for each problem was the same as the
best for Advantage(Chimera), although the optimal RCS was slightly lower in the
Advantage(Chimera) embedding for problems of 36 and 64 variables and the same
for the 16-variable problem.

Although both systems use a default AT of 20μs, DW2000Q and Advantage
allow the user to set the AT value between 1μs and 2000μs. Therefore, the AT scan
was performed using 20 values evenly spaced on a logarithmic scale in this range.
All jobs in each scan produced 104 samples for the 16 and 36 variable problems, 105

samples for the 64 variable problem, and 106 samples for the 100 variable problem.
The number of samples in the latter problems was increased to produce sufficient
statistics given the small success rates.

The results in Fig. 4 show that the success rate can also be improved by tuning the
annealing time for a given embedding. The general trend shows that higher AT values
lead to higher success rates. However, since longer annealing times for a fixed number
of samples result in longer execution times, it should be carefully considered for any
given problemwhether the increase in execution time resulting from setting a largerAT
valuewould not be better spent in generating additional sampleswith shorter annealing
times rather than fewer sampleswith longer annealing times. ComparingAdvantage
and Advantage(Chimera) against DW2000Q, we see that increasing the AT tends to
be more consistently effective on the Advantage system. On DW2000Q, however,
the success rate is found to decrease again for larger AT (see the blue curves in Fig. 4).
This may be an effect caused by the environment (see [34] for more information). It
is possible that if the Advantage system accepted AT values beyond 2000μs, we
would observe similar behaviour, where the success rate decreases past some optimal
AT value.

Figure 4 also shows that the largest success rates in each case decrease with increas-
ing problem size. One reason for this is that the qubit chain lengths increase as the
number of variables grows. Another reason is that although the energy gap is always
between one or two by construction (see Eq. 12), larger problems may have a smaller
effective energy gap due to the rescaling of the problem parameters into the range of
available qubit and coupler strengths (see the auto-scaling procedure at [32]).

4.2 Hybrid and software solvers

In this section, we compare the performance of the hybrid solvers HSSv1 and HSSv2
against the classical software solvers TabuSampler and QBSolv (see Sect. 3.2
for details on these solvers). The hybrid solvers were executed online on D-Wave

123

Garden optimization problems for benchmarking quantum annealers Page 15 of 22 305

(a) (b)

(c) (d)

Fig. 4 Success rate as a function of the annealing time for four garden problems of increasing number
of variables. For each problem size, the most successful embedding from Fig. 3 was selected along with
its optimal chain strength and executed with r samples. Full blue lines represent C16-embedded problems
executed on DW2000Q, dashed orange lines represent C16-embedded problems executed on Advantage,
and dotted green lines represent P16-embedded problems executed on Advantage. a 16-variable problem,
with r = 104 samples. b 36-variable problem, with r = 104 samples. c 64-variable problem, with r = 105

samples. d 100-variable problem, with r = 106 samples. Note that in d, only Advantage results are
shown since no embedding could be found for the C16 graph (Color figure online)

servers, and the classical solvers were executed on an Intel(R) Core(TM) i7-4770
CPU @ 3.40GHz workstation with 32GB of RAM. For this study, we generated
increasingly bigger problems in an attempt to evaluate how the performance of the
solvers behaves under increasing problem sizes. Each problem instance was created
by fixing the number of pots n to an even number and sampling with replacement the
sets of available small and big plant species n/2 times each, so as to ensure that as
many small plants as big ones were to be placed in the garden. Here, we sample with
replacement (as opposed to the problems created in Sect. 4.1) to allow for more than
one plant specimen per species. Therefore, we create problems with more pots than
unique species defined in the companions matrix C j j ′ shown in Fig. 1. The biggest
problem which could be created given the available memory on the used workstation
was for n = 684 pots, with a total of 12312 variables. Note that the biggest problems
are beyond the problem size limit of HSSv1 (10000 variables), but within the limit for
HSSv2 (20000 variables, fully connected). Each of the 342 problems in this set was

123

305 Page 16 of 22 C. D. G. Calaza et al.

Fig. 5 Lowest energy returned
by HSSv1 (blue circle markers),
HSSv2 (yellow X markers),
QBSolv (green square
markers), and TabuSampler
(red cross markers) for garden
problems of up to 12312
variables. Note that
TabuSampler energy results
for problems beyond 2500
variables are not shown since
they were several orders of
magnitude larger than the rest
(Color figure online)

submitted to each of the studied solvers, so we can make a direct comparison of their
performance. Here, rather than comparing the success rates as we did in the previous
section, we compare the energy of the single sample returned by each of the solvers,
as well as the execution times taken to return said sample.

