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Abstract— The work addresses the problem of clothing per-
ception and manipulation by a two armed industrial robot
aiming at a real-time automated folding of a piece of garment
spread out on a flat surface. A complete solution combining
vision sensing, garment segmentation and understanding, plan-
ning of the manipulation and its real execution on a robot is
proposed. A new polygonal model of a garment is introduced.
Fitting the model into a segmented garment contour is used
to detect garment landmark points. It is shown how folded
variants of the unfolded model can be derived automatically.
Universality and usefulness of the model is demonstrated by
its favorable performance within the whole folding procedure
which is applicable to a variety of garments categories (towel,
pants, shirt, etc.) and evaluated experimentally using the two
armed robot. The principal novelty with respect to the state
of the art is in the new garment polygonal model and its
manipulation planning algorithm which leads to the speed up
by two orders of magnitude.

I. INTRODUCTION

The reported research contributes to the garment sens-

ing and its manipulation (sorting, folding, etc.) which is

performed on a dual arm robot in our case within the

European Commission funded project CloPeMa [1]. The

project advances the state of the art in the autonomous

perception and manipulation of limp materials like fabrics,

textiles and garments. The emphasis is put at universality

and robustness.

We propose a method for an autonomous folding of a

piece of garment spread out on a flat surface. Our aim

is to provide a real-time procedure which is applicable to

an extended collection of garments of various shapes and

to give satisfactory results when employed to a real robot.

The method involves vision sensing, garment understanding,

planning and manipulation tasks.

The similar objective has already been approached by

Miller et al. [2], [3] and applied to a garment folding on

Willow Garage PR2 robot. The authors consider a garment

fairly spread on an uniform green surface which extremely

simplifies the segmentation task. A contour is obtained by

segmenting a single image taken by the robot camera and

it is fitted to a parametric polygonal model specific for a

particular category of garment. The fitting procedure is an

iterative estimation of numeric parameters of the model.

Quite accurate fitting results are reported. However, the main

drawback is the slow performance as it takes 30–150 seconds

to fit a single contour, depending on a complexity of the

particular model. The same parametric polygonal model was
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used for socks configuration recognition and for pairing

corresponding socks [4]. The previously used global model

matching approach is combined with local fitting of texture

and shape descriptors in this work.

An automated folding of towels based on a robust visual

detection of their corner points is presented in [5]. The PR2

robot starts with a towel dropped on a table and folds it in a

sequence of manipulations performed both on the table and

in the air. This problem is also partially solved by Hata et

al. [6] who are interested in lifting a single towel from a pile

of highly wrinkled towels. The towel is then regrasped to be

held for its corner in order to simplify future manipulation.

The solution is based on detecting the highest point of the

pile followed by corner detections in stereo data. Ramisa et

al. [7], [8] combine features computed from both color and

range images to define a measure of clothes wrinkledness.

The identified highly wrinkled regions are good candidates

for automated grasping.

State estimation of the hanging clothes being held by

a single gripper is approached by Kita et al. They utilize

both single-view [9] and stereo [10] images. The method is

based on matching the observed data to many precomputed

deformable 3D models, each one for an individual grasping

location, and selecting the best fitting model. The recognition

accuracy can be improved by pushing the hanging garment

with the second robotic hand in order to bring it into a more

distinguishable position [11]. Doumanoglou et al. [12] are

interested in category and pose recognition of a hanging

garment in order to bring it into the desired position. They

work with depth images acquired by a range sensor. The

recognition algorithm utilizes decision forests trained on

very simple local features. The manipulation planning is

formulated in a probabilistic Markov framework. Willimon

et al. [13] estimate configuration of moderately wrinkled

clothes by fitting a triangulated surface to the observed

range image. The fitting procedure is based on iterative

minimization of the energy function which expresses surface

smoothness and both visual and spatial similarity of the data.