4.2.1 Energies

Figure 5 shows the energies returned by each of the solvers for the generated set of
garden problems. TabuSampler seems to perform significantly worse than the oth-
ers. This is probably due to the fact that it is the only solver that does not partition
the problem into separately solved sub-problems, but attempts to solve the complete
problem at once. The energy results for this solver were at least three orders of mag-
nitude larger than the rest for problems beyond 2500 variables. QBSolv displays
a rather predictable linear trend for increasing problem size in the studied range of
problems. For problems below 5000 variables, HSSv2, HSSv1, and QBSolv show
very similar performance, with QBSolv returning slightly worse results. Above 5000
variables, the differences become clearer, with HSSv1 outperforming all other solvers
up until the 10000 variable barrier, after which no results are available for this solver.
Surprisingly, as the problem size increases, HSSv2 seems to perform comparatively
worse than QBSolv and especially HSSv1. Additionally, the spread of the energies
returned by HSSv2 increases compared to that of the other solvers.

To study this trend in more detail, a direct comparison of the energies returned by
HSSv1 and HSSv2 for each problem is shown in Fig. 6. Here, we plot the energy
of both HSSv1 and HSSv2 on the x- and y-axes, respectively, and use the colour
dimension to represent the number of variables of each problem represented by a point.
For problems of up to 2000 variables, there is no visible difference between the solvers.
However, as problems increase beyond this number of variables, the gap in the energies
returned by each solver increases in favour of HSSv1. It should be noted that the results
shown here should be interpreted exclusively within the scope of the studied garden
optimization problems, and further evaluation involving different problem classes

123

Garden optimization problems for benchmarking quantum annealers Page 17 of 22 305

Fig. 6 Direct comparison of the
energies returned by HSSv1
(x-axis) and HSSv2 (y-axis) for
the set of problems from Fig. 5.
The brightness of the coloured
points is used to indicate the
number of variables of each
problem, with darker points
representing larger problems.
The diagonal dashed line is a
guide to the eye to show the
separation between the region
where HSSv1 outperforms
HSSv2 (upper left half) and vice
versa (lower right half). Note
that problems with more than
10000 variables are omitted
since they could not be
submitted to HSSv1

Fig. 7 Execution times of
HSSv1 (blue circle markers),
HSSv2 (yellow X markers),
QBSolv (green square
markers), and TabuSampler
(red cross markers) for garden
problems of up to 12312
variables. Note that the different
size of the markers does not
have any special meaning;
simply markers for HSSv1 have
been enlarged for visibility due
to their execution times being
identical to those of HSSv2
(Color figure online)

would be required to reach a general conclusion regarding the performance of these
solvers.

4.2.2 Execution times

A comparison of the solvers would be incomplete if the execution times were not
taken into consideration. Figure 7 shows the time in seconds employed by every
solver to solve each of the problems in the generated set. TabuSampler is the
fastest among all tested solvers, although as it is shown in Fig. 5, its returned energies
were much worse than the others. HSSv1 and HSSv2 have identical execution times
up to 10000 variables. Note that the minimum execution time for HSSv1 and HSSv2
is 3 s independent of the problem size. Hence, the execution time is constant for these
two solvers for the smaller problems. Among all solvers, QBSolv is the slowest,

123

305 Page 18 of 22 C. D. G. Calaza et al.

with execution times at least one order magnitude larger than the hybrid solvers.
Considering this together with the energy results shown in Fig. 5, one might conclude
that HSSv1 is the most competitive among the tested solvers if the problem size does
not exceed its limit of 10000 variables. For problems above this threshold, however, it
is unclear whether the shorter running times and higher energies of HSSv2 should be
preferred over the longer running times but closer to optimal solutions of QBSolv.