We already explained the computer vision basics of our

approach in [14] where the former method detected unfolded

garments which allowed us to launch a scripted sensing-less

sequence of robot actions to fold a piece of garment. Here

we present a more accurate polygonal model incorporating

relative lengths of contour segments. In addition, we propose

a generic procedure allowing to derive folded models from

the basic, unfolded ones. A new dynamic programming-

based algorithm for matching the model to observed data

is proposed. This work also documents its robotics side, i.e.

introducing our dual arm testbed and performing proposed



Fig. 1: Testbed and a detail of the arm with a mounted gripper

and Xtion on the wrist.

methods on it. The testbed used within CloPeMa is docu-

mented in Sec. II. All vision related models and algorithms

are described in Sec. III. Sec. IV gives brief overview of

the automated manipulation planning and execution. Exper-

iments, accuracy of recognition and the performance of the

folding by the robot are evaluated in Sec. V.

II. TESTBED DESCRIPTION

CloPeMa testbed consists of two Motoman MA1400

robotic arms, the R750 turn-table and two DX100 controllers.

The robotic arms are mounted on the turn-table tilted from

the vertical axis and the angle between them is 30◦. The arms

and the turn-table are driven by two controllers (master and

slave) at a low-level.

The high-level control system is built on the Robot Op-

erating System [15] (ROS Hydro). The system runs on a

PC connected to the master controller by a local Ethernet.

Basic software allows to move the robotic arms to required

positions as well as to read actual positions of the arms joints.

This functionality is supported by MotoROS package, dis-

tributed by the robot manufacturer, and extended to support

the dual arm robot.

The testbed is fitted with sensors and grippers. Xtion

range finder sensors are attached on the wrists of both arms.

Additional Xtion sensor is mounted to a camera-head holder.

The binocular head [16] is placed on the top of the holder.

Two grippers specialized to garment manipulation [17] are

attached to robot wrists. Each arm is also equipped with a

force and torque sensor in the wrists. Fig. 1 shows the testbed

and a detail of the gripper and Xtion sensor on the wrist. The

reported work uses only Xtion vision sensors.

III. VISION SENSING AND UNDERSTANDING

The crucial task in our system for automated folding

is to recognize the configuration of a piece of garment

to be manipulated by the robot. This is performed as a

computer vision task utilizing a single color image captured

by the Xtion camera mounted on the robotic arm. The

algorithm precedes the folding sequence to determine the

initial configuration of the spread garment. Vision sensing

is also repeated after performing each single fold, utilizing

results from the previous runs.

(a) Input image (b) Segmentation (c) Simpl. contour

Fig. 2: Pixels of the input image are used to initialize trimap

for grabcut algorithm. The trimap consists of foreground

(plotted in cyan), background (yellow) and unknown (ma-

genta) pixels. The resulting segmentation gives a garment

contour (red) which is approximated by a polygon (blue).

The vision procedure can be split into several steps:

• The input is formed by a color image of a piece of

garment placed on a table. The color of the table with

a wooden-like surface differs from the garment color.

• The garment location in the image is determined auto-

matically by a segmentation method trained from data.

• The contour of the garment is extracted from the seg-

mentation mask and approximated by a polygon, which

reduces the number of contour points (now polygon

vertices) significantly.

• The approximated polygonal contour is matched to

a polygonal model specific for a particular category

of clothing. Once the polygonal model is matched,

positions of the contour landmark points are known.

A. Segmentation

Segmentation is the first phase of the recognition pipeline.

Since the table beneath the garment is unchanged, its color

can be learned from training data. We model the table

color probabilistically as a Gaussian mixture model (GMM)

of RGB triples. Components of the GMM are initialized

by a binary tree algorithm for palette design [18] which

repeatedly splits RGB vectors to subsets in a direction with

the greatest variance. The number of GMM components is

determined empirically to model variability of the table color

sufficiently. We use 3 components in our case of a wooden

table. The prior probabilities, mean vectors and covariance

matrices for individual components are learned according to

the maximum likelihood principle [19].

The color of the garment lying on the table is unknown.

However, we suppose that it is sufficiently different from the

color of the table. Thus pixels visualizing the table should

have higher probability in the trained GMM than pixels

visualizing an unknown garment. Based on this assumption,

we label the n-th pixel by label tn according to probability

p(zn) of its color zn in the trained GMM model:

tn =











foreground, p(zn) < PF

unknown, PF ≤ p(zn) ≤ PB

background, PB < p(zn)

(1)

The probability thresholds PF and PB are chosen so that

3% training pixels have probability lower than PF and 80%



Fig. 3: Polygonal models for all currently supported cate-

gories of clothing (towel, pants, short-sleeved shirt and long-

sleeved shirt).

of them have probability higher than PB . Fig. 2b shows

example of such a labeling.

The described labeling is used to automatically initialize

color models of the grabcut segmentation algorithm [20].

This is done instead of requiring the user to draw a stroke

over foreground (garment) and background (table) pixels to

initialize the color models. The grabcut algorithm is based

on the iterative reestimation of the GMM color models and

relabeling of pixels by minimizing a certain energy function.

In our implementation, we use GMM with 3 components and

we interrupt the optimization after performing 3 iterations.

B. Contour processing

A contour of the garment is extracted from the obtained

segmentation mask by Moore’s algorithm [21] for border

tracking. The contour is formed by pixels at the garment’s

border as seen in Fig. 2b. Thus it can be considered to be a

polygon with several hundreds or thousands vertices. Their

exact amount depends mainly on size of the garment and on

resolution of the input image. However, shape of the contour

is much simpler and thus it can be closely approximated by

a polygon which has at most tens of vertices, depending on

the shape complexity and on the desired precision. Example

of a simplified contour can be seen in Fig. 2c.

The simplification applies iteratively the algorithm for

optimal approximation of an open curve by a polyline [22].

The algorithm utilizes dynamic programming approach to

minimize the overall distance of the original contour points

to the edges of the approximating polygon. To find the global

optimum, the inner algorithm would have to be run for each

point of the original cyclic contour, breaking it to an open

curve. However, in practice it is possible to stop it after

several iterations to obtain a sufficient approximation.

C. Polygonal models of clothing

The shapes of possible contours for a particular category of

clothing are described by polygonal models. We distinguish

the following categories of clothing: towel, pants, short-

sleeved shirt and long-sleeved shirt. Fig. 3 visualizes all the

models and Fig. 4 shows a more detailed polygonal model

for a short-sleeved shirt.

Each polygonal model is determined by its vertices and

their relative mutual positions. The mutual positions are

described by inner angles adjacent to vertices as well as

by relative lengths of polygon edges with respect to its

perimeter. The inner angles and relative lengths are learned

from training data. They are modeled probabilistically by
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Fig. 4: Polygonal model for a short-sleeved shirt. Inner

angles sharing the same distribution are denoted by the same

Greek letter α . . . δ. Edges sharing the same distribution of

relative lengths are denoted by the same Latin letter a . . . f .

Colors of the probability distributions correspond to colors

of angles and edges in the polygonal model.

independent normal distributions as seen in Fig. 4b and

Fig. 4c. Some distributions are shared by more vertices

and edges of the same model, e.g. the distribution of inner

angles adjacent to left and right armpit of a shirt or the

distribution of relative lengths of towel top and bottom edges.

The distributions sharing is allowed by the obvious left-right

and top-bottom symmetries of clothing shapes as in Fig. 4.

D. Matching contours to polygonal models

Now, we have a contour of a garment approximated by

a polygon having N vertices p1 . . . pN , which we will call

points from now on. The polygonal model is determined by

vertices v1 . . . vM . The number of vertices M is specific for

a particular category of clothing. It always holds N > M .

We describe how to match points of the polygonal contour

to vertices and segments of the polygonal model, i.e. how to

find a mapping f such that ∀i ∈ {1 . . . N}:

f(pi) =

{

vm, point pi is mapped to vertex vm,

s, point pi is aligned to a segment.
(2)

The mapping has to satisfy several conditions:

• There exists a point pi mapped to it for each vertex vm.