5 Conclusion

In this paper, we have presented garden optimization problems that are present in com-
panion planting, as a class of QUBO problems suitable for benchmarking quantum
annealing systems over a wide range of problem and system sizes. The scalability
of the garden optimization problems has proven flexible enough to benchmark hard-
ware samplers as well as hybrid and classical solvers, whose maximum problem size
limits are around two orders of magnitude larger than for the currently available hard-
ware samplers. We have reported results of benchmarking D-Wave hardware samplers
Advantage and DW2000Q, as well as hybrid and classical solvers HSSv1, HSSv2,
TabuSampler, and QBSolv. To the authors’ knowledge, these have been the first
benchmarking results of Advantage and HSSv2 developed by researchers inde-
pendent of D-Wave Systems. Nevertheless, we remark that before generalizing the
results shown here, it would be good to verify the general trends by benchmarking
these systems using other classes of problems. For similar studies, see [10,35–41].

Regarding the results for the hardware samplers (see Sect. 4.1), we can conclude
that the recently released Advantage system is capable of embedding and solving
garden optimization problems of 100 variables, which is far beyond the reach of the
previous generation of D-Wave systems, DW2000Q. This is due to the increase in the
number of qubits and couplers in the newer system. For the evaluated problems with
less than 100 variables, we did not observe significant differences in the performance
of both systems. The results for Advantage(Chimera), i.e. a Chimera embedding used
on Advantage (cf. Fig. 2), suggest that the additional couplers of Advantage’s
Pegasus architecture with respect to DW2000Q’s Chimera architecture can negatively
impact the success rate if these couplers are not used in the embedding. However, these
additional couplers allow for equally and often more compact embeddings for a fixed
problem, so they should be beneficial when solving embedded problems, especially
when the problems have more variables or denser connectivity.

The tunings of the relative chain strength (RCS) and annealing time (AT) values
shown in Sect. 4.1 were performed sequentially, by first finding the optimal RCS value
for the best embedding in each system and, after fixing these, tuning the AT value.
Ideally, the optimal RCS and AT values should be searched simultaneously since
there is no guarantee that these values are independent from each other. However,
the computational cost of scanning a two-dimensional space for each of the available
embeddings compared to scanning the parameters sequentially is too large to properly
address this limitation here. For this reason, and also since the RCS scan values had
a bigger impact on the success rate than the AT scan, we chose to perform the RCS
scan first.

123

Garden optimization problems for benchmarking quantum annealers Page 19 of 22 305

Regarding the results for the hybrid and classical solvers (see Sect. 4.2), we note
that HSSv1 is the most competitive among the tested solvers as long as the problem
does not exceed 10000 variables, since it has the shortest execution times together
with HSSv2 but returns lower energy results than the other solvers. Problems beyond
10000 variables cannot be submitted to HSSv1. For the largest problems, it is unclear
whether QBSolv or HSSv2 performs best: QBSolv has longer execution times but
returns results with lower energies, whereas HSSv2 is faster, but the results returned
have higher energies.

Whereas the problem size limits and the performance behaviour approaching these
limits could be tested for HSSv1with the generated set of problems, itwould have been
interesting to also include such results for HSSv2, TabuSampler, and QBSolv.
We leave the exploration of even larger problem instances to approach the size limits
of HSSv2 for future work.

Acknowledgements We thank Madita Willsch, Fengping Jin, Manpreet Jattana, and Hans De Raedt for
helpful discussion and for proofreading the manuscript. We especially thankMadita Willsch for spotting an
elusive mistake in the QUBO formulation. We thank D-Wave Systems for early access to an AdvantageTM

system and the new hybrid solver service in Leap during the Advantage beta program. We gratefully
acknowledge the Jülich Supercomputing Centre for funding this project by providing additional computing
time through the Jülich UNified Infrastructure for Quantum computing (JUNIQ) on the D-Wave quantum
annealer. D.W. acknowledges support from the project JUNIQ that has received funding from the German
Federal Ministry of Education and Research (BMBF) and the Ministry of Culture and Science of the State
of North Rhine-Westphalia. C.G. acknowledges support from the project OpenSuperQ (820363) of the
European Quantum Flagship.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Explicit QUBO expression