• No two points pi and pj are mapped to the same vertex

vm. However, many points can be mapped to segments

represented by a symbol s.

• The mapping preserves the ordering of points on the

polygonal contour and the ordering of vertices of the

polygonal model in the clockwise direction. See Fig. 5.

The number of all possible mappings f satisfying the

conditions can be enumerated easily. To do it, select one of

N points to be mapped to vertex v1. Then select an arbitrary

subset of M − 1 points from remaining N − 1 points to be

mapped to vertices v2 . . . vM . Thus the amount of all possible

mappings is:

N

(

N − 1

M − 1

)

(3)
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Fig. 5: Visualization of function f which maps points

p1 . . . pN to vertices v1 . . . vM (blue arrows). Some points

are mapped to segments (red arrows). The mapping preserves

clockwise ordering of both points and vertices.

To compare the quality of mappings, we define a cost

function C(f) associated with a mapping f . The overall

cost is the summation of local costs which express local

qualities of a particular mapping. Let assume that indices

in all following equations iterate in closed cycles, namely

i ⊕ 1 = (i mod N) + 1, i ⊖ 1 = (i − 2 mod N) + 1,

m⊞1 = (m mod M)+1 and m⊟1 = (m−2 mod M)+1.

Vertex matching cost V m
i,j,k is defined for each triple of

contour points pi, pj , pk and each model vertex vm:

V m
i,j,k = −λV logN (|∠pipjpk|;µm, σ2

m) (4)

It expresses how the size of the oriented angle |∠pipjpk|
fits the normal distribution N ( · ;µm, σ2

m) of inner angles

adjacent to the vertex vm. Mean µm and variance σ2
m of the

distribution are learned from data as in Fig. 4b. Symbol λV

denotes weight of the vertex matching cost.

Edge matching cost Em
j,k is defined for each pair of points

pj , pk and each polygonal model vertex vm:

Em
j,k = −λE logN

(

‖pjpk‖
∑n

i=1
‖pipi⊕1‖

; νm, τ2m

)

(5)

It expresses how the relative length of the line segment

pjpk (with respect to overall length of the contour) fits the

distribution of relative lengths of the model edge vmvm⊞1.

Mean νm and variance τ2m of the distribution are learned

from data as in Fig. 4c. Symbol λE denotes the weight of

the edge matching cost.

Segment matching cost Sj,k is defined for each pair of

simplified contour points pj , pk in following way:

Sj,k = −λS

∑

i∈Ij,k

logN (|∠pi⊖1pipi⊕1|; ξ, φ
2) (6)

The range Ij,k passed by index i is defined as:

Ij,k =

{

{j + 1 . . . k − 1}, j ≤ k

{j + 1 . . . N, 1 . . . k − 1}, j > k
(7)

The segment matching cost expresses the penalty paid for

points not matched to any vertex. These points together with

neighboring segments should resemble straight lines as seen

in Fig. 5. This is why the mean and the variance are set

empirically as ξ = π and φ2 = π2/16. Symbol λS denotes

the weight of the segment matching cost.

pj-1 pj→vm

pk→vm+1pm-1

(a) Minimization range

Ti,jTm-1

Vi,j,kVm

Ej,kEm
Sj,k

pj→vm

pk→vm+1

pi→vm-1

(b) Matching costs

Fig. 6: (a) Minimization of the total cost Tm
j,k goes over all

pi, where i ∈ {m − 1 . . . j − 1}. Various choices of pi are

visualized in different colors. (b) Total matching cost Tm
j,k

is given by summing previous total cost Tm−1

i,j (plotted in

magenta), vertex cost V m
i,j,k (red), edge cost Em

j,k (green) and

segment cost Sj,k (blue).

Weights of matching costs were set empirically as λV = 1,

λE = 1/3 and λS = 1 to balance typical values of the costs.

Note that both vertex and segment matching cost evaluate

angles and so their weights are equal, whereas the edge

matching cost evaluate relative lengths.