In this appendix, we give the final QUBO expression of the garden optimization
problem. It can be obtained from Eq. (12) bymultiplying out the squares and replacing
the linear termsbyquadratic terms (using the fact that forBoolean variables, xi j = x2i j).
Performing these steps, we find

min
xi j∈{0,1}

{
(A1)

t2
n−1∑
i,i ′=0

Jii ′ +
n−1∑
i=0

n−1∑
i ′=0

t−1∑
j=0

t−1∑
j ′=0

xi j Jii ′C j j ′xi ′ j ′ (A2)

123

http://creativecommons.org/licenses/by/4.0/

305 Page 20 of 22 C. D. G. Calaza et al.

+λ1n + λ1

n−1∑
i=0

⎛
⎝−

t−1∑
j=0

x2i j +
t−1∑
j=0

t−1∑
j ′< j

2xi j xi j ′

⎞
⎠ (A3)

+λ2

t−1∑
j=0

c2j + λ2

t−1∑
j=0

[(
1 − 2c j

) n−1∑
i=0

x2i j +
n−1∑
i=0

n−1∑
i ′<i

2xi j xi ′ j

]
(A4)

+λ3

n−1∑
i=0

t−1∑
j=0

(
i%2 − s j

)2
x2i j

}
. (A5)

Note that the expression contains only constant and quadratic terms, and each quadratic
term is a contribution of the form ci ji ′ j ′xi j xi ′ j ′ . Thus, we obtain the values Qkk′ (or
Qk′k if k′ < k) of the QUBO matrix in Eq. (11) for k = t i + j and k′ = t i ′ + j ′
by going through the terms and summing up the respective coefficients ci ji ′ j ′ . See the
build_bqm function in the example Jupyter Notebook available at Ref. [12] for a
demonstration of how these coefficients are summed up explicitly.

References

1. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., Harris, R., Berkley,
A.J., Johansson, J., Bunyk, P., Chapple, E.M., Enderud, C., Hilton, J.P., Karimi, K., Ladizinsky, E.,
Ladizinsky, N., Oh, T., Perminov, I., Rich, C., Thom, M.C., Tolkacheva, E., Truncik, C.J.S., Uchaikin,
S., Wang, J., Wilson, B., Rose, G.: Quantum annealing with manufactured spins. Nat. 473, 194 (2011)

2. Harris, R., Johnson,M.W., Lanting, T., Berkley, A.J., Johansson, J., Bunyk, P., Tolkacheva, E., Ladizin-
sky, E., Ladizinsky, N., Oh, T., Cioata, F., Perminov, I., Spear, P., Enderud, C., Rich, C., Uchaikin, S.,
Thom, M.C., Chapple, E.M., Wang, J., Wilson, B., Amin, M.H.S., Dickson, N., Karimi, K., Macready,
B., Truncik, C.J.S., Rose,G.: Experimental investigation of an eight-qubit unit cell in a superconducting
optimization processor. Phys. Rev. B 82, 024511 (2010)

3. Bunyk, P.I., Hoskinson, E.M., Johnson, M.W., Tolkacheva, E., Altomare, F., Berkley, A.J., Harris, R.,
Hilton, J.P., Lanting, T., Przybysz, A.J., Whittaker, J.: Architectural considerations in the design of a
Superconducting Quantum annealing processor. IEEE Trans. Appl. Supercond. 24, 1 (2014)

4. McGeoch, C., Farré, P.: D-Wave Technical Report Series 14–1049A-A. In: The D-Wave Advantage
System: An Overview, Tech. Rep. D-Wave Systems Inc, Burnaby, BC, Canada (2020)

5. D-Wave Systems Inc, Technical Description of the D-Wave Quantum Processing Unit, Tech. Rep.
(D-Wave Systems Inc, Burnaby, BC, Canada, 2020) D-Wave User Manual 09-1109A-V

6. Koopmans, T.C., Beckmann,M.: Assignment problems and the location of economic activities. Econo-
metrica 25, 53 (1957)

7. Loiola, E.M., de Abreu, N.M.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the
quadratic assignment problem. Eur. J. Oper. Res. 176, 657 (2007)

8. Tsang, E.P.K.: Foundations of constraint satisfaction. Academic Press, London and San Diego (1993)
9. Glover, F., Kochenberger, G., Du, Y.: Quantum Bridge Analytics I: a tutorial on formulating and using

QUBO models, 4OR Q. J. Oper. Res. 17, 335 (2019)
10. Willsch, D., Willsch, M., Calaza, C.D.G., Jin, F., De Raedt, H., Svensson, M., Michielsen, K.:

Benchmarking Advantage and D-Wave 2000Q quantum annealers with exact cover problems,
arXiv:2105.02208 [quant-ph] (2021a)

11. Sahni, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23, 555 (1976)
12. https://jugit.fz-juelich.de/qip/garden-optimization-problem.git (2020), last accessed: December 2,

2020
13. Benioff, P.: The computer as a physical system: A microscopic quantum mechanical Hamiltonian

model of computers as represented by Turing machines. J. Stat. Phys. 22, 563 (1980)
14. Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467 (1982)

123

http://arxiv.org/abs/2105.02208
https://jugit.fz-juelich.de/qip/garden-optimization-problem.git

Garden optimization problems for benchmarking quantum annealers Page 21 of 22 305

15. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc.
R. Soc. Lond. A 400, 97 (1985)

16. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information: 10th. Anniversary
Cambridge University Press, New York (2010)

17. Finnila, A.B., Gomez, M.A., Sebenik, C., Stenson, C., Doll, J.D.: Quantum annealing: A new method
for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343 (1994)

18. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355
(1998)

19. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution
(2000), arXiv:quant-ph/0001106

20. IBM Q team, Quantum Experience, https://quantum-computing.ibm.com/ (2016)
21. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao,

F.G.S.L., Buell, D.A., Burkett, B., Chen, Y., Chen, Z., Chiaro, B., Collins, R., Courtney,W., Dunsworth,
A., Farhi, E., Foxen, B., Fowler, A., Gidney, C., Giustina, M., Graff, R., Guerin, K., Habegger, S.,
Harrigan, M.P., Hartmann, M.J., Ho, A., Hoffmann, M., Huang, T., Humble, T.S., Isakov, S.V., Jeffrey,
E., Jiang, Z., Kafri, D., Kechedzhi, K., Kelly, J., Klimov, P.V., Knysh, S., Korotkov, A., Kostritsa,
F., Landhuis, D., Lindmark, M., Lucero, E., Lyakh, D., Mandrà, S., McClean, J.R., McEwen, M.,
Megrant, A., Mi, X., Michielsen, K., Mohseni, M., Mutus, J., Naaman, O., Neeley, M., Neill, C., Niu,
M.Y., Ostby, E., Petukhov, A., Platt, J.C., Quintana, C., Rieffel, E.G., Roushan, P., Rubin, N.C., Sank,
D., Satzinger, K.J., Smelyanskiy, V., Sung, K.J., Trevithick, M.D., Vainsencher, A., Villalonga, B.,
White, T., Yao, Z.J., Yeh, P., Zalcman, A., Neven, H., Martinis, J.M.: Quantum supremacy using a
programmable superconducting processor. Nat. 574, 505 (2019)

22. D-Wave, Leap, https://www.dwavesys.com/take-leap (2019)
23. Pudenz, K.L., Lidar, D.A.: Quantum adiabatic machine learning. Quantum Inf. Process. 12, 2027

(2012)
24. Perdomo-Ortiz, A., Feldman, A., Ozaeta, A., Isakov, S.V., Zhu, Z., O-Gorman, B., Katzgraber, H.G.,

Diedrich, A., Neven, H., de Kleer, J., Lackey, B., Biswas, R.: Readiness of quantum optimization
machines for industrial applications. Phys. Rev. Appl. 12, 014004 (2019)

25. Willsch, D., Willsch, M., De Raedt, H., Michielsen, K.: Support vector machines on the D-Wave
quantum annealer. Comput. Phys. Commun. 248, 107006 (2020)

26. Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. 51, 165 (1928)
27. Choi, V.: Minor-embedding in adiabatic quantum computation: I. The parameter setting problem.