All three types of costs are visualized in Fig. 6b by differ-

ent colors. The overall cost is given by summing costs for all

vertices vm and points pi, pj , pk such that f(pi) = vm⊟1,

f(pj) = vm, f(pk) = vm⊞1. The goal is to find the mapping

having the minimal overall cost f∗ = argminf C(f).

E. Dynamic programming algorithm for contour matching

The number of all possible mappings (see Eq. 3) is

exponential in the number of vertices. It would be very

infeasible to compute costs for all such mappings. Instead

we propose an efficient dynamic programming algorithm.

The main part of the algorithm is listed in Alg. 1. It

assumes that f(p1) = v1 and f(pr) = vm, where r ∈
{M . . .N}. It finds cost of the optimal mapping to the

remaining vertices v2 . . . vM−1. The optimal mapping itself

can be constructed by remembering also index of the point

pi minimizing the cost Tm
j,k, followed by backward tracing

as usual in dynamic programming algorithms. The global

optimum can be found by calling Alg. 1 for each combination

of N possible n-shifts of the contour points (p′1 . . . p
′
N ) ←

(pn . . . pN , p1 . . . pn−1) with N−M+1 options of selecting

pr, i.e. Alg. 1 is called O(N2) times in total.

Alg. 1 is based on an iterative evaluation of cost Tm
j,k, for

m increasing. The cost is a summation of local costs defined

in Eq. 4, Eq. 5, Eq. 6 for points p1 . . . pj optimally mapped to

vertices v1 . . . vm so that f(pr) = vM , f(p1) = v1, f(pj) =
vm, f(pk) = vm+1. The main step of the algorithm is the

minimization searching for a point pi mapped to the previous

vertex vm−1. The minimization is visualized in Fig. 6a. The

purpose of individual costs is summarized in Fig. 6b.

The most time complex part of Alg. 1 are three nested

loops computing O(N2M) costs Tm
j,k, each of them obtained

as minimization over O(N) elements. Thus the overall

complexity of Alg. 1 is O(N3M). Because Alg. 1 is called

O(N2) times, the overall time complexity of the proposed

contour matching algorithm is O(N5M). Although that the



Algorithm 1 Contour matching algorithm

In: r = index s.t. f(pr) = vM
V m
i,j,k = cost of matching ∠pipjpk to vm

Em
j,k = cost of matching pjpk to vmvm+1

Sj,k = cost of approximating pj+1 . . . pk−1 by pjpk

Out: Tm
j,k = cost of matching p1 . . . pk−1 to v1 . . . vm

s.t. f(pj) = vm, f(pk) = vm+1

for all j ∈ {2 . . . r −M + 2} do

for all k ∈ {j + 1 . . . r −M + 3} do

T 2
j,k ←

(

V 1
r,1,j + V 2

1,j,k

)

+
(

EM
r,1 + E1

1,j + E2
j,k

)

+ (Sr,1 + S1,j + Sj,k)
end for

end for

for all m ∈ {3 . . .M − 1} do

for all j ∈ {m. . . r −M +m} do

for all k ∈ {j + 1 . . . r −M +m+ 1} do

Tm
j,k ← min

i∈{m−1...j−1}

(

Tm−1

i,j + V m
i,j,k

)

+ Em
j,k + Sj,k

end for

end for

end for

return TM
r,1 ← min

i∈{M−1...r−1}

(

Tm−1

i,r + V m
i,r,1

)

degree of the polynomial is fairly high, the real performance

is very good as we show in Sec. V. It is because we choose

number of simplified contour points N between 10 and 20,

depending on complexity of the matched model, which is

enough for a precise approximation of the original contour.

F. Generating folded models

The proposed pipeline for landmark points recognition is

not used only for a spread garment. After revealing its initial

configuration, the garment is folded by the robot and a new

image is taken. The contour is extracted and simplified in the

same way as already described. Also the matching algorithm

is unaltered, however, we have to use a modified polygonal

model which reflects the performed fold.

The incremental creation of folded models is shown in

Fig. 7. The original vertices are being replaced by vertices

denoting endpoints of individual folds. The s-th fold is

performed in the clockwise direction along the contour from

position Fs to Ts. All the original vertices positioned either

between or near Fs and Ts are removed and two new vertices

Fs and Ts connected by an edge are added.

The distributions of inner angles and relative lengths,

which are used to evaluate penalty V m
i,j,k in Eq. 4 and penalty

Em
j,k in Eq. 5, are adjusted to correspond to the observed

image and planned fold. The means µm and νm for the

next folded model are set to the angles and relative lengths

measured in the actual image, considering line of the planned

fold. The variances σ2
m and τ2m adjacent to the original

vertices are all set to the smallest variance learned for the
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Fig. 7: Incremental creation of folded models for a short-

sleeved shirt. The original vertices are being replaced by

new vertices denoting endpoints of individual folds (plotted

in various colors).

original model, as all following manipulation is performed

with that particular piece of garment. The variances adjacent

to the newly added vertices are set to twice that value because

of the uncertainty in the performed fold.

IV. PLANNING, GRASPING AND MANIPULATION

ROS provides packages to perform various robotics tasks.

We utilize MoveIt package [23] which is included to support

the motion planning. It implements interfaces for com-

mon robotics libraries. We use two approaches to generate

robot trajectories for our purposes – planning and interpo-

lation. The planning uses Open Motion Planning Library

(OMPL) [24] to schedule collision free trajectories from one

joint state to another one. We have tested several planning

algorithms from OMPL and found out that RRT-Connect

[25] suits best our needs since it successfully finds a plan in

most of the cases and in a reasonable time. The interpolation

generates points evenly distributed on a line in Cartesian

coordinates. Then it computes the inverse kinematic for each

point to produce the final trajectory which is sent to the robot

controller.

We adopted the scheme proposed in [26] for the folding.

The robot moves the grasped corners along a triangular path

and utilizes the gravitational force acting on the garment.

Since our gripper is not suitable for grasping flat garment

from above, our lower finger slides under the garment and

and grasps it. The motion near to the garment and with the

garment in grippers uses interpolation to have a full control

over the actual trajectory and to prevent tearing the garment.

The rest of the motion utilizes the planning discussed above.

V. EXPERIMENTS

We have performed two sets of experiments to test the

proposed methods. Sec. V-A shows performance of the com-

puter vision pipeline on a dataset of static images. Sec. V-B

describes folding experiments performed on a robot.

A. Experiments on the dataset of images

We have tested the proposed computer vision pipeline on

a dataset of spread garments collected by our team [27].

The dataset contains 1280 × 1024 color images taken from

a bird’s eye perspective. One pixel roughly corresponds to

0.09 cm in world coordinates. All images were manually

annotated by specifying locations of vertices of the described



Error Towel Pants Short-sleeved Long-sleeved

Median [cm] 0.31 0.46 0.49 0.50

Mean [cm] 0.35 0.52 0.88 1.03

Std. dev. [cm] 0.03 0.11 1.17 2.14

TABLE I: Displacements of the vertices found by the polyg-

onal model matching for various categories of clothing.

Fig. 8: Displacements of the vertices found by model match-

ing (plotted in green) and the manually annotated landmarks

(red). The displacements were computed for various config-

urations of garments and then they were projected to the

canonical image.

polygonal models. We used 170 testing images (41 towels,

45 pants, 45 short-sleeved shirts and 39 long-sleeved shirts).

The algorithms were implemented in MATLAB and C++.

The performance was evaluated on a notebook with Intel

M430 2.27 GHz processor and 8 GB memory.

Segmentation was performed on images downsampled to

resolution 320 × 256 to achieve a better time performance.

Totally 165 of 170 input images were correctly segmented.