Quantum Inf. Process. 7, 193 (2008)
28. Okada, S., Ohzeki, M., Terabe,M., Taguchi, S.: Improving solutions by embedding larger subproblems

in a D-Wave quantum annealer. Sci. Rep. 9, 2098 (2019)
29. McGeoch, C., Farré, P., Bernoudy, W.: D-Wave Hybrid Solver Service + Advantage: Technology

Update, Tech. Rep. (D-Wave Systems Inc, Burnaby, BC, Canada, 2020) D-Wave User Manual 09-
1109A-V

30. Palubeckis, G.: Multistart Tabu Search strategies for the unconstrained binary quadratic optimization
problem. Ann. Oper. Res. 131, 259 (2004)

31. Booth, M., Reinhardt, S.P., Roy, A.: Partitioning Optimization Problems for Hybrid Classical/
QuantumExecution, Tech. Rep. (D-Wave Systems Inc, Burnaby, BC,Canada, 2020)D-WaveTechnical
Report Series 14-1006A-A

32. D-Wave Systems, D-Wave Solver Properties and Parameters, Tech. Rep. (D-Wave Systems Inc., Burn-
aby, BC, Canada, 2021) D-Wave User Manual 09-1169A-T

33. Cai, J., Macready, W.G., Roy, A.: A practical heuristic for finding graph minors, arXiv:1406.2741
[quant-ph] (2014)

34. Amin, M.H.: Searching for quantum speedup in quasistatic quantum annealers. Phys. Rev. A 92,
052323 (2015)

35. Willsch, D., Willsch, M., Jin, F., Michielsen, K., De Raedt, H.: GPU-accelerated simulations of
quantum annealing and the quantum approximate optimization algorithm, arXiv:2104.03293 [quant-
ph] (2021b)

36. Cohen, J. Alexander, C.: Picking Efficient Portfolios from 3,171 US Common Stocks with New
Quantum and Classical Solvers, arXiv:2011.01308 [quant-ph] (2020)

37. Kuramata, M., Katsuki, R., Nakata, K.: Larger Sparse Quadratic Assignment Problem Optimization
Using Quantum Annealing and a Bit-Flip Heuristic Algorithm, arXiv:2012.10135 [quant-ph] (2020)

123

http://arxiv.org/abs/quant-ph/0001106
https://quantum-computing.ibm.com/
https://www.dwavesys.com/take-leap
http://arxiv.org/abs/1406.2741
http://arxiv.org/abs/2104.03293
http://arxiv.org/abs/2011.01308
http://arxiv.org/abs/2012.10135

305 Page 22 of 22 C. D. G. Calaza et al.

38. Birdal, T., Golyanik, V., Theobalt, C., Guibas, L.: Quantum Permutation Synchronization,
arXiv:2101.07755 [quant-ph] (2021)

39. Bhatia, H.S. Phillipson, F.: Performance Analysis of Support Vector Machine Implementations on the
D-Wave Quantum Annealer, In International Conference on Computational Science (Springer, 2021)
pp. 1–14

40. Fox, D.M., Branson, K.M., Walker, R.C.: mRNA codon optimization on quantum computers. https://
doi.org/10.1101/2021.02.19.431999 (2021)

41. Rahman, S.A., Lewis, R., Mendicelli, E., Powell, S.: SU(2) lattice gauge theory on a quantum
annealer, arXiv:2103.08661 [hep-lat] (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2101.07755
https://doi.org/10.1101/2021.02.19.431999
https://doi.org/10.1101/2021.02.19.431999
http://arxiv.org/abs/2103.08661

	Garden optimization problems for benchmarking quantum annealers
	Abstract
	1 Introduction
	2 The garden optimization problem
	2.1 Formulation of the cost function
	2.2 Formulation of the constraints
	2.3 Relation to the quadratic assignment problem
	2.4 QUBO formulation of the problem

	3 Quantum annealing
	3.1 D-Wave QPUs
	3.2 D-Wave hybrid solvers

	4 Results
	4.1 Hardware samplers
	4.1.1 Chain strength scan
	4.1.2 Annealing time scan

	4.2 Hybrid and software solvers
	4.2.1 Energies
	4.2.2 Execution times

	5 Conclusion
	Acknowledgements
	Appendix A: Explicit QUBO expression
	References