The incorrectly segmented images were excluded from the

further evaluation. The time spent by segmenting one image

is on average 0.83 seconds. The contour simplification al-

gorithm is the most time consuming operation which takes

between 0.5 and 3.5 seconds, depending mainly on the con-

tour complexity. The subsequent model matching procedure

works with the already simplified contour. Its runtime is 0.14

seconds on average. The complete computer vision pipeline

runs almost every time under 5 seconds which is a significant

improvement compared to 30–150 seconds of Miller et al. [2]

Tab. I summarizes displacements of vertices found by the

proposed algorithm compared to the manual annotations.

They are similar to those achieved by Miller et al. [2] on

their own dataset. Moreover, the reported displacements are

approximately 20% lower than displacements achieved by

our former algorithm [14] on a subset of the current dataset.

Fig. 8 visualizes displacements for various configurations of

the selected pieces of garments. The experiments showed that

determining exact locations of shoulders is the most prob-

lematic task for our model. They are sometimes confused

with the neckline. However, since positions of shoulders are

not used for the automated folding, these errors cause no

problems.

B. Experiments on the CloPeMa testbed

We performed several experiments on CloPeMa testbed

to test the proposed algorithms. A piece of garment was

spread manually on the table next to the robot in each

Fig. 9: Robot performs series of folds with a short-sleeved

shirt. Images shown in the left column were taken by the

robot’s camera in order to fit the plotted polygonal model.

Fig. 10: Detailed view of the robot successfully folding a red

towel, black jeans and a violet long-sleeved sweater.

experiment. ROS application following predefined folding

steps was started next. In each step, the robot was moved into

the start configuration and the scene was perceived using the

Asus Xtion RGB camera. The captured image was sent to the

vision pipeline to find the polygonal model of the garment.

The matched model was used to determine the position of the

next fold, i.e. grasping points and points where the garment

had to be placed. Several gripper approach directions were

generated for each grasp or each place point to increase

the chance of a successful planning. If the planning was

successful then the resulting trajectory was executed by the

robot. Stages of the folding process are captured in Fig. 9.

Fig. 10 gives more detailed examples.



The whole process takes up to 4 minutes from which

roughly 10 seconds is the actual computation and the rest

is manipulation, as measured for a short-sleeved shirt which

requires performing three folding moves. The folding pro-

cedure succeeds approximately in 70% attempts. However,

the possible failures are seldom caused by the proposed

vision sensing. We have observed another failure factors

instead. The first and most frequent failure is an unsuccessful

inverse kinematic computation or motion planning either due

to the manipulation range limitation or due to the possible

collision. We plan to solve the limited manipulation range

problem by pulling the garment to a suitable position prior

to folding. The collision avoidance is a very challenging task

as we perform very complex moves with two independent

arms. We hope that it can be solved by involving more

advanced planning algorithms. The second common factor

is that the garment moves while folding. The position of

corners to grasp changes during the manipulation, resulting

in an incorrectly placed fold. In order to prevent a garment

from moving, the table surface was roughen.

VI. CONCLUSION AND FUTURE WORK

We have proposed, implemented and tested the method

for folding a piece of garment by a two armed robot which

benefits from a new polygonal model extending significantly

our previous work [14]. Additional constraints on the relative

size of segments led to a more accurate detection of garment

landmarks. The matching algorithm is significantly faster

than [2]. We have also shown how to automatically derive

models of folded garments. This approach has proved to be

very useful in the considered scenario.

In future, we would like to be able to detect folding

failures in order to recover from them. We also work on

more complicated scenarios dealing with garment which is

not spread on the table. We would like to develop advanced

models of clothing considering also its physical properties.

Moreover, we would like to be able to detect and model

special parts of clothing like buttons, pockets or collars

which provide additional information about the garment

configuration.
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[24] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning

library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[25] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proc. Int. Conf. on Robotics and

Automation (ICRA), 2000, pp. 995–1001.
[26] J. van den Berg, S. Miller, K. Y. Goldberg, and P. Abbeel, “Gravity-

based robotic cloth folding,” in Proc. Int. Workshop on the Algorithmic

Foundations of Robotics (WAFR), 2011, pp. 409–424.
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